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1 Markov processes: trivia.
2 Stochastic analysis for additive functionals.
3 Applications to geometry.
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Markov processes

X locally compact separable metric space.
A stochastic process Y = (Yt )t≥0 is Markov process with state space
X if (very loosely speaking !)
there is a family (Px )x∈X of p.m.’s on (Ω,F) such that

x 7→ Px (Yt ∈ A) is a Borel function for all Borel sets A ⊂ X and all
t ≥ 0,
with Ft := σ(Ys : s ≤ t) we have

Px [Yt+s ∈ A|Ft ] = PYt [Ys ∈ A]

for all s, t ≥ 0 and A ⊂ X Borel
(’process forgets past, given present’)

Michael Hinz Bielefeld University

Stochastic analysis for Markov processes



Markov processes Stochastic analysis for additive functionals Geometry of rough spaces

Example

d-dim. Brownian motion (Bt )t≥0 (with varying starting points) is a
Markov process with state space Rd .
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Consider suitable volume measure m on X (’speed measure’).

Y is m-symmetric if

Em[f (Yt )g(Y0)] = Em[f (Y0)g(Yt )]

for all t > 0 and bounded Borel f ,g.

Here Pm =
∫

X Px m(dx) and Em expectation w.r.t. Pm.
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There is a probability kernel Pt (x ,dy) such that

Px (Yt ∈ A) =

∫

A
Pt (x ,dy).

By m-symmetry
Pt f (x) := Ex [f (Yt )]

defines a strongly continuous Markovian semigroup (Pt )t≥0 of
symmetric operators on L2(X ,m) with generator

Lf := lim
t→0

1
t

(Pt f − f ), f ∈ dom L.

L non positive definite self-adjoint on L2(X ,m).
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Example

For d-dim. Brownian motion (Bt )t≥0 have

Pt f (x) =

∫

Rd
p(t , x − y)f (y)dy

with

p(t , x) =
1√
2πt

exp
(
−|x |

2

2t

)
,

symmetric on L2(Rd ). Generator is

1
2

∆ =
1
2

∑

i

∂2f
∂x2

i

(Friedrichs extension (1
2∆,H2(Rd )).
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Connect with martingale theory:

Theorem
(Doob, Kakutani, Dynkin)
If f ∈ dom L (and nice) then for q.e. x ∈ X

f (Yt )− f (Y0)−
∫ t

0
(Lf )(Ys)ds

is a Px -martingale (w.r.t. ’natural filtration’).
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Example

If (Bt )t≥0 Brownian motion on Rd and f is C2 then Itô formula holds,

f (Bt )− f (B0)− 1
2

∫ t

0
(∆f )(Bs)ds =

∑

i

∫ t

0

∂f
∂xi

(Bs)dBi
s.

If h harmonic then h(Bt ) forms martingale for any Px .
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Energy and additive functionals

Relax hypotheses by using energy forms. Consider the unique
symmetric positive definite bilinear form (Q,dom Q) on L2(X ,m) such
that

Q(f ,g) := −(Lf ,g)L2(X ,m), f ∈ dom L, g ∈ dom Q.

(Dirichlet form).

Examples

(Bt )t≥0 d-dim Brownian motion, then

Q(f ,g) =
1
2

∫

Rd
∇f∇g dx ,

f ,g ∈ H1(Rd ) % dom ∆ = H2(Rd ).
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Theorem
(Fukushima)
If f ∈ dom Q and nice, then

M [f ]
t = f (Yt )− f (Y0)− N [f ]

t (uniquely)

where (M [f ]
t )t≥0 a continuous ’martingale additive functional’ of Y of

finite energy, and (N [f ]
t )t≥0 an continuous ’additive functional’ of Y of

zero energy.

