Linear PDEs perturbed by Gaussian Noise

Bohdan Maslowski

Hannover, January 2015

General Case

Let $\left(B_{t}\right)$ be a continuous centered Gaussian process on a complete probability space with sigma-algebra generated by the process, suppose that its covariance $R(t, s)$, $s, t \in[0, T]$ may be expressed as

$$
R(t, s)=\int_{0}^{\min (s, t)} K(t, r) K(s, r) d r
$$

where K is square integrable and

$$
\sup _{t \in[0, T]} \int_{0}^{t} K(t, s)^{2} d s<\infty
$$

Furthermore, assume that there exists a Wiener process $\left(W_{t}\right)$ such that

$$
B_{t}=\int_{0}^{t} K(t, s) d W_{s}, \quad t \in[0, T]
$$

General Case

Assume further
(K1) For all $s \in(0, T], K(\cdot, s)$ has a bounded variation on $(s, T]$ and

$$
\int_{0}^{T}|\mathcal{K}|((s, T], s)^{2} d s<\infty
$$

Set

$$
\begin{equation*}
\left(K^{*} \varphi\right)(s)=\varphi(s) K(T, s)+\int_{s}^{T}(\varphi(t)-\varphi(s)) \mathcal{K}(\mathrm{d} t, s) \tag{1}
\end{equation*}
$$

for $\varphi \in \mathcal{E}$, the space of V-valued deterministic step functions.

General case

For $x, y \in V$ define

$$
\begin{equation*}
\left\langle x 1_{[0, t]}, y 1_{[0, s]}\right\rangle_{\mathcal{H}}:=\langle x, y\rangle_{V} R(t, s), \quad(t, s) \in[0, T]^{2} \tag{2}
\end{equation*}
$$

The inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ can be extended (by linearity) to \mathcal{E} and $\left(\mathcal{E},\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$ forms a pre-Hilbert space. The completion of \mathcal{E} with respect to the above scalar product is denoted by \mathcal{H}. Stochastic integral w.r.t. β is defined in the standard way on \mathcal{E} and extended to \mathcal{H}. We have

$$
\|\varphi\|_{\mathcal{H}}^{2}=\left\|K^{*} \varphi\right\|_{L^{2}([0, T], V)}^{2}
$$

and

$$
\begin{equation*}
\beta(\varphi)=\int_{0}^{T}\left(K^{*} \varphi\right)(t) \mathrm{d} W_{t}, \quad \mathbb{P}-\text { a.s.. } \tag{3}
\end{equation*}
$$

General case

(K2) For some $\alpha \in\left(0, \frac{1}{2}\right)$, the kernel K satisfies the following:

- For all $s \in(0, T)$ the function $K(\cdot, s):(s, T] \rightarrow \mathbb{R}$ is differentiable in the interval (s, T) and both $K(t, s)$ and the derivatives $\frac{\partial K}{\partial t}(t, s)$ are continuous at every $t \in(s, T)$.
- There exist a konstant $c>0$ such that

$$
\begin{gather*}
\left|\frac{\partial K}{\partial t}(t, s)\right| \leq c(t-s)^{\alpha-1}\left(\frac{s}{t}\right)^{-\alpha} \tag{4}\\
\int_{s}^{t} K(t, r)^{2} \mathrm{~d} r \leq c(t-s)^{2 \alpha+1}
\end{gather*}
$$

for $0 \leq s<t \leq T$.

General case

Theorem

Let (K1) be satisfied. Consider the seminorm

$$
\begin{equation*}
\|\varphi\|_{\mathcal{H}_{R}}^{2}:=\int_{0}^{T}|\varphi(s)|_{V}^{2} K\left(s^{+}, s\right)^{2} \mathrm{~d} s+\int_{0}^{T}\left(\int_{s}^{T}|\varphi(t)| v|\mathcal{K}|(\mathrm{d} t, s)\right)^{2} \mathrm{~d} s \tag{5}
\end{equation*}
$$

defined on \mathcal{E}. Denote by \mathcal{H}_{R} the completion of \mathcal{E} with respect to $\|\cdot\|_{\mathcal{H}_{R}}$. Then \mathcal{H}_{R} is continuously embedded in \mathcal{H}.
(1) There exists a finite constant $c_{1}>0$ such that

$$
\|\varphi\|_{\mathcal{H}} \leq c_{1}\|\varphi\|_{b \mathcal{B}([0, T] ; V)}
$$

for all $\varphi \in b \mathcal{B}([0, T] ; V)$.

General case

Theorem

Suppose further (for simplicity)that $K\left(s^{+}, s\right)=0$ for all $0<s<T$. If $(K 2)$ is satisfied then there exists a finite constant $c_{3}(\alpha)>0$ such that

$$
\|\varphi\|_{\mathcal{H}} \leq c_{3}(\alpha)\|\varphi\|_{L \frac{2}{1+2 \alpha}([0, T] ; V)}
$$

for each $\varphi \in L^{\frac{2}{1+2 \alpha}}([0, T] ; V)$.

Cylindrical Process

Let (K1) be satisfied. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, U be a real separable Hilbert space equipped with an inner product $\langle\cdot, \cdot\rangle_{U}$ and $T>0$. Given an ONB basis $\left(e_{n}\right)$ of the space U we define the cylindrical Gaussian Volterra process (with covariance kernel K) as a formal sum

$$
B_{t}=\sum_{n=1}^{\infty} \beta_{n}(t) e_{n}
$$

where $\left(\beta_{n}(t)\right)$ is a sequence of pairwise independent one-dimensional Gaussian Volterra processes with the same covariance kernel. The series does not converge in the space U but may be understood as usual as a family of random linear functionals (or may be shown to be convergent in any Hilbert space U_{1} such that the embedding $U \hookrightarrow U_{1}$ is Hilbert-Schmidt).

