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Random walk
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Shrink time N times and space
√

N times
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Limit as N →∞
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The Donsker–Prokhorov invariance principle

Input: µ 6= δ0 centered probability measure on R with
∫

x2 µ(dx) <∞

Theorem
Let X1,X2, . . . be iid random variables with distribution µ, let Y N

0 = 0
and

Y N
k = Y N

k−1 +

√
1
N

Xk .

Set

Y N
t = Y N

btc + (t − btc)(Y N
btc+1 − Y N

btc).

Then
(
Y N

Nt

)
t∈R+

converges in distribution to a Brownian motion times√∫
x2 µ(dx) as N →∞.
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Our setting: input

I µ 6= δ0 centered probability measure on R
I 1-dim driftless diffusion M with state space I ⊆ R

dMt = η(Mt)dWt , M0 = m ∈ I,

η : I → R may be irregular
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Main question

µ 6= δ0 centered probability measure on R
dMt = η(Mt ) dWt , M0 = m

Can we choose a scale factor aN : I → (0,∞) such that we have:

Theorem
Let X1,X2, . . . be iid random variables with distribution µ, let Y N

0 = m
and

Y N
k = Y N

k−1 + aN(Y N
k−1)Xk .

Set

Y N
t = Y N

btc + (t − btc)(Y N
btc+1 − Y N

btc).

Then
(
Y N

Nt

)
t∈R+

converges in distribution to M as N →∞.
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Answer: yes

dMt = η(Mt ) dWt , M0 = m
µ 6= δ0 centered probability measure on R

Y N
k = Y N

k−1 + aN(Y N
k−1)Xk

Xk iid ∼ µ

I We will construct scale factors aN via iterative Skorokhod
embeddings of shifted and scaled µ into M
 Remaining question: how to determine aN?

I This method works even for irregular or quickly growing µ
I We will compare our scheme with the “weak Euler scheme” that

corresponds to scale factors

aEu
N (y) =

η(y)√
N
∫

x2 µ(dx)

 Examples: µ = N(0,1), µ = 1
2 (δ−1 + δ1)
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Comparison with the Euler scheme, I
The Euler scheme [determined by y 7→ aEu

N (y)]
I η globally Lipschitz (in particular, of linear growth) the Euler

scheme works good
I Several papers on the Euler scheme with irregular drift but

regular diffusion coefficient (Gyöngy, Krylov, . . . )
I [Yan 2002]: Irregular diffusion coefficient η (still Leb-a.e.

continuous) but of linear growth
 Tanaka’s example: η(y) = 1{y>0} − 1{y≤0}

I (Y N,Eu
Nt ) converges in distribution to M

I Rates only under Hölder continuity of η
Our scheme [determined by y 7→ aN(y)]

I (Y N
Nt) converges in distribution to M under less regularity and

growth assumptions (η Borel measurable and locally bounded
away from 0 and ±∞)

I Order of convergence 1/4 regardless of regularity of η
(η bounded away from 0 and ±∞)

I But scale factors aN are more difficult to find than aEu
N
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Comparison with the Euler scheme, II

Plus examples showing that lack of
I regularity and/or
I linear growth

can indeed make the Euler scheme diverge

([Hutzenthaler, Jentzen, Kloeden 2010] and below)
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Recall Skorokhod’s proof of the Donsker–Prokhorov
invariance principle

µ 6= δ0 centered probability measure on R with
∫

x2 µ(dx) = 1

Xk iid ∼ µ, Y N
k = Y N

k−1 +
√

1
N Xk

Skorokhod embeds Y N into a BM B with stopping times
0 = τN(0) < τN(1) < · · · , i.e.

(BτN (k); k ≥ 0) d
= (Y N

k ; k ≥ 0),

where τN(k)− τN(k − 1) are iid with E[τN(k)− τN(k − 1)] <∞.
Then, by Wald’s identity,

E[τN(k)− τN(k − 1)] = E(BτN (k) − BτN (k−1))
2 = E

(√
1
N

Xk

)2

=
1
N
.

