A decomposition of general premium principles into risk and deviation

Max Nendel

(joint work with Frank Riedel and Maren Diane Schmeck)

Bielefeld University

May 19, 2022

Workshop Risk Measures and Uncertainty in Insurance Leibnizhaus Hannover

Motivation

Starting point:

- The axiomatization of premium principles is one of the most classic topics in the field of actuarial mathematics.
- So far, premium principles are usually written as functionals of the probability distribution of losses.
- Implicitly, thus, a probabilistic model is assumed.
- Model uncertainty or Knightian uncertainty is by now widely recognized and crucial for insurance mathematics (Solvency II).

Motivation

Starting point:

- The axiomatization of premium principles is one of the most classic topics in the field of actuarial mathematics.
- So far, premium principles are usually written as functionals of the probability distribution of losses.
- Implicitly, thus, a probabilistic model is assumed.
- Model uncertainty or Knightian uncertainty is by now widely recognized and crucial for insurance mathematics (Solvency II).

Aims:

- Axiomatization of premium principles in an ex-ante "probability-free" setting.
- Consistency with existing axiomatizations.

イロト 不得 トイヨト イヨト

 The basic ad-hoc approach to premia: expected loss (fair premium) plus some safety loading.
 Simple example: variance principle

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + rac{ heta}{2} \mathrm{var}_{\mathbb{P}}(X).$$

 The basic ad-hoc approach to premia: expected loss (fair premium) plus some safety loading.
 Simple example: variance principle

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + \frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X).$$

• Premium principles are usually required to fulfill some form of monotonicity, see e.g. Bühlmann (1980/81), Deprez & Gerber (1985), Wang et al. (1997), Young (2006), or Castagnoli et al. (2002). However, this already excludes the variance principle.

 The basic ad-hoc approach to premia: expected loss (fair premium) plus some safety loading.
 Simple example: variance principle

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + \frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X).$$

- Premium principles are usually required to fulfill some form of monotonicity, see e.g. Bühlmann (1980/81), Deprez & Gerber (1985), Wang et al. (1997), Young (2006), or Castagnoli et al. (2002). However, this already excludes the variance principle.
- Aim: Provide an axiomatization of premium principles under Knightian uncertainty and without monotonicity, cf. Filipović & Kupper (2007).

 The basic ad-hoc approach to premia: expected loss (fair premium) plus some safety loading.
 Simple example: variance principle

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + \frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X).$$

- Premium principles are usually required to fulfill some form of monotonicity, see e.g. Bühlmann (1980/81), Deprez & Gerber (1985), Wang et al. (1997), Young (2006), or Castagnoli et al. (2002). However, this already excludes the variance principle.
- Aim: Provide an axiomatization of premium principles under Knightian uncertainty and without monotonicity, cf. Filipović & Kupper (2007).
- Main result: Premium principle = risk measure + deviation measure

Setup

Throughout, we consider

- a measurable space (Ω, \mathcal{F}) ,
- the space $B_b = B_b(\Omega, \mathcal{F})$ of all bounded measurable functions $\Omega \to \mathbb{R}$,
- a set C ⊂ B_b of insurance claims with 0 ∈ C and X + m ∈ C for all X ∈ C and m ∈ ℝ.

A map $R: B_b \to \mathbb{R}$ is called a *risk measure*, cf. Föllmer and Schied (2004),

- R(0) = 0 and R(X + m) = R(X) + m for all $X \in B_b$ and $m \in \mathbb{R}$,
- $R(X) \leq R(Y)$ for all $X, Y \in B_b$ with $X \leq Y$.

A deviation measure, cf. Rockafellar-Uryasev (2013), is a map $D: C \to \mathbb{R}$ with

- D(X + m) = D(X) for all $X \in C$ and $m \in \mathbb{R}$,
- D(0) = 0 and $D(X) \ge 0$ for all $X \in C$.

イロト 不得 トイヨト イヨト

Premium principles, risk and deviation measures

Definition

We say that a map $H: C \to \mathbb{R}$ is a premium principle if

- H(X + m) = H(X) + m for all $X \in C$ and $m \in \mathbb{R}$.
- H(0) = 0 and $H(X) \ge 0$ for all $X \in C$ with $X \ge 0$.

