Least-Squares Monte Carlo Methods for Proxy Modeling of Life Insurance Companies

Ralf Korn (TU Kaiserslautern, Fraunhofer ITWM)

Based on:

A.S. Krah, Z. Nikoliç, R. Korn (2018) *A least-squares Monte Carlo framework in proxy modeling of life insurance companies*, Risks 6(2), doi:10.3390/risks6010001

D. Bauer, H. Ha (2018) *A least-squares Monte Carlo approach to the calculation of capital requirements*. Working paper.

See also

A.S. Krah, Z. Nikoliç, R. Korn (2019) *Machine learning in least-squares Monte Carlo proxy modeling of life insurance companies*, working paper.

More references:

later

European Council Directive 2009/138/EC

Article 122:

"Where practicable, insurance and reinsurance undertakings shall derive the solvency capital requirement directly from the **probability distribution forecast** generated by the internal model of those undertakings, using the Value-at-Risk measure set out in Article 101(3)."

European Council Directive 2009/138/EC

Article 122:

"Where practicable, insurance and reinsurance undertakings shall derive the solvency capital requirement directly from the **probability distribution forecast** generated by the internal model of those undertakings, using the Value-at-Risk measure set out in Article 101(3)."

⇒ Full distribution necessary

European Council Directive 2009/138/EC

Article 122:

"Where practicable, insurance and reinsurance undertakings shall derive the solvency capital requirement directly from the **probability distribution forecast** generated by the internal model of those undertakings, using the Value-at-Risk measure set out in Article 101(3)."

⇒ Full distribution necessary

Possibilities:

• Unrealistic/simplistic assumptions on the probability distributions (?)

European Council Directive 2009/138/EC

Article 122:

"Where practicable, insurance and reinsurance undertakings shall derive the solvency capital requirement directly from the **probability distribution forecast** generated by the internal model of those undertakings, using the Value-at-Risk measure set out in Article 101(3)."

⇒ Full distribution necessary

Possibilities:

- Unrealistic/simplistic assumptions on the probability distributions (?)
- Detailed MC simulation of the internal model to derive a sufficiently accurate empirical distribution function => computationally infeasible

European Council Directive 2009/138/EC

Article 122:

"Where practicable, insurance and reinsurance undertakings shall derive the solvency capital requirement directly from the **probability distribution forecast** generated by the internal model of those undertakings, using the Value-at-Risk measure set out in Article 101(3)."

⇒ Full distribution necessary

Possibilities:

- Unrealistic/simplistic assumptions on the probability distributions (?)
- Detailed MC simulation of the internal model to derive a sufficiently accurate empirical distribution function => computationally infeasible
- Replication approach => Interesting alternative

European Council Directive 2009/138/EC

Article 122:

"Where practicable, insurance and reinsurance undertakings shall derive the solvency capital requirement directly from the **probability distribution forecast** generated by the internal model of those undertakings, using the Value-at-Risk measure set out in Article 101(3)."

⇒ Full distribution necessary

Possibilities:

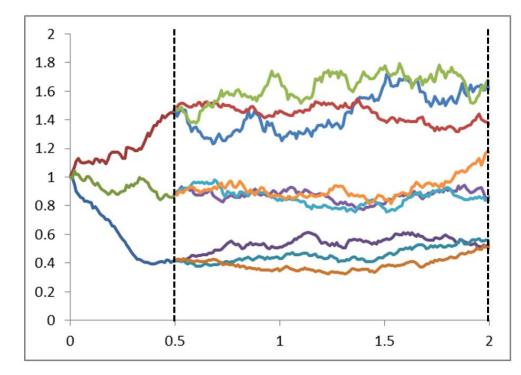
- Unrealistic/simplistic assumptions on the probability distributions (?)
- Detailed MC simulation of the internal model to derive a sufficiently accurate empirical distribution function => computationally infeasible
- Replication approach => Interesting alternative
- Least-Squares Monte Carlo approach

A simpler task: Derive the distribution of an option price g(X(t)) at time t with a payment of H = h(X(T)) at time T

A simpler task: Derive the distribution of an option price g(X(t)) at time t with a payment of H = h(X(T)) at time T

Challenge: There is no closed-form representation of g(X(t))

• Simple, accurate (but comput. not feasible) approach: Nested MC approach



A simpler task: Derive the distribution of an option price g(X(t)) at time t with a payment of H = h(X(T)) at time T