One can show that (BτN (k))k≥0 converges to B in probability, hence
(Y N

k )k≥0 converges to B in distribution.
 Clue to “remaining question”: follow Skorokhod’s approach
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The Skorokhod embedding problem for M
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Weak solution of the SDE

Interior of the state space:
I I = (l , r) with −∞ ≤ l < r ≤ ∞

SDE

dMt = η(Mt)dWt , M0 = y ∈ I

η : I → R Borel measurable with

η(x) 6= 0 for all x ∈ I
1
η2 ∈ L1

loc(I)

η(x) := 0 for all x ∈ R \ I

Theorem (Engelbert & Schmidt 1985)
There is a weak solution of the SDE and we have uniqueness in law.
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The Skorokhod embedding problem for M

Let (Mt)t≥0 be a solution to

dMt = η(Mt)dWt , M0 = y ∈ I

SEP: Given a distribution ν with
∫

x ν(dx) = y , find a stopping time τ
(if any) such that

Mτ ∼ ν

and express Eτ in terms of η and ν
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Integrable solutions of the SEP for M, idea

dMt = η(Mt ) dWt , M0 = y∫
x ν(dx) = y

Let

q(y , x) =
∫ x

y

∫ u

y

2
η2(z)

dz du, y ∈ I, x ∈ R.

By Itô’s formula,
q(y ,Mt)− t , t ≥ 0,

is a local martingale starting from 0. If it is a true martingale, and the
optional sampling theorem applies for a solution τ of the SEP for M,
then

Eτ = Eq(y ,Mτ ) =

∫
q(y , x) ν(dx).

I Role of the argument y of q: starting point of M
I Formally, the latter integral is the minimal possible Eτ
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Integrable solutions of the SEP for M, result

dMt = η(Mt ) dWt , M0 = y∫
x ν(dx) = y

Theorem (Ankirchner, Hobson, Strack 2013)
If
∫

q(y , x) ν(dx) <∞, then there exists a stopping time τ such that
Mτ ∼ ν. Moreover, we can choose τ such that

E [τ ] =

∫
q(y , x) ν(dx).

Proposition (Ankirchner, Hobson, Strack 2013)
Any stopping time that solves the SEP for M satisfies
E [τ ] ≥

∫
q(y , x) ν(dx).
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Further remarks to q(y , x), y ∈ I, x ∈ R

q(y , x) =
∫ x

y

∫ u
y

2
η2(z)

dz du, y ∈ I, x ∈ R

Regardless of the value y ∈ I it holds:
I On I, x 7→ q(y , x) is strictly convex, nonnegative, strictly

decreasing to zero on (l , y ], strictly increasing from zero on [y , r)
I q(y , x) =∞ for x ∈ R \ [l , r ]
I q is the function from Feller’s test for explosions:

l (resp. r ) is accessible ⇐⇒ q(y , l) <∞ (resp. q(y , r) <∞)

I If l = −∞ (resp. r =∞), then q(y , l) =∞ (resp. q(y , r) =∞)
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Consecutive embeddings
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Embedding Markov chains

I dMt = η(Mt)dWt , M0 = m
I µ 6= δ0 centered probability measure and Xk ∼ µ
I N ∈ N is fixed

Problem (P). Does there exist
1. a measurable function aN : I → (0,∞) (scale factor) and
2. a sequence of (Ft)-stopping times (τN

k )k∈Z+
with τN

0 = 0 satisfying

E [τN
k+1 − τN

k |FτN
k
] =

1
N

such that

(MτN
k
)k∈Z+

d
= (Y N

k )k∈Z+
,

where

Y N
0 = m, Y N

k = Y N
k−1 + aN(Y N

k−1)Xk
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Embed the transition probabilities consecutively

Given that τN
k is already constructed and that MτN

k
= y , embed the

distribution µ
(
·−y

aN (y)

)
into (MτN

k +t), where the embedding time ρN
k (y)

satisfies
E [ρN

k (y)|FτN
k
] =

1
N
. (∗)

Then define τN
k+1 = τN

k + ρN
k (MτN

k
).

