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1. Introduction

This talk will be concerned with statistical inference for
law-invariant risk measures (premium principles).

In the Introduction, I will

◮ recall the definition of risk measures,

◮ give some examples for risk measures,

◮ present the basic statistical issue.



Definition

Let (Ω,F ,P) be atomless and X ⊆ L0 = L0(Ω,F ,P) be a vector space
containing the constants. Let ρ : X → R be a map and consider the
following conditions:

(1) monotonicity: ρ(X1) ≤ ρ(X2) for all X1, X2 ∈ X with X1 ≤ X2.

(2) cash additivity: ρ(X +m) = ρ(X) +m for all X ∈ X and m ∈ R.

(3) subadditivity: ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) for all X1, X2 ∈ X .

(4) positive homogeneity: ρ(λX) = λρ(X) for all X ∈ X and λ ≥ 0.

ρ is a monetary risk measure if (1)–(2) hold.

ρ is a coherent risk measure if (1)–(4) hold.

ρ is law-invariant if ρ(X1) = ρ(X2) whenever PX1
= PX2

.



Example 1

The Value at Risk at level α ∈ (0, 1)

V@Rα(X) := F←X (α) = inf{x ∈ R : FX(x) ≥ α}

is a law-invariant and positively homogeneous monetary risk measure on
X = L0. But it is not subadditive, hence not coherent.



Example 2

The Average Value at Risk at level α ∈ (0, 1)

AV@Rα(X) :=
1

1− α

∫ 1

α

V@Rs(X) ds

is a law-invariant coherent risk measure on X = L1.
If FX is continuous at V@Rα(X), then

AV@Rα(X) = E[X |X ≥ V@Rα(X)].



Example 3

The expectiles-based risk measure at level α ∈ [1/2, 1)

Eptα(X) := Uα(X)−1(0)

is a law-invariant coherent risk measure on X = L1.
Here we use the notation

Uα(X)(m) := E[Uα(X −m)], m ∈ R

for

Uα(x) :=

{
αx , x ≥ 0

(1− α)x , x < 0
.

If α = 1/2, then Eptα(X) = E[X ].



Example 4

The one-sided moment-based risk measure for p ∈ [1,∞) and a ∈ [0, 1]

OsMp,a(X) := E[X ] + aE
[
((X − E[X ])+)p

]1/p

is a law-invariant coherent risk measure on X = Lp.



Example 5

Let g be a convex distortion function, i.e. a convex nondecreasing
function g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1. The
distortion risk measure associated with g

ρg(X) := −
∫ 0

−∞
g(FX(x)) dx +

∫ ∞

0

(
1− g(FX(x))

)
dx

is a law-invariant coherent risk measure on X = Xg := {· · · }.
For right-continuous g, we have the representations

ρg(X) =

∫ 1

0

V@Rs(X) dg(s) =

∫ ∞

−∞
x d(g ◦ FX)(x).

If specifically g(t) = max{(t− α)/(1 − α); 0}, then ρg = AV@Rα.
But there is no distor. function g such that ρg = Eptα or ρg = OsMp,a.
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Let g be a convex distortion function, i.e. a convex nondecreasing
function g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1. The
distortion risk measure associated with g

ρg(X) := −
∫ 0

−∞
g(FX(x)) dx +

∫ ∞

0

(
1− g(FX(x))

)
dx

is a law-invariant coherent risk measure on X = Xg := {· · · }.
For right-continuous g, we have the representations

ρg(X) =

∫ 1

0

V@Rs(X) dg(s) =

∫ ∞

−∞
x d(g ◦ FX)(x).

Distortion risk measures associated with convex distortion functions are
the building blocks of rather general law-invariant coherent risk measures
(including Eptα and OsMp,a) . . .



Theorem

Let ρ be a law-invariant coherent risk measure on X = Lp for some
p ∈ [1,∞]. Then there is some set Gρ of continuous convex distortion
functions such that

ρ(X) = sup
g∈Gρ

ρg(X) for all X ∈ X

“Kusuoka representation”.

