# Some Insurance Valuation and Design Problems with Aggregate Risk

Enrico Biffis J. Mack Robinson College of Business Georgia State University & Imperial College Business School

> Zurich April 14, 2016

1/32

#### OUTLINE



- 2 Optionality in Life insurance
- 3 Testing for Dynamic Adverse Selection
- 4 P&C Applications
- 5 Conclusion

#### OUTLINE



- 2 Optionality in Life insurance
- 3 Testing for Dynamic Adverse Selection
- 4 P&C Applications
- 5 Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●

### OVERVIEW

Standard insurance valuation/design problems

- Pooling homogeneous, (conditionally) independent risks
- Representative agent/policyholder
- If portfolio is large, only aggregate risk matters

In practice, however...

- Aggregate risk can arise endogenously (e.g., policyholder behavior)
- Valuation and contract design should internalize aggregate risk

Some interesting problems

- Optionality in long term insurance contracts
  - Ex-ante i.i.d. risks give rise to endogenous aggregate risk
- P&C examples
  - Conditionally i.i.d. risks and coverage for high layers of exposure
  - Multi-year agricultural insurance in supply chain risk management

#### OUTLINE



# 2 Optionality in Life insurance

3 Testing for Dynamic Adverse Selection

4 P&C Applications

5 Conclusion

# **OPTIONALITY IN LIFE INSURANCE**

#### Long term insurance contracts

- Longevity/mortality risk assessment: is it enough?
- Are financial and demographic risk factors uncorrelated?
- Asset Management Charges (AMCs) vs. level premiums
- Role of contract design and policyholder behavior
- Endogenous dependence and aggregate risk via optionality

Policyholder behavior

- 'Rational' exercise of options
- Testing for dynamics adverse selection
- $\bullet\,$  Making sense of actuarial approaches: pricing basis & and lapse/surrender basis



#### SETUP

Longevity risk

- Aggregate changes in survival probabilities
- Both aggregate and idiosyncratic risk relevant in the presence of optionality

Reference setup: conditionally Poisson / Cox setting (more generally, see Tappe and Weber, 2014)

- At contract inception (time 0), portfolio of insureds with death times  $au^1,\ldots, au^n$
- Each  $\tau^i$  has force of mortality  $\mu^i(t)$
- Possible representations:  $\mu^i(t) = X(t) + Y^i(t)$  or  $\mu^i(t) = X(t) Y^i(t)$

Portfolio vs. population

- Surrender/lapse time  $\theta^i$
- Exit from the portfolio at stopping time  $\sigma^i := \tau^i \wedge \theta^i$

# POLICYHOLDER BEHAVIOR

Value of the contract to insured  $\boldsymbol{i}$  is

$$\boldsymbol{v}^{i}(t;\sigma^{i},c) = \mathbf{1}_{\sigma^{i} > t} \mathbb{E}^{\mathbb{Q}^{i}} \left[ \int_{t}^{\theta^{i} \wedge T} e^{-\int_{t}^{s} (r(u) + \boldsymbol{\mu}^{i}(u)) \mathrm{d}u} \mathrm{d}G^{i}(s;c) \middle| \mathcal{F}_{t}^{i} \right].$$

•  $G^i(t;c)$ : cumulative gains to the insured from holding the insurance contract, with  $c \in C$  contract configuration (including guarantees)

# POLICYHOLDER BEHAVIOR

Value of the contract to insured i is

$$\mathbf{v}^{i}(t;\sigma^{i},c) = \mathbf{1}_{\sigma^{i} > t} \mathbb{E}^{\mathbb{Q}^{i}} \left[ \int_{t}^{\theta^{i} \wedge T} e^{-\int_{t}^{s} (r(u) + \mu^{i}(u)) \mathrm{d}u} \mathrm{d}G^{i}(s;c) \middle| \mathcal{F}_{t}^{i} \right].$$

•  $G^i(t;c)$ : cumulative gains to the insured from holding the insurance contract, with  $c \in C$  contract configuration (including guarantees)

Some issues...

- $\mathbb{Q}^i$  private valuation of insured i
- $\mathbb{F}^i := \left(\mathcal{F}^i_t
  ight)_{t \geq 0}$  (private) information available to insured i
- Endogenous  $\sigma^i$  (optimal stopping problem  $\theta^i$ )
  - More generally, one should also allow for other dimensions of optionality (fund switches, partial withdrawals, etc.)

