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1. Introduction

� The theory of optimal stopping and control has evolved into one of the
most important branches of modern probability and optimization.

� It has a wide variety of applications in many areas:
� operations management;
� statistics;
� economics; and
� financial and insurance mathematics.

� There exists a vast literature on both theory and applications of optimal
stopping and control, going back to Wald (1950) and Snell (1952).

� Prime applications are:
� a manufacturer’s market entry decision or ageing plant closing decision in

operations management;
� a real estate agent’s decision to accept a bid or search problems in

economics; and
� the valuation of American-style derivatives in finance and optimal

policyholder behavior in insurance.

� These applications naturally lead to an optimal stopping problem.
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Reward’s Expectation

� Since the (future) reward (sequence) is typically uncertain in these
applications, it needs to be evaluated using probabilistic methods.

� The main target in the literature on standard optimal stopping is the
maximization of the expected reward over a family of stopping strategies.

� That is, the central object is the expectation of the reward induced by the
problem’s payoff process.

� Such a setting requires that the reward’s expectation can be
unambiguously determined by the decision-maker, which is the case in
particular if the reward’s probability law is given to the decision-maker.
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Ambiguity

� In reality, however, this is quite a restrictive requirement: in many
situations the decision-maker faces uncertainty about the true probabilistic
model.

� In these situations, different probabilistic models may be plausible, each of
them potentially leading to very different optimal stopping strategies.

� Such model uncertainty is usually referred to as ambiguity.

� In decision theory, the more specific term of Knightian uncertainty is also
employed, to distinguish from decision under uncertainty problems in
which the probabilistic model is objectively given — the specific case of
decision under risk.

� Approaches that explicitly take ambiguity into account are often referred
to as robust approaches.
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Convex Measures of Risk

� In a general probabilistic setting, a robust approach that has recently
gained much attention is provided by convex measures of risk.

� By the representation theorem of convex risk measures, a random future
reward, say H, is evaluated according to

U(H) = inf
Q∈Q

{EQ [H] + c(Q)}, (1)

where Q = {Q|Q ∼ P} is the set of probabilistic models Q that share the
same null sets with a base reference model P, with each Q attaching a
different probability law to the future reward H, and c is a penalty
function specifying the plausibility of the model Q.

� Models Q that have ‘low’ plausibility are associated with a high penalty,
while models that have ‘high’ plausibility yield a low penalty, with
c(Q) = ∞ corresponding to the case in which the model Q is considered
fully implausible.

� By taking the infimum over Q a conservative worst-case approach occurs,
also typical in (deterministic) robust optimization.
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Variational Preferences

� Decision-making under ambiguity, with probabilities of events unknown to
the decision-maker, has been extensively studied in economics since the
seminal work of Ellsberg (1961).

� Popular approaches to decision-making under ambiguity are provided by
the multiple priors preferences of Gilboa and Schmeidler (1989), also
referred to as maxmin expected utility, and the significant generalization of
variational preferences developed by Maccheroni, Marinacci and Rustichini
(2006).

� With linear utility, variational preferences reduces to (1).

� Such preferences induce aversion to ambiguity. A version of multiple priors
was also studied by Huber (1981) in robust statistics; see also the early
Wald (1950).
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Time-Consistency

� In a dynamic setting, such as considered in this paper, time-consistent
versions of convex measures of risk were discussed by Riedel (2004); see
also Duffie and Epstein (1992) and Chen and Epstein (2002).

� (Strong) time-consistency requires that whenever, in each state of nature
at time t, a reward H2 is preferred over H1, it is also preferred prior to
time t.

� For dynamic versions of evaluations of the form (1), time-consistency is
equivalent to a dynamic programming principle (recursiveness).

Robust Optimal Stopping Zurich-Hannover Workshop on Insurance and Financial Mathematics, April 14 2016, Zurich 7/41



This Paper’s Motivation

� The theory of convex measures of risk and ambiguity averse preferences is
well-established and their use in optimal stopping problems has recently
been developing; see, in particular, Riedel (2009), Krätschmer and
Schoenmakers (2010), Bayraktar, Karatzas and Yao (2010), Bayraktar and
Yao (2011), Cheng and Riedel (2013) and Øksendal, Sulem and Zhang
(2014).

