A Bayesian methodology for systemic risk assessment in financial networks

Axel Gandy

Imperial College London

9/12/2015

Joint work with Luitgard Veraart (London School of Economics)

LUH-Kolloquium "Versicherungs- und Finanzmathematik" Systemic Risk in Financial Markets Hannover, Germany

Preprint available at SSRN: http://ssrn.com/abstract=2580869

Imperial College London

A Bayesian approach to systemic risk

The problem

- Consider interbank market as network:
 - Nodes consist of *n* banks with indices in $\mathcal{N} = \{1, \ldots, n\}$.
 - Edges *L_{ij}* represent nominal interbank liability of bank *i* to bank *j*.
- Stress tests: Suppose some banks default on their liabilities. How do losses spread along the edges? What if edges are not observable?
- A matrix $L = (L_{ij}) \in \mathbb{R}^{n \times n}$ is a liabilities matrix if $L_{ij} \ge 0$, $L_{ii} = 0 \ \forall i, j$
- ▶ Total nominal interbank liabilities of bank *i*: $r_i(L) := \sum_{j=1}^m L_{ij}$.
- ▶ Total nominal interbank assets of bank *i*: $c_i(L) := \sum_{j=1}^m L_{jj}$.
- ▶ In practice, L_{ij} not fully observable, but $r_i(L)$, $c_i(L)$ are.
- How to fill in the missing data? Implications for stress testing?

Previous Approaches

1. Entropy method (Upper & Worms, 2004).

- Minimise the Kullback-Leibler divergence between L and a specified input matrix, subject to the linear constraints.
- Widely used (e.g. interbank exposures for Germany (Upper & Worms, 2004), UK (Wells, 2004; Elsinger et al., 2006) Belgium (Degryse & Nguyen, 2007)).
- Resulting network usually complete, i.e., all entries of L (except on diagonal) are non-zero. Only point estimate.
- 2. Minimum density (MD) method (Anand et al., 2014):
 - Minimises the total number of edges consistent with the aggregated interbank assets and liabilities.
 - Only a point estimate.
- 3. Simulation-based approach (Hałaj & Kok, 2013).
 - Mechanism to randomly generate different network structures consistent with observed aggregates.
 - Probabilistic model not completely characterised.

Main contributions

- Bayesian model for liabilities matrix. Interested in the distribution of liabilities matrix conditional on its row and column sums and conditional on some other observed elements of L.
- MCMC method to generate samples (Gibbs sampler).
- Application to systemic risk assessment: Gives probabilities for outcomes of stress tests.
- ► Code is available as R-package (systemicrisk) on CRAN.

Existence of admissible liabilities matrix

Some elements of *L* may be known; given by $L^* \in \mathcal{L}^* := (\{*\} \cup [0, \infty))^{n \times n}$ where $L_{ij}^* = *$ means that the liability between *i* and *j* is unknown.

Theorem

Consider $a \in [0, \infty)^n$, $l \in [0, \infty)^n$ and $L^* \in \mathcal{L}^*$ satisfying $r(L^*) \leq l$, $c(L^*) \leq a$ and $\sum_{i=1}^n a_i = \sum_{i=1}^n l_i$. Then the following are equivalent:

1. There exists an admissible liabilities matrix L for a and I respecting L*.

2.
$$\forall I \subset \mathcal{N}, J \subset \mathcal{N} \text{ with } L_{ij}^* \neq * \forall i \in I, j \in J \text{ we have}$$

$$\sum_{i \in I} \tilde{l}_i + \sum_{j \in J} \tilde{a}_j \leq A$$
(1)

where $\tilde{l} = l - r(L^*)$ and $\tilde{a} = a - c(L^*)$ and $A = \sum_{i=1}^n \tilde{l}_i$.

Proof: problem is equivalent to a maximum flow problem (efficient algorithms for constructing solution).

Imperial College London

A Bayesian approach to systemic risk

The Basic model

- Constructs adjacency matrix $A = (A_{ij})$; attaches liabilities L_{ij} .
- Model:

$$\mathbb{P}(\mathcal{A}_{ij} = 1) = p_{ij},$$

$$L_{ij} | \{\mathcal{A}_{ij} = 1\} \sim \mathsf{Exponential}(\lambda_{ij}).$$
(2)

- Parameters:
 - ▶ p ∈ [0,1]^{n×n}, p_{ij} probability of existence of directed edge from i to j, often: diag(p) = 0;
 - ▶ $\lambda \in \mathbb{R}^{n \times n}$, governs distribution of weights given that edge exists.