Challenge: There is no closed-form representation of g(X(t))

• Simple, accurate (but computationally not admissable) approach: Nested MC approach

A simpler task: Derive the distribution of an option price g(X(t)) at time t with a payment of H = h(X(T)) at time T

- Simple, accurate (but computationally not admissable) approach: Nested MC approach
- Least-squares MC:

A simpler task: Derive the distribution of an option price g(X(t)) at time t with a payment of H = h(X(T)) at time T

- Simple, accurate (but computationally not admissable) approach: Nested MC approach
- Least-squares MC:
 - Simulate a sufficiently large number of "paths" of X(.) containing X(t) and X(T)

A simpler task: Derive the distribution of an option price g(X(t)) at time t with a payment of H = h(X(T)) at time T

- Simple, accurate (but computationally not admissable) approach: Nested MC approach
- Least-squares MC:
 - Simulate a sufficiently large number of "paths" of X(.) containing X(t) and X(T)
 - Evaluate h(X(T)) for each "path" of X(.) containing X(t) and X(T)

A simpler task: Derive the distribution of an option price g(X(t)) at time t with a payment of H = h(X(T)) at time T

- Simple, accurate (but computationally not admissable) approach: Nested MC approach
- Least-squares MC:
 - Simulate a sufficiently large number of "paths" of X(.) containing X(t) and X(T)
 - Evaluate h(X(T)) for each "path" of X(.) containing X(t) and X(T)
 - \circ Derive a **regression representation** r(X(t)) for g(X(t)) on the basis of h(X(T))

A simpler task: Derive the distribution of an option price g(X(t)) at time t with a payment of H = h(X(T)) at time T

- Simple, accurate (but computationally not admissable) approach: Nested MC approach
- Least-squares MC:
 - Simulate a sufficiently large number of "paths" of X(.) containing X(t) and X(T)
 - Evaluate h(X(T)) for each "path" of X(.) containing X(t) and X(T)
 - \circ Derive a **regression representation** r(X(t)) for g(X(t)) on the basis of h(X(T))
 - Simulate a huge number of representative values X(t) to obtain an approximation of the distribution function for g(X(t)) with the help of r(X(t))

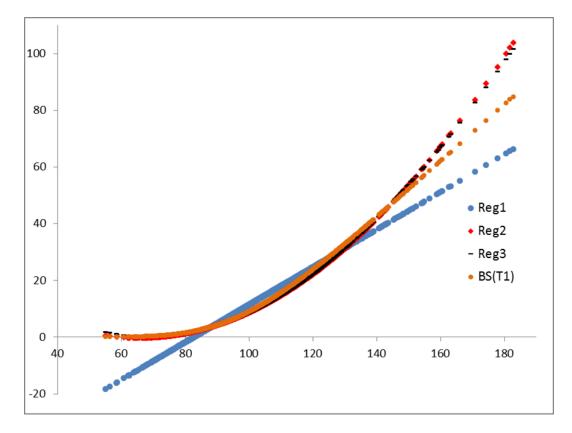
A simpler task: Derive the distribution of an option price g(X(t)) at time t with a payment of H = h(X(T)) at time T

Challenge: There is no closed-form representation of g(X(t))

• Least-squares MC: X(t) X(T) 2.4 P O 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 1.5 0.5 1 0 2

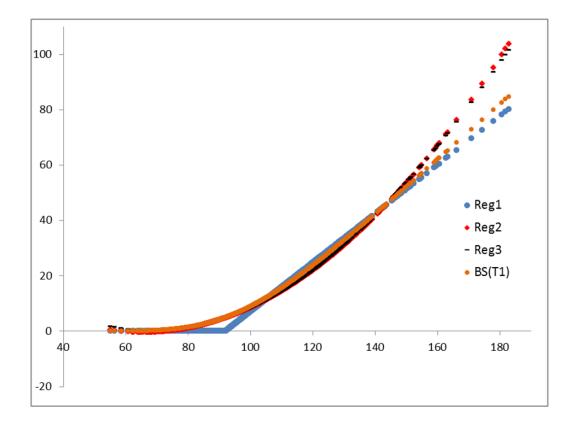
1 Least Squares Monte Carlo: A simple option pricing example

European call option: Derive the distribution of a European call option price g(S(1)) at time 1 with a payment of $H = (S(2)-K)^+$ at time 2 by using a linear, a quadratic and a cubic regression function (still <u>linear</u> in the parameters!)



