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Different approaches for Internal Models
Integrated vs. Modular Risk Model

Integrated Risk Model Modular Risk Model (Industry Standard)
= Joint stochastics of all risk = Separate modules for each risk category
drivers (assets & liabilities) .

Aggregation of risk modules yields Top Risk

" VaR from surplus distribution = |ntroduction of Replicating Portfolios for market risk module

Surplus

Assets ENP

Liabilities The ENP is the virtual
asset allocation, which
minimizes the total risk
capital of the
integrated model

The choice of the Replicating Portfolio must ensure consistency across the different risk modules of
the modular risk model




Possible Choices for Replicating Portfolios
Economic Neutral Position replicates also a certain fraction of the
non-hedgeable SCR (on top of the technical provisions)

Sl Standard Formula Replicating Portfolio (RP) Economic Neutral Position (ENP)

Only BEL and Other Positions are  Risk Margin is included based on: Surplus structure is included, based on
subject to market risk shocks a) only discount effect or a) non-hedgeable insurance SCR and
b) full interest rate sensitivity b) scaling factor for the risk-minimal solution
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lllustrative Example
What is the risk-minimal asset allocation?

P&L effect

Initial setup After shock event
= EUR company has USD liability of = Simultaneous shock event:
€100 and €150 assets in €-cash = L= liability size

= How much USD cash shall be bought
in order to be risk-minimal?

So =Ag+Ac— Ly

» X =S/€ exchange rate

So+ = Ag X — L X + Ag
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= Loss Z =—(Sy+ —Sp)

= Compute largest loss
depending on the asset
allocation

Z=(Ag—Ly)(1—X)+(L—-Lp)X

. Loss Z im ELR
Scenario
A=100 A=150
L+ M+ o0 S0
L+ X- A0 50
L- X- =40 -30
L- X+ -p0 =70

} Investing the best estimate US$ exposure of the liabilities is not risk-minimal




Definition of the ENP

Introduction of the risk drivers for the general model

Assets (=ENP) Liabilities Surplus

= Synthetic Zero Coupon Bonds for = Liabilities are subject to = Surplus=A-L
different maturities and currencies = jnsurance risk drivers: =  Subject to both market and
with market value A mortality, lapse, etc. insurance risk

" Subject to market risk drivers X; incl. = market risk drivers: = Subject to asset allocation
FX, interest rate & inflation risk FX interest & inflation ]

Compute z = VaR (S)
><
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A= E ¢; X;
i
* [ is the exchange rate of currency k to €.

0 : 0
X; ~ _’(‘) e Ter—Teidt . e(lt.k‘ft,k)t * Tty is the nominal interest rate for maturity t and currency k
fk * Jtk is the stochastic implied inflation rate for t and k




Definition of the ENP
Assumptions for the general model

The Model

Assumptions

= Surplus after 1 year
S($) = Ao + Z d; - (Xi — Xio) — Xi - Ly

. i
= Elimination of mean value by

change of variables:
L—- L—-E[L]l, ¢ = ¢ —E[L],

WLoG: [E[Xl] = Xi,O = 1, AO = IE[Ll] =0

= Surplus rewritten (with zero mean)

S(¢)=z¢i'(xi—1)—xi'Li

= Risk minimal asset allocation ¢*

= Liability exhibits product structure },; X; - L;

= Non-hedgeable claim sizes L; are
independent from the tradeable assets X; .

= The market risk factors X; are positive

Examples

e[S($M)] = md}n e[S(¢)], p € {VaR,, ES,}

= |nsurance Non-Life: L = US-NatCat exposure,
X = EUR/USD FX-rate

= |nsurance Life: L = survival benefit in 20
years, X = 20y discount rate

= CVA for non-collateralized derivative with
CP for which no CDS exists: L = LGD * PD of
CP, X =discounted PFE at year 1

} The ENP is the asset allocation, which minimizes the total value-at-risk, i.e. ENP = ¢*




Simulation Study (one-dimensional case)
Value-at-Risk and Expected Shortfall*

V@R of surplus at tolerance «=0.01 ES of surplus at tolerance o=0.01
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Particular asset value in the one-dimensional case
¢ equals value-at-risk of pure insurance risk component

Theorem [particular asset value] If ¢ := Fgl(l —a) = VaRy[—L]
units are initially invested in X, i.e. ¢ = q, then

a) p[S(@)] = p[—L] for p € {VaRa,ESqa}.