Stochastic integral

Let $G:[0, T] \rightarrow \mathcal{L}(U, V)$ be an operator-valued function such that $G(\cdot) e_{n} \in \mathcal{H}$ for $n \in \mathbf{N}$, and B be a standard cylindrical Gaussian Volterra process in U.
Define

$$
\int_{0}^{T} G d B^{H}:=\sum_{n=1}^{\infty} \int_{0}^{T} G e_{n} d \beta_{n}
$$

provided the infinite series converges in $L^{2}(\Omega, V)$.

Linear equations

$$
\left\{\begin{array}{cll}
\mathrm{d} X_{t} & =A X_{t} \mathrm{~d} t+\Phi \mathrm{d} B_{t}, & \tag{6}\\
X_{0}=0 \\
X_{0}, & \mathbb{P}-\text { a.s. }
\end{array}\right.
$$

where $A: \operatorname{Dom}(A) \rightarrow V$, $\operatorname{Dom}(A) \subset V$, an infinitesimal generator of a strongly continuous semigroup $(S(t), t \geq 0)$ on $V, \Phi \in \mathcal{L}(U, V)$ and $x \in V$.

$$
\begin{equation*}
X_{t}=S(t) x+\int_{0}^{t} S(t-s) \Phi \mathrm{d} B_{s}=: S(t) x+Z(t), \quad \mathbb{P}-\text { a.s. } \tag{7}
\end{equation*}
$$

for $t \geq 0$.

Linear equations

(13) For all $T>0, K$ satisfies (K1) on $[0, T]$ and induces a non-atomic measure \mathcal{K}. Moreover, $\Phi \in \mathcal{L}_{2}(U, V)$
(13) For all $T>0, K$ satisfies (K2) on $[0, T]$ and for all $s \in(0, T], S(s) \Phi$ is a Hilbert-Schmidt operator such that

$$
\begin{equation*}
\|S(\cdot) \Phi\|_{\mathcal{L}_{2}(U, V)} \in L^{\frac{2}{1+2 \alpha}}(0, T) \tag{8}
\end{equation*}
$$

Linear equations

Proposition

If at least one of the conditions (A1) and (A2) holds, then the process $Z=\left(Z_{t}, t \geq 0\right)$, is well defined V-valued Gaussian process and its sample paths are \mathbb{P}-almost surely in $L^{2}([0, T] ; V)$ for all $T>0$.

Linear equations

Proposition

Assume that for all $T>0, K$ satisfies (K2) on $[0, T]$ and for all $s \in[0, T], S(s) \Phi$ is a Hilbert-Schmidt operator such that

$$
\begin{equation*}
t \rightarrow t^{-\beta}\|S(t) \Phi\|_{\mathcal{L}_{2}(U, V)} \in L^{\frac{2}{1+2 \alpha}}(0, T) \tag{9}
\end{equation*}
$$

for some $\beta>0$. Then the process Z has a Hölder continuous version in V.

Linear equations

Corollary (Sufficient condition for (A2))

If for all $T>0$ there exist finite constants $c>0$ and $0 \leq \gamma<\frac{1}{2}+\alpha$ such that

$$
\|S(t) \Phi\|_{\mathcal{L}_{2}(U, V)} \leq c t^{-\gamma}, \quad t \in(0, T]
$$

then there exists a Hölder continuous version of the process Z in V.

FBM

Definition

Let H be an element of $(0,1)$ (the Hurst parameter). A continuous centered Gaussian process $\beta^{H}(t), t \in \mathbb{R}$, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is called fractional Brownian motion if

$$
\begin{equation*}
\mathbb{E} \beta^{H}(t) \beta^{H}(s)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right), \quad t, s \in \mathbb{R} . \tag{10}
\end{equation*}
$$

FBM

Let $K_{H}(t, s)$ for $0 \leq s \leq t \leq T$ be the kernel function

$$
K_{H}(t, s)=c_{H}(t-s)^{H-\frac{1}{2}}+c_{H}\left(\frac{1}{2}-H\right) \int_{s}^{t}(u-s)^{H-\frac{3}{2}}\left(1-\left(\frac{s}{u}\right)^{\frac{1}{2}-H}\right) d u
$$

where $c_{H}=\left[\frac{2 H \Gamma\left(H+\frac{1}{2}\right) \Gamma\left(\frac{3}{2}-H\right)}{\Gamma(2-2 H)}\right]^{\frac{1}{2}}$ and $\Gamma(\cdot)$ is the gamma function.
The operator \mathcal{K}_{H}^{*} is given by

$$
\mathcal{K}_{H}^{*} \varphi(t):=\varphi(t) K_{H}(T, t)+\int_{t}^{T}(\varphi(s)-\varphi(t)) \frac{\partial K_{H}}{\partial s}(s, t) d s
$$

for $\varphi \in \mathcal{E}$.

Example (Parabolic)

Consider the initial boundary value problem for stochastic parabolic equation

$$
\begin{align*}
\frac{\partial u}{\partial t}(t, x) & =L u(t, x)+\xi(t, x), \quad(t, x) \in \mathbf{R}_{+} \times D \\
u(0, x) & =u_{0}(x), \quad x \in D \tag{11}\\
u(t, x) & =0, \quad t \in \mathbf{R}_{+}, x \in \partial D
\end{align*}
$$

where $D \subset \mathbf{R}^{d}$ is a bounded domain with a smooth boundary, L is a second order uniformly elliptic operator on D and η is a noise process that is the formal time derivative of a space dependent fractional Brownian motion.

- rewrite the parabolic system as an infinite dimensional stochastic differential equation:
$U=L^{2}(D), V=L^{2}(D), \Phi=I d$; we get (A1) with $\rho=d / 4$, so
$Z \in \mathcal{C}^{\beta}\left([0, T], D_{A}^{\delta}\right)$ for $\delta+\beta+\frac{d}{4}<H$.

Boundary and Pointwise Noise

$$
\begin{gathered}
\frac{\partial u}{\partial t}(t, \xi)=\Delta u(t, \xi), \quad(t, \xi) \in D \subset \mathbb{R}^{n}, \\
u(0, \xi)=x(\xi), \\
\frac{\partial u}{\partial \nu}(t, \xi)=\eta^{H}(t, \xi), \quad(t, \xi) \in \partial D
\end{gathered}
$$

(Neumann type boundary noise), or

$$
u(t, \xi)=\eta^{H}(t, \xi), \quad(t, \xi) \in \partial D
$$

(Dirichlet type boundary noise).