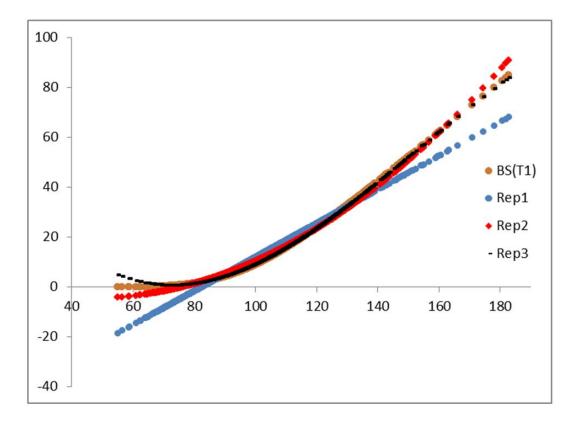
1 Least Squares Monte Carlo: A simple option pricing example

European call option: Derive the distribution of a European call option price g(S(1)) at time 1 with a payment of $H = (S(2)-K)^+$ at time 2 by using a linear, a quadratic and a cubic regression function (still <u>linear</u> in the parameters!): Modified linear function



1 Least Squares Monte Carlo: A simple option pricing example

Replication approach: Derive the distrib. of a Eur. call price g(S(1)) at time 1 with a payment of H = $(S(2)-K)^+$ at time 2, use a lin., a quadr. and a cubic regression function for H (!!!) at t = 2 and then calculate its price at t=1=> slightly better than LSMC



1 Least Squares Monte Carlo: Main tasks/problems

Theoretical justification:

• Convergence results

1 Least Squares Monte Carlo: Main tasks/problems

Theoretical justification:

• Convergence results

Practical implementation:

- Choice of the regression function
- Number of simulation runs for calibration
- How to choose the fitting values?
- How to choose the calibration values?
- How to judge the performance of the model?

1 Least Squares Monte Carlo: Convergence results

Theoretical justification: Convergence results => two convergence issues

Theorem:

Let F(X) = E(Y|X) be a functional of X that is in L^2 . Consider a set of K linearly independent basis functions $e_k(x)$ with $e_0(x) = 1$, the projection

(1)
$$\hat{F}^{(\kappa)}(X) = \sum_{k=0}^{\kappa-1} \beta_k e_k (X)$$

of F(X) on the basis functions and

(2)
$$\hat{F}^{(K,N)}(X) = \sum_{k=0}^{K-1} \hat{\beta}_k^{(N)} e_k(X)$$

its approxim. with the LS-estimators of the coefficients based on N realizations of Y.

a) If the family of basis functions is complete in $L^2(IR^d, B^d, P)$ then we have

(3)
$$\hat{F}^{(K)}(X) \xrightarrow{K \to \infty} F(X) \text{ in } L^2(IR^d, B^d, P)$$

b)
$$\hat{F}^{(K,N)}(X) \xrightarrow{N \to \infty} F^{(K)}(X)$$
 a.s.

Necessary ingredients for calculating the loss distribution at a future time:

 A cash flow projection (CFP) method/tool for generating <u>market consistent</u> <u>future scenario</u>s of the incomes/outflows, decisions, ... of a life insurance company <u>over a projection horizon</u> (Note: one simulation run is computationally extremely expensive)

- A cash flow projection (CFP) method/tool for generating <u>market consistent</u> <u>future scenario</u>s of the incomes/outflows, decisions, ... of a life insurance company <u>over a projection horizon</u> (Note: one simulation run is computationally extremely expensive)
- The <u>specification and simulation</u> of **risk factors** that determine the future cash flows at all the times that we are adressing

- A cash flow projection (CFP) method/tool for generating <u>market consistent</u> <u>future scenario</u>s of the incomes/outflows, decisions, ... of a life insurance company <u>over a projection horizon</u> (Note: one simulation run is computationally extremely expensive)
- The <u>specification and simulation</u> of **risk factors** that determine the future cash flows at all the times that we are adressing
- A **simulation concept** how to cover the relevant (!) values of the risk factors (i.e. the ones that are relevant for the loss distribution and for the distribution at the calculation time)

