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Efficiency vs. Equilibria

In economic theory, the distinction between efficiency and equilibrium is a
meaningful one:

ùñ Efficiency is a property of a given welfare allocation.

ùñ An equilibrium concept is a tool that helps determine a particular set of welfare
allocations, deemed desirable, together with a market pricing mechanism.

Typically, every equilibrium allocation is efficient in the Pareto sense.

ùñ First Welfare Theorem.

However, not every efficient allocation is an equilibrium allocation. But, under
some standard conditions on preferences, every efficient allocation can be
obtained as an equilibrium allocation if appropriate lump-sum transfers of initial
endowments are arranged.

ùñ Second Welfare Theorem.
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Pareto Efficiency vs. Bowley Equilibria

In reinsurance contracting, the standard notion of optimality is Pareto
optimality, i.e., Pareto efficiency.

Recently, there has been some interest in Bowley equilibria in reinsurance
contracting.

Here, we examine the relationship between Bowley equilibria and Pareto
efficiency in a problem of optimal reinsurance, under fairly general preferences.

We show that:

ùñ Bowley equilibria are indeed Pareto efficient.

ùñ But only those Pareto efficient contracts that make the insurer indifferent with the
status quo are Bowley optimal.

We interpret the latter result as indicative of the limitations of the Bowley
equilibrium concept in this literature.
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(Re)Insurance Markets

A typical insurance/reinsurance market is structured as follows:

Uncertainty is represented by a probability space pΩ,F ,Pq.

Individual i P t1, ¨ ¨ ¨ , nu is exposed to an insurable loss Yi P L8 pΩ,F ,Pq.

He wishes to cede an amount φi pYiq P L8 pΩ,F ,Pq to an insurer, in exchange
for a premium payment πi .

The insurer’s exposure from a portfolio of n such policies is

X :“ max

˜

0,
n
ÿ

i“1

pφi pYiq ´ πiq

¸

.

The insurer, in turn, seeks to cede a part I pX q of the exposure X to a reinsurer,
in exchange for a premium payment π.
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(Re)Insurance Markets

First level of the market (Insurance):

ùñ Policyholder i P t1, ¨ ¨ ¨ , nu wishes to find a contract pφi pYi q , πi q that maximizes
his welfare, subject to a participation constraint of the insurer.

Second level of the market (Reinsurance):

ùñ The insurer wishes to find the optimal pair pI pX q , πq, in the sense of minimizing a
measure of the risk exposure X ´ I pX q ` π, subject to a participation constraint of
the reinsurer.

Here, we assume that the first stage of the market has already been optimally
determined, and we focus on optimal reinsurance arrangements arising in the
second stage.
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Setting
An insurer faces the portfolio loss X P L8 pΩ,F ,Pq, with M :“ }X }8 ă `8.

The insurer seeks an arrangement with a reinsurer, whereby the insurer pays a
premium to purchase coverage I pX q against X .

Let I be a collection of ex ante admissible indemnity functions.

We assume that:

I Ă I0 :“ tI : RÑ R | I is Borel-measurable, I pX q P L1 pΩ,F ,Pq , and 0 ď I pX q ď Xu.

For instance, I could be the customary collection IL of indemnities that satisfy the
so-called no-sabotage condition:

IL :“
!

I P I0 | 0 ď I px1q ´ I px2q ď x1 ´ x2,@ x2 ď x1 P r0,Ms
)

.

ùñ IL is convex and } ¨ }sup-compact.
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Preferences and Pricing Kernels

The reinsurer prices indemnity functions I P I using a premium principle Π,
defined as the functional Π : L8 pΩ,F ,Pq ˆ I Ñ R given by

Π pξ, I q :“

ż

I pX q ξ dP, @ pξ, I q P L8 pΩ,F ,Pq ˆ I,

where ξ is interpreted as a given pricing kernel.