The Basic model

- Constructs adjacency matrix $A = (A_{ij})$; attaches liabilities L_{ij} .
- Model:

$$\mathbb{P}(\mathcal{A}_{ij} = 1) = p_{ij},$$

 $\mathcal{L}_{ij} | \{\mathcal{A}_{ij} = 1\} \sim \text{Exponential}(\lambda_{ij}).$
(2)

Parameters:

- ▶ p ∈ [0,1]^{n×n}, p_{ij} probability of existence of directed edge from i to j, often: diag(p) = 0;
- $\lambda \in \mathbb{R}^{n \times n}$, governs distribution of weights given that edge exists.
- Observations: r(L) = I, c(L) = a, $L \equiv L^*$,

The Basic model

- Constructs adjacency matrix $A = (A_{ij})$; attaches liabilities L_{ij} .
- Model:

$$\mathbb{P}(\mathcal{A}_{ij} = 1) = p_{ij},$$

$$L_{ij}|\{\mathcal{A}_{ij} = 1\} \sim \mathsf{Exponential}(\lambda_{ij}).$$
(2)

Parameters:

- ▶ p ∈ [0,1]^{n×n}, p_{ij} probability of existence of directed edge from i to j, often: diag(p) = 0;
- $\lambda \in \mathbb{R}^{n \times n}$, governs distribution of weights given that edge exists.
- Observations: r(L) = I, c(L) = a, $L \equiv L^*$,
- Main interest: Distribution of $h(L) \mid a, I$.

(Unconditional) distribution of out degrees in an example

Gibbs sampling for L|a, I

- Markov Chain Monte Carlo (MCMC): Interested in sampling from a given distribution. Construct a Markov chain with this stationary distribution. Run chain. Chain converges to stationary distribution.
- Key idea of Gibbs sampler: a step of the chain updates one or several components of the entire parameter vector by sampling them from their joint conditional distribution given the remainder of the parameter vector.
- Here parameter vector is matrix L:
 - ▶ Initialise chain with matrix *L* that satisfies r(L) = I, c(L) = a.
 - MCMC sampler produce a sequence of matrices L^1, L^2, \ldots
 - Quantity of interest: $\mathbb{E}[h(L)|I, a] \approx \frac{1}{N} \sum_{i=1}^{N} h(L^{i\delta+b}),$

N number of samples, b burn-in period, $\delta \in \mathbb{N}$ thinning parameter.

Updating components of L

- ▶ Need to decide which elements of *L* need to be updated.
- ► Need to determine how the new values will be chosen, i.e., need to determine their distribution conditional on remainder of elements of *L*.

Illustration of updating submatrices

						$L_{i_1j_1}$	$L_{i_1j_2}$	
			$L_{i_1j_1}$	$L_{i_1j_2}$			$L_{i_2j_2}$	L _{i2j3}
$L_{i_1j_1}$	$L_{i_1j_2}$	L _{i2j3}		L _{i2j2}	L _{i3j4}			L _{i3j3}
$L_{i_2j_1}$	$L_{i_2j_2}$	L _{i3j3}	<i>L_{i3j1}</i>		$L_{i_4j_4}$	$L_{i_4j_1}$		

Updating - Illustration

0.8 47

18.6 66.5

49.9

91.3

99.9

54.9

		0	13.9	32.3	0	0.8	47			0	13.9	32.3	0	0.8
\rightarrow	0		35.5	11	0	3.5	49.9		0		35.5	11	0	3.5
	23.5	20.3		4.5	20.5	22.5	91.3		23.5	20.3		4.5	20.5	22.5
	23.5	20.3	23.5		23	9.5	99.9	\rightarrow	23.5	20.3	23.5		23	9.5
	0	9.1	4.3	34.4		18.6	66.5		0	9.1	4.3	34.4		18.6
	0	0	14	17.9	23		54.9		0	0	14	17.9	23	
	47.1	49.8	91.2	100	66.5	54.9			47.1	49.8	91.2	100	66.5	54.9