Premium principles, risk and deviation measures

Definition

We say that a map $H \colon C \to \mathbb{R}$ is a premium principle if

- H(X + m) = H(X) + m for all $X \in C$ and $m \in \mathbb{R}$.
- H(0) = 0 and $H(X) \ge 0$ for all $X \in C$ with $X \ge 0$.

Some comments:

- The definition of a premium principle implies that H(m) = m, for all $m \in \mathbb{R}$, leading to the common assumption of *no unjustified risk loading*.
- Typically, insurance principles are only defined for nonnegative claims $X \ge 0$ (resembling losses).
- The condition $H(X) \ge 0$, for all $X \in C$ with $X \ge 0$, is a minimal requirement for a sensible notion of a premium principle.

Decomposition theorem

Theorem

A map $H: C \to \mathbb{R}$ is a premium principle if and only if

$$H(X) = R(X) + D(X)$$
 for all $X \in C$,

where $R: B_b \to \mathbb{R}$ is a risk measure and $D: C \to \mathbb{R}$ is a deviation measure.

Decomposition theorem

Theorem

A map $H: C \to \mathbb{R}$ is a premium principle if and only if

$$H(X) = R(X) + D(X)$$
 for all $X \in C$,

where $R: B_b \to \mathbb{R}$ is a risk measure and $D: C \to \mathbb{R}$ is a deviation measure.

Remarks:

- The monetary risk measure generalizes the expected loss.
- The deviation measure generalizes variance or other measures of fluctuation.
- The decomposition needs not be unique.

The "maximal" decomposition

Theorem

Let $H \colon C \to \mathbb{R}$ be a premium principle. Define

$$egin{aligned} & R_{ ext{Max}}(X) := \inf ig\{ H(X_0) \, ig| \, X_0 \in C, \, X_0 \geq X ig\}, & ext{ for } X \in ext{B}_b, \ & D_{ ext{Min}}(X) := H(X) - R_{ ext{Max}}(X), & ext{ for } X \in C. \end{aligned}$$

Then, R_{Max} : $B_b \to \mathbb{R}$ is a risk measure, D_{Min} : $C \to \mathbb{R}$ is a deviation measure, and

$$H(X) = R_{\text{Max}}(X) + D_{\text{Min}}(X)$$
 for all $X \in C$.

For every other decomposition of the form H = R + D with a risk measure R and a deviation measure D, we have $R \leq R_{Max}$ and $D \geq D_{Min}$.

Some intuition

 \bullet Notice that $R_{\rm Max}$ can be seen as sort of a superhedging functional in the sense that

$$R_{\mathrm{Max}}(X) = \inf \left\{ m \in \mathbb{R} \, \big| \, \exists X_0 \in C_0, \, m + X_0 \geq X
ight\},$$

where $C_0 := \{X_0 \in C \mid H(X_0) = 0\}$ is the set of all claims with zero premium.

Some intuition

 \bullet Notice that $R_{\rm Max}$ can be seen as sort of a superhedging functional in the sense that

$$R_{\mathrm{Max}}(X) = \inf \left\{ m \in \mathbb{R} \ \middle| \ \exists X_0 \in C_0, \ m + X_0 \geq X
ight\},$$

where $C_0 := \{X_0 \in C \mid H(X_0) = 0\}$ is the set of all claims with zero premium.

• As $R_{\rm Max}$ is defined analogously to a superhedging functional, it is monotone and cash invariant, thus a risk measure

Some intuition

• Notice that $R_{\rm Max}$ can be seen as sort of a superhedging functional in the sense that

$$R_{\mathrm{Max}}(X) = \inf \left\{ m \in \mathbb{R} \, \big| \, \exists X_0 \in C_0, \, m + X_0 \geq X
ight\},$$

where $C_0 := \{X_0 \in C \mid H(X_0) = 0\}$ is the set of all claims with zero premium.

- As $R_{\rm Max}$ is defined analogously to a superhedging functional, it is monotone and cash invariant, thus a risk measure
- Maximality of R_{Max}: If H(X₀) = R(X₀) + D(X₀) ≥ R(X₀) for all X₀ ∈ C, then for all X ∈ B_b and X₀ ∈ C with X₀ ≥ X, we have

$$R(X) \leq R(X_0) \leq H(X_0).$$

Take the infimum over $X_0 \in C$ with $X_0 \ge X$ to obtain $R(X) \le R_{Max}(X)$.

