A decomposition of general premium principles into risk and deviation

Max Nendel
(joint work with Frank Riedel and Maren Diane Schmeck)
Bielefeld University
May 19, 2022
Workshop Risk Measures and Uncertainty in Insurance Leibnizhaus Hannover

Motivation

Starting point:

- The axiomatization of premium principles is one of the most classic topics in the field of actuarial mathematics.
- So far, premium principles are usually written as functionals of the probability distribution of losses.
- Implicitly, thus, a probabilistic model is assumed.
- Model uncertainty or Knightian uncertainty is by now widely recognized and crucial for insurance mathematics (Solvency II).

Motivation

Starting point:

- The axiomatization of premium principles is one of the most classic topics in the field of actuarial mathematics.
- So far, premium principles are usually written as functionals of the probability distribution of losses.
- Implicitly, thus, a probabilistic model is assumed.
- Model uncertainty or Knightian uncertainty is by now widely recognized and crucial for insurance mathematics (Solvency II).

Aims:

- Axiomatization of premium principles in an ex-ante "probability-free" setting.
- Consistency with existing axiomatizations.

Insurance premia

- The basic ad-hoc approach to premia: expected loss (fair premium) plus some safety loading.
Simple example: variance principle

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X) .
$$

Insurance premia

- The basic ad-hoc approach to premia: expected loss (fair premium) plus some safety loading.
Simple example: variance principle

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X)
$$

- Premium principles are usually required to fulfill some form of monotonicity, see e.g. Bühlmann (1980/81), Deprez \& Gerber (1985), Wang et al. (1997), Young (2006), or Castagnoli et al. (2002). However, this already excludes the variance principle.

Insurance premia

- The basic ad-hoc approach to premia: expected loss (fair premium) plus some safety loading.
Simple example: variance principle

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X)
$$

- Premium principles are usually required to fulfill some form of monotonicity, see e.g. Bühlmann (1980/81), Deprez \& Gerber (1985), Wang et al. (1997), Young (2006), or Castagnoli et al. (2002). However, this already excludes the variance principle.
- Aim: Provide an axiomatization of premium principles under Knightian uncertainty and without monotonicity, cf. Filipović \& Kupper (2007).

Insurance premia

- The basic ad-hoc approach to premia: expected loss (fair premium) plus some safety loading.
Simple example: variance principle

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X)
$$

- Premium principles are usually required to fulfill some form of monotonicity, see e.g. Bühlmann (1980/81), Deprez \& Gerber (1985), Wang et al. (1997), Young (2006), or Castagnoli et al. (2002). However, this already excludes the variance principle.
- Aim: Provide an axiomatization of premium principles under Knightian uncertainty and without monotonicity, cf. Filipović \& Kupper (2007).
- Main result: Premium principle $=$ risk measure + deviation measure

Setup

Throughout, we consider

- a measurable space (Ω, \mathcal{F}),
- the space $\mathrm{B}_{b}=\mathrm{B}_{b}(\Omega, \mathcal{F})$ of all bounded measurable functions $\Omega \rightarrow \mathbb{R}$,
- a set $C \subset B_{b}$ of insurance claims with $0 \in C$ and $X+m \in C$ for all $X \in C$ and $m \in \mathbb{R}$.

A map $R: \mathrm{B}_{b} \rightarrow \mathbb{R}$ is called a risk measure, cf. Föllmer and Schied (2004),

- $R(0)=0$ and $R(X+m)=R(X)+m$ for all $X \in \mathrm{~B}_{b}$ and $m \in \mathbb{R}$,
- $R(X) \leq R(Y)$ for all $X, Y \in \mathrm{~B}_{b}$ with $X \leq Y$.

A deviation measure, cf. Rockafellar-Uryasev (2013), is a map $D: C \rightarrow \mathbb{R}$ with

- $D(X+m)=D(X)$ for all $X \in C$ and $m \in \mathbb{R}$,
- $D(0)=0$ and $D(X) \geq 0$ for all $X \in C$.

Premium principles, risk and deviation measures

Definition

We say that a map $H: C \rightarrow \mathbb{R}$ is a premium principle if

- $H(X+m)=H(X)+m$ for all $X \in C$ and $m \in \mathbb{R}$.
- $H(0)=0$ and $H(X) \geq 0$ for all $X \in C$ with $X \geq 0$.