Boundary and Pointwise Noise

Modelled as

$$
Z^{x}(t)=S(t) x+\int_{0}^{t} S(t-r) \Phi d B^{H}(r), \quad t \geq 0
$$

where $\Phi=(A-\hat{\beta} I) N, N$ is the Neumann (or Dirichlet) map, the state space is $V=L^{2}(D)$, and B^{H} is a cylindrical $f B m$ on a separable Hilbert space $U \subset L^{2}(\partial D)$.

Conditions for existence and time Hölder continuity of the solution :

- $d=1: \frac{1}{4}<H$ (Neumann) and $\frac{3}{4}<H$ (Dirichlet).
- $d \geq 2: \frac{1}{2}+\frac{1}{4}(d-1)<H$ (Neumann).

Boundary and Pointwise Noise

$$
\begin{gathered}
\frac{\partial u}{\partial t}(t, \xi)=\Delta u(t, \xi)+\delta_{z} \eta_{t}^{H}, \quad(t, \xi) \in D \\
u(0, \xi)=x(\xi), \\
\frac{\partial u}{\partial \nu}(t, \xi)=0, \quad(t, \xi) \in \partial D
\end{gathered}
$$

(pointwise noise, δ_{z} - Dirac distribution at $z \in D$).

Modelled as

$$
Z^{x}(t)=S(t) x+\int_{0}^{t} S(t-r) \Phi d \beta^{H}(r), \quad t \geq 0
$$

in $V=L^{2}(D)$, where Φ is a distribution, i.e. $\Phi \in\left(D_{A}^{\delta}\right)^{*}$ for $\delta>\frac{d}{4}$. We have a (Hölder) continuous solution for $\delta<H$, i.e. for $\frac{d}{4}<H$.

Equations with Multiplicative Noise

Consider the equation with finite-dimensional (fBm)

$$
\begin{aligned}
d X(t) & =A(t) X(t) d t+\sum_{k=1}^{m} B_{k} X(t) d \beta_{k}^{H}(t) \\
X(0) & =x_{0}
\end{aligned}
$$

where $(A(t))$ generates a strongly continuous family of operators $\left(U_{0}(t, s)\right), t \geq s$,

$$
\begin{align*}
\frac{\partial}{\partial s} U_{0}(t, s) & =-U_{0}(t, s) A(s) \tag{13}\\
\frac{\partial}{\partial t} U_{0}(t, s) & =A(t) U_{0}(t, s) \tag{14}
\end{align*}
$$

Equations with Multiplicative Noise

(H1) The family of closed operators $(A(t), t \in[0, T])$ defined on a common domain $D:=\operatorname{Dom}(A(t))$ for $t \in[0, T]$ generates a strongly continuous evolution operator $\left(U_{0}(t, s), 0 \leq s \leq t \leq T\right)$ on V.
(H2) The collection of linear operators (B_{1}, \ldots, B_{m}) generate mutually commuting strongly continuous groups $\left(S_{1}(s), \ldots, S_{m}(s), s \in \mathbb{R}\right)$ wich commute with $A(t)$ on D for each $t \in[0, T]$. For $i, j \in\{1, \ldots, m\}$, $\operatorname{Dom}\left(B_{i} B_{j}\right) \supset D, \operatorname{Dom}\left(A^{*}(t)\right)=D^{*}$ is independent of t and $D^{*} \subset \bigcap_{i, j=1}^{m} \operatorname{Dom}\left(B_{i}^{*} B_{j}^{*}\right)$ where $*$ denotes the topological adjoint.
(H3) The family of linear operators $(\tilde{A}(t), t \in[0, T])$ where $\tilde{A}(t)=A(t)-H t^{2 H-1} \sum_{j=1}^{m} B_{j}^{2}, \operatorname{Dom}(\tilde{A}(t))=D$ for each $t \in[0, T]$, generates a strongly continuous evolution operator on V, $(U(t, s), 0 \leq s \leq t \leq T)$.

Equations with Multiplicative Noise

A $\mathcal{B}([0, T]) \otimes \mathcal{F}$ measurable stochastic process $(X(t), t \in[0, T])$ is said to be
(i) a strong solution of (12) if $X(t) \in D$ a.s. \mathbb{P} and

$$
\begin{equation*}
X(t)=x_{0}+\int_{0}^{t} A(s) X(s) d s+\sum_{j=1}^{m} \int_{0}^{t} B_{j} X(s) d \beta_{j}^{H}(s) \quad \text { a.s. } \tag{15}
\end{equation*}
$$

for $t \in[0, T]$.
(ii) a weak solution of (12) if for each $z \in D^{*}$

$$
\begin{align*}
<X(t), z>= & <x_{0}, z>+\int_{0}^{t}<X(s), A^{*}(s) z>d s \tag{16}\\
& +\sum_{j=1}^{m} \int_{0}^{t}<X(s), B_{j}^{*} z>d \beta_{j}^{H}(s) \tag{17}
\end{align*}
$$

for $t \in[0, T]$ and

Equations with Multiplicative Noise

(iii) a mild solution of (12) if

$$
\begin{equation*}
X(t)=U_{0}(t, 0) x_{0}+\sum_{j=1}^{m} \int_{0}^{t} U_{0}(t, s) B_{j} X(s) d \beta_{j}^{H}(s) \quad \text { a.s. } \tag{18}
\end{equation*}
$$

for $t \in[0, T]$,
where the stochastic integrals in (15)-(18) are defined in the Skorokhod sense.