Variance principle

Consider the variance principle

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + rac{ heta}{2} \mathrm{var}_{\mathbb{P}}(X), \quad ext{for } X \in \mathrm{B}_b,$$

with a constant $\theta \geq 0$.

メロト メタト メヨト メヨト

Variance principle

Consider the variance principle

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + rac{ heta}{2} \mathrm{var}_{\mathbb{P}}(X), \quad ext{for } X \in \mathrm{B}_b,$$

with a constant $\theta \geq 0$.

Here, R(X) = E_P(X), and D(X) = ^θ/₂ var_P(X) is one possible decomposition of H into risk and deviation.

Variance principle

Consider the variance principle

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + rac{ heta}{2} \mathrm{var}_{\mathbb{P}}(X), \quad ext{for } X \in \mathrm{B}_b,$$

with a constant $\theta \geq 0$.

- Here, R(X) = E_P(X), and D(X) = ^θ/₂ var_P(X) is one possible decomposition of H into risk and deviation.
- However, for $\theta > 0$, this is not the "maximal" decomposition. For $\theta > 0$, the maximal risk measure $R_{\rm Max}$ is given by

$$R_{\mathrm{Max}}(X) = \max_{\mathbb{Q}\in\mathcal{P}} \mathbb{E}_{\mathbb{Q}}(X) - rac{1}{2 heta} G(\mathbb{Q}|\mathbb{P}),$$

where $\mathcal P$ consists of all probability measures $\mathbb Q,$ which are absolutely continuous w.r.t. $\mathbb P$ and satisfy

$$\mathcal{G}(\mathbb{Q}|\mathbb{P}) := \mathrm{var}_{\mathbb{P}} \left(rac{\mathrm{d} \mathbb{Q}}{\mathrm{d} \mathbb{P}}
ight) < \infty.$$

The map G is the Gini concentration index, see Maccheroni et al. (2006,2009).

Max Nendel (Bielefeld University)

Mean absolute deviation principle

Consider the premium principle

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + \theta \mathbb{E}_{\mathbb{P}}(|X - \mathbb{E}_{\mathbb{P}}(X)|), \quad \text{for } X \in \mathrm{B}_{b},$$

with a constant $\theta \geq 0$.

Mean absolute deviation principle

Consider the premium principle

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + \theta \mathbb{E}_{\mathbb{P}}(|X - \mathbb{E}_{\mathbb{P}}(X)|), \quad ext{for } X \in \mathrm{B}_b,$$

with a constant $\theta \geq 0$.

- Here, $R(X) = \mathbb{E}_{\mathbb{P}}(X)$, and $D(X) = \theta \mathbb{E}_{\mathbb{P}}(|X \mathbb{E}_{\mathbb{P}}(X)|)$ is a decomposition of H into risk and deviation.
- For $0 \le \theta \le \frac{1}{2}$, this is a monotone premium principle. Hence, $R_{\text{Max}}(X) = H(X)$ and $D_{\text{Min}}(X) = 0$ for all $X \in B_b$.
- More generally, for $p \in [1, \infty)$, one can consider the class of so-called L^p -deviation principles, cf. Filipović & Kupper (2007), given by

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + \theta \|X - \mathbb{E}_{\mathbb{P}}(X)\|_{p}, \text{ for } X \in B_{b}.$$

The special case p = 2 leads to the standard deviation principle.

イロト 不得 トイヨト イヨト

Ambiguity indices

Consider a nonempty set \mathcal{P} of probability measures on (Ω, \mathcal{F}) , and fix a baseline model $\mathbb{P} \in \mathcal{P}$, interpreted as the most plausible model.

Castagnoli et al. (2002) introduce the ambiguity index

$$\operatorname{Amb}_{\mathcal{P}}(X) := \frac{1}{2} \sup_{\mathbb{Q}, \mathbb{Q}' \in \mathcal{P}} \Big(\mathbb{E}_{\mathbb{Q}}(X) - \mathbb{E}_{\mathbb{Q}'}(X) \Big), \quad \text{for } X \in \operatorname{B}_b.$$

Ambiguity indices

Consider a nonempty set \mathcal{P} of probability measures on (Ω, \mathcal{F}) , and fix a baseline model $\mathbb{P} \in \mathcal{P}$, interpreted as the most plausible model.