Kusuoka (2001)
Krätschmer/H. Z. (2011)
Belomestny/Krätschmer (2012)



For every law-invariant ρ : X → R we may define a map

Rρ : M(X ) −→ R by Rρ(m) := ρ(Xm),

where Xm ∈ X has law m and

M(X ) := {PX : X ∈ X}.

We call Rρ risk functional associated with ρ.



Statistical issue

We consider a “homogeneous” insurance collective

◮ X1, . . . , Xn ∼ µ i.i.d. individual claims in the next insurance period.
∑n

i=1 Xi ∼ µ∗n total claim in the next insurance period.

Individual claim distribution µ is unknown.

◮ Y1, . . . , Yun
∼ µ i.i.d. indiv. claims in the previous insur. period(s),

un/n ∼ c ∈ (0,∞) (e.g. un = n)

and are interested in information on the individual premium

1

n
ρ(
∑n

i=1 Xi) =
1

n
Rρ(µ

∗n).



Statistical issue

Let
Ω := RN, F := B(R)⊗N, Pµ := µ⊗N

and note that (
Ω,F , {Pµ : µ ∈ M(X )}

)

is the corresponding nonparametric statistical model. The observation
variable Yi is defined to be the i-th coordinate projection on Ω = RN.

We are interested in the following aspect of the parameter µ:

Tn(µ) :=
1

n
Rρ(µ

∗n).



2. Choice of estimators

Approach

◮ choose reasonable estimator µ̂ ∗nun
for µ∗n based on Y1, . . . , Yun

◮ use T̂n := 1
nRρ(µ̂ ∗nun

) as estimator for Tn(µ) :=
1
nRρ(µ

∗n)

Examples

The Central Limit Theorem and Glivenko–Cantelli suggest respectively

µ̂ ∗nun
:= Nnm̂un ,nŝ2un

and µ̂ ∗nun
:= µ̂∗nun

,

where

m̂un
= empirical mean of Y1, . . . , Yun

ŝun
= empirical standard deviation of Y1, . . . , Yun

µ̂un
= empirical probability measure of Y1, . . . , Yun

= 1
un

∑un

i=1 δYi
.
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nRρ(µ̂ ∗nun

) as estimator for Tn(µ) :=
1
nRρ(µ

∗n)

Note

The normal approximation with estimated parameters

µ̂ ∗nun
:= Nnm̂un ,nŝ2un

is easy to compute. However the total claim distribution µ∗n is typically
skewed to the right, whereas the normal distribution is symmetric.



2. Choice of estimators

Approach

◮ choose reasonable estimator µ̂ ∗nun
for µ∗n based on Y1, . . . , Yun

◮ use T̂n := 1
nRρ(µ̂ ∗nun

) as estimator for Tn(µ) :=
1
nRρ(µ

∗n)

Note

The normal approximation with estimated parameters

µ̂ ∗nun
:= Nnm̂un ,nŝ2un

is easy to compute. However the total claim distribution µ∗n is typically
skewed to the right, whereas the normal distribution is symmetric.

For instance, µ = (1− p)δ0 + pPa,b for p = 0.1 and Pa,b = fa,bℓ Pareto

fa,b(x) := ab−1
(
b−1x+ 1

)−(a+1)
1(0,∞)(x) (a, b > 0).
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Approach

◮ choose reasonable estimator µ̂ ∗nun
for µ∗n based on Y1, . . . , Yun

◮ use T̂n := 1
nRρ(µ̂ ∗nun

) as estimator for Tn(µ) :=
1
nRρ(µ

∗n)

Note

The computation of the convolution

µ̂ ∗nun
:= µ̂∗nun

is more time-consuming (use, for instance, the Panjer recursion).
On the other hand, it takes into account the skewness of µ∗n.



Questions

◮ Consistency:

nr
( 1

n
Rρ(µ̂ ∗nun

)− 1

n
Rρ(µ

∗n)
)

a.s.−→ 0 for r < 1/2

◮ Asymptotic normality:

√
un

( 1

n
Rρ(µ̂ ∗nun

)− 1

n
Rρ(µ

∗n)
)

d−→ Z ∼ N0,σ2(µ)

◮ Qualitative robustness:

For every ε > 0 there exist a δ > 0 such that for all n ∈ N

dweak(µ, ν) ≤ δ =⇒ dLévy

(

P
µ

1

n
Rρ(µ̂ ∗n

un
)
, P

ν

1

n
Rρ(µ̂ ∗n

un
)

)

≤ ε
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3. Consistency, asymptotic normality

Basic assumption

Let ρ : X → R be a law-invariant map, λ > 2, and assume:

(a) un/n −→ c ∈ (0,∞).