Equations with Multiplicative Noise

Theorem

Assume that $H>\frac{1}{2}$ and (H 1$)-(\mathrm{H} 3)$ are satisfied. There is a weak solution of (12). If $x_{0} \in D$, then there is a strong solution of (12). If $B_{j} \in \mathcal{L}(V)$ for $j \in\{1, \ldots, m\}$, then there is a mild solution of (12) which is unique in the space $\operatorname{Dom} \delta_{H} \cap L^{2}(\Omega ; \tilde{\mathcal{H}})$, where δ_{H} denotes the divergence operator based on β^{H}. In each case the solution $(X(t), t \in[0, T])$ is given as follows

$$
\begin{equation*}
X(t)=\prod_{j=1}^{m} S_{j}\left(\beta_{j}^{H}(t)\right) U(t, 0) x_{0} \tag{19}
\end{equation*}
$$

for $t \in[0, T]$.
For $H<\frac{1}{2}$ there exists a weak solution given by formula (19) in the "'parabolic"' case (by approximations, using Cheredito-Nulart result on closedness of the extension of Skorokhod integral operator).

Equations with Multiplicative Noise - Existence and Uniqueness

Proof: Existence in the "'strong"' case: By fractional Ito formula, the other cases by approximations of the initial value (Malliavin derivatives in the Ito formula may be easily calculated).

Uniqueness (for simplicity, from now on $m=1, \beta_{1}^{H}=$: $\beta^{H}, B_{j}=: B$, $S_{1}=: S$.

$$
\begin{aligned}
& X_{t}=U_{0}(t, 0) x+\int_{0}^{t} U_{0}(t, r) B X_{r} d \beta_{r}^{H}, \\
& Y_{t}=U_{0}(t, 0) x+\int_{0}^{t} U_{0}(t, r) B Y_{r} d \beta_{r}^{H}
\end{aligned}
$$

Define the process $Z=\left\{Z_{t}, t \in[0, T]\right\}$ as

$$
Z_{t}=X_{t}-Y_{t}, t \in[0, T]
$$

Equations with Multiplicative Noise - Existence and Uniqueness

Let

$$
X_{t}=\sum_{n=0}^{+\infty} X_{n}(t), Y_{t}=\sum_{n=0}^{+\infty} Y_{n}(t), t \in[0, T]
$$

be the respective Wiener chaos decompositions. Show (by induction) $Z_{n}=X_{n}-Y_{n}=0$. We have $Z_{0}=0$ hence

$$
\sum_{n=1}^{+\infty} Z_{n}(t)=\sum_{n=0}^{+\infty} \int_{0}^{t} U_{0}(t, s) B Z_{n}(s) d \beta_{s}^{H}
$$

Since $Z_{0} \in \mathcal{H}_{0}$ then

$$
\mathcal{H}_{1} \ni \int_{0}^{t} U_{0}(t, s) B Z_{0}(s) d \beta_{s}^{H}=0, t \in[0, T]
$$

and consequently

$$
Z_{1}(t)=\int_{0}^{t} U_{0}(t, s) B Z_{0}(s) d \beta_{s}^{H}=0
$$

for anv $t \in[0 . T]$ because $Z_{1} \in \mathcal{H}_{1}$

Equations with Multiplicative Noise - Existence and Uniqueness

Suppose $Z_{n}=0$ for some fixed $n \in \mathbf{N}$. By commutativity
$\int_{0}^{t} U_{0}(t, s) B Z_{n}(s) d \beta_{s}^{H}=\int_{0}^{t} \int_{0}^{t_{n-1}} \cdots \int_{0}^{t_{1}} U_{0}(t, s) B^{n} Z_{0}(s) d \beta_{s}^{H} d \beta_{t_{1}}^{H} \ldots d \beta_{t_{n}}^{H}$
is zero for any $t \in[0, T]$ and the expression belongs to \mathcal{H}_{n+1}. Moreover, $Z_{n+1} \in \mathcal{H}_{n+1}$ thus

$$
Z_{n+1}(t)=\int_{0}^{t} \int_{0}^{t_{n-1}} \ldots \int_{0}^{t_{1}} U_{0}(t, s) B^{n} Z_{0}(s) d \beta_{s}^{H} d \beta_{t_{1}}^{H} \ldots d \beta_{t_{n-1}}^{H}=0
$$

for $t \in[0, T]$.

Examples

Let

$$
\begin{align*}
d X_{t} & =A X_{t} d t+b X_{t} d \beta_{t}^{H}, t>0 \tag{20}\\
X_{0} & =x
\end{align*}
$$

where $A: \operatorname{Dom}(A) \subset V \rightarrow V$ is the generator of a strongly continuous semigroup $\left\{S_{A}(t), t \geq 0\right\}$ and $b \in \mathbf{R} \backslash\{0\}$. Then

$$
X_{t}=\exp \left\{b \beta_{t}^{H}-\frac{1}{2} b^{2} t^{2 H}\right\} S_{A}(t) x, 0 \leq s \leq t<+\infty
$$

and since there exist some constants $M>0, \omega \in \mathbf{R}$ such that

$$
\left\|S_{A}(t)\right\|_{\mathcal{L}(V)} \leq M \mathrm{e}^{\omega t}, t \geq 0
$$

we have that

$$
\begin{equation*}
\left|X_{t}\right|_{V} \leq M \exp \left\{b \beta_{t}^{H}-\frac{1}{2} b^{2} t^{2 H}+\omega t\right\}|x|_{V} \rightarrow 0 \tag{21}
\end{equation*}
$$

a.s. as $t \rightarrow \infty$ (the solution is pathwise stabilized by noise)

Examples

However, for any $p>0$, taking for simplicity $V=\mathbf{R}, A=\omega, x \neq 0$

$$
\mathbb{E}\left|X_{t}\right|^{p}=|x|^{p} \exp \left\{p \omega t-\frac{1}{2} b^{2} p t^{2 H}+p b B_{t}^{H}\right\}, t \geq 0, p>1
$$

hence for each $\epsilon>0$ there exists $\tilde{C}_{\epsilon}>0$ such that

$$
\mathbb{E}\left[\left|X_{t}\right|_{V}^{p}\right]=|x|^{p} \exp \left\{\hat{c} t^{2 H}+p \omega t\right\} \geq \tilde{C}_{\epsilon} \exp \left\{(\hat{c}-\epsilon) t^{2 H}\right\}, t \geq 0
$$

where $\hat{c}=\frac{1}{2} b^{2}\left(p^{2}-p\right)$, so for $p>1$ the p-th moment of the solution is destabilized by noise.