Castagnoli et al. (2002) introduce the ambiguity index

$$\operatorname{Amb}_{\mathcal{P}}(X) := \frac{1}{2} \sup_{\mathbb{Q}, \mathbb{Q}' \in \mathcal{P}} \Big(\mathbb{E}_{\mathbb{Q}}(X) - \mathbb{E}_{\mathbb{Q}'}(X) \Big), \quad \text{for } X \in \operatorname{B}_b.$$

Then, $Amb_{\mathcal{P}}$ as an uncertainty surcharge together with the variance as a risk surcharge leads to the premium principle

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + \frac{\theta}{2} \operatorname{var}_{\mathbb{P}}(X) + \gamma \operatorname{Amb}_{\mathcal{P}}(X), \quad \text{for } X \in \mathcal{B}_{b},$$
(1)

with $\gamma, \theta \geq 0$.

イロン イ団 とく ヨン イヨン

Absolute deviation principle

Consider the absolute deviation principle, cf. Rolski et al. (1999),

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + \gamma \mathbb{E}_{\mathbb{P}}\left(\left|X - \mathbb{P}_{X}^{-1}\left(\frac{1}{2}\right)\right|\right), \text{ for } X \in \mathbf{B}_{b}$$

as a modification of the standard deviation principle. Again, $R(X) = \mathbb{E}_{\mathbb{P}}(X)$ and $D(X) = \gamma \mathbb{E}_{\mathbb{P}}(|X - \mathbb{P}_X^{-1}(1/2)|)$ is *one* possible decomposition into risk and deviation.

Absolute deviation principle

Consider the absolute deviation principle, cf. Rolski et al. (1999),

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + \gamma \mathbb{E}_{\mathbb{P}}\left(\left|X - \mathbb{P}_{X}^{-1}\left(\frac{1}{2}\right)\right|\right), \text{ for } X \in \mathrm{B}_{b},$$

as a modification of the standard deviation principle. Again, $R(X) = \mathbb{E}_{\mathbb{P}}(X)$ and $D(X) = \gamma \mathbb{E}_{\mathbb{P}}(|X - \mathbb{P}_X^{-1}(1/2)|)$ is *one* possible decomposition into risk and deviation. Note that

$$D(X) = \frac{\gamma}{2} \sup_{\mathbb{Q}, \mathbb{Q}' \in \mathcal{P}} \left(\mathbb{E}_{\mathbb{Q}}(X) - \mathbb{E}_{\mathbb{Q}'}(X) \right) = \gamma \operatorname{Amb}_{\mathcal{P}}(X)$$

is (up to a constant) an ambiguity index, where \mathcal{P} consists of all probability measures $\mathbb{Q} \ll \mathbb{P}$ whose density $\frac{d\mathbb{Q}}{d\mathbb{P}}$ is \mathbb{P} -a.s. bounded by 2.

イロト 不得 トイヨト イヨト

Absolute deviation principle

Consider the absolute deviation principle, cf. Rolski et al. (1999),

$$H(X) = \mathbb{E}_{\mathbb{P}}(X) + \gamma \mathbb{E}_{\mathbb{P}}\left(\left|X - \mathbb{P}_X^{-1}\left(\frac{1}{2}\right)\right|\right), \quad ext{for } X \in \mathbf{B}_b,$$

as a modification of the standard deviation principle. Again, $R(X) = \mathbb{E}_{\mathbb{P}}(X)$ and $D(X) = \gamma \mathbb{E}_{\mathbb{P}}(|X - \mathbb{P}_X^{-1}(1/2)|)$ is one possible decomposition into risk and deviation. Note that

$$D(X) = \frac{\gamma}{2} \sup_{\mathbb{Q}, \mathbb{Q}' \in \mathcal{P}} \left(\mathbb{E}_{\mathbb{Q}}(X) - \mathbb{E}_{\mathbb{Q}'}(X) \right) = \gamma \operatorname{Amb}_{\mathcal{P}}(X)$$

is (up to a constant) an ambiguity index, where \mathcal{P} consists of all probability measures $\mathbb{Q} \ll \mathbb{P}$ whose density $\frac{d\mathbb{Q}}{d\mathbb{P}}$ is \mathbb{P} -a.s. bounded by 2. For $\gamma \geq 1$, the maximal risk measure R_{Max} is given by

$$R_{\mathrm{Max}}(X) = \mathrm{AV}@\mathrm{R}^{rac{1}{1+\gamma}}_{\mathbb{P}}(X), \quad ext{for } X \in \mathrm{B}_{m{b}},$$

where $AV@R_{\mathbb{P}}^{\frac{1}{1+\gamma}}$ is the average value at risk or expected shortfall at level $\frac{1}{1+\gamma}$.