- A cash flow projection (CFP) method/tool for generating <u>market consistent</u> <u>future scenario</u>s of the incomes/outflows, decisions, ... of a life insurance company <u>over a projection horizon</u> (Note: one simulation run is computationally extremely expensive)
- The <u>specification and simulation</u> of **risk factors** that determine the future cash flows at all the times that we are adressing
- A **simulation concept** how to cover the relevant (!) values of the risk factors (i.e. the ones that are relevant for the loss distribution and for the distribution at the calculation time)
- A decision on the **method to actually determine the loss distribution** and in particular the relevant high/low quantiles for the **Solvency Capital Requirements**

The necessary key steps/decisions/ingredients of the LSMC approach on the way to a reliable proxy modelling for a life insurance company:

- a detailed description of the simulation setting and the required task
- a concept for a calibration procedure for the proxy function
- a validation procedure for the obtained proxy function
- the actual application of the LSMC model to forecast the full loss distribution

The necessary key steps/decisions/ingredients of the LSMC approach on the way to a reliable proxy modelling for a life insurance company:

- a detailed description of the simulation setting and the required task
- a concept for a calibration procedure for the proxy function
- a validation procedure for the obtained proxy function
- the actual application of the LSMC model to forecast the full loss distribution

First part:

Given by the CFP method and by the SCR requirement/definition, in particular by specifying the risk factors $X = (X_1, ..., X_d)$ the insurer is exposed to in the next year.

A realization of X under the subjective measure P is called an **outer scenario** (i.e. one possibility how the world will evolve during that year.

3 LSMC-Proxy Modelling: Simulation setting and the task

The task(s):

- Calculate the (full) **loss distribution** of a life insurance company (over a given time horizon) <u>at the end of the year</u>
- From this <u>derive the SCR</u> as the 99.5% quantile (of the difference of the available capital at time 1 and at time 0: $B_1 AC_1 AC_0$)

3 LSMC-Proxy Modelling: Simulation setting and the task

The task(s):

- Calculate the (full) **loss distribution** of a life insurance company (over a given time horizon) <u>at the end of the year</u>
- From this <u>derive the SCR</u> as the 99.5% quantile (of the difference of the available capital at time 1 and at time 0: B₁ AC₁ AC₀)

The simulation setting:

• Simulate realizations of **risk factors** X at time 1 <u>under P</u>

3 LSMC-Proxy Modelling: Simulation setting and the task

The task(s):

- Calculate the (full) **loss distribution** of a life insurance company (over a given time horizon) <u>at the end of the year</u>
- From this <u>derive the SCR</u> as the 99.5% quantile (of the difference of the available capital at time 1 and at time 0: B₁ AC₁ AC₀)

The simulation setting:

- Simulate realizations of **risk factors** X at time 1 <u>under P</u>
- For each realization of the risk factors derive the (discounted) available capital at time 1:

$$\mathsf{AC}(X) = \mathsf{E}_{\mathsf{Q}}\left(\sum_{t=1}^{T} B_t^{-1} Z_t | X\right) =: \mathsf{E}_{\mathsf{Q}}\left(\sum_{t=1}^{T} Z_t \left(\phi_t(X) \right) | X\right)$$

where Z_t denotes the net profit at time t and let T mark the projection end. Note that we simulate now, i.e. we use the CFP method available now!

3 LSMC-Proxy Modelling: Simulation setting and the task – 2

An example

Table 1. Risk factors in the CFP model.

Component	Risk Factor Description	
$egin{array}{c} X_1 & X_2 & X_3 & X_4 & X_5 & X_6 & X_7 & X_8 & X_9 & $	Risk-free interest rates movement Change in interest rate volatility Change in equity volatility Shock on volatility adjustment (if used by the company) Credit default Credit spread widening Currency exchange rate risk Shock on equity market value Shock on property market value	- Capital market shocks
X ₁₀ X ₁₁ X ₁₂ X ₁₃ X ₁₄ X ₁₅ X ₁₆ X ₁₇	Lapse stress on best estimate assumptions Mortality catastrophe stress with a one-off increase in mortality Mortality trend volatility stress Mortality level stress on best estimate assumptions Longevity trend volatility stress on best estimate assumptions Longevity level stress on best estimate assumptions Morbidity stress on best estimate assumptions Expenses stress on best estimate assumptions	- Actuarial risks

3 LSMC-Proxy Modelling: Simulation of the outer and inner scenarios

Generate the outer scenarios (the fitting points) under P, i.e.

