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Article 122: 

“Where practicable, insurance and reinsurance undertakings shall derive the solvency 
capital requirement directly from the probability distribution forecast generated by 
the internal model of those undertakings, using the Value-at-Risk measure set out in 
Article 101(3).” 

 Full distribution necessary 

Possibilities:  

 Unrealistic/simplistic assumptions on the probability distributions (?)  

 Detailed MC simulation of the internal model to derive a sufficiently accurate 
empirical distribution function => computationally infeasible 

 Replication approach => Interesting alternative 

 Least-Squares Monte Carlo approach  
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Challenge: There is no closed-form representation of g(X(t))  
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o Evaluate h(X(T)) for each “path” of X(.) containing X(t) and X(T) 

o Derive a regression representation r(X(t)) for g(X(t)) on the basis of h(X(T)) 

o Simulate a huge number of representative values X(t) to obtain an 
approximation of the distribution function for g(X(t)) with the help of r(X(t)) 

 

 



1 Least Squares Monte Carlo: Basic idea  

A simpler task:  Derive the distribution of an option price g(X(t)) at time t with a 
payment of H = h(X(T)) at time T 

Challenge: There is no closed-form representation of g(X(t))  
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1 Least Squares Monte Carlo: A simple option pricing example  

European call option:  Derive the distribution of a European call option price g(S(1)) at 
time 1 with a payment of H = (S(2)-K)+ at time 2 by using a linear, a quadratic and a 
cubic regression function (still linear in the parameters!) 
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European call option:  Derive the distribution of a European call option price g(S(1)) at 
time 1 with a payment of H = (S(2)-K)+ at time 2 by using a linear, a quadratic and a 
cubic regression function (still linear in the parameters!): Modified linear function 

 
  



1 Least Squares Monte Carlo: A simple option pricing example  

Replication approach:  Derive the distrib. of a Eur. call price g(S(1)) at time 1 with a 
payment of H = (S(2)-K)+ at time 2, use a lin., a quadr.  and a cubic regression function 
for H (!!!)  at t =2 and then calculate its price at t=1=> slightly better than LSMC 
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1 Least Squares Monte Carlo: Main tasks/problems 

Theoretical justification:  

 Convergence results 

Practical implementation:   

 Choice of the regression function  

 Number of simulation runs for calibration 

 How to choose the fitting values? 

 How to choose the calibration values? 

 How to judge the performance of the model?  



1 Least Squares Monte Carlo: Convergence results 

Theoretical justification: Convergence results => two convergence issues 

Theorem:  
Let F(X) = E(Y|X)  be a functional of X that is in L². Consider a set of K linearly indepen-

dent basis functions  ke x  with  0 1e x  , the projection  

(1)         
1

0
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F̂ X e X



  

of F(X) on the basis functions and  

(2)              
1

0

K NK ,N
kkk

ˆF̂ X e X



  

its approxim. with the LS-estimators of the coefficients based on N realizations of Y . 

a)  If the family of basis functions is complete in  d dL² IR ,B ,P  then we have  

(3)           KKF̂ X F X


     in  d dL² IR ,B ,P  

b)            NK ,N KF̂ X F X


     a.s. 
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 A simulation concept how to cover the relevant (!) values of the risk factors (i.e. 
the ones that are relevant for the loss distribution and for the distribution at the 
calculation time)  

 A decision on the method to actually determine the loss distribution and in 
particular the relevant high/low quantiles for the Solvency Capital Requirements 

  



2 Least Squares Monte Carlo: Aspects of application – 2  
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reliable proxy modelling for a life insurance company: 
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The necessary key steps/decisions/ingredients of the LSMC approach on the way to a 
reliable proxy modelling for a life insurance company: 

 a detailed description of the simulation setting and the required task 

 a concept for a calibration procedure for the proxy function 

 a validation procedure for the obtained proxy function 

 the actual application of the LSMC model to forecast the full loss distribution 

First part: 

Given by the CFP method and by the SCR requirement/definition, in particular by 
specifying the risk factors X= (X1,…,Xd) the insurer is exposed to in the next year. 

A realization of X under the subjective measure P is called an outer scenario (i.e. one 
possibility how the world will evolve during that year. 
   



3 LSMC-Proxy Modelling: Simulation setting and the task  

The task(s):  

 Calculate the (full) loss distribution of a life insurance company (over a given time 
horizon) at the end of the year 

 From this derive the SCR as the 99.5% quantile (of the difference of the available 
capital at time 1 and at time 0:  B1 AC1 – AC0 ) 
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The task(s):  

 Calculate the (full) loss distribution of a life insurance company (over a given time 
horizon) at the end of the year 

 From this derive the SCR as the 99.5% quantile (of the difference of the available 
capital at time 1 and at time 0:  B1 AC1 – AC0 ) 

The simulation setting: 

 Simulate realizations of risk factors X at time 1 under P 

 For each realization of the risk factors derive the (discounted) available capital at 
time 1: 

       1

1 1Q Q tAC = E =: E φ ( )
T T

t t tt t
X B Z X z X X

    

where Zt denotes the net profit at time t and let T mark the projection end. Note 
that we simulate now, i.e. we use the CFP method available now! 