For a given I P I and ξ P L8 pΩ,F ,Pq, the risk exposure of the insurer is given by

X ´ I pX q ` Π pξ, I q ,

and the risk exposure of the reinsurer is given by

I pX q ´ Π pξ, I q .
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Preferences and Pricing Kernels
Assume that the preferences of the insurer and the reinsurer are respectively
represented by risk measures

ρIn : L1 pΩ,F ,Pq Ñ R` and ρRe : L1 pΩ,F ,Pq Ñ R`,

normalized so that ρInpcq “ ρRepcq “ c , for all c P R.

Define the auxiliary functionals

ρIn
1 , ρ

Re
1 : Rˆ I Ñ R and ρIn

2 , ρ
Re
2 : L8 pΩ,F ,Pq ˆ I Ñ R

by:

ρIn
1 pπ, I q :“ ρIn pX ´ I pX q ` πq and ρIn

2 pξ, I q :“ ρIn pX ´ I pX q ` Π pξ, I qq .

ρRe
1 pπ, I q :“ ρRe pI pX q ´ πq and ρRe

2 pξ, I q :“ ρRe pI pX q ´ Π pξ, I qq .
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Preferences and Pricing Kernels

Definition
A risk measure ρ : L1 pΩ,F ,Pq Ñ R is said to be:

Translation-invariant if ρ pX ` cq “ ρ pX q ` c , for all pX , cq P L1 pΩ,F ,Pq ˆ R.

Convex if ρ pαX ` p1´ αqY q ď αρ pX q ` p1´ αq ρ pY q, for all
X ,Y P L1 pΩ,F ,Pq and α P r0, 1s

Comonotonic-additive if ρ pX ` Y q “ ρ pX q ` ρ pY q, for all X ,Y P L1 pΩ,F ,Pq
that are comonotonic, that is, such that

rX pω1q ´ X pω2qs rY pω1q ´ Y pω2qs ě 0, @ω1, ω2 P Ω.

Continuous if it is L1-continuous.
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Pricing Kernels as Subgradients
The norm dual of L1 pΩ,F ,Pq is (isometrically isomorphic to) L8 pΩ,F ,Pq.

Using this standard duality, one can define subgradients of risk measures.

Definition
A subgradient of a risk measure ρ at some Y P L1 pΩ,F ,Pq is some ξ P L8 pΩ,F ,Pq
such that

ρ pZ q ě ρ pY q ` E rξ pZ ´ Y qs , @Z P L1 pΩ,F ,Pq .

The subdifferential of ρ at some Y P L8 pΩ,F ,Pq, denoted by Bρ pY q, is the
collection of all subgradients of ρ at Y :

Bρ pY q :“
 

ξ P L8 pΩ,F ,Pq
ˇ

ˇ ρ pZ q ě ρ pY q ` E rξ pZ ´ Y qs , @Z P L1 pΩ,F ,Pq
(

“
 

ξ P L8 pΩ,F ,Pq
ˇ

ˇ ρ pZ q ´ Π pξ,Z q ě ρ pY q ´ Π pξ,Y q , @Z P L1 pΩ,F ,Pq
(

.

If ρ is convex and continuous, then Bρ pY q ‰ ∅ for all Y P L1 pΩ,F ,Pq.
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Definition
A subgradient of a risk measure ρ at some Y P L1 pΩ,F ,Pq is some ξ P L8 pΩ,F ,Pq
such that

ρ pZ q ě ρ pY q ` E rξ pZ ´ Y qs , @Z P L1 pΩ,F ,Pq .

The subdifferential of ρ at some Y P L8 pΩ,F ,Pq, denoted by Bρ pY q, is the
collection of all subgradients of ρ at Y :

Bρ pY q :“
 

ξ P L8 pΩ,F ,Pq
ˇ

ˇ ρ pZ q ě ρ pY q ` E rξ pZ ´ Y qs , @Z P L1 pΩ,F ,Pq
(

“
 

ξ P L8 pΩ,F ,Pq
ˇ

ˇ ρ pZ q ´ Π pξ,Z q ě ρ pY q ´ Π pξ,Y q , @Z P L1 pΩ,F ,Pq
(

.