—1 -(IEX—l —1—1) >0 if p= VaRa,
) (9, pls(o)]), = D EE 20 1T p=VaRa
»=q 0 i P = ESQ
and the inequality becomes strict if X is not constant.

Cc) ¢ — ES4[S(¢)] is convex with global minimum ES,[—L] at ¢* = gq.

Sketch of Proof of a) for VaR: Key ingredient: positivity of X!

’ (S() < —q} = {g-(X-1)— X -L<—q}
= {X:(¢—L)<0}={¢g—-L<O0}={L > q}.

Hence P (S(q) < —q) =1 — F1(q) = a, which implies VaR, [S(¢)] = g.



Classical quantile expansion techniques
Naive application of Cornish Fisher not adequate

Value-at-Risk of Surplus at 1-o. = 99% = Cornish—Fisher (CF) expansion:
4,0 tolerance* approximates quantiles of probability
. distribution via its cumulants with

L normal distribution as base.

34 = CF expansion up to 4t order (orange
. line in graph)

3,0 = QObservation: CP expansion does not
28 match particular asset value ¢ = g
2,6 +q ™ Reasons: due to the product

24 structure of the liability skew and

25 kurtosis of the surplus distribution

differ considerably from those of the
normal distribution

2,0
0o 023 047 070 0093 1,16 140 163 186 2,09 2,33

Asset units @
=—=true (numerical) === Cornish Fisher proxy (4th order) > N Ormal d |St rl b Utlon |S th e

wrong base distribution

* L~N(0,1), X~LN(/,t,ax )with oy =05andu = —%’%



Expansion Results (multi-dimensional setting)

Preparation

General Expansion Result

* Proposition: Expansion of distribution V 4 Y

Application to ENP setting

1
PV +Y<2)= ) = (=D,) E[Y" - xyz,]

r=0

= Note: if Xand Y independent, special case of

Gram/Charlier series with V as base distribution

(_

D,)"
Dy

r

frav(@ = ) me(¥)

720
= Proof: ¢y, (t) = E [eit : [E[ein|Y]], Taylor
expansion eYt, plus invers Fourier trafo
" Intuition: x,4y<; = H(z — v —y) "Heavyside"
1
=H(z-v)—-6(z—-v)-y +§6’(2_”) cyt 4

1
= Xv<z — Dz Xv<z' Y +§DZ2 Xvsz 'yz + -

= Rewrite Surplus S(¢$) =V + Y with

V== L=,

Y=(X-1¢—L)
= Apply Prop: a = P(S(¢$p) < —z) = F(11y(2)
+-DZE[(X =1, —L)? - x(11)22] + - (*)

= Expand the quantile z = z(¢)
= Zj +Zl+ZZ

o = max./V[In X;] is the log-normal asset
l
volatility

, Zy ~ o', where

= |nsert this expansion in (*) and solve for
increasing orders in a.



Expansion Results for Value at Risk
Up to second order (multi-variate setting)

Denote: g := VaR,[—(1,L)] = F&lm(l —a), ¥ covar matrix of X,
D= (71:1|1l) € SO(n), g(m) := fu(Dm) and

h(z) = % _{_lrﬁ-g(\%,rﬁ)drﬁ,

hA(z) = x%/ (m,Am) .g(ﬁ’m) dm (A € RTL—IXH—I) '
J R

Theorem: Expansion of VaRy[S(¢)] up to 2nd order in log-normal
volatility o of X:

VaRa[S(¢)] = q + m ' D% Ey (¢ —L,¥,¢p — L) - X(l,L)}q} + 0(0'2)

:q—ﬁa—‘{ﬁl,m(Q)‘<¢—%‘1a23¢'—%‘1>

(1,L

2. (110 (9), =, ¢ — %+ 1) +2(11h(g), = 1) + hlygp(q')}

—1.1,3,¢6-2.1)+ 0(5?).
If fEI,L}(Q) # 0 and X is invertible, the risk minimal ¢ is

" 1 f(1 L)(Q) 1 L 4
— . 4 14+ = .1+ .h .
T (q ffl,m@) Fan(@ @



Expansion Results
Up to second order (multi-variate setting)

Corollary: a) Expansion of ES4[S(¢)] up to 2nd order in log-normal
asset volatility o:

ESa[S(¢)] = ESa[—(1,L)] —%'DqEL[W—L,E@—L)'X<1,L)>q] + o(c?)
= ESal~(LL)+ & {fun@ (¢-£-1LE,¢-1-1)
-2 (14 h(@). D p— £ )by 1 (@) )+ 0(0?).

b) If X is invertible, the risk minimal ¢ is

v 4 1
74
et favy(a)

.1+ h(q) .

