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Cyber-Insurance
Introduction

Cyber-risk

Cyber-risk: inappropriate use of numerical tools and information
systems.

A cyber incident can be voluntary (cyber attack) or not (accidents
may happen).

For hacking, hackers use vulnerabilities in information systems, from
outside or from inside.

Various types of attacks (ransomware, phishing, classic frauds...)

Strike states, companies, people.
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Cyber-Insurance
Introduction

Wannacry

Ransomware Wannacry : worldwide cyber attack in May 2017.
Use the vulnerability "EternalBlue".
Approximatively 200 000 infected computers across 150 countries
over approximatively one week.
Estimation of the cost : hundreds of million dollars, billions
according to some estimations. (£100 millions for the NHS).

NotPetya: June 2017, uses the same vulnerability, also huge losses.
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Introduction

Colonial Pipeline

4.2% increase of WTI and Brent.
"Double extorsion": ransomware attack combined with blackmail.
Authors: the hacker group "Darkside" (Ransomware as a service).
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Cyber-Insurance
Introduction

Some numbers (French market)

The « Association pour le Management des Risques et des
Assurances de l’Entreprise » (AMRAE) published its second version
of the LUCY study in 2022.
Used data from brokers in the French market.
Loss ratios in 2021: 88%
Previous Loss ratios: 167% in 2020, 84% in 2019.
What is new in 2021:

Insurance capacities are smaller
Deductibles increase
Premium increases (+44,4% compared to an estimated growth of
the market of 27,5%)
The coverage of large companies is diminishing (-4,4%)
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Introduction

Report from the French National Direction of Treasury

September 2022: report from the working group of the French
National Direction of Treasury on cyber insurance:
https://www.tresor.economie.gouv.fr/Articles/2022/09/07/

remise-du-rapport-sur-le-developpement-de-l-assurance-du-risque-cyber

Identifies some difficulties and levers to develop an efficient cyber
insurance ecosystem.
Among the needs mentioned by the report:

lack of data;
innovation in terms of models;
loss of mutualization, extreme claims, accumulation risk.
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Cyber-Insurance
Introduction

Aim of this talk

We propose a way to fit a model for the loss of a severe cyber event.
This cyber event can be:

a catastrophic claim striking a single actor;
the aggregation of many claims occurring in a small amount of time
(accumulation).

Applications: pricing, reinsurance, selection of policyholders or of
limits of guarantees...
Possible connexions with some frequency models, see for example:

Hillairet, C., Lopez, O., d’Oultremont, L., Spoorenberg, B.
(2022). "Cyber-contagion model with network structure applied
to insurance," Insurance: Mathematics and Economics, vol.
107, pp. 88-101.
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Introduction

Outline

1 Introduction

2 Generalized Pareto regression trees
Approximation of the tail via Generalized Pareto Distributions
Generalized Pareto Regression Trees fitting
Illustration in the case of data breaches

3 A Bayesian model
Credibility theory
Calibration of the prior

4 Conclusion
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Cyber-Insurance
Generalized Pareto regression trees

Approximation of the tail via Generalized Pareto Distributions

Notation and context

In the following, Y is a random variable used to model the loss
linked to a cyber attack.
We assume that Y is heavy tail in the sense that

SY (t) = P(Y ≥ t) =
l(t)

t1/γ
,

where l is a slow-varying function, and γ > 0 is the tail index.
X ∈ Rd corresponds to covariates (quantitative and/or qualitative),
like, for example:

type of attack (ransomware, Ddos...);
information on the victim (type of company, size, budget allocated
to cyber security...);
consequences (business interruption, third party...)

(Y1,X1, · · · ,Yn,Xn) = the sample of observations to calibrate the
model.
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Cyber-Insurance
Generalized Pareto regression trees

Approximation of the tail via Generalized Pareto Distributions

Extreme value theory

Generalized Pareto Distribution
A random variable Z with Generalized Pareto Distribution of parameters
(γ, σ) is characterized by its survival function

Sγ,σ(z) = P(Z ≥ z) =

{ 1
(1+ zγ

σ )1/γ
, γ 6= 0

exp
(
− z
σ

)
, γ = 0

.