Premium principles, risk and deviation measures

Definition

We say that a map $H: C \rightarrow \mathbb{R}$ is a premium principle if

- $H(X+m)=H(X)+m$ for all $X \in C$ and $m \in \mathbb{R}$.
- $H(0)=0$ and $H(X) \geq 0$ for all $X \in C$ with $X \geq 0$.

Some comments:

- The definition of a premium principle implies that $H(m)=m$, for all $m \in \mathbb{R}$, leading to the common assumption of no unjustified risk loading.
- Typically, insurance principles are only defined for nonnegative claims $X \geq 0$ (resembling losses).
- The condition $H(X) \geq 0$, for all $X \in C$ with $X \geq 0$, is a minimal requirement for a sensible notion of a premium principle.

Decomposition theorem

Theorem

A map $H: C \rightarrow \mathbb{R}$ is a premium principle if and only if

$$
H(X)=R(X)+D(X) \quad \text { for all } X \in C,
$$

where $R: \mathrm{B}_{b} \rightarrow \mathbb{R}$ is a risk measure and $D: C \rightarrow \mathbb{R}$ is a deviation measure.

Decomposition theorem

Theorem

A map $H: C \rightarrow \mathbb{R}$ is a premium principle if and only if

$$
H(X)=R(X)+D(X) \quad \text { for all } X \in C,
$$

where $R: \mathrm{B}_{b} \rightarrow \mathbb{R}$ is a risk measure and $D: C \rightarrow \mathbb{R}$ is a deviation measure.

Remarks:

- The monetary risk measure generalizes the expected loss.
- The deviation measure generalizes variance or other measures of fluctuation.
- The decomposition needs not be unique.

The "maximal" decomposition

Theorem

Let $H: C \rightarrow \mathbb{R}$ be a premium principle. Define

$$
\begin{aligned}
& R_{\operatorname{Max}}(X):=\inf \left\{H\left(X_{0}\right) \mid X_{0} \in C, X_{0} \geq X\right\}, \quad \text { for } X \in \mathrm{~B}_{b}, \\
& D_{\operatorname{Min}}(X):=H(X)-R_{\operatorname{Max}}(X), \quad \text { for } X \in C .
\end{aligned}
$$

Then, $R_{\text {Max }}: \mathrm{B}_{b} \rightarrow \mathbb{R}$ is a risk measure, $D_{\text {Min }}: C \rightarrow \mathbb{R}$ is a deviation measure, and

$$
H(X)=R_{\operatorname{Max}}(X)+D_{\operatorname{Min}}(X) \quad \text { for all } X \in C
$$

For every other decomposition of the form $H=R+D$ with a risk measure R and a deviation measure D, we have $R \leq R_{\text {Max }}$ and $D \geq D_{\text {Min }}$.

Some intuition

- Notice that $R_{\text {Max }}$ can be seen as sort of a superhedging functional in the sense that

$$
R_{\operatorname{Max}}(X)=\inf \left\{m \in \mathbb{R} \mid \exists X_{0} \in C_{0}, m+X_{0} \geq X\right\}
$$

where $C_{0}:=\left\{X_{0} \in C \mid H\left(X_{0}\right)=0\right\}$ is the set of all claims with zero premium.

Some intuition

- Notice that $R_{\text {Max }}$ can be seen as sort of a superhedging functional in the sense that

$$
R_{\operatorname{Max}}(X)=\inf \left\{m \in \mathbb{R} \mid \exists X_{0} \in C_{0}, m+X_{0} \geq X\right\}
$$

where $C_{0}:=\left\{X_{0} \in C \mid H\left(X_{0}\right)=0\right\}$ is the set of all claims with zero premium.

- As R_{Max} is defined analogously to a superhedging functional, it is monotone and cash invariant, thus a risk measure

Some intuition

- Notice that $R_{\text {Max }}$ can be seen as sort of a superhedging functional in the sense that

$$
R_{\operatorname{Max}}(X)=\inf \left\{m \in \mathbb{R} \mid \exists X_{0} \in C_{0}, m+X_{0} \geq X\right\}
$$

where $C_{0}:=\left\{X_{0} \in C \mid H\left(X_{0}\right)=0\right\}$ is the set of all claims with zero premium.

- As $R_{\text {Max }}$ is defined analogously to a superhedging functional, it is monotone and cash invariant, thus a risk measure
- Maximality of $R_{\text {Max }}$: If $H\left(X_{0}\right)=R\left(X_{0}\right)+D\left(X_{0}\right) \geq R\left(X_{0}\right)$ for all $X_{0} \in C$, then for all $X \in \mathrm{~B}_{b}$ and $X_{0} \in C$ with $X_{0} \geq X$, we have

$$
R(X) \leq R\left(X_{0}\right) \leq H\left(X_{0}\right)
$$

Take the infimum over $X_{0} \in C$ with $X_{0} \geq X$ to obtain $R(X) \leq R_{\text {Max }}(X)$.