If ρ is convex and continuous, then Bρ pY q ‰ ∅ for all Y P L1 pΩ,F ,Pq.
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Optima – Definitions

Definition (Individual Rationality)
A pair pπ, I q P Rˆ I is said to satisfy the individual rationality constraints if

ρIn
1 pπ, I q ď ρ

In
1 p0, 0q “ ρ

In pX q and ρRe
1 pπ, I q ď ρRe

1 p0, 0q “ ρRe p0q “ 0.

Let IR Ă Rˆ I denote the collection of all contracts that satisfy the individual
rationality constraints.

p0, 0q P IR is the status quo.

If ρIn and ρRe are translation-invariant, then π ě 0 for any pπ, I q P IR.
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Optima – Definitions

Definition (Optimality)
A pair pπ˚, I ˚q P IR is said to be Pareto-Optimal (PO) if there is no other pair
`

π̃, Ĩ
˘

P IR such that

ρIn
1
`

π̃, Ĩ
˘

ď ρIn
1 pπ

˚, I ˚q and ρRe
1

`

π̃, Ĩ
˘

ď ρRe
1 pπ˚, I ˚q ,

with at least one strict inequality.

A pair pξ˚, I ˚q P L8 pΩ,F ,Pq ˆ I is said to be Bowley-Optimal (BO) if

1 I˚ P arg min
IPI

ρIn
2 pξ

˚, I q.

2 ρRe
2 pξ˚, I˚q ď ρRe

2

`

ξ̃, Ĩ
˘

for all
`

ξ̃, Ĩ
˘

P L8 pΩ,F ,Pq ˆ arg min
IPI

ρIn
2

`

ξ̃, I
˘

.
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Pareto-Optimal Contracts

Lemma (Pareto Optimality)

Suppose that ρIn and ρRe are translation-invariant. A pair pπ˚, I ˚q P IR is PO if and
only if it is optimal for the problem

pP1q inf
pπ,I q P IR

!

ρIn
1 pπ, I q ` ρ

Re
1 pπ, I q

)

.

Moreover, I ˚ is optimal for Problem

pP2q inf
I P I

!

ρIn
1 p0, I q ` ρ

Re
1 p0, I q : pπ, I q P IR, for some π P R

)

if and only if pπ˚, I ˚q is optimal for Problem pP1q, for some π˚ P R.
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Pareto Vs. Bowley Optima

Lemma
If ρRe is translation-invariant, convex, and continuous, then for every I P I, there
exist ξ̃Re P L8 pΩ,F ,Pq such that

I P arg min
I P I

ρRe
2

`

ξ̃Re , I
˘

.

If ρIn is comonotonic-additive, convex, and continuous, then for each I P I,

Π pξ,X ´ I pX qq “ ρIn pX ´ I pX qq, for all ξ P BρIn pX ´ I pX qq.

Π pξ, I pX qq “ ρIn pI pX qq, for all ξ P BρIn pI pX qq.

If ρIn is comonotonic-additive, convex, and continuous, then for all I P I,

∅ ‰ BρInpX q Ă BρInpI pX qq X BρInpX ´ I pX qq.
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Pareto Vs. Bowley Optima
Theorem ("First Welfare Theorem")

Suppose that:

I “ IL, the set of all indemnities in I0 that satisfy the no-sabotage condition.

ρIn is comonotonic-additive, convex, and continuous.

ρRe is translation-invariant.

Then the following hold:

If pξ˚, I ˚q is BO, then pΠ pξ˚, I ˚q , I ˚q is PO.

If, in addition, ρRe is convex and continuous, then for any pξ˚, I ˚q that is BO, we
have ρIn

2 pξ
˚, I ˚q “ ρIn

2 pξ
˚, 0q

`

“ ρIn pX q
˘

.

Any Bowley equilibrium is Pareto efficient.
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Pareto Vs. Bowley Optima
Theorem ("Second Welfare Theorem")

Suppose that:

I “ IL, the set of all indemnities in I0 that satisfy the no-sabotage condition.

ρIn is comonotonic-additive, convex, and continuous.

ρRe is translation-invariant.

If pπ˚, I ˚q is PO and such that ρIn
1 pπ

˚, I ˚q “ ρIn
1 p0, 0q, then there exists some

ξ˚ P L8 pΩ,F ,Pq such that pξ˚, I ˚q is BO and π˚ “ Π pξ˚, I ˚q.