Approximation beyond a threshold:
Pickands (1975): for a random variable Y , let
Sun(y) = P(Y − un ≥ y |Y ≥ un), there exists (γ, σn) such that

lim
n
|Sun(y)− Sγ,σn(y)| = 0,

where un tends towards τS = sup {y : S(y) > 0} .
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Cyber-Insurance
Generalized Pareto regression trees

Approximation of the tail via Generalized Pareto Distributions

Analysis on extreme cyber events

Edwards B., Hofmeyr S. and Forrest S. (2016), “Hype and heavy
tails: A closer look at data breaches.” Journal of Cybersecurity, vol.
2 (2057-2085), pp. 3-14.

Eling M. and Loperfido N. (2017), “Data breaches: Goodness of fit,
pricing, and risk measurement.” Insurance: Mathematics and
Economics, vol. 75 (0167-6687), pp. 126-136.

Wheatley S., Maillart T. and Sornette D. (2016), “The extreme risk
of personal data breaches and the erosion of privacy.” European
Physical Journal B, vol. 89 (1434-6036), pp. 7.

In the particular case of data leaks, these authors show evidence that
the distribution of the loss is heavy tail.
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Generalized Pareto regression trees

Approximation of the tail via Generalized Pareto Distributions

GPD an insurability

Y = loss associated to a cyber claim.
γ > 0 (heavy-tailed).
If Z = Y − u|Y ≥ u is Generalized Pareto distributed with
parameters γ and σ,

E [Z |Z ≥ 0] =
σ

1− γ
,

if γ < 1.
If γ ≥ 1, infinite expectation, "not insurable". The insurer :

canexclude the risk.
can introduce limits to guarantees (lower if γ is high).
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Generalized Pareto regression trees

Approximation of the tail via Generalized Pareto Distributions

Mixtures of GPD

Consider that a population is a mix between to type of extreme
behaviors.
Y = δY1 + (1− δ)Y2, where δ is an (unobservable) Bernoulli
distributed random variable, independent from Y1 (tail index γ1) and
Y2 (tail index γ2).
Then, the tail index of Y is γ = max(γ1, γ2).

Extends to more general mixtures.
Consequence: if we do not manage to distinguish these two
subpopulations, we will apply the worst case scenario.

Idea: use the risk factors X ∈ Rd to identify different type of
populations / claims that are associated with different values of γ.
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Cyber-Insurance
Generalized Pareto regression trees

Approximation of the tail via Generalized Pareto Distributions

Classical way to deal with risk factors: Generalized Linear
Model

Generalized Linear Model
Let Y denote the response variable, and X ∈ Rd a set of covariates. In a
GLM, one assumes that

g(E [Y |X]) = β0 + βTX,

where
g is a monotonic (known) link function
the distribution of Y |X belongs to a given exponential family of
distributions.
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Generalized Pareto regression trees

Approximation of the tail via Generalized Pareto Distributions

Why GLM does not seem a good idea

Parametric model: relies on strong assumptions that may be far to
be true in practice.

Linearity (up to some known transformation) of the effects is a
constraint.

GLM does not allow to consider "extreme events".

Targets the "central scenario" E [Y |X].
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Cyber-Insurance
Generalized Pareto regression trees

Approximation of the tail via Generalized Pareto Distributions

Parametric methods

We have risk factors X ∈ Rd and we want to understand their
impact on the tail index, say γ(x) the tail index of the distribution of
Y |X = x.

First strategy: make a parametric assumption on γ(x), for example

γ(x) = f (θ0, x),

for some f known, θ0 ∈ Rk unknown.

Estimation can be performed by pseudo-maximum likelihood on the
observations that exceed a certain threshold.