(b) ρ is cash additive and positively homogeneous, and Mλ
1 ⊆ M(X ).

(c) µ ∈ M(Lλ).

(d) For each sequence (mn) ⊂ Mλ
1 with dλ(mn,N0,1) −→ 0

there exist constants C, β > 0 such that for all n ∈ N

|Rρ(mn)−Rρ(N0,1)| ≤ C dλ(mn,N0,1)
β .

dλ(µ1, µ2) := supx∈R |Fµ1
(x) − Fµ2

(x)|(1 + |x|λ)
Mλ

1 := {µ ∈ M1 : dλ(µ, δ0) < ∞} (⊂ M(Lp) for any p < λ).



3. Consistency, asymptotic normality

Basic assumption

Let ρ : X → R be a law-invariant map, λ > 2, and assume:

(a) un/n −→ c ∈ (0,∞).

(b) ρ is cash additive and positively homogeneous, and Mλ
1 ⊆ M(X ).

(c) µ ∈ M(Lλ).

(d) For each sequence (mn) ⊂ Mλ
1 with dλ(mn,N0,1) −→ 0

there exist constants C, β > 0 such that for all n ∈ N

|Rρ(mn)−Rρ(N0,1)| ≤ C dλ(mn,N0,1)
β .

The number un of observed individual claims is of the same “dimension”
as the number n of individual risks in the collective. In other words:

Claims could be observed only in the last few years.
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For instance, ρ = V@Rα, AV@Rα, Eptα, OsMp, ρg, . . .
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Let ρ : X → R be a law-invariant map, λ > 2, and assume:

(a) un/n −→ c ∈ (0,∞).

(b) ρ is cash additive and positively homogeneous, and Mλ
1 ⊆ M(X ).

(c) µ ∈ M(Lλ).

(d) For each sequence (mn) ⊂ Mλ
1 with dλ(mn,N0,1) −→ 0

there exist constants C, β > 0 such that for all n ∈ N
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For instance, X = Lp and
the individual claims Xi ∼ µ lie in Lλ for some λ > p.



3. Consistency, asymptotic normality

Basic assumption

Let ρ : X → R be a law-invariant map, λ > 2, and assume:

(a) un/n −→ c ∈ (0,∞).

(b) ρ is cash additive and positively homogeneous, and Mλ
1 ⊆ M(X ).

(c) µ ∈ M(Lλ).

(d) For each sequence (mn) ⊂ Mλ
1 with dλ(mn,N0,1) −→ 0

there exist constants C, β > 0 such that for all n ∈ N

|Rρ(mn)−Rρ(N0,1)| ≤ C dλ(mn,N0,1)
β .

For instance, ρ = V@Rα (λ = 0, β = 1), AV@Rα (λ > 1, β = 1),
Eptα (λ > 1, β = 1), OsMp (λ > p, β = 1/p), . . .



3. Consistency, asymptotic normality

Basic assumption

Let ρ : X → R be a law-invariant map, λ > 2, and assume:

(a) un/n −→ c ∈ (0,∞).

(b) ρ is cash additive and positively homogeneous, and Mλ
1 ⊆ M(X ).

(c) µ ∈ M(Lλ).

(d) For each sequence (mn) ⊂ Mλ
1 with dλ(mn,N0,1) −→ 0

there exist constants C, β > 0 such that for all n ∈ N

|Rρ(mn)−Rρ(N0,1)| ≤ C dλ(mn,N0,1)
β .

. . . is not very restrictive!



Theorem

Under the basic assumption we have

(0) 1
nRρ(µ

∗n) = m+
{

1√
n
Rρ(N0,1)

}
s+O(n−1/2−γ)

(i) 1
nRρ(Nnm̂un , nŝ2un

) = m̂un
+
{

1√
n
Rρ(N0,1)

}
ŝun

(ii) 1
n Rρ(µ̂

∗n
un

) = m̂un
+
{

1√
n
Rρ(N0,1)

}
ŝun

+OP-a.s.(n
−1/2−γ)

γ := min{λ− 2, 1}/2
m := mean(µ), s := std(µ), m̂un

:= 1
un

∑un

i=1 Yi, ŝun
:= . . .