- have a stochastic model for each risk X_i and simulate realizations $X^{(k)}$ of X,
- use a <u>large number</u> of outer scenarios (or have a strategy how to fill the range of the risks)

3 LSMC-Proxy Modelling: Simulation of the outer and inner scenarios

Generate the outer scenarios (the fitting points) under P, i.e.

- have a stochastic model for each risk X_i and simulate realizations $X^{(k)}$ of X_i ,
- use a <u>large number</u> of outer scenarios (or have a strategy how to fill the range of the risks)

Generate the corresponding inner scenarios (the fitting values) under Q, i.e.

- use an <u>economic scenario generator</u> (ESC) for generating very few (typically 1 or 2) market consistent scenarios $\phi^{(k,j)}(X^{(k)})$ for each outer scenario
- derive the <u>fitting values</u> Y^(k) via

$$Y^{(k)} = \frac{1}{a} \sum_{j=1}^{a} Y^{(k,j)} = \frac{1}{a} \sum_{j=1}^{a} \sum_{t=1}^{T} z_t \left(\Phi^{(k,j)}(X^{(k)}) \right)$$

Note: Pairs (X^(k),Y^(k)) for setting up a regression function are now available **Main question:** How to choose the regression function?

Note: Pairs (X^(k),Y^(k)) for setting up a regression function are now available **Main question:** How to choose the regression function?

Suggestion:

Use monomials of the type

$$e_k(x) = (x_1)^{j_1^k} \cdot ... \cdot (x_d)^{j_d^k}$$

at step k of the algorithm used to choose the monomials.

Note: Pairs (X^(k),Y^(k)) for setting up a regression function are now available **Main question:** How to choose the regression function?

Suggestion:

Use monomials of the type

$$e_k(x) = (x_1)^{j_1^k} \cdot ... \cdot (x_d)^{j_d^k}$$

at step k of the algorithm used to choose the monomials.

Find <u>the least-squares optimal coefficients</u> based on the N fitting points and fitting values to obtain the proxy function by solving

$$\hat{\beta}^{(N)} = \operatorname{arg\,min}_{\beta \in IR^{K}} \left\{ \sum_{i=1}^{N} \left(Y^{(i)} - \sum_{k=0}^{K-1} \beta_{k} e_{k} \left(X^{(i)} \right) \right)^{2} \right\}$$

Algorithm/principle for choosing the monomials in Krah et al. (2018): Principle of marginalization

Algorithm/principle for choosing the monomials in Krah et al. (2018):

Principle of marginalization

• Start with the constant function

Algorithm/principle for choosing the monomials in Krah et al. (2018):

Principle of marginalization

- Start with the constant function
- Candidates to be included as a basis function have to have **all their partial derivatives** already being choosen as a basis function

Algorithm/principle for choosing the monomials in Krah et al. (2018):

Principle of marginalization

- Start with the constant function
- Candidates to be included as a basis function have to have **all their partial derivatives** already being choosen as a basis function
- Among the candidates the one that leads to the biggest reduction in the AICcriterium is choosen (as long as there exists such a candidate and the upper limit of the number K_{max} of basis functions has not been reached)

Algorithm/principle for choosing the monomials in Krah et al. (2018):

Principle of marginalization

- Start with the constant function
- Candidates to be included as a basis function have to have **all their partial derivatives** already being choosen as a basis function
- Among the candidates the one that leads to the biggest reduction in the AICcriterium is choosen (as long as there exists such a candidate and the upper limit of the number K_{max} of basis functions has not been reached)

Example of choice by marginalization:

 $x_1^2 x_2$ can only be among the candidates if x_1^2 , $x_1 x_2$, x_1 , x_2 are already choosen

Before the proxy function can be used for the actual simulation of the distribution of the Available Capital:

• Check if the proxy function based model delivers correct values !

Before the proxy function can be used for the actual simulation of the distribution of the Available Capital:

• Check if the proxy function based model delivers correct values !

Validation strategy:

• Generate (or choose!) **some** (between 15 and 200) outer scenarios X⁽ⁱ⁾

Before the proxy function can be used for the actual simulation of the distribution of the Available Capital:

• Check if the proxy function based model delivers correct values !