		0	13.9	32.3	0	0.8	
	0		35.5	11	0	3.5	
	23.5	30.9		4.5	9.9	22.5	
\rightarrow	23.5	9.8	23.5		33.6	9.5	
	0	9.1	4.3	34.4		18.6	
	0	0	14	17.9	23		

47

49.9

91.3

99.9

66.5

54.9

47.1 49.8 91.2	100	66.5	54.9
----------------	-----	------	------

Balance sheets and fundamental defaults

Balance sheet of bank i:

Assets	5	Liabilities				
external assets interbank assets	$a_i^{(e)}$ $a_i := c_i(L)$	external liabilities interbank liabilities net worth	$egin{aligned} & l_i^{(e)} \ & l_i := r_i(L) \ & w_i(L, a_i^{(e)}, l_i^{(e)}) \end{aligned}$			

- Stress tests: apply proportional shock s ∈ [0,1]ⁿ to external assets; shocked external assets are s_ia_i^(e) ∀i.
- Fundamental defaults: $\{i \mid w_i(L, s_i a_i^{(e)}, I_i^{(e)}) < 0\}$
- Fundamental defaults can be checked from balance sheet aggregates without needing to know the whole matrix L!
- ► To check for contagious defaults we need to know *L*.

Empirical example - data

Balance sheet data (in million Euros) from banks in the EBA 2011 stress

test:

Bank code	Bank	$a^{(e)} + a$	а	W
DE017	DEUTSCHE BANK AG	1,905,630	47,102	30,361
DE018	COMMERZBANK AG	771,201	49,871	26,728
DE019	LANDESBANK BADEN-WURTTEMBERG	374,413	91,201	9,838
DE020	DZ BANK AG	323,578	100,099	7,299
DE021	BAYERISCHE LANDESBANK	316,354	66,535	11,501
DE022	NORDDEUTSCHE LANDESBANK -GZ-	228,586	54,921	3,974
DE023	HYPO REAL ESTATE HOLDING AG	328,119	7,956	5,539
DE024	WESTLB AG, DUSSELDORF	191,523	24,007	4,218
DE025	HSH NORDBANK AG, HAMBURG	150,930	4,645	4,434
DE027	LANDESBANK BERLIN AG	133,861	27,707	5,162
DE028	DEKABANK DEUTSCHE GIROZENTRALE	130,304	30,937	3,359

Stress testing

- Deterministic shock to external assets of all 11 banks in the network by reducing external assets by 3%.
- Shock causes fundamental default of 4 banks: DE017, DE022, DE023, DE024.
- We apply the clearing approach by Eisenberg & Noe (2001) and [Rogers & V. (2013)] to determine which banks suffer contagious defaults.
- Gibbs sampler allows us to derive posteriori default probabilities for remaining 7 banks.

Default probabilities of banks as a function of p

Default probabilities for clearing with default costs

< 🗇 <

Mean out-degree of banks, i.e., $\mathbb{E}[\sum_{j} A_{ij} \mid a, l]$, for different p^{ER} in the Erdős-Rényi network

	I	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
DE020	99936	3.50	4.40	5.40	6.20	6.90	7.60	8.30	9.00	10.00
DE019	91314	3.30	4.20	5.10	6.00	6.70	7.50	8.20	8.90	10.00
DE021	66494	2.90	3.70	4.70	5.50	6.40	7.20	8.00	8.80	10.00
DE022	54907	2.70	3.50	4.40	5.30	6.10	7.00	7.80	8.80	10.00
DE018	49864	2.60	3.40	4.30	5.10	6.00	6.90	7.80	8.70	10.00
DE017	46989	2.50	3.30	4.20	5.10	5.90	6.80	7.70	8.70	10.00
DE028	30963	2.20	2.80	3.60	4.50	5.40	6.30	7.30	8.40	10.00
DE027	27679	2.10	2.70	3.50	4.30	5.20	6.10	7.10	8.30	10.00
DE024	23971	1.90	2.60	3.30	4.10	5.00	5.90	7.00	8.20	10.00
DE023	8023	1.40	1.80	2.30	2.80	3.50	4.30	5.40	6.90	10.00
DE025	4841	1.20	1.50	1.90	2.40	2.90	3.60	4.60	6.10	10.00

Hierarchical Models

The basic model can be used as a building block in more complicated models, e.g. in hierarchical models:

$$\begin{aligned} \theta &\sim \pi(\theta), \\ p_{ij}, \lambda_{ij})_{i,j \in \mathcal{N}} &= f(\theta), \end{aligned}$$
 (3)

where π is an a-priori distribution on θ and f is a given function.