Problem: which type of function f should be chosen ?
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Cyber-Insurance
Generalized Pareto regression trees

Approximation of the tail via Generalized Pareto Distributions

Nonparametric methods

One assumes nothing but smoothness on γ(x) (but is it realistic ?).
Estimation relies on kernel smoothing, the simplest version is

(γ̂(x), σ̂(x)) = argmax
n∑

i=1

K

(
Xi − x

h

)
log fγ,σ(Yi − u)1Yi≥u,

where
fγ,σ is the density of a GPD with parameters γ and σ
u is a threshold
K is a kernel function (integral = 1)
h is a bandwidth close to zero

Does not apply to discrete covariates.
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Cyber-Insurance
Generalized Pareto regression trees

Generalized Pareto Regression Trees fitting

Clustering And Regression Trees (CART)

Introduced by Breiman (1984). Many extensions: Su (2004),
Hothorn (2006), Loh (2014),...
Consider a random variable Y and X some covariates.
Regression trees:

combining clustering with regression (that is evaluation of the
impact of covariates on a variable).
regression trees aim to estimate a function m(x) (characterizing the
distribution of Y when X = x , for example m(x) = E [Y |X = x]) by

m̂(x) =
K∑
j=1

mjRj(x),

where Rj are called a "rule," that is Rj(x) = 0 or 1, and, for all x,
only one Rj(x) is nonzero.
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Generalized Pareto regression trees

Generalized Pareto Regression Trees fitting

Clustering And Regression Trees (CART)

Regression tree (Breiman et al., 1984)

m∗ = arg min
m∈M

[φ(Y ,m(X))],

Y is a response variable (the cost of a cyber claim in our case)
X ∈ X ⊂ Rd is a set of covariates
M is a class of target functions on Rd

φ is a loss function that depends on the quantity we wish to estimate

if we take φ = quadratic loss, m∗ is the conditional expectation;
if we take φ = absolute loss, m∗ is the conditional median;
...
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Generalized Pareto Regression Trees fitting

A few words about the algorithm
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Cyber-Insurance
Generalized Pareto regression trees

Generalized Pareto Regression Trees fitting

The splitting rule and loss functions
Loss functions considered:

to analyze the "center of the distribution":
the quadratic loss φ(y ,m(x)) = (y −m(x))2,
the absolute loss φ(y ,m(x)) = |y −m(x)|,

to analyze the tail:
a log-likelihood loss φ(y ,m(x)) = − log fm(x)(y), where
F =

{
fθ : θ ∈ Θ ⊂ Rk

}
is a parametric family of densities.

Generalized Pareto log-likelihood as splitting criterion:

φ(y ,m(x)) = − log(σ(x))−
(

1
γ(x)

+ 1
)
log
(
1 +

yγ(x)

σ(x)

)
,

where m(x) = (σ(x), γ(x)).

In this last case, this loss function is applied only to observations
larger than some threshold.
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Generalized Pareto regression trees

Generalized Pareto Regression Trees fitting

Pruning step: model selection
Let Tmax be the maximal tree obtained in the first phase and Kmax
the number of its leaves
Pruning: consists in the extraction of a subtree from Tmax

Penalized criterion (nT number of leaves of tree T )

Cα(T ) =
n∑

i=1

φ(Yi ,m
RT

(Xi )) + αnT

One can shows that the "best" tree with K leaves can be extracted
from the "best" tree with K + 1 leaves, which makes the selection
feasible through some kind of backward selection.
α > 0 is chosen by cross-validation or with test sample.

Denote T̂K the best tree with K leaves according to this criterion,
T ∗K the best tree with K leaves for the criterion E [Cα(T )].

T̂ the tree minimizing the penalized criterion, K̂ its number of
leaves.

O. Lopez June 7th 2023 23 / 39



Cyber-Insurance
Generalized Pareto regression trees

Generalized Pareto Regression Trees fitting

Pruning step: model selection
Let Tmax be the maximal tree obtained in the first phase and Kmax
the number of its leaves
Pruning: consists in the extraction of a subtree from Tmax

Penalized criterion (nT number of leaves of tree T )

Cα(T ) =
n∑

i=1

φ(Yi ,m
RT

(Xi )) + αnT

One can shows that the "best" tree with K leaves can be extracted
from the "best" tree with K + 1 leaves, which makes the selection
feasible through some kind of backward selection.
α > 0 is chosen by cross-validation or with test sample.
Denote T̂K the best tree with K leaves according to this criterion,
T ∗K the best tree with K leaves for the criterion E [Cα(T )].