Validation strategy:

- Generate (or choose!) **some** (between 15 and 200) outer scenarios X⁽ⁱ⁾
- Generate many (between 1000 and 16000) inner scenarios per outer scenario (note the reversion of the effort !!!) to obtain validation points Y⁽ⁱ⁾ via averaging

Before the proxy function can be used for the actual simulation of the distribution of the Available Capital:

• Check if the proxy function based model delivers correct values !

Validation strategy:

- Generate (or choose!) **some** (between 15 and 200) outer scenarios X⁽ⁱ⁾
- Generate many (between 1000 and 16000) inner scenarios per outer scenario (note the reversion of the effort !!!) to obtain validation points Y⁽ⁱ⁾ via averaging
- Check the performance of the proxy function by comparing the validation points
 Y⁽ⁱ⁾ with the predicted counterparts resulting from the proxy function applied to X⁽ⁱ⁾

Before the proxy function can be used for the actual simulation of the distribution of the Available Capital:

• Check if the proxy function based model delivers correct values !

Validation strategy:

- Generate (or choose!) **some** (between 15 and 200) outer scenarios X⁽ⁱ⁾
- Generate many (between 1000 and 16000) inner scenarios per outer scenario (note the reversion of the effort !!!) to obtain validation points Y⁽ⁱ⁾ via averaging
- Check the performance of the proxy function by comparing the validation points $Y^{(i)}$ with the predicted counterparts resulting from the proxy function applied to $X^{(i)}$
- If the validation is not satisfactory, the proxy function has to be improved ...

Before the proxy function can be used for the actual simulation of the distribution of the Available Capital:

• Check if the proxy function based model delivers correct values !

Validation strategy:

- Generate (or choose!) **some** (between 15 and 200) outer scenarios X⁽ⁱ⁾
- Generate many (between 1000 and 16000) inner scenarios per outer scenario (note the reversion of the effort !!!) to obtain validation points Y⁽ⁱ⁾ via averaging
- Check the performance of the proxy function by comparing the validation points $Y^{(i)}$ with the predicted counterparts resulting from the proxy function applied to $X^{(i)}$
- If the validation is not satisfactory, the proxy function has to be improved ...

Some out of-sample-tests are described in Krah et al. (2018)

Actual use of the proxy function

• Simulate **many** outer scenarios (i.e. 131072 real world scenarios)

Actual use of the proxy function

- Simulate **many** outer scenarios (i.e. 131072 real world scenarios)
- Feed them into the **proxy function** and obtain the resulting own funds losses

Actual use of the proxy function

- Simulate **many** outer scenarios (i.e. 131072 real world scenarios)
- Feed them into the **proxy function** and obtain the resulting own funds losses
- Order the results and obtain the SCR as the 99.5% quantile

Actual use of the proxy function

- Simulate **many** outer scenarios (i.e. 131072 real world scenarios)
- Feed them into the **proxy function** and obtain the resulting own funds losses
- Order the results and obtain the SCR as the 99.5% quantile

This <u>does not take a lot of time</u> as no nested simulations and no CFP uses are needed!

Actual use of the proxy function

- Simulate **many** outer scenarios (i.e. 131072 real world scenarios)
- Feed them into the **proxy function** and obtain the resulting own funds losses
- Order the results and obtain the SCR as the 99.5% quantile

This <u>does not take a lot of time</u> as no nested simulations and no CFP uses are needed! **Example in Krah et al. (2018):**

• 14 risk factors, 25.000 fitting scenarios with a=2 inner scenario per outer one

Actual use of the proxy function

- Simulate **many** outer scenarios (i.e. 131072 real world scenarios)
- Feed them into the **proxy function** and obtain the resulting own funds losses
- Order the results and obtain the SCR as the 99.5% quantile

This <u>does not take a lot of time</u> as no nested simulations and no CFP uses are needed! **Example in Krah et al. (2018):**

- 14 risk factors, 25.000 fitting scenarios with a=2 inner scenario per outer one
- Proxy function calibration leads to a proxy function with 60 monomials

Actual use of the proxy function

- Simulate **many** outer scenarios (i.e. 131072 real world scenarios)
- Feed them into the **proxy function** and obtain the resulting own funds losses
- Order the results and obtain the SCR as the 99.5% quantile

This <u>does not take a lot of time</u> as no nested simulations and no CFP uses are needed! **Example in Krah et al. (2018):**