イロン イヨン イヨン イヨン 三日

Duality for convex premium principles

We denote the set of all finitely additive probability measures on (Ω, \mathcal{F}) by ba_{+}^{1} .

Theorem

Assume that C is a linear space and that H is convex. Then, $R_{\rm Max}$ is convex and

$$R_{\mathrm{Max}}(X) = \max_{\mathbb{P}\in\mathrm{ba}^1_+} \mathbb{E}_{\mathbb{P}}(X) - H^*(\mathbb{P}).$$

Here, H^* is the convex dual of H, given by

$$H^*(\mathbb{P}) = \sup_{X \in C} \mathbb{E}_{\mathbb{P}}(X) - H(X) \in [0,\infty], \quad \textit{for } \mathbb{P} \in \mathrm{ba}^1_+.$$

Duality for convex premium principles

We denote the set of all finitely additive probability measures on (Ω, \mathcal{F}) by ba_{+}^{1} .

Theorem

Assume that C is a linear space and that H is convex. Then, $R_{\rm Max}$ is convex and

$$R_{\mathrm{Max}}(X) = \max_{\mathbb{P}\in\mathrm{ba}^1_+} \mathbb{E}_{\mathbb{P}}(X) - H^*(\mathbb{P}).$$

Here, H^* is the convex dual of H, given by

$$H^*(\mathbb{P}) = \sup_{X \in C} \mathbb{E}_{\mathbb{P}}(X) - H(X) \in [0,\infty], \quad \textit{for } \mathbb{P} \in \mathrm{ba}^1_+.$$

Remarks:

- $H^*(\mathbb{P})$ represents the confidence that the insurer puts in a particular model $\mathbb{P} \in ba^1_+$.
- If H is continuous from above and ℙ ∈ ba¹₊, the convex dual H^{*}(ℙ) is finite if and only if ℙ is countably additive.

Sublinear premium principles

Assume that C is a linear space and that H is convex. We call

$$\mathcal{P} := \left\{ \mathbb{P} \in \mathrm{ba}^1_+ \, \big| \, H^*(\mathbb{P}) < \infty
ight\}$$

the set of all plausible models.

Sublinear premium principles

Assume that C is a linear space and that H is convex. We call

$$\mathcal{P} := \left\{ \mathbb{P} \in \mathrm{ba}^1_+ \, \big| \, H^*(\mathbb{P}) < \infty
ight\}$$

the set of all plausible models.

Theorem

Assume that C is a linear space and that H is a sublinear. Then, $\mathbb{P} \in ba_+^1$ is a plausible model if and only if H incorporates a safety loading for \mathbb{P} , i.e.,

$$H(X) \geq \mathbb{E}_{\mathbb{P}}(X)$$
 for all $X \in C$.

In particular, $R_{\rm Max}$ is a coherent risk measure, cf. Artzner et al. (1999), and

$$R_{\mathrm{Max}}(X) = \max_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}(X) \quad \textit{for all } X \in \mathrm{B}_{b}.$$

Conclusion

- We provide a "model-free" approach to insurance premia.
- Insurance premia are the sum of a risk measure and a deviation measure.
- Existing models can be subsumed under our framework.
- Duality theory for convex premia.
- Consistency with asset pricing and securization.
- Law invariance carries over from the premium principle H to the maximal risk measure R_{Max} . Under mild conditions, H carries a loading.
- Extension of the model to unbounded claims.

Conclusion

- We provide a "model-free" approach to insurance premia.
- Insurance premia are the sum of a risk measure and a deviation measure.
- Existing models can be subsumed under our framework.
- Duality theory for convex premia.
- Consistency with asset pricing and securization.
- Law invariance carries over from the premium principle H to the maximal risk measure R_{Max} . Under mild conditions, H carries a loading.
- Extension of the model to unbounded claims.

Thank you very much for your attention!