Moreover, ξ˚ can be chosen randomly in BρIn pI ˚pX qq X BρIn pX ´ I ˚pX qq ‰ ∅.

Any Pareto efficient contract for which the insurer is indifferent
is a Bowley optimum for some pricing kernel.
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PO, BO, and Competitive Equilibria:
The Case of Convex Distortion Risk Measures

Here, we focus on convex distortion risk measures (DRMs).

These are risk measures of the form

ρgpY q “
ż 0

´8

rgpSY pzqq ´ 1sdz `
ż 8

0
gpSY pzqqdz , @Y P L1 pΩ,F ,Pq ,

where:
g : r0, 1s Ñ r0, 1s is non-decreasing and concave, with gp0q “ 0 and gp1q “ 1.

SY denotes the survival function of Y .

A convex DRM is monotone, comonotonic-additive, translation-invariant, and
convex. If, in addition it is finite, then it is also continuous.

Hereafter, let ρIn “ ρg1 and ρRe “ ρg2 , for given concave distortion functions
g1, g2.
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PO, BO, and Competitive Equilibria:
The Case of Convex Distortion Risk Measures

We consider competitive equilibria in two reinsurance market settings:

1 In a complete reinsurance market, the set of admissible allocations is given by

ApX q :“
!

pX1,X2q P pL1 pΩ,F ,Pqq2 : X1 ` X2 “ X
)

.

2 In a comonotone reinsurance market (a special type of an incomplete market),
allocations are confined to the set C pX q of comonotonic allocations, namely,

C pX q :“
!

Y P L1 pΩ,F ,Pq : pY ,X ´ Y q is comonotonic
)

,

and the resulting set of admissible allocations is then given by

AcpX q :“
!

pX1,X2q P pC pX qq2 : X1 ` X2 “ X
)

.
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PO, BO, and Competitive Equilibria:
The Case of Convex Distortion Risk Measures

Definition (Unconstrained Competitive Equilibrium)

In a complete reinsurance market, a competitive equilibrium is a pair
ppX1,X2q , ξq P A pX q ˆ L8 pΩ,F ,Pq that satisfies:

1 Π pξ,X1q ď Π pξ,X q.

2 Π pξ,X2q ď 0 p“ Π pξ, 0qq.

3 ρIn pX1q “ min
!

ρIn pY1q : Π pξ,Y1q ď Π pξ,X q
)

.

4 ρRepX2q “ min
!

ρRepY2q : Πpξ,Y2q ď 0
)

.

ùñ Such a competitive equilibrium is called an Unconstrained Competitive
Equilibrium (UCE).
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PO, BO, and Competitive Equilibria:
The Case of Convex Distortion Risk Measures

Definition (Constrained Competitive Equilibrium)
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PO, BO, and Competitive Equilibria:
The Case of Convex Distortion Risk Measures

Proposition (Competitive Equilibria and Pareto Efficiency)

(i) The equilibrium price in UCE exists and is unique, and it is given by ξ :“ dQ
dP ,

where Q is defined by QpX ą zq :“ maxtg1pSX pzqq, g2pSX pzqqu, @ z P R.

(ii) Any UCE ppX ˚1 ,X
˚
2 q , ξ

˚q yields a PO risk transfer, and we have
Π pξ˚,X ˚2 q “ Π pξ˚, 0q “ 0. Hence ρRe pX ˚2 q “ ρ

Re p0q “ 0.

(iii) For any CCE ppX ˚1 ,X
˚
2 q , ξ

˚q, the contract pπ˚, I ˚q is PO, where
I ˚ pX q :“ f pX q ´ π˚, f pX q :“ X ˚2 , and π

˚ :“ f p0q.

(iv) If pπ˚, I ˚q is PO, then there exists some ξ˚ such that ppX ˚1 ,X
˚
2 q , ξ

˚q is a CCE,
where X ˚1 :“ X ´ I ˚ pX q ` Π pξ˚, I ˚q and X ˚2 :“ I ˚ pX q ´ Π pξ˚, I ˚q.
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PO, BO, and Competitive Equilibria:
The Case of Convex Distortion Risk Measures

To sum up, for convex distortion risk measures, the following holds:

1 In any UCE, the risk transfer is PO and the reinsurer will be indifferent between
selling reinsurance and not selling reinsurance.