Examples

$$
\begin{align*}
\frac{\partial u}{\partial t}(t, \xi) & =L(t, \xi) u(t, \xi)+b \frac{d \beta^{H}}{d t} u \tag{22}\\
u(0, \xi) & =x_{0}(\xi)
\end{align*}
$$

for $(t, \xi) \in[0, T] \times \mathcal{O}$

$$
\left(\frac{\partial u}{\partial \xi}\right)^{\alpha}(t, \xi)=0, \quad(t, \xi) \in[0, T] \times \partial \mathcal{O}, \alpha \in\{1, \ldots, k-1\}
$$

where $k \in \mathbb{N}, \mathcal{O} \subset \mathbb{R}^{d}$ is a bounded domain of class $C^{k}, b \in \mathbb{R} \backslash\{0\}$ and

$$
\begin{equation*}
L(t, \xi):=\sum_{|\alpha| \leq 2 k} a_{\alpha}(t, \xi) D^{\alpha} \tag{23}
\end{equation*}
$$

is a strongly elliptic operator on \mathcal{O}, uniformly in $(t, \xi) \in[0, T] \times \overline{\mathcal{O}}$ and $a_{\alpha}(t, \cdot) \in C^{2 k}(\overline{\mathcal{O}})$ for each $t \in[0, T]$.

Examples

The equation (22) is rewritten in the form

$$
\begin{align*}
d X(t) & =A(t) X(t) d t+B X(t) d \beta^{H}(t) \tag{24}\\
X(0) & =x_{0} \in V
\end{align*}
$$

for $t \in[0, T]$, where $V=L^{2}(\mathcal{O}),(A(t) u)(\xi)=L(t, \xi) u(t, \xi)$,
$\operatorname{Dom}(A(t))=D=H^{2 k}(\mathcal{O}) \cap H_{0}^{k}(\mathcal{O})$ and $B=b l \in \mathcal{L}(V)$. It is assumed that

$$
\begin{equation*}
\sup _{\xi \in \mathcal{O}}\left|a_{\alpha}(t, \xi)-a_{\alpha}(s, \xi)\right| \leq M|t-s|^{\gamma} \tag{25}
\end{equation*}
$$

Examples

$$
\begin{gather*}
\frac{\partial u}{\partial t}(t, \xi)=a \frac{\partial^{2} u}{\partial \xi^{2}}(t, \xi)+b \frac{\partial u}{\partial \xi}(t, \xi) \frac{d \beta^{H}}{d t}(t) \tag{26}\\
{\left[S(t) x_{0}\right](\xi)=x_{0}(\xi+b t)} \tag{27}
\end{gather*}
$$

The ellipticity condition (H3) is satisfied if $a>H t^{2 H-1} b^{2}$. The solution may be expressed

$$
\begin{align*}
\left(S_{\Delta x}\right)(\xi) & =\int_{\mathbb{R}}(4 \pi t)^{-1 / 2} \exp \left[-\frac{1}{4 t}(\xi-\eta)^{2}\right]^{2} x(\eta) d \eta \tag{28}\\
X(t) & =S\left(\beta^{H}(t)\right) S_{\Delta}\left(a t-\frac{1}{2} b^{2} t^{2 H}\right) x_{0} \tag{29}
\end{align*}
$$

So the problem is "well posed" for $0 \leq t \leq T$, where $T=\left(\frac{2 a}{b^{2}}\right)^{1 /(2 H-1)}$.

Examples

$$
\begin{gather*}
\frac{\partial u}{\partial t}=-\frac{\partial^{4} u}{\partial \xi^{4}}-\alpha u+\frac{\partial u}{\partial \xi} \frac{d \beta^{H}(t)}{d t} \tag{30}\\
u(0, \xi)=x_{0}(\xi)=\sin \xi \\
\tilde{A}(t)=L-t H^{2 H-1} B^{2}=-\frac{\partial^{4}}{\partial \xi^{4}}-\alpha I-t H^{2 H-1} \frac{\partial^{2}}{\partial \xi^{2}} \tag{31}
\end{gather*}
$$

The solution has the form

$$
\begin{equation*}
X(t)=S\left(\beta^{H}(t)\right) U(t, 0) x_{0} \tag{32}
\end{equation*}
$$

Examples

Setting $\left[U(t, 0) x_{0}\right](\xi)=\varphi(t) \sin \xi$ we obtain

$$
\begin{aligned}
\dot{\varphi}(t) \sin \xi & =-\varphi(t) \sin \xi-\alpha \varphi(t) \sin \xi+H t^{2 H-1} \varphi(t) \sin \xi \\
\varphi(0) & =1 .
\end{aligned}
$$

and hence

$$
\begin{equation*}
X(t)=\sin \left(\xi+\beta^{H}(t)\right) \exp \left[-(1+\alpha) t+\frac{1}{2} t^{2 H}\right] \tag{33}
\end{equation*}
$$

It follows that

$$
\lim _{t \rightarrow \infty}|X(t)|=\infty, \quad \text { a.s. }
$$

so the noise destabilizes the equation.

General Case

Theorem

Assume (K1) and let $F \in C^{1,2}([0, T] \times R)$ has at most exponential growth in the second variable, uniform in t. Then $F\left(t, B_{t}\right)$ belongs to $\mathbb{D}^{1,2}$ and we have

$$
\begin{gathered}
F\left(t, B_{t}\right)=F(0,0)+\int_{0}^{t} D_{t} F\left(s, B_{s}\right) d s+\int_{0}^{t} D_{x} F\left(s, B_{s}\right) d B_{s} \\
+ \\
+\frac{1}{2} \int_{0}^{t} D_{x}^{2} F\left(s, B_{s}\right) d R(s)
\end{gathered}
$$

where $R(s):=R(s, s)$ (under (K1) R has bounded variation).