Question: how to proxy for  $v^i$  across p/h's?

# DYNAMIC ADVERSE SELECTION

#### Individuals ex-ante identical

- At contract inception (time 0) policyholders' death times  $\tau^1, \ldots, \tau^n$  have (say) independent intensities  $\mu^1, \ldots, \mu^n$  with the same law as process  $\mu$
- $(F(t))_{t\geq 0}$  vector of financial risk factors (say) independent of mortality

# DYNAMIC ADVERSE SELECTION

#### Individuals ex-ante identical

- At contract inception (time 0) policyholders' death times τ<sup>1</sup>,...,τ<sup>n</sup> have (say) independent intensities μ<sup>1</sup>,...,μ<sup>n</sup> with the same law as process μ
- $(F(t))_{t\geq 0}$  vector of financial risk factors (say) independent of mortality

#### Ex-post mortality profile of the portfolio

- Different trajectories  $(\mu^i(t,\omega_1), F(t,\omega_1))_{t\geq 0}, \ldots, (\mu^i(t,\omega_k), F(t,\omega_k))_{t\geq 0}$  make staying in the contract more or less valuable for p/h i
- The moneyness of any guarantee/option is at shaped at least by  $\mu^i$  and  $c \in \mathcal{C}$  (contract design channel)
- Portfolio mortality (average intensity)

$$\overline{\mu}_{p}(t) := \frac{\sum_{i=1}^{n} \mu^{i}(t) \mathbf{1}_{\sigma^{i} > t}}{\sum_{i=1}^{n} \mathbf{1}_{\sigma^{i} > t}}.$$

• The insurer cannot observe  $\mu^i$ , but can try to recover the law of  $\overline{\mu}_p$  based on  $c \in C$  and relevant (observable) state variables

# FRAILTY REPRESENTATION

Change in intensity process

- Think of death times  $\tau$  (representative member of the population) and  $\overline{\tau}_p$  (average portfolio member)
- Dynamic frailty representation: individual (on  $\{\sigma^i > t\}$ ) or average/representative portfolio member (on  $\{\sigma^{(n)} > t\}$ )

 $\mu^{i}(t) = \mu(t)\eta^{i}(t;c) \qquad \overline{\mu}_{p}(t) = \mu(t)\overline{\eta}(t;c)$ 

with  $(\eta^i(t,c))_{t\geq 0} > 0$  and  $(\overline{\eta}(t;c))_{t\geq 0} > 0$  dynamic frailty processes; under suitable assumptions, the Cox setting is preserved (e.g., Biffis, Denuit, Devolder, 2010)

• Think of change in intensity as captured by a suitable change of probability measure: likelihood ratio driven by dynamic frailty process

#### PRICING

Insurer's view

- Baseline reference probability measures  $\mathbb{Q}_F$  (financial factors) and  $\mathbb{P}_M$  (population mortality)
- Pricing with  $\mathbb{Q} := \mathbb{Q}_F \otimes \mathbb{P}_M$  (wrong!)

$$V^i(0;\theta^i,c) = V(0;\theta,c) = \mathbb{E}^{\mathbb{Q}}\left[\int_0^{\theta \wedge T} e^{-\int_0^s (r(u) + \mu(u)) \mathrm{d}u} \mathrm{d}G(s;c)\right].$$

#### PRICING

Insurer's view

- Baseline reference probability measures  $\mathbb{Q}_F$  (financial factors) and  $\mathbb{P}_M$  (population mortality)
- Pricing with  $\mathbb{Q}_p$  (reflects portfolio mortality)

$$V_p^i(0;\theta^i,c) = V_p(0;\theta,c) = \mathbb{E}^{\mathbb{Q}_p}\left[\int_0^{\theta\wedge T} e^{-\int_0^s (r(u)+\mu_p(u))\mathsf{d} u} \mathsf{d} G(s;c)\right].$$

• The representative policyholder's death time is  $\tau_p$  and not  $\tau...$ 

#### PRICING

Insurer's view

- Baseline reference probability measures  $\mathbb{Q}_F$  (financial factors) and  $\mathbb{P}_M$  (population mortality)
- Pricing with  $\mathbb{Q}_p$  (reflects portfolio mortality)

$$V_p^i(0;\boldsymbol{\theta}^i,c) = V_p(0;\boldsymbol{\theta},c) = \mathbb{E}^{\mathbb{Q}_p} \left[ \int_0^{\boldsymbol{\theta} \wedge T} e^{-\int_0^s (r(u) + \mu_p(u)) \mathrm{d}u} \mathrm{d}G(s;c) \right].$$

• The representative policyholder's death time is  $au_p$  and not au...