ùñ This is in sharp contrast with BO solutions, which are PO and such that the
insurer is indifferent.

2 In any CCE, the risk transfer is PO and any premium in between the indifference
prices will constitute an equilibrium.

We also examine the relationship with Nash bargaining solutions for convex DRM...
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An Example: PO and BO for TVaR

Consider a non-atomic probability space pΩ,F ,Pq and a concave distortion
function g.

By the Fenchel-Moreau theorem, the convex DRM ρg admits the dual
representation

ρg pX q “ sup
!

E pX Z q : Z “ g1 pUq , U has a uniform distribution on r0, 1s
)

.

Moreover, by the concavity of g, it follows from Carlier and Dana (2003) that
the subdifferential of ρg at X is given by

Bρg pX q “ co
!

g1 p1´ Uq : U „ Unif p0, 1q, pU,X q is comonotonic
)

p‹q,

where co denotes the L1-closed convex hull.
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An Example: PO and BO for TVaR

Here we provide an illustrative example for the special case in which the convex
DRMs are given by the Tail Value-at-Risk (TVaR) risk measure.

The TVaR at level α P p0, 1q is a continuous DRM for which the (concave)
distortion function is given by

gα ptq :“ min

"

t
1´ α

, 1
*

, @t P r0, 1s.
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An Example: PO and BO for TVaR

The dual representation of TVaR is given by

TVaRα pX q “ sup

"

E pX Z q : E pZ q “ 1, 0 ď Z ď
1

1´ α

*

.

Additionally, by p‹q,

BTVaRα pX q “ co
"ˆ

1
1´ α

˙

1rUă1´αs : U „ Unif p0, 1q, pU,X q is comonotonic
*

.
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An Example: PO and BO for TVaR

Therefore, if X is a continuous random variable, then FX pX q „ Unif p0, 1q and

BTVaRα pX q “
ˆ

1
1´ α

˙

1rXąVaRαpX qs.

More generally, BTVaRα pX q ‰ ∅ for α P p0, 1q, since ξ˚ P BTVaRα pX q, where

ξ˚ :“

ˆ

1
1´ α

˙

1rXąVaRαpX qs

`

ˆ

1´ α´ P pX ą VaRα pX qq
P pX ě VaRα pX qq ´ P pX ą VaRα pX qq

˙

1rX“VaRαpX qs.
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An Example: PO and BO for TVaR

Proposition

Suppose that ρIn and ρRe are TVaR risk measures at respective levels α, β P p0, 1q:

ρIn “ TVaRα and ρRe “ TVaRβ.

Then the indemnity function I ˚ defined below is optimal for Problem pP2q:

I ˚ “

$

’

&

’

%

0 if α ă β,

P I if α “ β,

Id if α ą β,

where Id denotes the identity function.
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An Example: PO and BO for TVaR
Hence, we obtain the following result.

Proposition

Suppose that ρIn and ρRe are TVaR risk measures at respective levels α, β P p0, 1q,
and that there exists ξ0 P L8 pΩ,F ,Pq such that for each I P I,

ρIn
2 pξ0, I q ě ρ

In p0q .

Then, the following holds:

If α ă β, then p0, 0q is PO and pξ0, 0q is BO.

If α “ β, then for any I P I, pTVaRα pI pX qq , I q is PO and pξ, I q is BO, where
ξ P BTVaRα pX q.

If α ą β, then pTVaRα pX q ,X q is PO and pξ, Idq is BO, where ξ P BTVaRα pX q.
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In Conclusion...

For a large class of risk measures:

1 Any Bowley equilibrium is Pareto efficient.

2 Any Pareto efficient contract for which the insurer is
indifferent is a Bowley optimum for some pricing kernel.

3 For convex distortion risk measures, there is a tight relationship between
competitive equilibria and Pareto Efficiency.

4 For the special case of TVaR, we provided a closed-form characterization of
optima.
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