Krätschmer/H. Z. (2011)
Lauer/H. Z. (2015)



Theorem

Under the basic assumption we have

(0) 1
nRρ(µ

∗n) = m+
{

1√
n
Rρ(N0,1)

}
s+O(n−1/2−γ)

(i) 1
nRρ(Nnm̂un , nŝ2un

) = m̂un
+
{

1√
n
Rρ(N0,1)

}
ŝun

(ii) 1
n Rρ(µ̂

∗n
un

) = m̂un
+
{

1√
n
Rρ(N0,1)

}
ŝun

+OP-a.s.(n
−1/2−γ)

Note

This shows that the premium determined according to ρ is asymptotically
equivalent to the premium determined according to the standard
deviation principle with safety loading

1√
n
Rρ(N0,1).

The factor 1√
n

reflects the balancing of risks in a collective of size n.



Proof

For instance, the first identity follows from

Rρ(µ
∗n) = Rρ(Nnm, ns2) +

(
Rρ(µ

∗n)−Rρ(Nnm, ns2)
)

= ρ(nm+
√
nsZ) +

(
ρ(
√
nsZn + nm)− ρ(

√
nsZ + nm)

)

= nm+
√
nsρ(Z) +

√
ns

(
ρ(Zn)− ρ(Z)

)

= nm+
√
nsRρ(N0,1) +

√
ns

(
Rρ(law{Zn})−Rρ(N0,1)

)

(
with Zn := 1√

ns

∑n
i=1(Xi −m) and Z ∼ N0,1

)
and

√
ns

∣∣Rρ(law{Zn})−Rρ(N0,1)
∣∣

≤ √
ns · constρ · sup

x∈R
|FZn

(x)− Φ0,1(x)| (1 + |x|λ)

≤ √
ns · constρ · constλ · n−γ .

The last step is ensured by Petrov’s nonuniform Berry–Esséen inequality.



Corollary

Under the basic assumption we have

(0) 1
nRρ(Nnm,ns2)− 1

nRρ(µ
∗n) = O(n−1/2−γ).

(i) 1
nRρ(Nnm̂un ,nŝ2un

)− 1
nRρ(µ

∗n) = (m̂un
−m) + oP-a.s.(n

−1/2).

(ii) 1
nRρ(µ̂

∗n
un

)− 1
nRρ(µ

∗n) = (m̂un
−m) + oP-a.s.(n

−1/2).

γ := min{λ− 2, 1}/2
m := mean(µ), s := std(µ), m̂un

:= 1
un

∑un

i=1 Yi, ŝun
:= . . .

Krätschmer/H. Z. (2011)
Lauer/H. Z. (2015)
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∗n
un

)− 1
nRρ(µ

∗n) = (m̂un
−m) + oP-a.s.(n

−1/2).

Note

nr
(
(m̂un

−m) + oP-a.s.(n
−1/2)

)

=
ur
n

nr
· ur

n(m̂un
−m) +

oP-a.s.(n
−1/2)

n−r
a.s.−→ 0 for all r < 1/2
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√
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√
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oP-a.s.(n
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d−→ Z ∼ N0,s2



Corollary

Under the basic assumption we have

(0) 1
nRρ(Nnm,ns2)− 1

nRρ(µ
∗n) = O(n−1/2−γ).

(i) 1
nRρ(Nnm̂un ,nŝ2un

)− 1
nRρ(µ

∗n) = (m̂un
−m) + oP-a.s.(n

−1/2).

(ii) 1
nRρ(µ̂

∗n
un

)− 1
nRρ(µ

∗n) = (m̂un
−m) + oP-a.s.(n

−1/2).