Implications

- Change in intensity and no factorization in general even if mortality and financial risk factors uncorrelated
- Surrender/lapse basis jointly determined with mortality basis
- Useful framework for contract design: optimize with respect to  $c \in \mathcal{C}$ 
  - \* Determine fair AMCs
  - \* Steer the portfolio toward a target mortality risk profile

#### EXAMPLES

Baseline example

- 20-year VA contract
- 45 male, non smoker
- GMAB (accumulation): 2.5% p.a.
- GMSB (survival): premiums paid with 0% or 2.5% p.a. guarantee; but surrender penalties in the first 5 years of contract
- GMDB (death): varying from zero to  $2 \times$  GMAB guaranteed rate
- Reference fund: Geometric Brownian Motion, 15% volatility

GMWB (withdrawal) and GMLB (lifetime) also interesting...

Wedge between systematic and idiosyncratic risk more important

Conclusion

#### AVERAGE FRAILTY (GMSB: premium paid)



◆□ > ◆□ > ◆豆 > ◆豆 > ・ 目 → 今へぐ

#### AVERAGE FRAILTY (GMSB: premium paid rolled over at 2.5% p.a.)



◆□ > ◆□ > ◆豆 > ◆豆 > ・ 目 → 今へぐ

#### FAIR AMCs (GMSB: initial amount paid into the policy)



Source: Benedetti and Biffis (2016).

#### FAIR AMCs (GMSB: initial amount rolled over at 2.5% p.a.)



Source: Benedetti and Biffis (2016).

#### OUTLINE

1 Overview

- 2 Optionality in Life insurance
- 3 Testing for Dynamic Adverse Selection
  - 4 P&C Applications
  - 5 Conclusion

# TESTING FOR DYNAMIC ADVERSE SELECTION

Possible approaches suggested by our framework

- Use frailty process  $(\overline{\eta}(t;c))_{t\geq 0}$
- Use 'distance' between  $\mu(t)$  and  $\overline{\mu}_{p}(t)$
- Use 'distance' between (conditional) law of au and  $\overline{ au}_p$

#### TESTING FOR DYNAMIC ADVERSE SELECTION

Possible approaches suggested by our framework

- Use frailty process  $(\overline{\eta}(t;c))_{t\geq 0}$
- Use 'distance' between  $\mu(t)$  and  $\overline{\mu}_p(t)$
- Use 'distance' between (conditional) law of au and  $\overline{ au}_p$

A class of divergences (e.g., Vonta-Karagrigoriou, 2010)

$$D_{\tau,\overline{\tau}_p}^{\psi}(t) = \int_t^T \psi\left(\frac{\mathrm{d}\mathbb{P}(t<\overline{\tau}_p\leq s|\mathcal{F}_t)}{\mathrm{d}\mathbb{P}(t<\tau\leq s|\mathcal{F}_t)}\right) \,\mathrm{d}\mathbb{P}(t<\tau\leq s|\mathcal{F}_t),$$

with  $\psi \in C^2(\mathbb{R}_+;\mathbb{R})$ ,  $\psi(1) = 0$ 

- Examples:  $\alpha$ -divergences (Csiszàr's family), Kullback-Leibler, Hellinger, etc.
- Different from standard approaches (e.g, Albert et al., 1999; He, 2011)
  - Actual\_deaths\_t/Expected\_deaths\_t =  $\alpha + \beta \times \text{Lapse_ratio}_t + \varepsilon$
  - $\mathbb{P}(\texttt{lapse}_i = 1) = F(a + b \times \texttt{health\_shock}_i)$