� However, the development of numerical methods to practically solve robust
optimal stopping problems may currently be considered breaking ground.
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Contribution [1]

� In this paper, we develop a method to practically solve the optimal
stopping problem under ambiguity in a general continuous-time setting,
allowing for general time-consistent convex measures of risk, i.e., all
time-consistent dynamic counterparts of (1), and general (sequences of)
rewards.

� As to the payoff process, we allow for a general jump-diffusion model
specification.

� The key to our method is to expand two duality theories of a different kind.
� The first kind of duality theory is the martingale duality approach to

standard optimal stopping problems, dating back to Rogers (2002), Haugh
and Kogan (2004) and Andersen and Broadie (2004) (see also Davis and
Karatzas, 1994).

� We expand their martingale dual representation to encompass general
preference functionals beyond plain conditional expectation.

� The second kind of duality theory explicates the connection between
time-consistent convex measures of risk and backward stochastic
differential equations (BSDEs), which we expand to our setting.
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Three Steps

Our method is then composed of three steps:

1. First, expanding duality theory of the second kind and using backward
stochastic calculus, we construct a suitable Doob martingale from the
Snell envelope generated by the optimally stopped and robustly evaluated
payoff process.

2. Second, expanding duality theory of the first kind, we employ this
martingale to construct an approximated upper bound to the solution of
the optimal stopping problem.

3. Third, we introduce the notion of backward-forward simulation to obtain a
genuine upper bound to the solution.
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Contribution [2]

� We analyze the asymptotic behavior of our method by deriving its
convergence properties.

� To the best of our knowledge, we are not aware of other practical solution
methods for robust optimal stopping problems in the literature so far.

� Finally, to illustrate the generality of our approach and the relevance of
ambiguity to optimal stopping, we supplement the presentation of our
method with a few examples of robust optimal stopping problems,
including:

� Kullback-Leibler divergences;
� worst case scenarios; and
� good-deal bounds.

� Our numerical results illustrate that our algorithm is easily implemented
for a wide range of robust optimal stopping problems and has good
convergence properties, yielding accurate results in realistic settings at the
pre-limiting level.

� They also reveal that ambiguity can have a significant impact on the
robust reward evaluations under standard specifications.
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Related Literature

� The development of methods to practically compute the solution to a
standard optimal stopping problem has a long history, in particular in the
American-style option literature.

� Seminal contributions based on regression include Carriere (1996) and
Longstaff and Schwartz (2001); see also Tsitsiklis and Van Roy (2000) and
Clément, Lamberton and Protter (2002).

� These methods can be used to generate lower bounds to the optimal
solution and are part of the literature that is referred to as primal.

� The development of practical dual methods started with Andersen and
Broadie (2004) who exploited the dual representation obtained by Rogers
(2002) and Haugh and Kogan (2004).

� Employing duality (of the first kind), our method may, in some sense, be
viewed as the analogous contribution for robust optimal stopping problems
of the original contribution by Andersen and Broadie (2004) for standard
optimal stopping problems.

� But we note that we are not even aware of any primal method to practically
solve robust optimal stopping problems in the literature to date.

� Furthermore, we allow for a more general reward specification.

Robust Optimal Stopping Zurich-Hannover Workshop on Insurance and Financial Mathematics, April 14 2016, Zurich 12/41



BSDEs

� An interesting aspect of our method, which may be of interest as a
contribution to the BSDE literature in its own right, is the introduction of
backward-forward Monte Carlo simulation.

� It generates a genuine (biased high) upper bound, which will converge to
the true solution as the number of Monte Carlo simulations and basis
functions increases and the mesh ration of the time-grid tends to zero.
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2. Problem Description [1]

� Consider a decision-maker who has to decide at what time to stop (or
exercise) a certain action in order to maximize his future uncertain
(sequence of) rewards.

� For the dynamics of the rewards, we assume a continuous-time
jump-diffusion setting with ambiguity.

� Formally, we consider a filtered probability space equipped with two
independent processes, which will serve as our stochastic drivers:
(i) A standard d-dimensional Brownian motion W = (W 1, . . . ,Wd )ᵀ.
(ii) A standard k-dimensional Poisson process N = (N1, . . . ,Nk)ᵀ with

intensities λP = (λ1
P , . . . , λ

k
P)

ᵀ.
� The process X , driven by W and N, is exogenous and may represent:

� a production process;
� a capacity process;
� a stream of net cash flows; or
� a price process of e.g., a collection of risky assets.
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Problem Description [2]

� The decision-maker chooses a stopping time τ taking values between time
0 and a fixed maturity time T <∞.

