Law Invariance vs. Heterogeneity in Risk Sharing Risk Measures and Uncertainty in Insurance

Felix-Benedikt Liebrich

House of Insurance & IVFM, Leibniz University Hannover

May 19, 2022

Overview

1 The risk sharing problem

2/20

F.-B. Liebrich, Leibniz University Hannover -

The risk sharing problem

Optimal risk sharing

• Consider classical risk sharing problem:

$$\sum_{i=1}^n
ho_i(X_i) o {\sf min} \quad {\sf subject to } {\sf X} = (X_1,\ldots,X_n) \in \mathbb{A}_X$$

- Agents $i \in [n] := \{1, ..., n\}$
- $X, X_1, \ldots, X_n \in L^\infty$ over (atomless) probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- Set of allocations of $X \in L^{\infty}$: $\mathbb{A}_X := \{ \mathbf{X} = (X_1, \dots, X_n) \mid \sum_{i=1}^n X_i = X \}$
- Important: Do not impose feasibility constraints!
- $\rho_i \colon L^{\infty} \to \mathbb{R}$ monetary risk measures
 - Normalisation: $\rho_i(0) = 0$
 - Monotonicity: $X \leq Y \implies \rho_i(X) \leq \rho_i(Y)$
 - Cash-additivity: $X \in L^{\infty}, m \in \mathbb{R} \implies \rho_i(X + m) = \rho_i(X) + m$
- Want to find optimal allocation(s) $\mathbf{X}^{opt} \in \mathbb{A}_X$ solving risk sharing problem

Optimal risk sharing

• Agents entertain individual beliefs: $\forall i \in [n] \exists$ probability measure \mathbb{Q}_i on (Ω, \mathcal{F}) s.t.

$$\mathbb{Q}_i \circ X^{-1} = \mathbb{Q}_i \circ Y^{-1} \implies \rho_i(X) = \rho_i(Y) \tag{(\star)}$$

Well known: ∃ comonotone optimal allocations (under mild additional conditions on ρ_i's) in homogeneous situation: Can choose the Q_i's with property (★) such that

$$\forall i, j \in [n] : \mathbb{Q}_i = \mathbb{Q}_j$$

- **Problem:** \mathbb{Q}_i 's can be heterogeneous, i.e., for some $i, j \in [n], \mathbb{Q}_i \neq \mathbb{Q}_j$!
- Typically: $\mathbb{Q}_i \not\approx \mathbb{Q}_j$ for some $i, j \implies \nexists$ optimal allocations
- Natural question:

When can we find \mathbb{Q}^* having property (\star) for all $i \in [n]$?

• ... i.e., when does heterogeneity resolve?

Uniqueness of reference measures

Reference measures have to be equivalent

- (Ω, \mathcal{F}) mb. space
- \mathcal{X} bounded measurable random variables $f: \Omega \to \mathbb{R}$
- $\mathcal{X}_0 \subset \mathcal{X}$ simple random variables
- Given functional $\varphi \colon \mathcal{X}_{(0)} \to \mathbb{R}, \mathfrak{Ref}(\varphi)$ is set of all reference probability measures \mathbb{P} , i.e.,

$$\mathbb{P} \circ f^{-1} = \mathbb{P} \circ g^{-1} \implies \varphi(f) = \varphi(g)$$

Proposition (L., '22) Suppose $\mathbb{Q} \not\approx \mathbb{P}$ and \mathbb{P} atomless. For any functional $\varphi : \mathcal{X} \to \mathbb{R}$, $\mathbb{P}, \mathbb{Q} \in \mathfrak{Ref}(\varphi) \iff \varphi$ is constant

Reference measures have to be equivalent

For
$$f \in \mathcal{X}$$
,
 $M(f) := \inf\{x \in \mathbb{R} \mid \mathbb{P}(f \le x) = 1\}$
 $m(f) := \sup\{x \in \mathbb{R} \mid \mathbb{P}(f \le x) = 0\}$

• Clear:
$$\mathfrak{Ref}(M) = \mathfrak{Ref}(m) = \{\mathbb{Q} \approx \mathbb{P}\}$$

Theorem (L., '22)

- $\mathbb{P} \approx \mathbb{Q}$ nonatomic probability measures on $\mathcal F$
- $\varphi \colon \mathcal{X} \to \mathbb{R}$ is *l.s.c.*, monotone, satisfies $\mathbb{P}, \mathbb{Q} \in \mathfrak{Ref}(\varphi)$

Then one of the following alternatives holds:

Consequences for risk measures

Corollary

For a monetary risk measure $\rho: \mathcal{X} \to \mathbb{R}$ with Fatou property, one of the following alternatives holds:

- $\bigcirc \ \rho = M$
- 2 $|\mathfrak{Ref}(
 ho)| \leq 1$

Consequence:

Heterogeneity in risk sharing above typically does not resolve!