Sketch of Poof: ES,[S(¢)] = 1 [§ VaRg[S(4)]ds.
For any rv with density f >0, G € C}(R,R), a € (0,1)

foa il(;j)) dB = —G(qz), where g3 = F~}(1-p5).



Expansion Results for Value at Risk
Total Optimal Asset Amount

Corrolary: Total optimal asset amount

/ P J—
Further 3°; ¢7 coincides with the optimal asset value ¢§j in the asso-
Liated single-asset case where X; = X;.

Corrolary: If p = VaR, and L ~ N, then c;bg/q =1 — ugz, where

Ue 1= F;,%O,l). In Solvency II (1—a = 99.5%) we obtain ¢§/q = 85%.

Theorem: Assume L ~ N (0,2L). Then for p € {VaR4,ES4} the
asset amounts ¢; minimizing p[S(¢)] expanded up to second order in
log-normal asset volatility follow the covariance allocation principles

with respect to L, i.e.

<]— E.}J]_> J.(bo (%:1:--':?1):

where (1,%L1) is the total variance of ¥, L;.

b; =



Expansion Results up to Third Order
Univariate setting

Theorem [1-dim case] Denoting by u3z the centered normalized
moment of In X, the expansion of p[S(¢)] up to 3rd order in log-
normal asset volatility o read:

a) Value-at-risk case:

! 0'2
VaRa[S(¢)] = g - le(q).{((qzs—z'd)?fL) (@7
! 0'3
+((o - i?11) (@ - T2} 4 o(e®),

If u3- f7(q) # 0, this expansion is (locally) minimized by
#* = at s ((1=0) (@)~ A= 9P I (@2 + 25/ [@F(@) =1

ou3

b) Expected shortfall case:

02
ESa[S(#)] = ESal-LI+ (¢ —0)?- fr(a)
JS
+ 253 (6 — )3 - £1.(q) + o(o),

b
which is minimized by ¢* = q.



Numerical analysis vs. theoretical findings
Risk of the surplus as a function of the asset units ¢

Value-at-risk for 1-a = 99.5% Expected Shortfall for 1-a = 99.5%

1.1 1.3
Mumerical Mumerical
—=— 3" grder expansion | - M —=— 13" grder expansion
= = =2™ order expansion 1925k = = =2" grder expansion |
....... o (=VaR_[]) R (=ES _[-L])
, %)
Optimum v 12T Optimum
o* =0.849 w o*=1
l 1151 l
-I:.'.._l_-_,.ﬂ-
0.98 : : : : : 1.1 ' : : ' :
0 0.25 05 0.75 1 1.25 1.5 0 0.25 05 0.75 1 1.25 15
Asset units @ Asset units o

Figure 1: Value-at-risk VaR,[S] (left) and expected shortfall ES,[S] (right) as a function of the units ¢ of the
financial asset X. The risk tolerance is set to 1 — @ = 99.53%, the non-hedgeable component L is normally
distributed with o; = 0.388 such that ¢ =VaR,(-L)=1, and log(X') is log-normally distributed such that X has
log-normal volatility o = 0.2 and log-normal skew pq = —0.3.

} Expansion results up to 3" order coincide in good approximation with numerical findings.




Numerical analysis vs. theoretical findings
An extreme asset volatility and skew case

V@R of surplus at tolerance o=0.01 ES of surplus at tolerance o=0.01
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*) # simulations = 1e8, L ~N(0,1), X ~ Black Karasinski, i.e. ~ exp[ - 20 * 0.05 * exp[N(-0.5"2/2,0.5)],
Standard deviation and skewness of log(X) amount to 0.53 and -1.76, respectively.