Note

. . . in particular,

[
1

n
Rρ

(
µ̂ ∗nun

)
− ŝun√

un
Φ−1

(
1− α

2

)
,
1

n
Rρ

(
µ̂ ∗nun

)
− ŝun√

un
Φ−1

(α
2

)]

provides an asymptotic confidence interval for the individual premium
1
nRρ(µ

∗n) at level α for both µ̂ ∗nun
:= Nnm̂un ,nŝ2un

and µ̂ ∗nun
:= µ̂∗nun

.



Numerical example

We let un = n and ρ = V@R0.99 and µ = (1− p)δ0 + pPa,b

for the Pareto distribution Pa,b = fa,bℓ with Lebesgue density

fa,b(x) := ab−1
(
b−1x+ 1

)−(a+1)
1(0,∞)(x) (a, b > 0).

We fixed p = 0.1, considered the following fours sets of parameters

a b mean(µ) std(µ) mean(Pa,b) std(Pa,b)
2.1 10 1 14.80 10 45.83
3 20 1 6.25 10 17.32
6 50 1 4.90 10 12.25
10 90 1 4.64 10 11.18

and did Monte Carlo simulations based on 50 repetitions.

(Note that un is “small”, ρ is “strict”, and µ is “risky” !!!)
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The light blue lines represent the empirical 5%- and 95%-quantiles.



Conclusion

◮ The estimators are asymptotically equivalent.
1
nRρ(µ̂

∗n
un

) is better than 1
nRρ(Nnm̂un ,nŝ2un

) for finite sample.

◮ Good applicability to light-tailed µ and moderate n.

Good applicability to medium-tailed µ and large n.

Moderate applicability to heavy-tailed µ and large n.

◮ Both estimators have a negative bias.

=⇒ Bias correction (see Section 4)

Outlook

◮ Comparison with parametric models.



4. Bias correction through bootstrap

Problem

Both estimators have a negative bias.

Countermeasure

Estimate the bias and subtract it from the original estimator.

Use, for instance, a bootstrap-based estimator for the bias.

For simplicity I here restrict to Efron’s bootstrap
(i.e. to the multiplier bootstrap with multinomial weights).



We have seen in Section 3 (Corollary) that

law
{√

un

(
1
nRρ(µ̂ ∗nun

)− 1
nRρ(µ

∗n)
)} w−→ N0,s2

One can show (Lauer/H. Z. (2015+)) that also

law
{√

un

(
1
nRρ(µ̂ ∗nun

B
)− 1

nRρ(µ̂ ∗nun
)
) ∣∣ (Y1, . . . , Yun

)
} p,w−→ N0,s2

Here

µ̂ ∗nun
is based on (Y1, . . . , Yun

),

µ̂ ∗nun

B
is based on (Y B

n,1, . . . , Y
B
n,un

),

where, given (Y1, . . . , Yun
), the bootstrap sample (Y B

n,1, . . . , Y
B
n,un

) is
drawn from the “urn” {Y1, . . . , Yun

} with replacement.



That is, for large n we have

law
{

1
nRρ(µ̂ ∗nun

)− 1
nRρ(µ

∗n)
}

≈ N0,s2/un

and

law
{

1
nRρ(µ̂ ∗nun

B
)− 1

nRρ(µ̂ ∗nun
)
∣∣ (Y1, . . . , Yun

)
}

≈ N0,s2/un
.

Here

µ̂ ∗nun
is based on (Y1, . . . , Yun

),

µ̂ ∗nun

B
is based on (Y B

n,1, . . . , Y
B
n,un

),

where, given (Y1, . . . , Yun
), the bootstrap sample (Y B

n,1, . . . , Y
B
n,un

) is
drawn from the “urn” {Y1, . . . , Yun

} with replacement.



That is, for large n we have

law
{

1
nRρ(µ̂ ∗nun

)− 1
nRρ(µ

∗n)
}

≈ N0,s2/un
(⋆)

and

law
{

1
nRρ(µ̂ ∗nun

B
)− 1

nRρ(µ̂ ∗nun
)
∣∣ (Y1, . . . , Yun

)
}

≈ N0,s2/un
.

(⋆) pretends that law
{

1
nRρ(µ̂ ∗nun

)− 1
nRρ(µ

∗n)
}

has mean zero.

However, from the numerical example in Section 3 we known that the
mean is strictly negative.