� We assume that if the decision-maker exercises at time τ = ti , he receives
the reward

Hti = Π(ti ,Xti ) +
L∑
j=i

h(tj ,Xtj ), ti ∈ {t0 = 0, t1, . . . , tL = T}, (2)

for functions Π and h mapping from {t0 = 0, t1, . . . , tL = T} × R
n to R.
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Two Canonical Examples

Standard examples that take the form (2) include:

(a) The optimal entrance problem: In this case, typically,

Π(t, x) = − exp (−ρt)κ,

for a fixed irreversible cost κ depreciating at a continuous rate ρ, and

h(t, x) = exp (−ρt) (h(x)− ξ) ,

which measures the present value of the payoff or the production per time
unit, h(x), after entering the market, minus the running costs, ξ.

� Often times h(x) is simply taken to be equal to x .
� Of course, the fixed costs may also depend on the state of the economy at

time t, Xt .

(b) The optimal (simple) reward problem: In this case, h ≡ 0 and Π(t, x) is
the (simple) reward function of exercising at time t.

� This problem appears abundantly in the American option pricing literature,
with Xt a vector of risky asset values at time t.
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Standard Optimal Stopping

� In standard optimal stopping problems, the decision-maker maximizes the
expected reward under a given probabilistic model P:

max
τ∈T

E [Hτ ] ,

where T = {t0 = 0 < t1 < . . . < tL = T} is the set of possible exercise
dates.

� Specifying the model P in this setting means specifying the distribution of
the whole path (Xt)t∈[0,T ].

� In reality, however, the probabilities with which future rewards are received
are often times subject to model uncertainty.

� It is appealing to consider instead a robust decision criterion, which induces
that the optimal stopping strategy accounts for a whole class of
probabilistic models and not just a single one.
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Robust Optimal Stopping

� Henceforth, we postulate that the decision-maker adopts a convex
measure of risk and evaluates his future reward according to

U(Hτ ) = inf
Q∈Q

{EQ [Hτ ] + c(Q)}, (3)

with Q = {Q|Q ∼ P} and c : Q → R ∪ {∞}.
� For our purposes, we have to consider the dynamic version of (3), given by

Ut(Hτ ) = inf
Q∈Q

{EQ [Hτ |Ft ] + ct(Q)},

in which ct(Q) reflects the esteemed plausibility of the model Q given the
information up to time t.

� The robust optimal stopping problem at time ti is then given by

V ∗
ti = sup

τ∈Ti

Uti (Hτ ) = sup
τ∈Ti

inf
Q∈M

{EQ [Hτ |Fti ] + cti (Q)},

with Ti := {τ ≥ ti |τ ∈ T }.
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Time-Consistency and Dynamic Programming [1]

� We say that a dynamic evaluation (Ut(H))t∈[0,T ] is time-consistent if

Ut(H2) ≥ Ut(H1) ⇒ Us(H2) ≥ Us(H1), t ≥ s.

� This means that if, in each state of nature at time t, the reward H2 is
preferred over the reward H1, then H2 should also have been preferred over
H1 prior to time t.

� Requiring time-consistency of U is equivalent to requiring that U satisfies
a dynamic programming principle, which, in turn, is equivalent in our
setting to the penalty function taking a certain form.

Robust Optimal Stopping Zurich-Hannover Workshop on Insurance and Financial Mathematics, April 14 2016, Zurich 20/41



Change of Measure

� First, we explain what a change of measure from P to Q implies in our
setting.

� If Q ∼ P, we denote by Dt the Radon-Nikodym derivative Dt = E
[
dQ
dP |Ft

]
.

� For every model Q ∼ P, there exist a predictable, Rd -valued, stochastic
drift q and a positive, predictable, Rk -valued process λ such that the
Radon-Nikodym derivative can be written as

Dt = exp

{∫ t

0

qsdWs +

∫ t

0

log

(
λs

λP

)
dNs −

∫ t

0

(
|qs |2
2

+ λs − λP

)
ds

}
,

t ∈ [0,T ], with λs
λP

:= (
λ1
s

λ1
P
, . . . ,

λk
s

λk
P

)ᵀ.