()

- Sampling of θ , L|I, a, L^* combined by iterating between sampling
- $L|\theta, I, a, L^*$ (using the Gibbs sampler)
- ► and θ|L (using more standard MCMC techniques, eg. Gibbs, Metropolis Hasting).

Example: Conjugate distribution model

p and λ consist of identical but random values; $\theta = \left(\tilde{p}, \tilde{\lambda} \right)$

$$\begin{split} \widetilde{p} &\sim \mathsf{Beta}(a,b), \quad \widetilde{\lambda} &\sim \mathsf{Gamma}(c,d) \\ p_{ij} &= \widetilde{p}\mathbb{I}(i \neq j), \quad \lambda_{ij} = \widetilde{\lambda}, \quad i,j \in \mathcal{N}. \end{split}$$

for some parameters a, b, c, d.

- prior on \tilde{p} , $\tilde{\lambda}$ is flexible,
- direct sampling of $\theta | L$ possible (conjugate distributions).
- Extensions: Partition p, λ , use independent models for partitions.

Fitness model - Power law in Degree Distr & Weights

Empirical literature (Boss et al., 2004, e.g.) suggests that power laws are reasonable models for degree distributions AND for liabilities, i.e. their density would be of the form

$$p(x) = cx^{o}$$

Empirical studies often find α between -2 and -3.

- ► Servedio et al. (2004): fitness-based model for degree distributions.
- We will couple such a fitness model for the degrees with a model for liabilites that allows a power law. Key ideas
 - Use same fitness for both liabilities and degrees.
 - Gamma mixture of exponential distributions lead to a Pareto type II distribution (also called Lomax distribution)

Fitness model - Power law in Degree Distr & Weights

$$\begin{aligned} X_i &\sim \mathsf{Exp}(1), i \in \mathcal{N}, \\ p_{ij} &= f(X_i + X_j) \mathbb{I}(i \neq j), \quad i, j \in \mathcal{N}, \\ \lambda_{ij} &= G_{\zeta,\eta}^{-1}(\mathsf{exp}(-X_i)) + G_{\zeta,\eta}^{-1}(\mathsf{exp}(-X_j)), \quad i, j \in \mathcal{N} \\ (\zeta, \eta) &\sim \pi(\zeta, \eta), \end{aligned}$$

where $G_{\zeta,\eta}^{-1}$ is the quantile function of a Gamma distr. with parameter $\zeta > 0, \eta > 0$. π is a prior distribution on ζ, η) and

$$f(x) := \begin{cases} \beta\left(\frac{\gamma}{\beta}\right)^{1-\exp(-x)} \left(1-\log\left(\frac{\gamma}{\beta}\right)\exp(-x)\right), & \text{if } \alpha = -1, \\ \beta\left(\xi + (1-\xi)e^{-x}\right)^{\frac{1}{\alpha+1}} \left\{1 + \frac{1}{\alpha+1}\frac{1-\xi}{\xi e^{x}+1-\xi}\right\}, & \text{if } \alpha \neq -1, \end{cases}$$

where $\xi := \left(\frac{\gamma}{\beta}\right)^{\alpha+1}$.

Imperial College London

A Bayesian approach to systemic risk

< *₫* → 21

Realisations of Out Degree Distributions

Theoretical dist \approx distr of $\sum_{j=1}^{n} p_{ij}$

Imperial College London

Survival Function - Theoretical Degree Distribution

Flexibility in the degree distribution (different choices of α , β , γ).