Variance principle

Consider the variance principle

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X), \quad \text { for } X \in \mathrm{~B}_{b},
$$

with a constant $\theta \geq 0$.

Variance principle

Consider the variance principle

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X), \quad \text { for } X \in \mathrm{~B}_{b}
$$

with a constant $\theta \geq 0$.

- Here, $R(X)=\mathbb{E}_{\mathbb{P}}(X)$, and $D(X)=\frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X)$ is one possible decomposition of H into risk and deviation.

Variance principle

Consider the variance principle

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X), \quad \text { for } X \in \mathrm{~B}_{b}
$$

with a constant $\theta \geq 0$.

- Here, $R(X)=\mathbb{E}_{\mathbb{P}}(X)$, and $D(X)=\frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X)$ is one possible decomposition of H into risk and deviation.
- However, for $\theta>0$, this is not the "maximal" decomposition. For $\theta>0$, the maximal risk measure $R_{\text {Max }}$ is given by

$$
R_{\operatorname{Max}}(X)=\max _{\mathbb{Q} \in \mathcal{P}} \mathbb{E}_{\mathbb{Q}}(X)-\frac{1}{2 \theta} G(\mathbb{Q} \mid \mathbb{P})
$$

where \mathcal{P} consists of all probability measures \mathbb{Q}, which are absolutely continuous w.r.t. \mathbb{P} and satisfy

$$
G(\mathbb{Q} \mid \mathbb{P}):=\operatorname{var}_{\mathbb{P}}\left(\frac{\mathrm{d} \mathbb{Q}}{\mathrm{~d} \mathbb{P}}\right)<\infty .
$$

The map G is the Gini concentration index, see Maccheroni et al. $(2006,2009)$.

Mean absolute deviation principle

Consider the premium principle

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\theta \mathbb{E}_{\mathbb{P}}\left(\left|X-\mathbb{E}_{\mathbb{P}}(X)\right|\right), \quad \text { for } X \in \mathrm{~B}_{b},
$$

with a constant $\theta \geq 0$.

Mean absolute deviation principle

Consider the premium principle

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\theta \mathbb{E}_{\mathbb{P}}\left(\left|X-\mathbb{E}_{\mathbb{P}}(X)\right|\right), \quad \text { for } X \in \mathrm{~B}_{b}
$$

with a constant $\theta \geq 0$.

- Here, $R(X)=\mathbb{E}_{\mathbb{P}}(X)$, and $D(X)=\theta \mathbb{E}_{\mathbb{P}}\left(\left|X-\mathbb{E}_{\mathbb{P}}(X)\right|\right)$ is a decomposition of H into risk and deviation.
- For $0 \leq \theta \leq \frac{1}{2}$, this is a monotone premium principle. Hence, $R_{\text {Max }}(X)=H(X)$ and $D_{\text {Min }}(X)=0$ for all $X \in \mathrm{~B}_{b}$.
- More generally, for $p \in[1, \infty)$, one can consider the class of so-called L^{p}-deviation principles, cf. Filipović \& Kupper (2007), given by

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\theta\left\|X-\mathbb{E}_{\mathbb{P}}(X)\right\|_{p}, \quad \text { for } X \in \mathrm{~B}_{b}
$$

The special case $p=2$ leads to the standard deviation principle.

Ambiguity indices

Consider a nonempty set \mathcal{P} of probability measures on (Ω, \mathcal{F}), and fix a baseline model $\mathbb{P} \in \mathcal{P}$, interpreted as the most plausible model.

Castagnoli et al. (2002) introduce the ambiguity index

$$
\operatorname{Amb}_{\mathcal{P}}(X):=\frac{1}{2} \sup _{\mathbb{Q}, \mathbb{Q}^{\prime} \in \mathcal{P}}\left(\mathbb{E}_{\mathbb{Q}}(X)-\mathbb{E}_{\mathbb{Q}^{\prime}}(X)\right), \quad \text { for } X \in \mathrm{~B}_{b}
$$

Ambiguity indices

Consider a nonempty set \mathcal{P} of probability measures on (Ω, \mathcal{F}), and fix a baseline model $\mathbb{P} \in \mathcal{P}$, interpreted as the most plausible model.