 \implies Need to impose conditions on \mathbb{Q}_i 's, ρ_i 's, and their interplay!

Key lemma

Proofs heavily rely on Lyapunov's Convexity Theorem and:

Lemma (L., '22)

- $\varphi \colon \mathcal{X}_0 \to \mathbb{R}$
- $\mathbb{P} \approx \mathbb{Q}$ atomless, $\mathbb{P} \neq \mathbb{Q}$, and $\mathbb{P}, \mathbb{Q} \in \mathfrak{Ref}(\varphi)$

For all $f, g \in \mathcal{X}_0$:

$$\{x \in \mathbb{R} \mid \mathbb{P}(f = x) > 0\} = \{x \in \mathbb{R} \mid \mathbb{P}(g = x) > 0\} \implies \varphi(f) = \varphi(g)$$

- 10/20

Illustration for Bernoulli-distributed $f, g \dots$

Optimal risk sharing under heterogeneous beliefs

F.-B. Liebrich, Leibniz University Hannover -

Consistent risk measures

- $\mathbb{Q} \ll \mathbb{P}$
- For $X, Y \in L^{\infty}$:

 $X \preceq^{\mathbb{Q}}_{ssd} Y \quad \Longleftrightarrow \quad \forall \, v \colon \mathbb{R} \to \mathbb{R} \text{ convex \& nondecreasing:} \quad \mathbb{E}[v(X)] \leq \mathbb{E}[v(Y)]$

12/20

• ρ Q-consistent (cf. Mao & Wang, '20) if

$$X \preceq^{\mathbb{Q}}_{ssd} Y \implies \rho(X) \le \rho(Y)$$

• Mao & Wang, '20: ρ consistent $\iff \rho$ dilatation monotone:

For all sub-
$$\sigma$$
-algebras $\mathcal{G} \subset \mathcal{F}$, $ho (\mathbb{E}_{\mathbb{Q}}[X|\mathcal{G}]) \leq
ho(X)$

- Example: ρ convex and \mathbb{Q} -law invariant risk measure $\implies \rho \mathbb{Q}$ -consistent
- Important: ρ Q-consistent $\Rightarrow \rho$ convex!

Compatible dual elements

• Acceptance set
$$A_{\rho} := \{X \in L^{\infty} \mid \rho(X) \leq 0\}$$

• Asymptotic cone of \mathcal{A}_{ρ} :

$$\mathcal{A}_{\rho}^{\infty} = \{\lim_{n} t_{n} Y_{n} \mid (t_{n})_{n \in \mathbb{N}} \subset (0, \infty) \text{ null sequence, } (Y_{n})_{n \in \mathbb{N}} \subset \mathcal{A}_{\rho}\}$$

Definition

$${\sf C}(
ho)$$
 set of all compatible elements.

2
$$\rho$$
 admissible if $\mathbf{C}(\rho) \neq \emptyset$.

Existence of compatible dual elements/admissibility

Remark

 $\mathbb{Q}\text{-consistent risk measure }\rho \text{ admissible } \implies \mathbb{Q}\approx \mathbb{P}$

Proposition (L., '22) $\mathbb{Q} \approx \mathbb{P}, \rho: L^{\infty} \to \mathbb{R}$ \mathbb{Q} -consistent risk measure. The following are equivalent: \bigcirc *p* is admissible 2 $\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{D}} \in \mathbf{C}(\rho)$ $|\operatorname{dom}(\rho^*)| \geq 2$ **4** $|\operatorname{dom}(\rho^*) \cap L^1| > 2$ They all imply: $\nexists \beta > 0: \quad \rho \leq \mathbb{E}_{\mathbb{O}}[\cdot] + \beta$

Admissibility: The star-shaped case

Admissibility even milder for star-shaped risk measures:

Proposition (L. & Munari, '22)

Suppose a Q-consistent risk measure is star shaped (cf. Castagnoli et al., '21):

$$orall oldsymbol{s} \in [0,1] \, orall Y \in \mathcal{A}_
ho : \quad oldsymbol{s} Y \in \mathcal{A}_
ho.$$

- 15/20

Then

$$\rho \text{ admissible } \iff \rho \neq \mathbb{E}_{\mathbb{Q}}[\cdot]$$

Existence theorem

 $(\mathbb{Q}_1,\ldots,\mathbb{Q}_n)$ vector of reference measures equivalent to $\mathbb P$

Assumption (SIM)

 $\forall i \in [n]: \frac{\mathrm{d}\mathbb{Q}_i}{\mathrm{d}\mathbb{P}}$ is a simple function.