Determining scale factor (red off from formula (∗)):
For each y ∈ I find a solution aN(y) ∈ (0,∞) of the equation∫

R
q(y , x)µ

(
dx − y
aN(y)

)
=

1
N
.

 answer to “remaining question”

I Difficult, but many explicit examples
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“Remaining question” Problem (P)

For each y ∈ I define

Gy (a) :=
∫
R

q(y , x)µ
(

dx − y
a

)
=

∫
R

q(y ,ax + y)µ(dx), a ≥ 0

Recall: Gy (a) minimal expected time needed for embedding µ
( ·−y

a

)
into M conditionally to M0 = y .

If for all y ∈ I there is a solution aN(y) to Gy (a) = 1
N , then there is a

solution to Problem (P).

Question: Does 1
N always belong to the image of

Gy : [0,∞)→ [0,∞]?

I Gy strictly increasing, left-continuous, but can jump to∞
Answer: In general, no.

Mikhail Urusov Approximating SDEs via Skorokhod embedding



Idea
Details

Examples

Summary to Problem (P), I

Messages:
I In many cases there exists a solution of Problem (P).

We have sufficient conditions in terms of η and µ.
I Some µ always work. For instance, µ = 1

2 (δ−1 + δ1), or µ with a
compact support satisfying

µ({inf suppµ}) > 0 and µ({sup suppµ}) > 0.

I For some η no restrictions on µ (except for some “minimal natural
restrictions”).

I Example of a “minimal natural restriction” on µ:
if l > −∞, then inf suppµ > −∞.
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Summary to Problem (P), II

Given η, how restrictive are our assumptions on µ guaranteeing the
solvability of Problem (P)?

Look at examples:

I Brownian motion [η ≡ 1, I = R]:
η 6= δ0 centered distribution with

∫
x2 µ(dx) <∞

 exactly as in the Donsker-Prokhorov invariance principle
I Absorbed at zero Brownian motion [η ≡ 1 on I = (0,∞)]:
η 6= δ0 centered distribution with

∫
x2 µ(dx) <∞,

inf suppµ > −∞, and µ({inf suppµ}) > 0
I Geometric Brownian motion [η(x) = x on I = (0,∞)]:
η 6= δ0 centered distribution with inf suppµ > −∞
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Summary to Problem (P), III

A somewhat puzzling message (given the discussion above):

There are situations when 1
N does not belong to the image of Gy , but

Problem (P) has a solution.

In particular,

E[τN
k+1 − τN

k |FτN
k
] =

1
N

a.s.,

but

P
(

E[GM
τN

k
(aN(MτN

k
))] 6= 1

N

)
> 0.

 Example: absorbed at zero Brownian motion
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Some properties of scale factor aN

(to be compared with the Euler scheme)
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Asymptotic behavior of the scale factors

aN(y) vs. aEu
N (y) = η(y)/

√
N

Y N
k = Y N

k−1 + aN(Y N
k−1)Xk

For simplicity assume that
∫

x2 µ(dx) = 1 and let η∗ denote the upper
semicontinuous envelope of |η|.

Theorem
(i) For any y ∈ I, we have

lim sup
N→∞

√
NaN(y) ≤ η∗(y)

(ii) If 1/|η| is bounded and η is continuous at y ∈ I, then

lim
N→∞

√
NaN(y) = |η(y)|.

I On one hand, our scale factors aN are similar to aEu
N
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Lip(1) and linear growth

Proposition
Assume µ = 1

2 (δ−1 + δ1) and I = R. Then all mappings y 7→ aN(y)
are Lip(1). In particular, they have linear growth with a (unit) slope not
depending on N.