  



3 LSMC-Proxy Modelling: Simulation setting and the task – 2    

An example 
  

Capital market shocks 

Actuarial risks 



3 LSMC-Proxy Modelling: Simulation of the outer and inner scenarios  

Generate the outer scenarios (the fitting points) under P, i.e. 

 have a stochastic model for each risk Xi and simulate realizations X(k) of X,  

 use a large number of outer scenarios (or have a strategy how to fill the range of 
the risks) 
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 have a stochastic model for each risk Xi and simulate realizations X(k) of X,  

 use a large number of outer scenarios (or have a strategy how to fill the range of 
the risks) 

Generate the corresponding inner scenarios (the fitting values) under Q, i.e. 

 use an economic scenario generator (ESC) for generating very few (typically 1 or 2) 

market consistent scenarios (k,j)(X(k)) for each outer scenario 

 derive the fitting values Y(k)  via 

      1 1 1

1 1 k,j (k)φ (X ))
a a Tk k , j

tj j t
Y Y z

a a  
     
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Main question: How to choose the regression function?  

Suggestion:  
Use monomials of the type  

      1
1

kk
djj

k de x x ... x     

at step k of the algorithm used to choose  the monomials.  

Find the least-squares optimal coefficients based on the N fitting points and fitting 
values to obtain the proxy function by solving  

       
2

1

1 0

K

N K
N i i

k kIR
i k

ˆ argmin Y e X


 



 

   
   
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3 LSMC-Proxy Modelling: Calibrating the proxy function  

Algorithm/principle for choosing the monomials in Krah et al. (2018): 

Principle of marginalization 

 Start with the constant function 

 Candidates to be included  as a basis function have to have all their partial 
derivatives already being choosen as a basis function 

 Among the candidates the one that leads to the biggest reduction in the AIC-
criterium is choosen  (as long as there exists such a candidate and the upper limit 
of the number Kmax of basis functions has not been reached)  

Example of choice by marginalization:  

 2
1 2x x  can only be among the candidates if  2

1 1 2 1 2x , x x ,x ,x are already choosen 

  



3 LSMC-Proxy Modelling: Validating the proxy function 

Before the proxy function can be used for the actual simulation of the distribution of 
the Available Capital: 

 Check if the proxy function based model delivers correct values ! 

  



3 LSMC-Proxy Modelling: Validating the proxy function 

Before the proxy function can be used for the actual simulation of the distribution of 
the Available Capital: 

 Check if the proxy function based model delivers correct values ! 

Validation strategy: 

 Generate (or choose!) some (between 15 and 200) outer scenarios X(i)  

  



3 LSMC-Proxy Modelling: Validating the proxy function 

Before the proxy function can be used for the actual simulation of the distribution of 
the Available Capital: 

 Check if the proxy function based model delivers correct values ! 

Validation strategy: 

 Generate (or choose!) some (between 15 and 200) outer scenarios X(i)  

 Generate many (between 1000 and 16000 ) inner scenarios per outer scenario 
(note the reversion of the effort !!!) to obtain validation points Y(i) via averaging 

  



3 LSMC-Proxy Modelling: Validating the proxy function 

Before the proxy function can be used for the actual simulation of the distribution of 
the Available Capital: 

 Check if the proxy function based model delivers correct values ! 

Validation strategy: 

 Generate (or choose!) some (between 15 and 200) outer scenarios X(i)  

 Generate many (between 1000 and 16000 ) inner scenarios per outer scenario 
(note the reversion of the effort !!!) to obtain validation points Y(i) via averaging 

 Check the performance of the proxy function by comparing the validation points 
Y(i) with the predicted counterparts resulting from the proxy function applied to X(i) 

  



3 LSMC-Proxy Modelling: Validating the proxy function 

Before the proxy function can be used for the actual simulation of the distribution of 
the Available Capital: 

 Check if the proxy function based model delivers correct values ! 

Validation strategy: 

 Generate (or choose!) some (between 15 and 200) outer scenarios X(i)  

 Generate many (between 1000 and 16000 ) inner scenarios per outer scenario 
(note the reversion of the effort !!!) to obtain validation points Y(i) via averaging 

 Check the performance of the proxy function by comparing the validation points 
Y(i) with the predicted counterparts resulting from the proxy function applied to X(i) 

 If the validation is not satisfactory, the proxy function has to be improved … 

  



3 LSMC-Proxy Modelling: Validating the proxy function 

Before the proxy function can be used for the actual simulation of the distribution of 
the Available Capital: 

 Check if the proxy function based model delivers correct values ! 

Validation strategy: 

 Generate (or choose!) some (between 15 and 200) outer scenarios X(i)  

 Generate many (between 1000 and 16000 ) inner scenarios per outer scenario 
(note the reversion of the effort !!!) to obtain validation points Y(i) via averaging 

 Check the performance of the proxy function by comparing the validation points 
Y(i) with the predicted counterparts resulting from the proxy function applied to X(i) 

 If the validation is not satisfactory, the proxy function has to be improved … 

Some out of-sample-tests are described in Krah et al. (2018) 
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Actual use of the proxy function 

 Simulate many outer scenarios (i.e. 131072 real world scenarios) 

 Feed them into the proxy function and obtain the resulting own funds losses 

 Order the results and obtain the SCR as the 99.5% quantile  

This does not take a lot of time as no nested simulations and no CFP uses are needed! 

Example in Krah et al. (2018): 

 14 risk factors, 25.000 fitting scenarios with a=2 inner scenario per outer one 

 Proxy function calibration leads to a proxy function with 60 monomials 

 Validation on two sets are passed 

 Accuracy check good, total computation time < 6 hours on a cluster , nested 
simulation is estimated to last at least 25 weeks 

More details in Krah et al. (2018) 
 



 
 
 
 
 
 
 

Thank you for your attention !  
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