This is sth. like a semimartingale decomposition.
Problem: family (Px )x∈X of p.m.’s.
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Additive functionals:

Examples

If B Brownian motion on Rd then

At =

∫ t

0
g(Bs)ds

is a continuous additive functional of B, additivity property is
∫ t+s

0
g(Br )dr =

∫ s

0
g(Br )dr +

∫ t

0
g(Br+s)dr a.s.
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Space of continuous AF’s of zero energy (’analytically nice’):

Nc := {N : N finite continuous AF of Y with e(N) = 0
and such that Ex (|Nt |) < +∞ q.e. for each t > 0} ,

where
e(M) = lim

t→0

1
2t

Em(M2
t ).

(’finite quadratic variation part’)
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Space of martingale additive functionals of finite energy
(’probabilistically nice’):

M̊ = {M : M AF of Y with e(M) <∞ such that

for q.e. x ∈ X , Ex (M2
t ) <∞ and Ex (Mt ) = 0, t > 0

}
,

The space (M̊,e) is Hilbert.
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To each M ∈ M̊ assign energy measure µ〈M〉 ... Revuz measure of its
sharp bracket 〈M〉:
For q.e. x ∈ X , M2 − 〈M〉 is a Px -martingale (Doob-Meyer version).

For h ≥ 0 Borel and f ∈ dom Q (nice) have

Ehm

(∫ t

0
f (Ys)d 〈M〉s

)
=

∫ t

0

∫

X
Exh(Ys)f (x) µ〈M〉(dx)ds, t > 0.

(’Fubini with trading strange scaling (time change) between time and
space’)
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Examples

If B is BM on Rd and µ(dx) = g(x)dx then µ is Revuz measure of

At =

∫ t

0
g(Bs)ds.

Examples
If B is BM on R and δy Dirac at y , then up to a constant, δy is the
Revuz measure of Brownian local time L(t , y),

∫ t

0
1E (Bs)ds = 2

∫

E
L(t , y)dy , E ⊂ R Borel.
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Stochastic integrals

For f ∈ L2(X , µ〈M〉) can define the stochastic integral f •M ∈ M̊ of f
with respect to M ∈ M̊ by

e(f •M,N) =
1
2

∫

X
fdµ〈M,N〉, N ∈ M̊.

The integral f •M is an L2-limit of sums
∑

i

f (Yti )(Mti+1 −Mti )

(Itô type). Not known how to use ’general integrands’.
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Example

If B = (B1, . . . ,Bd ) is the d-dim. Brownian motion, seen as Markov
process, then

M̊ =

{
d∑

i=1

fi • Bi : fi ∈ L2(Rd ), i = 1, . . . ,d

}

and

e

(
d∑

i=1

fi • Bi

)
=

1
2

d∑

i=1

‖fi‖2L2(Rd ) .
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Definition
(Motoo/Watanabe, Hino)
The martingale dimension of (Yt )t≥0 is the smallest natural number p
such that there exist M(1), ...,M(p) ∈ M̊ allowing the representation

Mt =

p∑

i=1

(hi •M(i))t , t > 0, Px -a.e. for q.e. x ∈ X ,

with suitable hi ∈ L2(X , µ〈M(i)〉) for every M ∈ M̊. If no such p exists,
we define the martingale dimension to be infinity.
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Examples
Martingale dimension of d-dim. Brownian motion is d .

’Additive functional version of martingale representation’. Exact
relation between the formulations is not yet understood.
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(Bt )t≥0 one dim. Brownian motion on a p. space (Ω,F ,P),
Ft := σ(Bs : 0 ≤ s ≤ t), F∞ := σ

(⋃
t≥0Ft

)
.

Lemma
For all random variables F ∈ L2(Ω,F∞,P) there exists a unique
predictable process H which is in L2 and satisfies

F = EF +

∫ ∞

0
HsdBs P− a.s.

(’space of stochastic integrals is large’).
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Now based on d-dim. Brownian motion (B1, . . . ,Bd ):

Theorem
Let (Mt )t≥0 be an d-dim. L2-integrable (Ft )t≥0-martingale. Then there
are a constant C and predictable processes H i , i = 1, . . . ,d in L2 such
that

Mt = C +
d∑

i=1

∫ t

0
H i

sdBi
s a.s.

Think of d as ’degree of freedom’ for ’heat particle’.
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Geometry of rough spaces

Lungs.