I On the other hand, our scale factors aN are different from
aEu

N (y) = η(y)/
√

N
I smoothing if η has irregularities
I tempered growth behavior
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Comparison Principle

I Let µ = 1
2 (δ−1 + δ1) and Xk ∼ µ

I Conditionally on {Yk = y} we have

Y N
k+1 = Y N

k+1(y) = y + aN(y)Xk+1 = y ± aN(y).

I Question: Do we have Y N
k+1(y) ≥ Y N

k+1(y
′) if y ≥ y ′?

Proposition
The mappings y 7→ y ± aN(y) are nondecreasing.

I The Euler Scheme aEu
N (y) = η(y)/

√
N

Y N,Eu
k+1 (y) = y + aEu

N (y)Xk+1 = y ± aEu
N (y)

does in general not satisfy a comparison principle.
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Convergence in distribution
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Setting for convergence in distribution

I Assume sufficient conditions for solvability of Problem (P)
I (Y N

k , τ
N(k), k ∈ Z+) solution of Problem (P), in particular

(Y N
k ; k ≥ 0) d

= (MτN (k); k ≥ 0)

I Extension to continuous time:

Y N
t = Y N

btc + (t − btc)(Y N
btc+1 − Y N

btc)

Question: When does it hold that the processes (Y N
Nt) converge to

(Mt) in distribution?
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Convergence results

(C1) |η| and 1
|η| are bounded on I.

Theorem
Assume (C1). Then the processes (Y N

Nt) converge to (Mt) in
distribution.

(C2) |η| and 1
|η| are locally bounded on I.

Theorem
Suppose (C2) and that µ has a compact support. Then the processes
(Y N

Nt) converge to (Mt) in distribution.
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Convergence rate

I Under (C1) the order of convergence is 1/4
(η is just Borel measurable)

I Under (C2) this is no longer true
(a counterexample)

Comparison with the Euler scheme
To the best of our knowledge, only [Yan 2002] treats the Euler
scheme with irregular diffusion coefficient, but, as for convergence
rate, η should be Hölder continuous there
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Summary of the algorithm

Aim: Approximate distributional properties of M, dMt = η(Mt)dWt ,
M0 = m.

1. Determine q(y , x) =
∫ x

y

∫ u
y

2
η2(z)dzdu.

2. Choose the number of time steps N ∈ N.

3. Choose a reference measure µ such that Problem (P) has a
solution.

4. Solve in a the equation
∫
R q(y ,ax + y)µ(dx) = 1/N for all y ∈ I

 solution aN(y).

5. Simulate Y N
k = Y N

k−1 + aN(Y N
k )Xk , Y0 = m, where Xk iid ∼ µ.
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Overview of explicit examples

1. Brownian motion
2. Geometric Brownian motion

I Both our and the Euler scheme work

3. Brownian motion absorbed at zero
4. Diffusion between two media

I = R, η = 1(0,∞) + A1(−∞,0]

I In both schemes convergence holds, we have convergence order
1/4, in the Euler scheme order unknown (?)
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An illustration for a Brownian motion
absorbed at zero
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dMt = 1{Mt>0}dWt

I M0 = 1
I Estimate P(M1 > 0)

2 3 4 5 6 7 8 9 10

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

log
2
 of number of time steps

P
(M

1
 >

0
)

 

 

our method

Euler

exact value
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dMt = 1{Mt>0}dWt

I M0 = 0.27
I Estimate P(M1 > 0)

2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

log
2
 of number of time steps

P
(M

1
 >

0
)

 

 

our method

Euler
exact value
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Two final explicit examples

I I = R, η(x) = cosh(x)
 Exponentially growing η
 The Euler scheme diverges, our scheme converges, but we
do not have rates

I I = R, η(x) = 1
|x| , η(0) = 1

 Not locally bounded η
 The Euler scheme diverges, our convergence results do not
apply, but we can show that our scheme converges (all is explicit,
this helps), but we do not have rates
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Exponentially growing η

I = R, η(x) = cosh(x)
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Exponentially growing η

I dMt = cosh(Mt)dWt , M0 = 0.