Even in extreme volatility and skew case expansion results up to 3" order are pretty accurate
around the optimum




Numerical analysis vs. theoretical findings
Location of the minimum

Risk-minimal investment amount ¢* for VaR99.5% as function of the log-normal volatility of X

Skew = 0% Skew =-30% Skew =-100%
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Typical regime for FX risk (X ~ Typical regime for interest rate risk
log-normal) (X~ log-log-normal)

Expansion results predict the features of the optimum very well for realistic parameter settings
of FX and interest rate risk in a typical insurance portfolio.




Comparison with numerical results
Two normally distributed uncorrelated claim sizes*

Symmetric case: of = o = 0.275 Asymmetric case: o = 0.375, of = 0.1

1.2 1.35
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= Optimum from theory: = Optimum from theory:
* * * *
di= ¢3=0.425 $1=10.79  ¢,=0.06

} Numerical results agree with the theory also for high market risk volatility

* Li~N(0,0f), X~LN(u, 0 ) with o, =03 and u = —%’%,



Recipe for Construction of the ENP
For Value-at-Risk and Expected Shortfall based regimes

Expected-Shortfall based (SST) Value-at-risk based (Solvency Il)
= Market value of liability: replicate financial = Market value of liability: same as SST
characteristics X; (duration, currency, ...) of = Surplus structure:

best-estimate liabilities [+ risk margin]
a)Calculate VaR; _4—q9 504 [Total Insur Risk]

= Surplus structure: , .
b)Apply reduction factor ¢4/q (equals 85%

a) Calculate VaRq—y[Total Insurance Risk] if Insurance Risk normally distributed)

i.e. all market factors fixed, _ _ o
c) [Increase this factor if assets exhibit

b)allocate this risk figures to different significant negative skew]
financial factors X; (using your favorite

. . d)allocate adjusted total insurance risk to
allocation method) and replicate these

different financial factors X; (using your

favorite allocation method) and replicate
" Free surplus: Allocate remaining capital to these amounts accordingly

risk-free investment (SFR cash)

amounts accordingly

= Free surplus: Allocate remaining capital to

= Market risk component: risk-free investment (EUR cash)

ES,-19[Actuall Assets vs. ENP] = Market risk component:

VaRgg 5y, [Actuall Assets vs. ENP]



Comparison of joint model with modular approach
Simple case with one liability cash flow

Total SCR for modular and integrated risk model Model Calibration
= Surplus: S = ¢ -(1—-X)+LX
Total SCR g (@)= ¢ )
14 . ' ' ' ' = Xand Lareassumed to be independent and
Integrated Model normally distributed with:
----- Madular Model (vs. ENP)
13t = = = Modular Model (vs. RP) |- = X:std=15%, mean=1
’ = L:std=39%, mean=0->SCR =1
—_— N, MVaR vs. RP P
Et 12 K> underestimates true A = Modular Model: Aggregation to Total SCR is
% SCR significantly performed by means of the square root
> formula*:
111
SCRr = \/SCR} + SCR},
L I R = Market SCR, calculated on mismatch:
1 05 0 05 1 15 2 S(g) = (0—0%)- X —0o.
Asset units ¢ = ¢* =0.85 for ENP and ¢* = 0 for RP

Market risk measurement vs. the ENP leads to a total SCR in the modular model, which matches the
total SCR of the integrated model very well

*Aggregation based on the square root formula is not fully adequate, because the total P&L is not normally distributed



Ssummary

= |f you use a modular approach for Required Capital measurement, choose
carefully the Neutral Position, i.e. the zero-risk asset portfolio in the market risk
module.

= The Neutral Position replicates not exclusively the best-estimate liabilities. It must
coincide with the risk minimal asset allocation in the integrated approach that
models jointly market and insurance risks

= QOtherwise (-> Sll Standard Formula), the modular capital model might
misestimate market risk significantly and give wrong ALM incentives

= We demonstrated that the Economic Neutral Position (ENP) is fairly model
independent and can be implemented easily

» For Expected Shortfall based Required Capital measurement, the ENP is given by
replicating the market value of liability plus the Value-at-Risk of the insurance risk
component.

» For Value-at-Risk based Required Capital measurement, we provide approximations of
the ENP that fit extreme well for realistic asset parameters.



