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The problem

I Consider interbank market as network:

I Nodes consist of n banks with indices in N = {1, . . . , n}.

I Edges Lij represent nominal interbank liability of bank i to bank j .

I Stress tests: Suppose some banks default on their liabilities. How do
losses spread along the edges? What if edges are not observable?

I A matrix L = (Lij) ∈ Rn×n is a liabilities matrix if Lij ≥ 0, Lii = 0 ∀i , j

I Total nominal interbank liabilities of bank i : ri (L) :=
∑m

j=1 Lij .

I Total nominal interbank assets of bank i : ci (L) :=
∑m

j=1 Lji .

I In practice, Lij not fully observable, but ri (L), ci (L) are.

I How to fill in the missing data? Implications for stress testing?
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Previous Approaches

1. Entropy method (Upper & Worms, 2004).

I Minimise the Kullback-Leibler divergence between L and a specified
input matrix, subject to the linear constraints.

I Widely used (e.g. interbank exposures for Germany (Upper & Worms,
2004), UK (Wells, 2004; Elsinger et al., 2006) Belgium (Degryse &
Nguyen, 2007)).

I Resulting network usually complete, i.e., all entries of L (except on
diagonal) are non-zero. Only point estimate.

2. Minimum density (MD) method (Anand et al., 2014):

I Minimises the total number of edges consistent with the aggregated
interbank assets and liabilities.

I Only a point estimate.

3. Simulation-based approach (Ha laj & Kok, 2013).

I Mechanism to randomly generate different network structures
consistent with observed aggregates.

I Probabilistic model not completely characterised.

A Gandy A Bayesian approach to systemic risk 3



Main contributions

I Bayesian model for liabilities matrix. Interested in the distribution of
liabilities matrix conditional on its row and column sums and
conditional on some other observed elements of L.

I MCMC method to generate samples (Gibbs sampler).

I Application to systemic risk assessment: Gives probabilities for
outcomes of stress tests.

I Code is available as R-package (systemicrisk) on CRAN.
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Existence of admissible liabilities matrix

Some elements of L may be known; given by L∗ ∈ L∗ := ({∗} ∪ [0,∞))n×n

where L∗ij = ∗ means that the liability between i and j is unknown.

Theorem
Consider a ∈ [0,∞)n, l ∈ [0,∞)n and L∗ ∈ L∗ satisfying r(L∗) ≤ l ,
c(L∗) ≤ a and

∑n
i=1 ai =

∑n
i=1 li . Then the following are equivalent:

1. There exists an admissible liabilities matrix L for a and l respecting L∗.

2. ∀I ⊂ N , J ⊂ N with L∗ij 6= ∗∀i ∈ I , j ∈ J we have∑
i∈I

l̃i +
∑
j∈J

ãj ≤ A (1)

where l̃ = l − r(L∗) and ã = a− c(L∗) and A =
∑n

i=1 l̃i .

Proof: problem is equivalent to a maximum flow problem (efficient
algorithms for constructing solution).
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The Basic model

I Constructs adjacency matrix A = (Aij); attaches liabilities Lij .

I Model:

P(Aij = 1) = pij ,

Lij |{Aij = 1} ∼ Exponential(λij).
(2)

I Parameters:

I p ∈ [0, 1]n×n, pij probability of existence of directed edge from i to j ,
often: diag(p) = 0;

I λ ∈ Rn×n, governs distribution of weights given that edge exists.

I Observations: r(L) = l , c(L) = a, L ≡ L∗,

I Main interest: Distribution of h(L) | a, l .
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(Unconditional) distribution of out degrees in an example

n = 100, pij = 0.3I(i 6= j)
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Gibbs sampling for L|a, l
I Markov Chain Monte Carlo (MCMC): Interested in sampling from a

given distribution. Construct a Markov chain with this stationary
distribution. Run chain. Chain converges to stationary distribution.

I Key idea of Gibbs sampler: a step of the chain updates one or several
components of the entire parameter vector by sampling them from
their joint conditional distribution given the remainder of the
parameter vector.

I Here parameter vector is matrix L:

I Initialise chain with matrix L that satisfies r(L) = l , c(L) = a.

I MCMC sampler produce a sequence of matrices L1, L2, . . . .

I Quantity of interest: E[h(L)|l , a] ≈ 1
N

∑N
i=1 h(Liδ+b),

N number of samples, b burn-in period, δ ∈ N thinning parameter.
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Updating components of L

I Need to decide which elements of L need to be updated.