T̂ the tree minimizing the penalized criterion, K̂ its number of
leaves.

O. Lopez June 7th 2023 23 / 39



Cyber-Insurance
Generalized Pareto regression trees

Generalized Pareto Regression Trees fitting

Some theory (short)

Let ‖T − U‖22 =
∫

(T (x)− U(x))2dP(x).

Consistency of the tree

Under some assumptions,

P
(
‖TK − T ∗K‖22 ≥ t

)
≤ 2

{
exp

(
− C1knt

K [log n]2

)
+ exp

(
− C2knt

1/2

K 1/2 log n

)}
+

C3K

knt3/2
,

and

E
[
‖T̂K − T ∗K‖22

]
≤ C4

K (log n)2 log(n/kn)

kn
.
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Generalized Pareto regression trees

Generalized Pareto Regression Trees fitting

Consistency of pruning step

Let K0 denote the number of leaves of the "best" T ∗K according to
E [Cα(T )].

Consistency of the pruning step

Under some assumptions,

E [‖T̂ − T ∗K0
‖22] ≤ C4

K0(log n)2 log(n/kn)

kn
.

More details:

S. Farkas, A. Heranval, O. Lopez, M. Thomas, "Generalized
Pareto Regression Trees for extreme events analysis" (2023)
Preprint https://arxiv.org/abs/2112.10409.
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Cyber-Insurance
Generalized Pareto regression trees

Illustration in the case of data breaches

The case of data breaches (PRC database)
Chronology of data breaches maintained by Privacy Rights
Clearinghouse association (US) since 2005.
Y is here the "number of records" affected (gives an idea of the
volume of data exposed by the event).
Attempt to link the cost of the event to the number of records:

log(Costs) ≈ 9.59 + 0.57× log(Records).

This (very) rough formula is an updated version of:
a formula computed by Jacobs in the Cost of Data Breaches report
2014 (based on incidents in 2013 and 2014) from the Ponemon
Institute;
with inclusion of more recent mega breaches.

More details :

Farkas, S., Lopez, O., Thomas, M. (2021). "Cyber claim
analysis using Generalized Pareto regression trees with
applications to insurance," Insurance: Mathematics and
Economics, vol. 98, p. 92-105.
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Illustration in the case of data breaches

GPD Regression Trees

Let us recall that γL ≈ 0.5γY .
Corresponding tail index when it comes to the cost: (from left to
right) 0.82, 0.98, 1.86.
Tail index estimation if one does not separate claims into clusters:
2.16 (for the cost: 1.23).
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Illustration in the case of data breaches

Remarks on regression trees

The method identifies clusters of claims, and can help to draw a line
between what can be insured and what can not.
On the data: the variables that drive the central part of the
distribution are not the same as the one that drive the tail.
This database is an illustration, but the lack of data on cyber risk by
insurance companies needs to be compensate by looking at public
databases to build a "prior".
In the paper: also a frequency analysis of the claims, and how it can
be used to price (or compute reserves) for virtual portfolios.
Extension: "black-box methods" (Random Forests, Gradient
Boosting...)
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A Bayesian model

Credibility theory

A Bayesian credibility model

Let us consider that we have an history of claim losses (Y1, · · · ,YN)
on a given segment.
By segment we mean either:

a policyholder or a class of policyholders;
a type of cyber event;
a type of cyber event on a class of policyholders...

Let us assume that :
there is a hidden factor θ such that (Yi )1≤i≤N are independent,
identically distributed conditionally on θ;
Y1|θ = t ∼ E(t);
prior distribution: θ ∼ Γ(r , λ).
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A Bayesian model

Credibility theory

Posterior distribution
Closed formula for the posterior distribution of θ|Y1, · · · ,YN :

θ|Y1, · · · ,YN ∼ Γ

(
r + n, λ+

N∑
i=1

Yi

)
.