Thus for our purpose N0,ŝ2un
/un

is not a reasonable estimator for the law

of the empirical error. A better estimator can be defined as follows . . .



That is, for large n we have

law
{

1
nRρ(µ̂ ∗nun

)− 1
nRρ(µ

∗n)
}

≈ N0,s2/n

and

law
{

1
nRρ(µ̂ ∗nun

B
)− 1

nRρ(µ̂ ∗nun
)
∣∣ (Y1, . . . , Yun

)
}

≈ N0,s2/n.

Let L ≫ n and µ̂ ∗nun

B,1
, . . . , µ̂ ∗nun

B,L
be based on L independent

bootstrap samples (Y B,ℓ
n,1 , . . . , Y

B,ℓ
n,n ), ℓ = 1, . . . , L. Then

1
L

∑L
ℓ=1 δ

(
1

n
Rρ(µ̂ ∗n

un

B,ℓ
)− 1

n
Rρ(µ̂ ∗n

un
)
)

provides the bootstrap estimator for

law
{

1
nRρ(µ̂ ∗nun

)− 1
nRρ(µ

∗n)
}



. . . and one can use its mean

B̂ias
B

n := 1
L

∑L
ℓ=1

(
1
nRρ(µ̂ ∗nun

B,ℓ
)− 1

nRρ(µ̂ ∗nun
)
)

as an estimator for

Bias(T̂n;µ) := Eµ
[
1
nRρ(µ̂ ∗nun

)− 1
nRρ(µ

∗n)
]
.

In particular,

T̂n

BSC
:= T̂n − B̂ias

B

n

provides an estimator for Tn(µ) :=
1
nRρ(µ

∗n) with smaller bias than

T̂n := 1
nRρ(µ̂ ∗nun

).



Numerical example

We let un = n = 100 and ρ = V@R0.99 and µ = (1− p)δ0 + pPa,b

for the Pareto distribution Pa,b = fa,bℓ with Lebesgue density

fa,b(x) := ab−1
(
b−1x+ 1

)−(a+1)
1(0,∞)(x) (a, b > 0).

We fixed p = 0.1 and the following set of parameters

a b mean(µ) std(µ) mean(Pa,b) std(Pa,b)
6 50 1 4.90 10 12.25

We did a Monte Carlo simulation based on 500 repetitions (where the
bootstrap estimator for the bias was based on L = 1.000 repetitions)
and obtained

1
nRρ(µ

∗n) m̂ean
1
nRρ(µ̂

∗n
n ) m̂ean

1
nRρ(µ̂

∗n
n )BSC

3.3 3.06 3.13



Numerical example

We let un = n = 100 and ρ = V@R0.99 and µ = (1− p)δ0 + pPa,b

for the Pareto distribution Pa,b = fa,bℓ with Lebesgue density

fa,b(x) := ab−1
(
b−1x+ 1

)−(a+1)
1(0,∞)(x) (a, b > 0).

We fixed p = 0.1 and the following set of parameters

a b mean(µ) std(µ) mean(Pa,b) std(Pa,b)
6 50 1 4.90 10 12.25

We did a Monte Carlo simulation based on 500 repetitions (where the
bootstrap estimator for the bias was based on L = 1.000 repetitions)
and obtained

1
nRρ(µ

∗n) m̂ean
1
nRρ(Nnm̂n,nŝ2n

) m̂ean
1
nRρ(Nnm̂n,nŝ2n

)BSC

3.3 2.89 2.94



a=6,b=50
n=100 l̂aw

1
nRρ(µ̂

∗n
n ) l̂aw

1
nRρ(Nnm̂n,nŝ2n
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5. Qualitative robustness

As before we let

Ω := RN, F := B(R)⊗N, Pµ := µ⊗N

and consider the statistical model

(
Ω,F , {Pµ : µ ∈ M(X )}

)
.

We assume that 1
n

∑n
i=1 δyi

∈ M(X ) for all n ∈ N and yi ∈ R.

The aspect of interest is

Tn(µ) :=
1

n
Rρ(µ

∗n),

and we use the estimator

T̂n :=
1

n
Rρ

(
µ̂ ∗nun

)
.