I q(y , x) = 2
[
log
(

cosh(x)
cosh(y)

)
− tanh(y)(x − y)

]
, for y , x ∈ R.

I Choose µ = 1
2 (δ−1 + δ1)

I Then for N ∈ N and y ∈ R

aN(y) =
1
2

arcosh
(

2(exp(1/N)− 1) cosh2(y) + 1
)
.

I Euler scheme

aEu
N (y) =

1√
N

cosh(y)
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Scale factor for the Euler scheme “saw” effect

I N = 10000

I y 7→ y + aEu
N (y) and y 7→ y − aEu

N (y)

-10 - 5 5 10

- 20

-10

10

20
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A realization of the Euler scheme for
dMt = cosh(Mt)dWt : “saw” effect

5
−5

0

5
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Scale factor for our scheme: the “saw” is not possible
due to the comparison principle

I N = 10000

I y 7→ y + aN(y) and y 7→ y − aN(y)

-10 - 5 5 10

-15

-10

- 5

5

10

15
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Comparing realizations for dMt = cosh(Mt)dWt

5
−5

0

5

 

 

Euler
Our method
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Approximating an expectation of M1

Aim: For α ∈ (0,1) approximate E[|M1|α] numerically.

I Euler scheme Y N,Eu converges a.s. to M ([Gyöngy 1998], for
Gaussian increments).

I But it follows from [Hutzenthaler, Jentzen, Kloeden 2010] that
E[|Y N,Eu

N |α]→∞ as N →∞.

Proposition
The family (|Y N

N |α)N∈N is uniformly integrable. Hence,

E [|Y N
N |α]→ E [|M1|α]

as N →∞.

Mikhail Urusov Approximating SDEs via Skorokhod embedding
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Not locally bounded η

I = R, η(x) =
1
|x |
, η(0) = 1

Mikhail Urusov Approximating SDEs via Skorokhod embedding



Idea
Details

Examples

Not locally bounded η

I dMt = η(Mt)dWt , M0 = 0.

I η(x) = 1
|x| for x 6= 0 and η(0) = 1.

I q(y , x) = 1
6 x4 − 2

3 xy3 + 1
2 y4, for y , x ∈ R.

I Choose µ = 1
2 (δ−1 + δ1)

I Then for N ∈ N and y ∈ R

aN(y) =

√√
9y4 +

6
N
− 3y2.

I Euler scheme

ãN(y) =
1√
N

1
|y |

for y 6= 0, ãN(0) =
1√
N
.
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Scale factors

I N = 10000, y 7→ aN(y) and y 7→ ãN(y)

-1.0 - 0.5 0.0 0.5 1.0

0.05

0.10

0.15

0.20

I aN(0) = 4
√

6
N and limN→∞

√
NaN(y) = 1

|y| .
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Convergence

I The Euler approximation Ỹ N does not converge in distribution to
M: For every N ∈ N we have

Ỹ N
2 =

X1√
N

+
X2

X1
.

Proposition
The sequence of continuous processes (Y N

Nt)t≥0 converges in law to
the process M, as N →∞. Moreover, we have

E [f (Y N
N )]→ E [f (M1)]

as N →∞ for every continuous function f : R→ R with
|f (x)| ≤ c(1 + |x |α), x ∈ R, for some c ∈ R+ and α ∈ (0,4).
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Conclusion

I We constructed Markov chains that can be embedded into a
driftless diffusion with a fixed mean time lag 1

N . . .

I . . . and a “non-local”, “implicit” numerical scheme to
approximate diffusions with irregular coefficients and superlinear
growth

I The scale factors may differ significantly from their counterparts
in the Euler scheme

I smoothing if η has discontinuities

I tempered growth behavior
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Thank you!
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