- 14 risk factors, 25.000 fitting scenarios with a=2 inner scenario per outer one
- Proxy function calibration leads to a proxy function with 60 monomials
- Validation on two sets are passed

Actual use of the proxy function

- Simulate **many** outer scenarios (i.e. 131072 real world scenarios)
- Feed them into the **proxy function** and obtain the resulting own funds losses
- Order the results and obtain the SCR as the 99.5% quantile

This <u>does not take a lot of time</u> as no nested simulations and no CFP uses are needed! **Example in Krah et al. (2018):**

- 14 risk factors, 25.000 fitting scenarios with a=2 inner scenario per outer one
- Proxy function calibration leads to a proxy function with 60 monomials
- Validation on two sets are passed
- Accuracy check good, total computation time < 6 hours on a cluster, nested simulation is estimated to last at least 25 weeks

Actual use of the proxy function

- Simulate **many** outer scenarios (i.e. 131072 real world scenarios)
- Feed them into the **proxy function** and obtain the resulting own funds losses
- Order the results and obtain the SCR as the 99.5% quantile

This <u>does not take a lot of time</u> as no nested simulations and no CFP uses are needed! Example in Krah et al. (2018):

- 14 risk factors, 25.000 fitting scenarios with a=2 inner scenario per outer one
- Proxy function calibration leads to a proxy function with 60 monomials
- Validation on two sets are passed
- Accuracy check good, total computation time < 6 hours on a cluster, nested simulation is estimated to last at least 25 weeks

More details in Krah et al. (2018)

Thank you for your attention !

References

D. Bauer, H. Ha (2018) *A least-squares Monte Carlo approach to the calculation of capital requirements*. Working paper.

C. Bettels, J. Fabrega, C. Weiß (2014) *Anwendung von Least Squares Monte Carlo (LSMC) im Solvency-II-Kontext*—Teil 1. Der Aktuar 2: 85–91.

M. Broadie, Y. Du, C. Moallemi (2015) *Risk estimation via regression*. Operations Research, 63, 1077–1097.

J. Carriere (1996) *Valuation of Early-Exercise Price of Options Using Simulations and Nonparametric Regression*. Insurance: Mathematics and Economics, 19, 19–30.

E. Clément, D. Lamberton, P. Protter (2002) *An analysis of a least squaresregression method for American option pricing*. Finance and Stochastics, 6, 449–471.

P. Glasserman, B. Yu (2004) *Simulation for American options: regression now or regression later*? Monte Carlo and Quasi-Monte Carlo Methods 2002, 213–226, Springer.

R. Korn (2014). *Moderne Finanzmathematik - Theorie und praktische Anwendungen*. Band I. Springer. R. Korn, E. Korn, G. Kroisandt (2010) *Monte Carlo Methods and Models in Finance and Insurance*. Chapman & Hall, CRC-Finance Series.

A.S. Krah, Z. Nikoliç, R. Korn (2018) *A least-squares Monte Carlo framework in proxy modeling of life insurance companies*, Risks 6(2), doi:10.3390/risks6010001

A.S. Krah, Z. Nikoliç, R. Korn (2019) *Machine learning in least-squares Monte Carlo proxy modeling of life insurance companies*, working paper.

M. Leitschkis, M. Hörig (2012) *Solvency II Proxy Modelling via Least Squares Monte Carlo*. http://de.milliman.com/uploadedFiles/insight/life-published/solvency-II-proxy-modelling.pdf. Online; accessed July 2016.

F.A. Longstaff, E.S. Schwartz (2001) *Valuing American Options by Simulation: A Simple Least-Squares Approach*. The Review of Financial Studies, 14, 113–147.

Z. Nikolić, C. Jonen, C. Zhu (2017) *Robust regression technique in LSMC proxy modeling*. Der Aktuar 1: 8–16.

A. Pelsser, J. Schweizer (2015), *The Difference between LSMC and Replicating Portfolio in Insurance Liability Modeling.* Available at SSRN 2557383.

J. Tsitsiklis, B. Van Roy (1999) *Optimal Stopping of Markov Processes: Hilbert Space Theory, Approximation Algorithms, and an Application to Pricing High-Dimensional Financial Derivatives*. IEEE Transactions on Automatic Control, 44,1840–1851.

J. Tsitsiklis, B. Van Roy (2001) *Regression methods for pricing complex american-style options*. IEEE Transactions on Neural Networks 12: 694–703.