General Case

The natural candidate for the evolution system $U(t, s)$ would be the one corresponding to the equation

$$
y(t)=y_{0}+\int_{0}^{t} A(s) y(s) d s-\int_{0}^{t} B^{2} y(s) d R(s), \quad t \in[0, T]
$$

If we additionaly assume that $R \in C^{1}([0, T])$ all results stated above (in the regular case) remain true with $t^{2 H}$ replaced by $R(t)$ and $\mathrm{Ht}^{2 \mathrm{H}-1}$ by $R^{\prime}(t)$.

Random Evolution System

Consider

$$
\begin{align*}
\mathrm{d} Y_{t} & =A Y_{t} d t+B Y_{t} d \beta_{t}^{H}, t>s \tag{34}\\
Y_{s} & =x
\end{align*}
$$

assume that $(\tilde{A}(t))$ generates the "'parabolic" ' strongly evolution system $\{U(t, s), 0 \leq s \leq t \leq T\}$ on V.

$$
\begin{align*}
& (U(t, s)(V) \subset D \\
& \|U(t, s)\|_{\mathcal{L}(V)} \leq C_{U} \tag{35}\\
& \left\|\frac{\partial}{\partial t} U(t, s)\right\|_{\mathcal{L}(V)}=\|\tilde{A}(t) U(t, s)\|_{\mathcal{L}(V)} \leq \frac{C_{U}}{t-s} \\
& \left\|\tilde{A}(t) U(t, s)(\tilde{A}(s)-\bar{\omega} I)^{-1}\right\|_{\mathcal{L}(V)} \leq C_{U}
\end{align*}
$$

for some constant $C_{U}>0$ and any $0 \leq s<t \leq T$.

Random Evolution System

What is the random evolution system defined by the equation (34)? It may be verified that the equation has a weak solution $\left\{U_{Y}(t, s) x, s \leq t \leq T\right\}$ given by a formula

$$
\begin{equation*}
U_{Y}(t, s) x=S\left(B_{t}^{H}-B_{s}^{H}\right) U(t-s, 0) x, s \leq t \leq T \tag{36}
\end{equation*}
$$

for any initial value $x \in V$. Note that $U_{Y}(t, s)$ is not the same as

$$
\bar{U}_{Y}(t, s)=S\left(B_{t}^{H}-B_{s}^{H}\right) U(t, s)
$$

Random Evolution System

In one-dimensional case, $A=a, B=b$ we have

$$
\begin{equation*}
\bar{U}_{Y}(t, s)=S\left(B_{t}^{H}-B_{s}^{H}\right) U(t, s)=\exp \left\{b\left(B_{t}^{H}-B_{s}^{H}\right)-\frac{1}{2} b^{2}\left(t^{2 H}-s^{2 H}\right)\right\}, \tag{37}
\end{equation*}
$$

while

$$
\begin{equation*}
\left.U_{Y}(t, s)==\exp \left\{b\left(B_{t}^{H}-B_{s}^{H}\right)-\frac{1}{2} b^{2}(t-s)^{2 H}\right)\right\}, 0 \leq s \leq t \leq T \tag{38}
\end{equation*}
$$

$U_{Y}(t, s)$ does not posses the composition (cocycle) property (the equation does not define RDS) while $\bar{U}_{Y}(t, s)$ does.

Affine equation

Theorem

Let $F:[0, T] \times V \rightarrow V$ be a measurable function satisfying
$(i)_{F}$ there exists a function $\bar{L} \in L^{1}([0, T])$ such that

$$
\|F(t, x)-F(t, y)\|_{V} \leq \bar{L}(t)\|x-y\|_{V}, x, y \in V, t \in[0, T]
$$

$(\text { ii })_{F}$ for some function $\bar{K} \in L^{1}([0, T])$

$$
\|F(t, 0)\| v \leq \bar{K}(t), t \in[0, T]
$$

Then the equation

$$
\begin{equation*}
y(t)=U_{Y}(t, 0) x+\int_{0}^{t} U_{Y}(t, r) F(r, y(r)) d r \tag{39}
\end{equation*}
$$

has a unique solution in the space $\mathcal{C}([0, T] ; V)$ for a.e. $\omega \in \Omega$ and any initial value $x \in V$.

Affine equation

In the Wiener case $H=1 / 2$ the solution to the equation (39) is the so-called mild solution to the equation

$$
\begin{aligned}
d X_{t} & =A X_{t} d t+F\left(t, X_{t}\right) d t+B X_{t} d W_{t} \\
X_{0} & =x \in V
\end{aligned}
$$

and is known to coincide with the weak solution. What can we say in the general case?

Affine equation

Theorem

Let the assumptions of Theorem 4 hold and $\left\{X_{t}, t \in[0, T]\right\}$ be the solution to the equation mild.rce such that there exists a constant $C_{X}<+\infty$

$$
\begin{equation*}
\max \left\{\sup _{t \in[0, T]} \mathbb{E}\left\|X_{t}\right\|_{V}^{4}, \sup _{t \in[0, T]} \sup _{v \in[0, T]} \mathbb{E}\left\|D_{v}^{H} X_{t}\right\|_{V}^{4}\right\} \leq C_{X} \tag{40}
\end{equation*}
$$

In addition, let F be Fréchet differentiable with respect to the space variable for any time $t \in[0, T]$. Suppose that there exists a function $C \in L^{4}([0, T])$ such that

$$
\begin{equation*}
\max \left\{\|F(t, x)\| v,\left\|F_{x}^{\prime}(t, x)\right\|\right\} \leq C(t), t \in[0, T] \tag{41}
\end{equation*}
$$

holds. Then $\left\{X_{t}, t \in[0, T]\right\}$ is a solution to the integral equation