I Need to determine how the new values will be chosen, i.e., need to
determine their distribution conditional on remainder of elements of L.
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Illustration of updating submatrices

Li1j1 Li1j2

Li2j1 Li2j2

Li1j1 Li1j2

Li2j2Li2j3

Li3j3 Li3j1

Li1j1 Li1j2

Li2j2 Li2j3

Li3j3Li3j4

Li4j4 Li4j1
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Updating - Illustration
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Balance sheets and fundamental defaults

I Balance sheet of bank i :
Assets Liabilities

external assets a
(e)
i external liabilities l

(e)
i

interbank assets ai := ci (L) interbank liabilities li := ri (L)

net worth wi (L, a
(e)
i , l

(e)
i )

I Stress tests: apply proportional shock s ∈ [0, 1]n to external assets;

shocked external assets are sia
(e)
i ∀i .

I Fundamental defaults: {i | wi (L, sia
(e)
i , l

(e)
i ) < 0}

I Fundamental defaults can be checked from balance sheet aggregates
without needing to know the whole matrix L!

I To check for contagious defaults we need to know L.
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Empirical example - data

Balance sheet data (in million Euros) from banks in the EBA 2011 stress
test:

Bank code Bank a(e) + a a w

DE017 DEUTSCHE BANK AG 1,905,630 47,102 30,361

DE018 COMMERZBANK AG 771,201 49,871 26,728

DE019 LANDESBANK BADEN-WURTTEMBERG 374,413 91,201 9,838

DE020 DZ BANK AG 323,578 100,099 7,299

DE021 BAYERISCHE LANDESBANK 316,354 66,535 11,501

DE022 NORDDEUTSCHE LANDESBANK -GZ- 228,586 54,921 3,974

DE023 HYPO REAL ESTATE HOLDING AG 328,119 7,956 5,539

DE024 WESTLB AG, DUSSELDORF 191,523 24,007 4,218

DE025 HSH NORDBANK AG, HAMBURG 150,930 4,645 4,434

DE027 LANDESBANK BERLIN AG 133,861 27,707 5,162

DE028 DEKABANK DEUTSCHE GIROZENTRALE 130,304 30,937 3,359
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Stress testing

I Deterministic shock to external assets of all 11 banks in the network
by reducing external assets by 3%.

I Shock causes fundamental default of 4 banks: DE017, DE022,
DE023, DE024.

I We apply the clearing approach by Eisenberg & Noe (2001) and
[Rogers & V. (2013)] to determine which banks suffer contagious
defaults.

I Gibbs sampler allows us to derive posteriori default probabilities for
remaining 7 banks.
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Default probabilities of banks as a function of p
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Default probabilities for clearing with default costs
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Mean out-degree of banks, i.e., E[
∑

j Aij | a, l ], for

different pER in the Erdős-Rényi network
l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DE020 99936 3.50 4.40 5.40 6.20 6.90 7.60 8.30 9.00 10.00
DE019 91314 3.30 4.20 5.10 6.00 6.70 7.50 8.20 8.90 10.00
DE021 66494 2.90 3.70 4.70 5.50 6.40 7.20 8.00 8.80 10.00
DE022 54907 2.70 3.50 4.40 5.30 6.10 7.00 7.80 8.80 10.00
DE018 49864 2.60 3.40 4.30 5.10 6.00 6.90 7.80 8.70 10.00
DE017 46989 2.50 3.30 4.20 5.10 5.90 6.80 7.70 8.70 10.00
DE028 30963 2.20 2.80 3.60 4.50 5.40 6.30 7.30 8.40 10.00
DE027 27679 2.10 2.70 3.50 4.30 5.20 6.10 7.10 8.30 10.00
DE024 23971 1.90 2.60 3.30 4.10 5.00 5.90 7.00 8.20 10.00
DE023 8023 1.40 1.80 2.30 2.80 3.50 4.30 5.40 6.90 10.00
DE025 4841 1.20 1.50 1.90 2.40 2.90 3.60 4.60 6.10 10.00
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Hierarchical Models

I The basic model can be used as a building block in more complicated
models, e.g. in hierarchical models:

θ ∼ π(θ),

(pij , λij)i ,j∈N = f (θ),
(3)

where π is an a-priori distribution on θ and f is a given function.

I Sampling of θ, L|l , a, L∗ combined by iterating between sampling

I L|θ, l , a, L∗ (using the Gibbs sampler)

I and θ|L (using more standard MCMC techniques, eg. Gibbs,
Metropolis Hasting).
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Example: Conjugate distribution model

p and λ consist of identical but random values;
θ = (p̃, λ̃)

p̃ ∼ Beta(a, b), λ̃ ∼ Gamma(c , d)

pij = p̃I(i 6= j), λij = λ̃, i , j ∈ N .

for some parameters a, b, c, d .

