

From Data Issues to Insurance Solutions: Machine Learning's Potential

Brandon Schwab

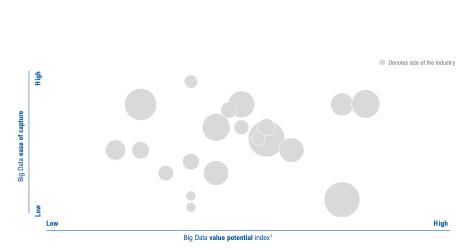
Institute for Risk and Insurance, Leibniz University Hannover

Hannover, October 19, 2023

1 The Importance of Asking the Right Questions

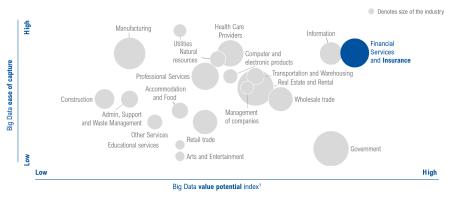
- 2 Machine Learning in Insurance: Potential Use Cases
- 3 Types of Data Issues
- 4 Enhancing Data Quality
- 5 Synergy: Machine Learning & Expert Judgments
- 6 Practical Example

Institute for Risk and Insurance



1 Determined by industry average of transaction intensity, amount of data per firm, variability in performance, customer and supplier intensity, and turbulence Source: McKinsey

Institute for Risk and Insurance



 Determined by industry average of transaction intensity, amount of data per firm, variability in performance, customer and supplier intensity, and turbulence Source: McKinsey

The Importance of Asking the Right Questions

^(C) Start with the End in Mind Define clear business goals before data considerations.

B Demand Analysis Identify data essentials by understanding business needs

Different Problems, Different Data Tailor data collection to the specific insurance issue.

The Risk of Wrong Data Irrelevant data increases noise and wastes resources.

[®] Start with the End in Mind

Define clear business goals before data considerations.

Demand Analysis

Identify data essentials by understanding business needs.

Different Problems, Different Data Tailor data collection to the specific insurance issue.

The Risk of Wrong Data Irrelevant data increases noise and wastes resources.

[®] Start with the End in Mind

Define clear business goals before data considerations.

Demand Analysis

Identify data essentials by understanding business needs.

🔁 Different Problems, Different Data

Tailor data collection to the specific insurance issue.

The Risk of Wrong Data Irrelevant data increases noise and wastes resources.

[®] Start with the End in Mind

Define clear business goals before data considerations.

Demand Analysis

Identify data essentials by understanding business needs.

Different Problems, Different Data

Tailor data collection to the specific insurance issue.

△ The Risk of Wrong Data

Irrelevant data increases noise and wastes resources.

Machine Learning in Insurance: Potential Use Cases

102

Fraud Detection

Identifying potentially fraudulent activities by analyzing patterns that deviate from the norm.

í

- Detailed claim information
- Behavioral data
- Previous fraud markers

l l Leibniz co 2 Universităt

O: Customer Churn Prediction

Forecasting the likelihood of a customer discontinuing their policy before its expiration.

()

- Detailed contract information
- Renewal history
- Customer service interactions

Loss Reserving

Predicting the claim developments and the ultimate claim amount for a portfolio of claims.

í

- Detailed claim information
- Sufficient loss history
- Macroeconomic indicators

🚇 Optimized Pricing

Adjusting insurance premiums using a vast array of factors to attract and retain customers while ensuring profitability.

í

- Detailed claim information
- Detailed contract information
- Macroeconomic indicators

Types of Data Issues

Institute for Risk and Insurance

1 l c o 2 Universität t o 4 Hannover

Data Issue	Description	Example		
Completeness	All attributes of a vari- able are available.	^{vari-} Height: NA		
Consistency	Consistent values for the same entity.	Date: 05.09.2016 / 20160905		
Validity	Data matches with the syntax of its definition.	Age: -3		
Accuracy	Data is correct.	Birthday: 05.09.1919		
Timeliness	Data is received at the right time and interval.	Event: 14:14, Notice: 23:59		

Institute for Risk and Insurance

1 l c o 2 Universität t o 4 Hannover

Data Issue	Description	Example	
Completeness	All attributes of a vari- able are available.	Height: NA	
Consistency	Consistent values for the same entity.	Date: 05.09.2016 / 20160905	
Validity	Data matches with the syntax of its definition.	Age: -3	
Accuracy	Data is correct.	Birthday: 05.09.1919	
Timeliness	Data is received at the right time and interval.	Event: 14:14, Notice: 23:59	

Institute for Risk and Insurance

1 l c o 2 Universität t o 4 Hannover

Data Issue	Description	Example		
Completeness	All attributes of a vari- able are available.	Height: NA		
Consistency	Consistent values for the same entity.	Date: 05.09.2016 / 20160905		
Validity	Data matches with the syntax of its definition.	Age: -3		
Accuracy	Data is correct.	Birthday: 05.09.1919		
Timeliness	Data is received at the right time and interval.	Event: 14:14, Notice: 23:59		