Affine equation

Theorem

$$
\begin{aligned}
X_{t}=x & +\int_{0}^{t} A X_{r} d r+\int_{0}^{t} F\left(r, X_{r}\right) d r+\int_{0}^{t} B X_{r} d \beta_{r}^{H} \\
& +\int_{0}^{t} \alpha_{H} \int_{0}^{T} \int_{r}^{t}|v-w|^{2 H-2} B U_{Y}(v, r) F_{x}^{\prime}\left(r, X_{r}\right) D_{w}^{H} X_{r} d v d w d r
\end{aligned}
$$

in a weak sense, i.e. for any $y \in D^{*}, t \in[0, T]$,

$$
\left\langle X_{t}, y\right\rangle_{v}=\langle x, y\rangle_{v}+\int_{0}^{t}\left\langle X_{r}, A^{*} y\right\rangle_{v} d r
$$

$$
+\int_{0}^{t}\left\langle F\left(r, X_{r}\right), y\right\rangle_{v} d r+\int_{0}^{t}\left\langle X_{r}, B^{*} y\right\rangle_{v} d \beta_{r}^{H}
$$

$$
+\int_{0}^{t} \alpha_{H} \int_{0}^{T} \int_{r}^{t}|v-w|^{2 H-2}\left\langle U_{Y}(v, r) F_{x}^{\prime}\left(r, X_{r}\right) D_{w}^{H} X_{r}, B^{*} y\right\rangle_{V} d v d w
$$

Affine equation

Consider a one-dimensional equation

$$
\begin{equation*}
d X_{t}=a X_{t} d t+b X_{t} d \beta_{t}^{H}, X_{0}=1 \tag{42}
\end{equation*}
$$

$a, b \in \mathbf{R}$ are nonzero constants. In the previous notation,

$$
d X_{t}=F\left(t, X_{t}\right) d t+B X_{t} d \beta_{t}^{H}, X_{0}=1
$$

where $F(t, x)=a x, A=0$ and $B=b l$. Recall that
$\bar{U}_{Y}(t, s)=S\left(\beta_{t}^{H}-\beta_{s}^{H}\right) U(t, s)=\exp \left\{b\left(\beta_{t}^{H}-\beta_{s}^{H}\right)-\frac{1}{2} b^{2}\left(t^{2 H}-s^{2 H}\right)\right\}$.
Then

$$
\begin{equation*}
X_{t}=\bar{U}_{Y}(t, 0)+\int_{0}^{t} \bar{U}_{Y}(t, r) F\left(r, X_{r}\right) d r \tag{43}
\end{equation*}
$$

Affine equation

Theorem

Let the assumptions of Theorem 4 be satisfied and $F:[0, T] \rightarrow V$ be a measurable function independent of a space variable such that $\|F\|_{V} \in L^{2}([0, T])$. Then the solution $\left\{X_{t}^{M}, t \in[0, T]\right\}$ to the affine equation (39) obtained in Theorem 4 having the form

$$
\begin{equation*}
X_{t}^{M}=U_{Y}(t, 0) x+\int_{0}^{t} U_{Y}(t, r) F(r) d r \tag{44}
\end{equation*}
$$

is a weak solution to the equation

$$
\begin{align*}
d X_{t} & =\left(A X_{t}+F(t)\right) d t+B X_{t} d \beta_{t}^{H} \tag{45}\\
X_{0} & =x \in V
\end{align*}
$$

Affine equation

Corollary

For each $p \geq 1$ there exists a constant $c_{p}>0$ depending only on p such that

$$
\begin{align*}
\mathbb{E}\left[\left\|X_{t}\right\|_{V}^{p}\right] \leq & c_{p} M \exp \left\{\frac{\left(p^{2}-p\right) b^{2}}{2} t^{2 H}+p \omega t\right\}\|x\|_{V}^{p} \\
& +M t^{p-1} \int_{0}^{t} \exp \left\{\frac{\left(p^{2}-p\right) b^{2}}{2}(t-s)^{2 H}\right. \tag{46}\\
& +p \omega(t-s)\}\|F(s)\|_{V}^{p} d s, t \geq 0 \tag{47}
\end{align*}
$$

In particular, if $F(t) \equiv F$ does not depend on $t \geq 0$, for each $\epsilon>0$ there exists $C_{\epsilon}>0$ such that

$$
\begin{equation*}
\mathbb{E}\left[\left\|X_{t}\right\|_{V}^{p}\right] \leq C_{\epsilon} \exp \left\{(\hat{c}+\epsilon) t^{2 H}\right\}, t \geq 0 \tag{48}
\end{equation*}
$$

holds with $\hat{c}=1 / 2 b^{2}\left(p^{2}-p\right)$.

Some References

- T.E.Duncan, B.Maslowski and B.Pasik-Duncan, Fractional Brownian motion and stochastic equations in Hilbert spaces, Stoch. Dyn. 2(2002), 225-250
- B.Maslowski and B.Schmalfuss, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion, Stochastic Anal.Appl., 22 (2004), 1577-1609
- T.E.Duncan, B.Maslowski and B.Pasik-Duncan, Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise, Stoch. Process. Appl. 115 (2005), 1357-1383
- J. Bartek, M. Garido-Atienza and B. Maslowski, Stochastic porous media equation driven by fractional Brownian motion, Stoch. Dyn. 13 (2013), 1350010 (33 pp.)
- B. Maslowski and J. Šnupárková, Stochastic equations with multiplicative fractional Gaussian noise in Hilbert space, submitted

Cylindrical fractional Brownian motion

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space, $U=\left(U,\langle\cdot, \cdot\rangle_{U},|\cdot| U\right)$ be a separable Hilbert space. A cylindrical process $\left\langle B^{H}, \cdot\right\rangle: \Omega \times \mathbf{R} \times U \rightarrow \mathbf{R}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ is called a standard cylindrical fractional Brownian motion with Hurst parameter $H \in(0,1)$ if
(1) For each $x \in U \backslash\{0\}, \frac{1}{|x| U}\left\langle B^{H}(\cdot), x\right\rangle$ is a standard scalar fractional Brownian motion with Hurst parameter H.
(2) For $\alpha, \beta \in \mathbf{R}$ and $x, y \in U$,

$$
\left\langle B^{H}(t), \alpha x+\beta y\right\rangle=\alpha\left\langle B^{H}(t), x\right\rangle+\beta\left\langle B^{H}(t), y\right\rangle \quad \text { a.s. } \mathbb{P} .
$$

- $\left\langle B^{H}(t), x\right\rangle$ has the interpretation of the evaluation of the functional $B^{H}(t)$ at x,
- For $H=\frac{1}{2}$ it is standard cylindrical Wiener process in U.