Michael Hinz Bielefeld University

Stochastic analysis for Markov processes



Markov processes Stochastic analysis for additive functionals Geometry of rough spaces

Artificial fern.
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Sponge.
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Menger sponge.
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Refraction patterns in Laser optics.
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Hofstadter Butterfly (energy spectra, magnetic field on square lattice).
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Hofstadter Butterfly observed on Graphene structure.
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Interest:
Geometry, analysis, stochastic processes, math. physics

on rough spaces

(no rectifiability or curvature dimension bounds, ’fractals’)
Study microstructure ... complement homogenization.

Problem:

Classical differentiation unavailable.
Diffusion processes exist and can be used.
Dimension issues (topological, Hausdorff, martingale, ...)

Credo:

’Diffusion does not need smoothness.’
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Some applications / motivations:
Waveguides for optical high frequency signals.
Fractal antennas
’Fractal structuring’: Separating layers between polymer films.
Ultra light weight materials.
Networks at different scales.
’Fractal microcavities’.
Nanotubes.
Geometric learning and pattern recognition.
Space-time scaling in models for quantum gravity.
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Sierpinski carpet

Barlow/Bass ’89 (existence of Brownian motion),
Barlow/Bass/Kumagai/Teplyaev ’10 (uniqueness).
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Honeycomb structure (stable ultra light weight material, US patent).
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Pyramid structure with huge surface.
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Sierpinski gasket SG

Barlow/Perkins ’88, Kigami ’89 (ex. and uniqueness of Brownian
motion).
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dH = log 3
log 2 Hausdorff dimension of SG

dw = log 5
log 2 > 2 walk index,

c1t2/dw ≤ Ex |Yt − Y0|2 ≤ c2t2/dw

(’particle moves slower than normal’)
dS = 2dH/dw < 2 spectral dimension, short time exponent
diffusion is sub-Gaussian, i.e.

p(t , x , y) ∼ ct−ds/2 exp

(
−c

(
dR(x , y)dw

t

)1/(1−dw )
)
.

log-scale fluctuations in on-diagonal behaviour tds/2p(t , x , x)
(Kajino)
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Construct energy functional

E(f ) = ′′
∫
|f ′(x)|2dx ′′

as the (rescaled) limit

E(f ) = lim
n

(
5
3

)n ∑

p,q∈Vn, q∼p

(f (p)− f (q))2

of discrete energy forms on approximating graphs (Kigami ’89, ’93,
Kusuoka ’93)
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Get a space F of functions on SG with finite energy, i.e.

E : F → [0,+∞).

Simultaneously get a (resistance) metric dR on SG so that

F ⊂ C(SG)

(Sobolev embedding theorem).
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Construction is purely combinatorial.

With ’any reasonable’ finite Borel measure µ on SG the pair (E ,F)
becomes a Dirichlet form on L2(SG, µ).

Integration by parts also yields Laplacian (generator) ∆µ for (speed)
measure µ,

E(f ,g) = −
∫

SG
f ∆µg dµ.

(’Second derivative on fractals’)

Fukushima’s theory yields associated diffusion
(’Brownian motion on SG’)
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Analytic counterpart

Recall Pt f (x) = Ex [f (Yt )], where (Yt )t≥0 diffusion on X . Then

Q(f ,g) := lim
t→0

1
2t

(f − Pt f ,g)L2(X ,m).

(Q,dom Q) strongly local regular symmetric Dirichlet form on
L2(X ,m).

The core C := Cc(X ) ∩ dom Q is an algebra.
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On C ⊗ C consider the nonnegative def. symmetric bilinear form

〈a⊗ b, c ⊗ d〉H := Q(bda, c) + Q(a,bdc)−Q(ac,bd).

Factoring out zero seminorm elements yields Hilbert space H of
differential 1-forms / vector fields.

(Mokobodzki, LeJan, Nakao, Lyons/Zhang, Eberle,
Cipriani/Sauvageot, etc.)