Let us assume that we want to compute a pure premium:

π(Y1, · · · ,YN) = E [YN+1|Y1, · · · ,YN ]

= E [E [YN+1|θ,Y1n · · · ,YN ] |Y1, · · · ,YN ]

= E

[
1
θ
|Y1, · · · ,YN

]
= cN(r)

∑N
i=1 Yi

N
+ (1− cN(r))

λ

r − 1
,

for r > 1, with

cN(r) =
N

r + N − 1
.
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A Bayesian model

Credibility theory

Distribution of Y
Write

P(Y ≥ y) = E [P(Y ≥ y |θ)] =

∫ ∞
0

exp(−ty)pr ,λ(t)dt

=

(
λ

λ+ y

)r

.

Consequence: the distribution of Y is a GPD with parameters

γ =
1
r
,

σ =
λ

r
.

The expectation of Y (if finite) is

E [Y ] =
λ

r − 1
.
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A Bayesian model

Calibration of the prior

How to calibrate the prior distribution?

We have two types of information:
a collective database, on which we have elements on claims, with
(Z1,X1, · · · ,Zn,Xn) where Zi = loss, Xi = covariates;
we have individual information (Y1, · · · ,YN) as in the hidden factor
model we considered.

The collective database is assumed to be i.i.d. with same
distribution as Y .
Examples:

the collective database is an external database (provided by
cybersecurity experts, national statistics...);
the collective database corresponds to the data of the whole
portfolio, while (Y1, · · · ,YN) concern a single policyholder.

(In the last case, the independence assumption does not perfectly
hold).
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Calibration of the prior

Application (analogy)

Approach developed in the field of natural disasters (collaboration
with "Mission Risques Naturels").
Use case:

a natural disaster occurs (a flood), with some characteristics;
the tree based model is used to fit a Generalized Pareto distribution
whose parameters are adapted to the nature of the event;
we deduce the corresponding values r and λ of the prior distribution;
we have individual data on the area that is stroke (usually small
amount of information) (Y1, · · · ,YN) that we combine with the prior
to predict the loss.

Useful to evaluate the amount of the loss soon after an event, or to
study scenarios.
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Cyber-Insurance
A Bayesian model

Calibration of the prior

Adaptation to cyber (forthcoming)
We define a cyber attack using some characteristics X available in
the database used for calibration:

what is the modus operandi ? (ransomware, Ddos, double
extorsion,...)
what are the characteristics of the target ? (sector of activity, size,...)

We fit a GP tree to a database of events and get γ(X) and σ(X).

We consider historical data (if available) on the target:

if no history of claims, we keep the rough estimation using
(γ(X), σ(X)) and get a distribution of the claim size.
if previous claims are available, we use the posterior distribution from
the Bayesian model.

Note:
when we say "the target", this can be a single company, but it can
be a generic category (more precise than the characterization used to
fit the GPD)
prevention and evolution of the risk are taken into account through
the covariates X.
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Limits and extension

Misspecification: how does the model work if it is misspecified?

Extension: adding expert judgment to improve the model.

Here, we used a GP regression tree, but any extreme value
regression method could be used instead (blackbox or not).
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Data...

Analyzing the tail of the distribution requires a significant amount of
data.
Reliable individual data on losses:

very scarce!
public data: some data on data breaches, but with no precise
indication about the cost;
from police, justice and related entities: not easy to track the total
amount of the prejudice, but some elements for particular type of
cyber claims can be obtained.

Data coming from insurance portfolios are usually more precise, but:
one must pay attention that the real (total) loss is usually unknown
from the insurer (only the loss corresponding to what is covered by
the policy is);
need to wait for the stabilization of the claim.
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Thank you for your attention !

To know more about our research on cyber risk, visit the web site of the
Joint Research Initiative

https://sites.google.com/view/cyber-actuarial/home?authuser=0
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