Castagnoli et al. (2002) introduce the ambiguity index

$$
\operatorname{Amb}_{\mathcal{P}}(X):=\frac{1}{2} \sup _{\mathbb{Q}, \mathbb{Q}^{\prime} \in \mathcal{P}}\left(\mathbb{E}_{\mathbb{Q}}(X)-\mathbb{E}_{\mathbb{Q}^{\prime}}(X)\right), \quad \text { for } X \in \mathrm{~B}_{b}
$$

Then, $\mathrm{Amb}_{\mathcal{P}}$ as an uncertainty surcharge together with the variance as a risk surcharge leads to the premium principle

$$
\begin{equation*}
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X)+\gamma \operatorname{Amb}_{\mathcal{P}}(X), \quad \text { for } X \in \mathrm{~B}_{b} \tag{1}
\end{equation*}
$$

with $\gamma, \theta \geq 0$.

Absolute deviation principle

Consider the absolute deviation principle, cf. Rolski et al. (1999),

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\gamma \mathbb{E}_{\mathbb{P}}\left(\left|X-\mathbb{P}_{X}^{-1}\left(\frac{1}{2}\right)\right|\right), \quad \text { for } X \in \mathrm{~B}_{b},
$$

as a modification of the standard deviation principle. Again, $R(X)=\mathbb{E}_{\mathbb{P}}(X)$ and $D(X)=\gamma \mathbb{E}_{\mathbb{P}}\left(\left|X-\mathbb{P}_{X}^{-1}(1 / 2)\right|\right)$ is one possible decomposition into risk and deviation.

Absolute deviation principle

Consider the absolute deviation principle, cf. Rolski et al. (1999),

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\gamma \mathbb{E}_{\mathbb{P}}\left(\left|X-\mathbb{P}_{X}^{-1}\left(\frac{1}{2}\right)\right|\right), \quad \text { for } X \in \mathrm{~B}_{b}
$$

as a modification of the standard deviation principle. Again, $R(X)=\mathbb{E}_{\mathbb{P}}(X)$ and $D(X)=\gamma \mathbb{E}_{\mathbb{P}}\left(\left|X-\mathbb{P}_{X}^{-1}(1 / 2)\right|\right)$ is one possible decomposition into risk and deviation. Note that

$$
D(X)=\frac{\gamma}{2} \sup _{\mathbb{Q}, \mathbb{Q}^{\prime} \in \mathcal{P}}\left(\mathbb{E}_{\mathbb{Q}}(X)-\mathbb{E}_{\mathbb{Q}^{\prime}}(X)\right)=\gamma \operatorname{Amb}_{\mathcal{P}}(X)
$$

is (up to a constant) an ambiguity index, where \mathcal{P} consists of all probability measures $\mathbb{Q} \ll \mathbb{P}$ whose density $\frac{d \mathbb{Q}}{\mathrm{dP}}$ is \mathbb{P}-a.s. bounded by 2 .

Absolute deviation principle

Consider the absolute deviation principle, cf. Rolski et al. (1999),

$$
H(X)=\mathbb{E}_{\mathbb{P}}(X)+\gamma \mathbb{E}_{\mathbb{P}}\left(\left|X-\mathbb{P}_{X}^{-1}\left(\frac{1}{2}\right)\right|\right), \quad \text { for } X \in \mathrm{~B}_{b}
$$

as a modification of the standard deviation principle. Again, $R(X)=\mathbb{E}_{\mathbb{P}}(X)$ and $D(X)=\gamma \mathbb{E}_{\mathbb{P}}\left(\left|X-\mathbb{P}_{X}^{-1}(1 / 2)\right|\right)$ is one possible decomposition into risk and deviation. Note that

$$
D(X)=\frac{\gamma}{2} \sup _{\mathbb{Q}, \mathbb{Q}^{\prime} \in \mathcal{P}}\left(\mathbb{E}_{\mathbb{Q}}(X)-\mathbb{E}_{\mathbb{Q}^{\prime}}(X)\right)=\gamma \operatorname{Amb}_{\mathcal{P}}(X)
$$

is (up to a constant) an ambiguity index, where \mathcal{P} consists of all probability measures $\mathbb{Q} \ll \mathbb{P}$ whose density $\frac{d \mathbb{Q}}{\mathrm{dP}}$ is \mathbb{P}-a.s. bounded by 2 . For $\gamma \geq 1$, the maximal risk measure R_{Max} is given by

$$
R_{\operatorname{Max}}(X)=\operatorname{AV}_{\mathbb{P}^{\frac{1}{1+\gamma}}}^{\frac{1}{1+\gamma}}(X), \quad \text { for } X \in \mathrm{~B}_{b}
$$

where $\mathrm{AV}_{\mathrm{P}} \mathrm{R}_{\mathbb{P}}^{\frac{1}{1+\gamma}}$ is the average value at risk or expected shortfall at level $\frac{1}{1+\gamma}$.