Cylindrical FBM

We can associate $\left(B^{H}(t), t \in \mathbf{R}\right)$ with a standard cylindrical Wiener process $(W(t), t \in \mathbf{R})$ in U formally by $B^{H}(t)=\mathbb{K}_{H}(\dot{W}(t))$. For $x \in U \backslash\{0\}$, let $\beta_{x}^{H}(t)=\left\langle B^{H}(t), x\right\rangle$. It is elementary to verify from (??) that there is a scalar Wiener process $\left(w_{x}(t), t \in \mathbf{R}\right)$ such that

$$
\begin{equation*}
\beta_{x}^{H}(t)=\int_{0}^{t} K_{H}(t, s) d w_{x}(s) \tag{49}
\end{equation*}
$$

for $t \in \mathbf{R}$.
Furthermore, if $V=\mathbf{R}$, then $w_{x}(t)=\beta_{x}^{H}\left(\left(\mathcal{K}_{H}^{*}\right)^{-1} 1_{[0, t)}\right)$ where \mathcal{K}_{H}^{*} is given by (16). Thus we have a formal series

$$
\begin{equation*}
W(t)=\sum_{n=1}^{\infty} w_{n}(t) e_{n} \tag{50}
\end{equation*}
$$

Stochastic integral

Let $\left(e_{n}, n \in \mathbf{N}\right)$ be a complete orthonormal basis in U.
Let $G:[0, T] \rightarrow \mathcal{L}(U, V)$ be an operator-valued function such that $G(\cdot) e_{n} \in \mathcal{H}$ for $n \in \mathbf{N}$, and B^{H} be a standard cylindrical fractional Brownian motion in U.
Define

$$
\int_{0}^{T} G d B^{H}:=\sum_{n=1}^{\infty} \int_{0}^{T} G e_{n} d \beta_{n}^{H}
$$

provided the infinite series converges in $L^{2}(\Omega, V)$.
Note that by condition 2 in the definition above the scalar processes $\beta_{n}^{H}(t):=\left\langle B^{H}(t), e_{n}\right\rangle, t \in \mathbf{R}, n \in \mathbf{N}$ are independent.

Linear equations

Consider the linear equation

$$
\begin{align*}
d Z^{x}(t) & =A Z^{x}(t) d t+\Phi d B^{H}(t) \tag{51}\\
Z(0) & =x
\end{align*}
$$

where $\left(B^{H}(t), t \geq 0\right)$ is a standard cylindrical fractional Brownian motion with Hurst parameter $H \in(0,1)$ in U and U is a separable Hilbert space, $A: \operatorname{Dom}(A) \rightarrow V, \operatorname{Dom}(A) \subset V, A$ is the infinitesimal generator of a strongly continuous semigroup $(S(t), t \geq 0)$ on $V, \Phi \in \mathcal{L}(U, V)$ and $x \in V$ is generally random. Let $Q=\Phi \Phi^{*} \in \mathcal{L}(V)$.

Linear equations

A solution $\left(Z^{x}(t), t \geq 0\right)$ to (51) is considered in the mild form

$$
\begin{equation*}
Z^{x}(t)=S(t) x+Z(t), \quad t \geq 0 \tag{52}
\end{equation*}
$$

where $(Z(t), t \geq 0)$ is the convolution integral

$$
\begin{equation*}
Z(t)=\int_{0}^{t} S(t-u) \Phi d B^{H}(u) \tag{53}
\end{equation*}
$$

If $(S(t), t \geq 0)$ is analytic, then there is a $\hat{\beta} \in \mathbf{R}$ such that the operator $\hat{\beta} I-A$ is uniformly positive on V. For each $\delta \geq 0$, let us define $\left(V_{\delta},|\cdot|_{\delta}\right)$ a Banach space, where $V_{\delta}=\operatorname{Dom}\left((\hat{\beta} I-A)^{\delta}\right)$ with the graph norm topology such that

$$
|x|_{\delta}=\left|(\hat{\beta} I-A)^{\delta} x\right|_{V}
$$

The space V_{δ} does not depend on $\hat{\beta}$ because the norms are equivalent for different values of $\hat{\beta}$ satisfying the above condition.

Assumptions

Let $(S(t), t \geq 0)$ be an analytic semigroup such that

$$
\begin{equation*}
|S(t) \Phi|_{\gamma} \leq c t^{-\rho} \tag{A1}
\end{equation*}
$$

for $t \in[0, T], c \geq 0$ and $\rho \in[0, H)$.

Regularity

Theorem

If $(A 1)$ is satisfied, then $(Z(t), t \in[0, T])$ is a well-defined V_{δ}-valued process in $\mathcal{C}^{\beta}\left([0, T], V_{\delta}\right)$, a.s. $-P$ for $\beta+\delta+\gamma<H, \beta \geq 0, \delta \geq 0$.

- Analyticity not necessary for $H>1 / 2$.

Conjecture: Consider the general case $B_{t}=\sum \beta_{n}(t)$ where β_{n} are continuous centered Gaussian processes defined by (the same) kernel K satisfying (K1). Then the stochastic convolution integral exists and as a process has a version with sample paths in $L^{2}(0, T ; V)$ a.s. provided (A1) is satisfied with $\rho=0$. If moreover we have for some $H>1 / 2$

$$
\frac{\partial K}{\partial t}(t, s) \leq(s / t)^{1 / 2-H}(t-s)^{H-3 / 2}
$$

the same holds true under weaker condition $\rho<H$.