#### SOME RESULTS

 $\begin{array}{l} \beta \text{ estimates for regressions} \\ y_{t+1} = \alpha + \beta \times \texttt{lapse_ratio}_t + \varepsilon_t. \end{array}$ 

|     | $y_{t+1} = \overline{\eta}$ |         | $y_{t+1} = KL(\mu, \mu_p)$ |         |
|-----|-----------------------------|---------|----------------------------|---------|
| D/S | $\beta$                     | p-value | $\beta$                    | p-value |
| 0   | -1.62*                      | 0.032   | $0.10^{*}$                 | 0.027   |
| 0.1 | -1.94*                      | 0.008   | $0.11^{*}$                 | 0.006   |
| 0.3 | -2.17*                      | 0.009   | 0.08                       | 0.055   |
| 0.5 | -24.02                      | 0.005   | $1.45^{*}$                 | 0.006   |
| 0.7 | -2.52*                      | 0.020   | 0.21*                      | 0.004   |
| 0.9 | -0.71                       | 0.146   | 0.14*                      | 0.000   |
| 1.1 | -0.43                       | 0.246   | 0.12*                      | 0.001   |
| 1.3 | -0.26                       | 0.355   | 0.12*                      | 0.002   |
| 1.5 | -0.13                       | 0.434   | 0.13*                      | 0.002   |
| 1.7 | -0.13                       | 0.442   | 0.12*                      | 0.002   |
| 1.9 | -0.28                       | 0.380   | 0.13*                      | 0.002   |

 $\begin{array}{l} \beta \text{ estimates for regressions} \\ y_{t+1} = \alpha + \beta \times \texttt{lapse_ratio}_t + \gamma \times t + \varepsilon_t. \end{array}$ 

| $y_{t+1} = \eta$ |         | $y_{t+1} = \kappa L(\mu, \mu_p)$ |         |  |
|------------------|---------|----------------------------------|---------|--|
| $\beta$          | p-value | $\beta$                          | p-value |  |
| -1.83*           | 0.043   | 0.11*                            | 0.029   |  |
| -2.28*           | 0.010   | 0.14*                            | 0.004   |  |
| -2.18*           | 0.022   | 0.11*                            | 0.039   |  |
| -27.75*          | 0.006   | $1.58^{*}$                       | 0.009   |  |
| -2.95*           | 0.018   | 0.21*                            | 0.010   |  |
| -1.04            | 0.114   | 0.13*                            | 0.004   |  |
| -0.82            | 0.167   | 0.12*                            | 0.011   |  |
| -0.70            | 0.241   | 0.10*                            | 0.038   |  |
| -0.54            | 0.324   | 0.13*                            | 0.022   |  |
| -0.62            | 0.326   | 0.15*                            | 0.011   |  |
| -0.68            | 0.335   | 0.14*                            | 0.030   |  |
|                  |         |                                  |         |  |

Source: Benedetti and Biffis (2016).

Source: Benedetti and Biffis (2016).

- Simulated environment for 2500 traditional contracts issued to male non-smokers aged 50.
- Maturity T = 20 years, decreasing surrender penalties during the first 3 years of contract. Death (D) and survival (S) benefits.
- Use average frailty  $\overline{\eta}=\overline{\mu}_p/\mu$  as proxy for actual/expected deaths.

### OUTLINE

1 Overview

- 2 Optionality in Life insurance
- 3 Testing for Dynamic Adverse Selection

4 P&C Applications

5 Conclusion

#### **RISK SHARING AND LIMITED LIABILITY**

A risk sharing problem (Arrow/Raviv) with limited liability

- One-period model with a continuum of insurees modeled as the measure space  $(M, \mathcal{M}, \mu)$  of the unit interval M = [0, 1], with  $\mu(M) = 1$ .
- Insurer maximizes function V over indemnities  $(I_i)$ , and risky asset allocation  $(\alpha)$

$$V(\alpha, (I_i)) = \max\left\{ \left( A + \int_0^1 \pi_i \mu(di) \right) (1 + \alpha R) - \int_0^1 I_i(X_i) \mu(di), \mathbf{0} \right\}$$

where  $I_i(X_i)$  is indemnity for p/h *i*'s loss  $X_i$  financed by insurance premium  $\pi_i \ge 0$ 