Definition

The sequence of estimators (T̂n) is said to be robust on M ⊆ M(X ) if
for every µ ∈ M and ε > 0 there exist a δ > 0 such that for all n ∈ N

ν ∈ M, dweak(µ, ν) ≤ δ =⇒ dLévy

(
P
µ

T̂n

,Pν
T̂n

)
≤ ε.

The definition was proposed by Hampel (1971) for M = M(X ), where

dweak = any metric generating the weak topology, e. g. dweak = dLévy

dLévy(µ, ν) := inf{ε > 0 : Fµ(x−ε)−ε ≤ Fν(x) ≤ Fµ(x+ε)+ε ∀x ∈ R}



Definition

The sequence of estimators (T̂n) is said to be robust on M ⊆ M(X ) if
for every µ ∈ M and ε > 0 there exist a δ > 0 such that for all n ∈ N

ν ∈ M, dweak(µ, ν) ≤ δ =⇒ dLévy

(
P
µ

T̂n

,Pν
T̂n

)
≤ ε.

Corollary to Hampel’s theorem

If {Tn : n ∈ N} is equicontinuous for the weak topology,

then (T̂n) is robust on M = M(X ).

Problem

{Tn : n ∈ N} is not equicontinuous for the weak topology for any law-
invariant coherent risk measure ρ (if X is the “natural” domain of ρ).



Definition

The sequence of estimators (T̂n) is said to be robust on M ⊆ M(X ) if
for every µ ∈ M and ε > 0 there exist a δ > 0 such that for all n ∈ N

ν ∈ M, dweak(µ, ν) ≤ δ =⇒ dLévy

(
P
µ

T̂n

,Pν
T̂n

)
≤ ε.

Corollary to Hampel’s theorem

If {Tn : n ∈ N} is equicontinuous for the weak topology,

then (T̂n) is robust on M = M(X ).

To do

Find a suitable generalization of Hampel’s theorem!



The p-weak topology

Let p ∈ [0,∞]. On (any subset of)

M(Lp) :=
{
µ ∈ M1(R) :

∫
|x|p µ(dx) < ∞

}

we may impose the p-weak topology, that is, the coarsest topology for
which all mappings µ 7−→

∫
f dµ, f ∈ Cp(R), are continuous, where

Cp(R) :=
{
f ∈ C(R) : |f(x)| ≤ c|x|p for some c ∈ (0,∞)

}
.

Note that

µn → µ p-weakly

⇐⇒
∫
f dµn →

∫
f dµ for all f ∈ Cp(R)

⇐⇒ µn → µ weakly and
∫
|x|p µn(dx) →

∫
|x|p µ(dx)



Let X = Lp, i.e. the domain of Rρ is M(Lp).

Definition

The sequence (T̂n) is said to be p-robust on M ⊆ M(Lp) if for every
µ ∈ M(Lp) and ε > 0 there exist a δ > 0 such that for all n ∈ N

ν ∈ M(Lp), dp-weak(µ, ν) ≤ δ =⇒ dLévy

(
P
µ

T̂n

,Pν
T̂n

)
≤ ε.

Theorem

If {Tn : n ∈ N} is equicontinuous for the p-weak topology, then (T̂n) is
p-robust on every locally uniformly p-integrating set M ⊆ M(Lp).

H. Z. (2016)
Krätschmer/Schied/H. Z. (2012, 2014)



Let X = Lp, i.e. the domain of Rρ is M(Lp).

Definition

The sequence (T̂n) is said to be p-robust on M ⊆ M(Lp) if for every
µ ∈ M(Lp) and ε > 0 there exist a δ > 0 such that for all n ∈ N

ν ∈ M(Lp), dp-weak(µ, ν) ≤ δ =⇒ dLévy

(
P
µ

T̂n

,Pν
T̂n

)
≤ ε.

Theorem

If {Tn : n ∈ N} is equicontinuous for the p-weak topology, then (T̂n) is
p-robust on every locally uniformly p-integrating set M ⊆ M(Lp).

Here M ⊆ M1 is said to be locally uniformly p-integrating if for every
µ ∈ M and ε > 0 there exist δ > 0 and a > 0 such that

ν ∈ M , dweak(µ, ν) ≤ δ =⇒
∫
|x|p1{|x|p≥a} ν(dx) ≤ ε.