A Bayesian approach to systemic risk

PDF - theoretical out degree for various parameter choices

Imperial College London

A Bayesian approach to systemic risk

24

Log-log plot of the survival function of L

Gray: Realisations

Mean out-degree of banks, i.e., $\mathbb{E}[\sum_{j} A_{ij} \mid a, I]$

model ER Fitnes						ess	
model p	model parameters p^{ER} α, β, γ				γ		
name	I	0.5	0.9	-2.5,0.2,1	-2.5,0.2,0.6	-2.5,0.5,1	-1,0.5,1
DE020	99936	6.20	9.00	8.80	6.10	9.40	9.60
DE019	91314	6.00	8.90	8.50	5.80	9.20	9.40
DE021	66494	5.50	8.80	7.50	5.30	8.70	9.00
DE022	54907	5.30	8.80	6.90	4.90	8.40	8.70
DE018	49864	5.10	8.70	6.70	4.80	8.30	8.60
DE017	46989	5.10	8.70	6.60	4.70	8.20	8.60
DE028	30963	4.50	8.40	5.70	4.20	7.60	8.00
DE027	27679	4.30	8.30	5.50	4.00	7.40	7.80
DE024	23971	4.10	8.20	5.30	3.90	7.30	7.70
DE023	8023	2.80	6.90	4.00	3.10	6.30	6.60
DE025	4841	2.40	6.10	3.60	2.70	5.90	6.30
post	eriori	4.66	8.25	6.30	4.50	7.90	8.20
a-p	priori	5.00	9.00	3.60	3.10	6.80	7.20

Summary

- Bayesian setup can be used to fill in "missing" information in a principled way. Large flexibility.
- Construction of Gibbs sampler for sampling from distribution of liabilities matrix conditional on its row and column sums.
 R package (systemicrisk) available from CRAN.
 Some theoretical results + simulation studies show that sampler works.
- Can be used for stress tests using empirical data.
- Can be extended to incorporate additional information such as expert views etc. on the network structure:
 - Hierarchical model for p, Λ (\rightarrow power laws).
 - Observation of some components of the matrix.

A Bayesian approach to systemic risk

References I

- Anand, K., Craig, B. & Von Peter, G. (2014). Filling in the blanks: Network structure and interbank contagion. *Quantitative Finance* 1–12.
- Boss, M., Elsinger, H., Summer, M. & Thurner 4, S. (2004). Network topology of the interbank market. *Quantitative Finance* **4**, 677–684.
- Degryse, H. & Nguyen, G. (2007). Interbank exposures: An empirical examination of contagion risk in the Belgian banking system. *International Journal of Central Banking* **3**, 123–171.
- Eisenberg, L. & Noe, T. H. (2001). Systemic risk in financial systems. *Management Science* **47**, 236–249.
- Elsinger, H., Lehar, A. & Summer, M. (2006). Using market information for banking system risk assessment. *International Journal of Central Banking* **2**.

References II

- Gandy, A. & Veraart, L. A. M. (2015). A Bayesian methodology for systemic risk assessment in financial networks. Available at SSRN: http://ssrn.com/abstract=2580869.
- Hałaj, G. & Kok, C. (2013). Assessing interbank contagion using simulated networks. ECB Working Paper Series, No 1506.
- Rogers, L. C. G. & Veraart, L. A. M. (2013). Failure and rescue in an interbank network. *Management Science* **59**, 882–898.
- Servedio, V. D. P., Caldarelli, G. & Buttà, P. (2004). Vertex intrinsic fitness: How to produce arbitrary scale-free networks. *Phys. Rev. E* **70**, 056126.

References III

- Upper, C. & Worms, A. (2004). Estimating bilateral exposures in the German interbank market: Is there a danger of contagion? *European Economic Review* **48**, 827–849.
- Wells, S. J. (2004). Financial interlinkages in the United Kingdom's interbank market and the risk of contagion. Bank of England working paper.

Identifiability

The matrices p and λ cannot be fully identified merely by observing the row and column sums.

Lemma

Let $I, a \in (0, \infty)^n$ with $A = \sum_{i=1}^n l_i = \sum_{i=1}^n a_i$ and $a_i + l_i < A$ for all i. Let $p \in [0, 1]^{n \times n}$ with $p_{ij} > 0 \ \forall i \neq j$, diag(p) = 0. Then

$$\exists (\lambda_{ij}) : \forall j : \sum_{i=1}^{n} \mathbb{E}(L_{ij}) = a_j \text{ and } \sum_{j=1}^{n} \mathbb{E}(L_{ij}) = l_j.$$

Hence: need to make assumptions about *p*.