- Can optimize relative to initial capital  ${\cal A}$
- Can add regulatory constraints
- Each insuree satisfies the participation constraint

 $E\left[u_{i}(w_{i} - \pi_{i} - X_{i} + I_{i}(X_{i})\mathbf{1}_{D=0} + \gamma I_{i}(X_{i})\mathbf{1}_{D=1})\right] \geq \underline{u}_{i},$ 

with  $\{D=1\}$  default event,  $\gamma\in[0,1]$  recovery rate

# AGGREGATION

- Assume  $X_i = Y_i + Z$  for all  $i \in [0, 1]$ 
  - $(Y_i)$  essentially uncorrelated (and i.d. for simplicity here),  $(Y_i), Z \in L^2$
  - Use Sun (2006)'s Exact Law of Large Numbers.

Some special cases

• Idiosyncratic risk only (Z = 0)

$$\int_0^1 I(X_i)\mu(di) = \int_0^1 E[I(X_i)]\mu(di) = E[I(X_i)] = E[I(X)] \text{ a.s.}$$

• Systematic risk only  $(Y_i = 0)$ : some examples to follow

$$\int_0^1 I(X_i)\mu(di) = \int_0^1 E[I(X_i)|Z]\mu(di) = E[I(X_i)|Z] ...$$

• Good model lies somewhere in the middle

#### **OPTIMAL INDEMNITY SCHEDULE**



Source: Biffis and Millossovich (2013).

<□> <0><</p>

#### **OPTIMAL RETENTION LEVELS**



Source: Biffis and Millossovich (2013).

Ξ

200

#### RETENTION/COVERAGE OF HIGH LAYERS OF EXPOSURE: EVIDENCE



Average retention levels in US P&C, evidence from reinsurance purchases. Source: Guy Carpenter (e.g., Froot 1997,2001).

イロト イヨト イヨト イヨト

Ξ

200

#### **REINSURANCE PURCHASES**



Source: Biffis and Millossovich (2013).

# SUPPLY CHAIN RISK MANAGEMENT

General questions

- How to unlock value in supply chains via risk sharing arrangements?
- How to build inclusive and resilient local-to-global supply chains?

Agricultural insurance example (World Food Program)

- Farmers organizations as aggregators of small farmholders
- Banks as providers of credit (better inputs and technology)
- Agro-dealers as off-takers
- (Re)insurers cover extreme crop yield losses
- Challenges (World Food Program)
  - How to incentivize farmers to switch to more resilient production technologies?
  - Technology takes time to demonstrate its value (several harvesting seasons)
  - At odds with short term contracts offered by (re)insurers

#### **PRODUCTION TECHNOLOGIES**



< □ > < □ > < 臣 > < 臣 > < 臣 > < 臣 < ○ < ○

# MULTI-YEAR PROGRAMS



Source: WINnERS project, Biffis and Chavez (2016).

- Uncertainty in medium-to-long-term climate projections is source of aggregate risk
- Explicitly allow for random fraction (Q) of farmholders affected by crop yield losses
- Optimal contract I\*(X,Q) entails contingent attachment/detachment points (Biffis and Louaas, 2016)

# MULTI-YEAR PROGRAMS





Source: WINnERS project, Biffis and Chavez (2016).

- Uncertainty in medium-to-long-term climate projections is source of aggregate risk
- Explicitly allow for random fraction (Q) of farmholders affected by crop yield losses
- Optimal contract I\*(X,Q) entails contingent attachment/detachment points (Biffis and Louaas, 2016)

#### OUTLINE

1 Overview

- 2 Optionality in Life insurance
- 3 Testing for Dynamic Adverse Selection
- 4 P&C Applications



#### CONCLUSION

Standard valuation/risk sharing models useful

- Risk pooling (predictability, vanishing cost of capital)
- Representative policyholder approach

Allowing explicitly for aggregate risk can be more useful

- From idiosyncratic risk to systematic risk via optionality
- Systematic risk, aggregate risk, and counterparty risk
- New avenues for risk sharing via complete contracts

Technical caveats

• Some interesting challenges: incomplete market valuation methods and feedback effects, existence and uniqueness of solutions in risk sharing problems, etc.

Overview

Conclusion

# THANK YOU