Institute for Risk and Insurance

1 l i 0 2 Universität 10 4 Hannover

Data Issue	Description	Example	
Completeness	All attributes of a vari- able are available.	Height: NA	
Consistency	Consistent values for the same entity.	Date: 05.09.2016 / 20160905	
Validity	Data matches with the syntax of its definition.	Age: -3	
Accuracy	Data is correct.	Birthday: 05.09.1919	
Timeliness	Data is received at the right time and interval.	Event: 14:14, Notice: 23:59	

Institute for Risk and Insurance

///Leibniz 102Universität 1004 Hannover

Data Issue	Description	Example	
Completeness	All attributes of a vari- able are available.	Height: NA	
Consistency	Consistent values for the same entity.	Date: 05.09.2016 / 20160905	
Validity	Data matches with the syntax of its definition.	Age: -3	
Accuracy	Data is correct.	Birthday: 05.09.1919	
Timeliness	Data is received at the right time and interval.	Event: 14:14, Notice: 23:59	

Enhancing Data Quality

Data Imputation

ML can predict and fill missing values based on patterns in existing data.

Anomaly Detection

Automatically identify and flag outliers or inconsistencies.

Data Validation
Use predictive models to verify and correct data entries in real-time.

Temporal Analysis ML can track and update time-sensitive data, ensuring timeliness.

***** Feature Engineering

Data Imputation

ML can predict and fill missing values based on patterns in existing data.

Anomaly Detection

Automatically identify and flag outliers or inconsistencies.

Data Validation
Use predictive models to verify and correct data entries in real-time.

Temporal Analysis ML can track and update time-sensitive data, ensuring timeliness.

℁ Feature Engineering

Data Imputation

ML can predict and fill missing values based on patterns in existing data.

Anomaly Detection

Automatically identify and flag outliers or inconsistencies.

Data Validation

Use predictive models to verify and correct data entries in real-time.

Temporal Analysis ML can track and update time-sensitive data, ensuring timeliness.

⅔ Feature Engineering

Data Imputation

ML can predict and fill missing values based on patterns in existing data.

Anomaly Detection

Automatically identify and flag outliers or inconsistencies.

Data Validation

Use predictive models to verify and correct data entries in real-time.

ก๊ที Temporal Analysis

ML can track and update time-sensitive data, ensuring timeliness.

***** Feature Engineering

Data Imputation

ML can predict and fill missing values based on patterns in existing data.

Anomaly Detection

Automatically identify and flag outliers or inconsistencies.

Data Validation

Use predictive models to verify and correct data entries in real-time.

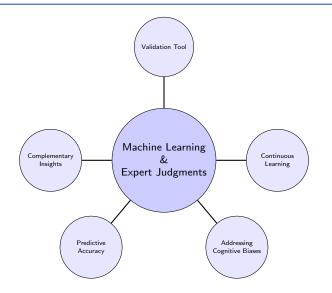
M Temporal Analysis

ML can track and update time-sensitive data, ensuring timeliness.

⅔ Feature Engineering

Synergy: Machine Learning & Expert Judgments

Synergy: Machine Learning & Expert Judgments



Practical Example

Research Objective

Enhance the accuracy of claim development predictions by leveraging individual claim and contract information through ML.

Graditional Approach

Classic actuarial methods are based on simple heuristics that use aggregate data to make predictions.

Rew Approach

Our research deploys machine learning models to tap into the richness of individual claim & contract data, ensuring a more granular and informed prediction.

Research Objective

Enhance the accuracy of claim development predictions by leveraging individual claim and contract information through ML.

🛱 Traditional Approach

Classic actuarial methods are based on simple heuristics that use aggregate data to make predictions.

G R Approach

Our research deploys machine learning models to tap into the richness of individual claim & contract data, ensuring a more granular and informed prediction.

Research Objective

Enhance the accuracy of claim development predictions by leveraging individual claim and contract information through ML.

🛱 Traditional Approach

Classic actuarial methods are based on simple heuristics that use aggregate data to make predictions.

⇔ New Approach

Our research deploys machine learning models to tap into the richness of individual claim & contract data, ensuring a more granular and informed prediction.

1 1 Leibniz 102 Universität 1064 Hatmourr

Example:

Accident Year	Development Year					
Accident real	1	2	3	4	5	6
1	100	150	180	200	210	215
2	95	140	170	190	200	-
3	90	135	165	185	-	-
4	85	130	160	-	-	-
5	105	90	-	-	-	-
6	75	-	-	-	-	-

Institute for Risk and Insurance

1 l i o 2 Universität lo o 4 Hannover

Chain Ladder

Accident Year	Development Year					
	1	2	3	4	5	6
1	0	0	0	0	0	0
2	0	0	0	0	0	2.1% / 1.4%
3	0	0	0	0	2.8% / 0.1%	5.4% / 0.6%
4	0	0	0	9.2% / 4.0%	10.4% / 4.1%	13.0% / 3.1%
5	0	0	3.2% / 2.2%	10.1% / 3.9%	11.9% / 3%	13.8% / 0.7%
6	0	6.2% / 0.2%	4.2% / 1.3%	2.3% / 1.0%	4.6% / 3.3%	7.7% / 3.7%