� In particular, Q is uniquely characterized by q and λ.
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Time-Consistency and Dynamic Programming [2]

Lemma (Tang and Wei (2012))

Let Ut(H) = inf{Q∼P on Ft}{EQ [H|Ft ] + ct(Q)} for t ∈ [0,T ]. The following
statements are equivalent:

(i) U is time-consistent over square-integrable rewards.

(ii) U is recursive, that is, U satisfies Bellman’s dynamic programming
principle: U0(Ut(H)IA) = U0(HIA) for every t ∈ [0,T ], A ∈ Ft and
square-integrable H.

(iii) There exists a function

r : [0,T ] × Ω × R
d × (−λ1

P ,∞) × . . . × (−λk
P ,∞) → R ∪ {∞}

(t, ω, q, v) �−→ r(t, ω, q, v),

which is convex and lower semi-continuous in (q, v), such that

ct(Q) = EQ

[∫ T

t

r(s, qs , λs − λP)ds
∣∣∣Ft

]
, t ∈ [0,T ].
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Assumptions [1]

(G1) (ct(Q))t∈[0,T ] is of the form

ct(Q) = EQ

[∫ T

t

r(s, qs , λs − λP)ds
∣∣∣Ft

]
, (4)

for a function r : [0,T ]× R
d × (−λ1

P ,∞)× . . .× (−λk
P ,∞) → R

+
0 ∪ {∞}

mapping (t, q, v) 
→ r(t, q, v) that is lower semi-continuous and convex in
(q, v) with r(t, 0, 0) = 0.
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Examples

� We now illustrate the generality of our robust optimal stopping problem
and Assumption (G1) with some examples of penalty functions satisfying
our conditions.

� All these examples appear in numerical illustrations.
1. Kullback-Leibler divergence: ct(Q) = αKLt(Q|P), with

KLt(Q|P) =

⎧⎨
⎩

EQ

[
log

(dQ

dP

)∣∣∣Ft

]
, if Q ∈ Q;

∞, otherwise;

and α > 0; see Csiszár (1975), Ben-Tal (1985) and Ben-Tal and Teboulle
(1987, 2007).

2. Worst case with ball scenarios.
� The decision-maker considers alternative and equally plausible probabilistic

models Q in a small ball around the reference model P and adopts a worst case
approach.

3. Worst case with mean (partially) known.
4. Good-deal bounds (Cochrane and Saá-Requejo, 2000, Hansen and

Jagannathan, 1991).
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Assumptions [2]

(G2) We can simulate i.i.d. copies of (Xt)t∈[0,T ].

(G3) The domain of r is included in a compact set: for every s,{
(q, λ) ∈ R

d × (−λ1
P ,∞)× . . .× (−λk

P ,∞)

∣∣∣∣ r(s, q, λ− λP) <∞
}

⊂ Cs ,

for a compact set

C = (Cs)s∈[0,T ] ⊂ [0,T ]× R
d × (−λ1

P ,∞)× . . .× (−λk
P ,∞).

� Loosely speaking, condition (G3) states that, if the additional drift q or
jump intensity λ− λP that the model Q adds to the Brownian motion or
the Poisson process when compared to P is ‘too large’, then the model Q
should not be considered.

� Condition (G3) may be generalized substantially.
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3. Duality Theory

� We show that there exists an optimal stopping family(
τ∗ti
)
ti∈{t0=0,t1,...,tL=T} satisfying

V ∗
ti = sup

τ∈Ti

Uti (Hτ ) = Uti (Hτ∗
ti
), ti ∈ {0, . . . ,T}.

� Furthermore, we show that Bellman’s principle

V ∗
ti = max

(
Π(ti ,Xti ) + Uh

ti ,Uti (V
∗
ti+1

)
)
, ti ∈ {0, . . . , tL−1},

holds, with Uh
ti defined as

Uh
ti : = Uti

(
L∑

j=i

h(tj ,Xtj )

)
.
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U-Martingales and the Doob Decomposition

� To compute the solution V ∗, the (generalized) Snell envelope, to the
optimal stopping problem, we will rely on the Doob decomposition of V ∗

into a martingale and a predictable process.
� We first need to generalize the notion of a (standard) martingale (with

respect to an ordinary conditional expectation) to martingales with respect
to classes of functionals.