Let X = Lp, i.e. the domain of Rρ is M(Lp).

Definition

The sequence (T̂n) is said to be p-robust on M ⊆ M(Lp) if for every
µ ∈ M(Lp) and ε > 0 there exist a δ > 0 such that for all n ∈ N

ν ∈ M(Lp), dp-weak(µ, ν) ≤ δ =⇒ dLévy

(
P
µ

T̂n

,Pν
T̂n

)
≤ ε.

Theorem

If {Tn : n ∈ N} is equicontinuous for the p-weak topology, then (T̂n) is
p-robust on every locally uniformly p-integrating set M ⊆ M(Lp).

In particular, in this case (T̂n) is robust on every locally uniformly
p-integrating set M ⊆ M(Lp) on which the weak topology and the
p-weak topology coincide.



Theorem

For p ∈ [0, 1], M ⊆ M(Lp) the following conditions are equivalent:

(a) The weak topology and the p-weak topologies on M coincide.

(b) M is locally uniformly p-integrating.

(c) Every weakly compact subset of M is uniformly p-integrating.

(d) Every weakly convergent sequence in M is uniformly p-integrating.

(e) For every sequence (µn) ⊆ M for which µn converges weakly to µ0

the convergence
∫
|x|p µn(dx) →

∫
|x|p µ0(dx) holds.

H. Z. (2016)
Krätschmer/Schied/H. Z. (2015+)



Theorem

For p ∈ [0, 1], M ⊆ M(Lp) the following conditions are equivalent:

(a) The weak topology and the p-weak topologies on M coincide.

(b) M is locally uniformly p-integrating.

(c) Every weakly compact subset of M is uniformly p-integrating.

(d) Every weakly convergent sequence in M is uniformly p-integrating.

(e) For every sequence (µn) ⊆ M for which µn converges weakly to µ0

the convergence
∫
|x|p µn(dx) →

∫
|x|p µ0(dx) holds.

Definition

A set M ⊆ M(Lp) satisfying condition (a) is called w-set in M(Lp).

(Note: The smaller p, the larger one can make such w-sets).



Let X = Lp, i.e. the domain of Rρ is M(Lp).

Corollary

If {Tn : n ∈ N} is equicontinuous for the p-weak topology,

then (T̂n) is robust on every w-set M in M(Lp).

Examples

{Tn : n ∈ N} is equicontinuous for the p-weak topology if

◮ ρ = AV@Rα (p = 1), ρ = Eptα (p = 1), ρ = OsMp,a, . . .

W-sets in M(Lp) are fairly large. Examples are

◮ the set of all normal distributions, the set of all Gamma distributions,
the set of all Pareto distributions with tail-index a ≥ a0 > p, . . .



Our theory is taken into account in the IAIS Risk-based Global Insurance
Capital Standard:

Public

Risk-based Global Insurance Capital Standard 
Public Consultation
17 December 2014 – 16 February 2015 Page 1 of 159

Risk-based Global 
Insurance Capital Standard 

17 December 2014 

Public Consultation Document 

Comments due by 16 February 2015 

Risk-based Global Insurance Capital Standard
Public Consultation
17 December 2014 – 16 February 2015 Page 42 of 159

Table 3. Main features of VaR and Tail-VaR

Features/Risk measure VaR Tail-VaR

Frequency captured? Yes Yes

Severity captured? No Yes

Sub-additive? Not always Always

Diversification captured? Issues Yes

Back-testing? Straight-forward Issues

Estimation? Feasible
Issues with data
limitation

Model uncertainty?
Sensitive to
aggregation

Sensitive to tail
modelling

Robustness I (with respect to “Lévy metric
33

”)? Almost, only minor
issues

No

Robustness II (with respect to “Wasserstein
metric

34
”)?

Yes Yes

33
The Lévy metric is a metric on the space of cumulative distribution functions of one-dimensional random

variables. It is a special case of the Lévy–Prokhorov metric.

34
The Wasserstein (or Vasershtein) metric is a distance function defined between probability distributions on a

given metric space, the metric is also known for its optimal transport properties.



Thank you!
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