I prior on p̃, λ̃ is flexible,

I direct sampling of θ|L possible (conjugate distributions).

I Extensions: Partition p, λ, use independent models for partitions.
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Fitness model - Power law in Degree Distr & Weights

I Empirical literature (Boss et al., 2004, e.g.) suggests that power laws
are reasonable models for degree distributions AND for liabilities, i.e.
their density would be of the form

p(x) = cxα

Empirical studies often find α between −2 and −3.

I Servedio et al. (2004): fitness-based model for degree distributions.

I We will couple such a fitness model for the degrees with a model for
liabilites that allows a power law. Key ideas

I Use same fitness for both liabilities and degrees.

I Gamma mixture of exponential distributions lead to a Pareto type II
distribution (also called Lomax distribution)
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Fitness model - Power law in Degree Distr & Weights

Xi ∼ Exp(1), i ∈ N ,
pij = f (Xi + Xj)I(i 6= j), i , j ∈ N ,
λij = G−1ζ,η (exp(−Xi )) + G−1ζ,η (exp(−Xj)), i , j ∈ N

(ζ, η) ∼ π(ζ, η),

where G−1ζ,η is the quantile function of a Gamma distr. with parameter
ζ > 0, η > 0. π is a prior distribution on ζ, η) and

f (x) :=

 β
(
γ
β

)1−exp(−x) (
1− log

(
γ
β

)
exp(−x)

)
, if α = −1,

β (ξ + (1− ξ)e−x)
1

α+1

{
1 + 1

α+1
1−ξ

ξex+1−ξ

}
, if α 6= −1,

where ξ :=
(
γ
β

)α+1
.
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Realisations of Out Degree Distributions

n = 100; α = −2.5; β = 0.2; γ = 1.0
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Survival Function - Theoretical Degree Distribution
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Flexibility in the degree distribution (different choices of α, β, γ).
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PDF - theoretical out degree for various parameter choices
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Log-log plot of the survival function of L
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Mean out-degree of banks, i.e., E[
∑

j Aij | a, l ]
model ER Fitness

model parameters pER α, β, γ
name l 0.5 0.9 -2.5,0.2,1 -2.5,0.2,0.6 -2.5,0.5,1 -1,0.5,1

DE020 99936 6.20 9.00 8.80 6.10 9.40 9.60
DE019 91314 6.00 8.90 8.50 5.80 9.20 9.40
DE021 66494 5.50 8.80 7.50 5.30 8.70 9.00
DE022 54907 5.30 8.80 6.90 4.90 8.40 8.70
DE018 49864 5.10 8.70 6.70 4.80 8.30 8.60
DE017 46989 5.10 8.70 6.60 4.70 8.20 8.60
DE028 30963 4.50 8.40 5.70 4.20 7.60 8.00
DE027 27679 4.30 8.30 5.50 4.00 7.40 7.80
DE024 23971 4.10 8.20 5.30 3.90 7.30 7.70
DE023 8023 2.80 6.90 4.00 3.10 6.30 6.60
DE025 4841 2.40 6.10 3.60 2.70 5.90 6.30

posteriori 4.66 8.25 6.30 4.50 7.90 8.20
a-priori 5.00 9.00 3.60 3.10 6.80 7.20
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Summary

I Bayesian setup can be used to fill in “missing” information in a
principled way. Large flexibility.

I Construction of Gibbs sampler for sampling from distribution of
liabilities matrix conditional on its row and column sums.
R package (systemicrisk) available from CRAN.
Some theoretical results + simulation studies show that sampler
works.

I Can be used for stress tests using empirical data.

I Can be extended to incorporate additional information such as expert
views etc. on the network structure:

I Hierarchical model for p, Λ (→ power laws).

I Observation of some components of the matrix.
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Identifiability

The matrices p and λ cannot be fully identified merely by observing the
row and column sums.

Lemma
Let l , a ∈ (0,∞)n with A =

∑n
i=1 li =

∑n
i=1 ai and ai + li < A for all i .

Let p ∈ [0, 1]n×n with pij > 0 ∀i 6= j , diag(p) = 0. Then

∃(λij) : ∀j :
n∑

i=1

E(Lij) = aj and
n∑

j=1

E(Lij) = lj .

Hence: need to make assumptions about p.
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