� We will say that M is a U-martingale if Ms = Us(Mt),
s, t ∈ {t0 = 0, t1, . . . , tL = T} and s ≤ t.

� The class of U-martingales M with M0 = 0 is denoted by MU
0 .

� Define, for i = 0, . . . , L,

A∗g
ti

:=
i∑

j=1

(Utj−1(V
∗
tj )− V ∗

tj−1
), M∗g

ti
:=

i∑
j=1

(V ∗
tj − Utj−1(V

∗
tj )).

� One may verify that M∗g is a U-martingale, A∗g is non-decreasing and
predictable, M∗g

0 = A∗g
0 = 0, and that

V ∗
ti = V ∗

0 +M∗g
ti + A∗g

ti , i = 0, . . . , L,

provides a U-Doob decomposition of V ∗ =
(
V ∗

ti

)
ti∈{t0=0,...,T}.
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Duality Theory of the First Kind: A Proposition

� To construct genuine upper bounds to the optimal solution to our robust
optimal stopping problem, which will converge asymptotically to the true
value, our method will exploit an additive dual representation of the robust
optimal stopping problem.

� We expand the well-known dual representation for the standard setting, in
which U is just the ordinary conditional expectation (Rogers (2002) and
Haugh and Kogan (2004)).

Proposition

Let M∗g ∈ MU
0 be the (unique) U-martingale in the U-Doob decomposition.

Then the robust optimal stopping problem has a dual representation

V ∗
ti = inf

M∈MU
0

Uti

(
max

tj∈{ti ,...,T}

(
Π(tj ,Xtj ) + Uh

tj +MT −Mtj

))

= Uti

(
max

tj∈{ti ,...,T}

(
Π(tj ,Xtj ) + Uh

tj +M∗g
T −M∗g

tj

))
,

ti ∈ {t0 = 0, ...,T}.
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Duality Theory of the Second Kind

� Next, we describe the second kind of duality theory on which our method
is based.

� For t ∈ [0,T ], z ∈ R
1×d and z̃ ∈ R

1×k , given a function r specifying the
penalty function c through (4), we define a function g by Fenchel’s duality
as follows:

g(t, z , z̃) := inf
(q,λ−λP )∈Ct

{zq + z̃(λ− λP) + r(t, q, λ− λP)},

with Ct induced by assumption (G3).

� By assumption (G3), g thus defined is Lipschitz continuous.
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Computing M∗g

� Suppose that, for every exercise date tj , j = 0, . . . , L, we have a fine time
grid πj = {sj0 = tj < sj1 < . . . < sjP = tj+1}.

� Denote the corresponding overall time grid by π = {s00, s01, . . . , sLP}.
� The following theorem provides a way to practically compute M∗g by

connecting it to specific semi-martingale dynamics that can be dealt with
numerically efficiently.
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Computing M∗g : A Theorem

Theorem

(a) There exists a unique square integrable predictable (Z h, Z̃ h) such that

dUh
t = −g(t,Z h

t , Z̃
h
t )dt + Z h

t dWt + Z̃ h
t dÑt , for t ∈ (tj , tj+1], (5)

and Uh
tj = Uh

tj+ + h(tj ,Xtj ), for each j ∈ {0, . . . , L− 1}.
Furthermore, there exists a unique square-integrable predictable (Z∗, Z̃∗)
such that

dUt(V
∗
tj+1

) = −g(t,Z∗
t , Z̃

∗
t )dt + Z∗

t dWt + Z̃∗
t dÑt ,

for t ∈ [tj , tj+1], j ∈ {0, ..., L− 1}. (6)

(b) For t ∈ [0,T ], (Z∗, Z̃∗) from part (a) satisfy

M∗g
t = Ut(M

∗g
T ) = −

∫ t

0

g(s,Z∗
s , Z̃

∗
s )ds +

∫ t

0

Z∗
s dWs +

∫ t

0

Z̃∗
s dÑs .
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BDSEs

� Equations (5)–(6) are also referred to as backward stochastic differential
equations (BSDEs) and their solution is often referred to as a
(conditional) g -expectation.