 $\rho_i \colon L^{\infty} \to \mathbb{R} \ \mathbb{Q}_i$ -consistent risk measures, $i \in [n]$

Assumption (COMP)

 $\forall 1 \leq j \leq n-1 \exists Z_j \in \mathbf{C}(\rho_j) \text{ s.t. } Z_j \in \bigcap_{i \in [n]} \operatorname{dom}(\rho_i^*)$

Theorem (L., '22)

- $(\mathbb{Q}_1,...,\mathbb{Q}_n)$ checks assumption (SIM)
- $(\rho_i)_{i \in [n]}$ check assumption (COMP)

Then, for all $X \in L^{\infty}$ there is $\mathbf{X}^{opt} \in \mathbb{A}_X$ solving the risk sharing problem.

More on assumption (SIM)

Theorem (L., '22)

 $\rho_i \colon L^{\infty} \to \mathbb{R} \ \mathbb{Q}_i$ -consistent risk measures. Then the following are equivalent:

1
$$(\mathbb{Q}_1, \ldots, \mathbb{Q}_n)$$
 can be chosen to satisfy (SIM).

2 There is a common finite σ-algebra H ⊂ F s.t. for all i ∈ [n], sub-σ-algebras G ⊂ F, and for all X ∈ L[∞]:

$$\mathcal{H} \subset \mathcal{G} \implies
ho_i (\mathbb{E}_{\mathbb{P}}[X|\mathcal{G}]) \leq
ho_i(X).$$

17/20

Interpretation: If agents have enough information to decide if certain shocks occur or not, they can agree on \mathbb{P} . Else, they retract to \mathbb{Q}_i .

More on assumption (SIM)

- Assumption (SIM) not exotic:
 - Present in Cambou & Filipović '17
 - Abstraction of the setting of Marshall '92 (first investigation of risk sharing under belief heterogeneity)

18/20

- $\implies \rho_i$'s are special case of scenario-based risk measures characterised in Wang & Ziegel '21
- Interpretable as "random variable translation" of Anscombe-Aumann framework

More on assumption (COMP)

- All ρ_i 's admissible and $\rho_i^* \left(\frac{\mathrm{d}\mathbb{Q}_i}{\mathrm{d}\mathbb{P}}\right) < \infty, \ i, j \in [n] \implies (\mathsf{COMP})$
- ρ_n does not have to be admissible, e.g., $\rho_n = \mathbb{E}_{\mathbb{Q}_n}[\cdot]$ possible
- In that case: dom $(\rho_n^*) = \{ \frac{\mathrm{d}\mathbb{Q}_n}{\mathrm{d}\mathbb{P}} \}$, hence:

(COMP)
$$\iff \frac{\mathrm{d}\mathbb{Q}_n}{\mathrm{d}\mathbb{P}} \in \bigcap_{i=1}^{n-1} \mathbf{C}(\rho_i)$$

• **Open question:** How is (COMP) related to condition $\bigcap_{i=1}^{n} \operatorname{dom}(\rho_{i}^{*}) \neq \emptyset$? (Farkas' Lemma)

Proposition (L., unpublished)

- All ρ_i's admissible
- Marshall's setting: \exists event $A \in \mathcal{F}$ such that $\frac{\mathrm{d}\mathbb{Q}_i}{\mathrm{d}\mathbb{P}} = q_i \mathbf{1}_A + r_i \mathbf{1}_{A^c}$

Then:

$$\bigcap_{i=1}^{n} \operatorname{dom}(\rho_{i}^{*}) \neq \emptyset \quad \iff \quad \bigcap_{i=1}^{n} \mathbf{C}(\rho_{i}) \neq \emptyset \quad \iff \quad (\operatorname{COMP})$$

Bibliography

Thank you for your attention!

20/20

Cambou, M., D. Filipović (2017), Model uncertainty and scenario aggregation. Mathematical Finance 27(2):534-567.

Castagnoli, E., G. Cattelan, F. Maccheroni, C. Tebaldi, and R. Wang (2021), Star-shaped risk measures. Preprint.

Liebrich, F.-B. (2022), Are reference measures of law-invariant functionals unique?. Preprint.

Liebrich, F.-B. (2022), Risk sharing under heterogeneous beliefs without convexity. Preprint.

Liebrich, F.-B., and C. Munari (2022), Law-invariant functionals that collapse to the mean: Beyond convexity. Forthcoming in Mathematics & Financial Economics.

Mao, T., and R. Wang (2020), Risk aversion in regulatory capital principles. SIAM Journal on Financial Mathematics 11(1):169-200.

Marshall, J. M. (1992), Optimum insurance with deviant beliefs. In: Contributions to Insurance Economics, pp. 255-274. Kluwer.

Wang, R., J. F. Ziegel (2021), Scenario-based risk evaluation. Finance & Stochastics 25:725-756.