Duality for convex premium principles

We denote the set of all finitely additive probability measures on (Ω, \mathcal{F}) by ba_{+}^{1}.

Theorem

Assume that C is a linear space and that H is convex. Then, $R_{\text {Max }}$ is convex and

$$
R_{\operatorname{Max}}(X)=\max _{\mathbb{P} \in \mathrm{ba}_{+}^{1}} \mathbb{E}_{\mathbb{P}}(X)-H^{*}(\mathbb{P})
$$

Here, H^{*} is the convex dual of H , given by

$$
H^{*}(\mathbb{P})=\sup _{X \in C} \mathbb{E}_{\mathbb{P}}(X)-H(X) \in[0, \infty], \quad \text { for } \mathbb{P} \in \mathrm{ba}_{+}^{1}
$$

Duality for convex premium principles

We denote the set of all finitely additive probability measures on (Ω, \mathcal{F}) by ba_{+}^{1}.

Theorem

Assume that C is a linear space and that H is convex. Then, $R_{\text {Max }}$ is convex and

$$
R_{\operatorname{Max}}(X)=\max _{\mathbb{P} \in \operatorname{bax}_{+}^{1}} \mathbb{E}_{\mathbb{P}}(X)-H^{*}(\mathbb{P})
$$

Here, H^{*} is the convex dual of H , given by

$$
H^{*}(\mathbb{P})=\sup _{X \in C} \mathbb{E}_{\mathbb{P}}(X)-H(X) \in[0, \infty], \quad \text { for } \mathbb{P} \in \mathrm{ba}_{+}^{1}
$$

Remarks:

- $H^{*}(\mathbb{P})$ represents the confidence that the insurer puts in a particular model $\mathbb{P} \in \mathrm{ba}_{+}^{1}$.
- If H is continuous from above and $\mathbb{P} \in \mathrm{ba}_{+}^{1}$, the convex dual $H^{*}(\mathbb{P})$ is finite if and only if \mathbb{P} is countably additive.

Sublinear premium principles

Assume that C is a linear space and that H is convex. We call

$$
\mathcal{P}:=\left\{\mathbb{P} \in \mathrm{ba}_{+}^{1} \mid H^{*}(\mathbb{P})<\infty\right\}
$$

the set of all plausible models.

Sublinear premium principles

Assume that C is a linear space and that H is convex. We call

$$
\mathcal{P}:=\left\{\mathbb{P} \in \mathrm{ba}_{+}^{1} \mid H^{*}(\mathbb{P})<\infty\right\}
$$

the set of all plausible models.

Theorem

Assume that C is a linear space and that H is a sublinear. Then, $\mathbb{P} \in \mathrm{ba}_{+}^{1}$ is a plausible model if and only if H incorporates a safety loading for \mathbb{P}, i.e.,

$$
H(X) \geq \mathbb{E}_{\mathbb{P}}(X) \quad \text { for all } X \in C .
$$

In particular, $R_{\text {Max }}$ is a coherent risk measure, cf. Artzner et al. (1999), and

$$
R_{\operatorname{Max}}(X)=\max _{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}(X) \quad \text { for all } X \in \mathrm{~B}_{b} .
$$

Conclusion

- We provide a "model-free" approach to insurance premia.
- Insurance premia are the sum of a risk measure and a deviation measure.
- Existing models can be subsumed under our framework.
- Duality theory for convex premia.
- Consistency with asset pricing and securization.
- Law invariance carries over from the premium principle H to the maximal risk measure $R_{\text {Max }}$. Under mild conditions, H carries a loading.
- Extension of the model to unbounded claims.

Conclusion

- We provide a "model-free" approach to insurance premia.
- Insurance premia are the sum of a risk measure and a deviation measure.
- Existing models can be subsumed under our framework.
- Duality theory for convex premia.
- Consistency with asset pricing and securization.
- Law invariance carries over from the premium principle H to the maximal risk measure $R_{\text {Max }}$. Under mild conditions, H carries a loading.
- Extension of the model to unbounded claims.

Thank you very much for your attention!