� A g -expectation inherits many properties from a regular (conditional)
expectation, such as monotonicity, translation invariance, and the tower
property, but not linearity; for further details, see, for instance, the survey
of Peng (2004).
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Examples Revisited

� To conclude the exposition of the duality theory of the second kind, we
employ the penalty functions of our previous examples and compute the
corresponding g ’s.
1. Kullback-Leibler divergence:

g(t, z , z̃) = − |z|2
2α

− α
∑k

i=1 λ
i (e−z̃ i/α + z̃ i

α
− 1).

2. Worst case with ball scenarios:
g(t, z , z̃) = −δ1|z | − δ2|z̃|.

3. Worst case with mean (partially) known.
4. Good-deal bounds.
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4. Algorithm: General Outline

Our method is composed of three steps.

1. ‘Duality theory of the second kind’ jointly with Bellman’s principle will
serve as a first stepping stone for our approach, by providing a practical
way to find U-martingales

2. ... to be employed in the dual representation, which is our second stepping
stone (‘duality theory of the first kind’).

While this bound will be seen to converge to the true optimal solution
asymptotically and is an approximated upper bound at the pre-limiting level, it
is not a genuine upper bound estimate to the true optimal solution as it is not
‘biased high’.

3. Our third stepping stone, then, is the introduction of backward-forward
simulation in the context of BSDEs to obtain a genuine (biased high)
upper bound on the solution V ∗ to our stopping problem.
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Three Steps Again

Step (1.) Exploiting duality theory of the second kind:

Step (1.a.) Compute an approximation to (Uh
tj
)tj∈{0,...,T} through backward recursion.

This involves least squares Monte Carlo regression.
Step (1.b.) Set V ∗

T = HT = Π(T ,XT ) and do a backward recursion over tj : Given

V ∗
tj+1

, compute (Z∗
s , Z̃

∗
s )s∈[tj ,tj+1] and Us (V ∗

tj+1
)tj<s≤tj+1

. This involves

least squares Monte Carlo regression.
Step (1.c.) Given the whole path of (Z∗

s , Z̃
∗
s )s∈[0,T ] , compute an approximation to

(M∗g
tj

)tj∈{t1,...,T}.

Step (2.) Exploiting duality theory of the first kind, obtain an approximated upper
bound to V ∗

0 . This involves least squares Monte Carlo regression.

Step (3.) Introducing backward-forward simulation:

Step (3.a.) Compute a genuine (biased high) upper bound to (Uh
tj
)tj∈{0,...,tL−1} by

using the least squares Monte Carlo results obtained under Step (1.a.) as
input in Monte Carlo forward simulations.

Step (3.b.) Compute a genuine (biased high) upper bound to the Snell envelope V ∗
0 by

using the least squares Monte Carlo results obtained under Steps (1.) and
(2.) as input in Monte Carlo forward simulations.
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Results

� Since our optimal stopping problem is Markovian, there exists a function
v∗ : [0,T ]× R

n → R such that V ∗
t = v∗(t,Xt). In particular,

V ∗
0 = v∗(0,X0).

� Our method, then, will be proven to have the following two appealing
properties:
(i) Our approximation converges to the true value as the mesh size of the time

grid tends to zero and the numbers of Monte Carlo simulations and basis
functions tend to infinity.

(ii) For every finite time grid and finite numbers of Monte Carlo simulations and
basis functions, our approximation provides a genuine (biased high) upper
bound to the true value.

� Our numerical examples illustrate that, already after a limited number of
Monte Carlo simulations, our method yields rather close estimates in
realistic settings.

� Moreover, by property (ii) above, for a finite time grid and a finite number
of simulations, the genuine upper bound will also provide a safety buffer.

� The examples also illustrate the generality of our approach and the
relevance of ambiguity to optimal stopping.
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5. Numerical Examples

� We consider two stochastic processes, Xi , i = 1, 2, with dynamics

dX i
t

X i
t

= μidt + σidW i
t + J idÑ i

t , X
i
0 = x i

0,

where W i
t is a one-dimensional standard Brownian motion, σi ≥ 0 denotes

the diffusion coefficient (volatility), Ñ i
t is a one-dimensional compensated

Poisson process with intensity λi
P ≥ 0, and J i ∈ (−1,∞) denotes the jump

size.
� First, we consider the optimal (simple) reward problem (i.e., h ≡ 0). and

analyze the setting in which the jump component in Xi is absent (i.e.,
J i ≡ λi

P ≡ 0 for i = 1, 2), and next consider the general setting with
non-trivial jump component.

� This problem occurs e.g., in American-style derivative pricing in finance, in
which case the drift μi under the reference model is equal to ρ− δ (for
i = 1, 2), where ρ represents the risk-free rate and δ the dividend rate.

� An appropriate choice of the basis functions mM , ψM and ψ̃M , M ∈ N,
that we employ in the least squares Monte Carlo regressions, is crucial to
obtain tight upper bounds.
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Optimal Reward Problem with a Geometric Brownian Motion

� Following Andersen and Broadie (2004), we take the following parameter
set under the reference model:
ρ = 0.05, δ = 0.1, σ = 0.2, K = 100, T = 3 years.

� Furthermore, we consider exercise dates given by tj =
jT
9 , j = 0, . . . , 9, and

a fine grid {sjp} with Δjp = sj(p+1) − sjp = 1/1,500.

� For the choice of basis functions, we follow Andersen and Broadie (2004)
by including still-alive European options and corresponding option deltas.

� Our results are based on 10,000 simulated trajectories for the calculation
of the regression coefficients in Step (1.b.) and the U-martingale
increments in Step (1.c.), the approximated upper bound to V ∗ in Step
(2.), and the genuine upper bound to V ∗ in Step (3.b.).

� In the univariate case, we restrict attention to the simple reward
Π(t,Xt) = exp(−ρt) (Xt − K)+.
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Numerical Results [1]

� We consider the case of the Kullback-Leibler divergence for different
values of its parameter α.

� The results are in the table below.

� The last column, with α = ∞, has to be interpreted as g ≡ 0. Thus, it
corresponds to the (limiting) case of a standard conditional expectation.

α

x0 10 100 104 106 ∞
90 2.4405 4.0546 4.4049 4.4088 4.4088

2.4932 4.0673 4.4662 4.4708 4.4708
(0.0003) (0.0009) (0.0013) (0.0013) (0.0013)

100 4.6077 7.4023 7.9848 7.9913 7.9914
4.8251 7.3887 8.0328 8.0402 8.0403
(0.0005) (0.0012) (0.0018) (0.0019) (0.0019)

110 10.0281 12.2732 13.1574 13.1661 13.1662
10.1468 12.2934 13.1656 13.1756 13.1757
(0.0008) (0.0015) (0.0024) (0.0024) (0.0024)

Approximated and genuine (in italics) upper bounds to robust call option prices using the

Kullback-Leibler divergence with different values of its parameter α and depending on the initial

value of the underlying risky asset’s price x0. Standard errors for the genuine upper bounds are

given in parentheses. Univariate case.
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Numerical Results [2]

� Only in the case of α = ∞ we have reference values, provided e.g., by
Andersen and Broadie (2004).

� They appear to be very close to our values.

� For example, for x0 = 100, the true value is 7.98, which is to be compared
to our approximated and genuine upper bounds equal to 7.99 and 8.04,
respectively.

� With an increase in α we observe an, initially rapid, increase in the robust
call option’s value.

� In general, we observe that Bermudan call option values may decrease
substantially when ambiguity is taken into account.

� For numerical results:
� in the multivariate case;
� with jumps;
� with other forms of ambiguity;
� with other rewards;

see the paper.
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6. Conclusions

� We have developed a method to practically compute the solution to the
optimal stopping problem in a general continuous-time setting featuring
general time-consistent ambiguity averse preferences and general rewards
driven by jump-diffusions.

� The resulting algorithm delivers an approximation to the solution that
converges asymptotically to the true solution and yields a safe genuine
(biased high) upper bound at the pre-limiting level.

� Our method is widely applicable, numerically efficient, and eventually
requires only simple least squares Monte Carlo regression techniques.

� Extensive numerical illustrations reveal the potential importance of
ambiguity to optimal stopping.

� Our method may be generalized to encompass multiple stopping problems,
which we intend to consider in future research.
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