Close to algebra and NCG.
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H can be given module structure
the operator ∂ : C → H with

∂f := f ⊗ 1

is a bounded derivation
(∂f is H-class universal derivation / Kähler differential of f ).

Examples

M compact Riemannian manifold, (Yt )t≥0 Brownian motion on M,

Q(f ,g) =

∫

M
〈df ,dg〉T∗M dvol , f ,g ∈ H1(M),

dvol Riemannian volume, d exterior derivative. Then
H = L2(M,dvol ,T ∗M) and ∂ coincides with d .
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Theorem
There are a suitable measure ν and suitable Hilbert spaces Hx such
that H may be written as direct integral,

H =

∫ ⊕

X
Hxν(dx).

The fibers Hx may be regarded as (co)tangent spaces at x to X .

Examples
Manifold case: Hx ∼= TxM for dvol-a.e. x .
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Theorem

The spaces H and M̊ are isometrically isomorphic under
g∂f 7→ g •M [f ].

(Nakao: manifolds, H./Teplyaev/Röckner: fractals)

Theorem
(Hino)
The martingale dimension of (Yt )t≥0 equals ess supx∈X dimHx .

(’maximal degree of freedom for diffusing particle is essentially given
by maximal tangent space dimension’)
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Examples
The (harmonic) Sierpinski gasket has tangent spaces of dimension
one a.e.
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Play with this correspondence:
gradient ∂f ... martingale AF M [f ]

divergence ∂∗v ... Revuz measure (density) of Nakao functional
vector field g∂f ... stochastic integral g •M [f ]

etc.
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Some results

Theorem

Pa,v
t f (x) := Ex [ei

∫
Y ([0,t]) a−

∫ t
0 v(Ys)dsf (Yt )]

with Stratonovich integral
∫

Y ([0,t])
a := Θ(a) +

∫ t

0
(∂∗a)(Ys)ds

is semigroup for magnetic Hamiltonian

Ha,v = −(∂ + ia)∗(∂ + ia) + v .

Θ : H → M̊ Nakao isomorphism.

(’Feynman-Kac-Itô’, H.’14)
Michael Hinz Bielefeld University
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Theorem
Hodge theorem in topo dim one:

′H = Im ∂ ⊕ (locally) harmonic forms′.

(Ionescu/Rogers/Teplyaev ’11, H./Teplyaev ’12)

Theorem

’Harmonic forms give Čech cohomology’

(Ionescu/Rogers/Teplyaev ’11, H./Teplyaev ’12)
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Theorem
’If topo dimension is one (but Hausdorff dim 10 000), Navier-Stokes
system reduces to Euler equation’.

(H./Teplyaev ’12)
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Theorem
If topo dimension is one, then either martingale dimension is one or
exterior derivation is not closable.

(H./Teplyaev ’15) (unprecedented in diff. geo)

MODULUS AND POINCARÉ INEQUALITIES ON CARPETS 3

The validity of a Poincaré inequality in the sense of Definition 1.3 reflects strong connectivity
properties of the underlying space. Roughly speaking, metric measure spaces (X, d, µ) supporting
a Poincaré inequality have the property that any two regions are connected by a rich family of
relatively short curves which are evenly distributed with respect to the background measure µ.
(For a more precise version of this statement, see Theorem 2.1.) The main results of this paper are
a reflection and substantiation of this general principle in the setting of a highly concrete collection
of planar examples.

We now turn to a description of those examples. To each sequence a = (a1, a2, . . .) consisting of
reciprocals of odd integers strictly greater than one we associate a modified Sierpiński carpet Sa

by the following procedure. Let T0 = [0, 1]2 be the unit square and let Sa,0 = T0. Consider the
standard tiling of T0 by essentially disjoint closed congruent subsquares of side length a1. Let T1
denote the family of such subsquares obtained by deleting the central (concentric) subsquare, and
let Sa,1 = ∪{T : T ∈ T1}. Again, let T2 denote the family of essentially disjoint closed congruent
subsquares of each of the elements of T1 with side length a1a2 obtained by deleting the central
(concentric) subsquare from each square in T1, and let Sa,2 = ∪{T : T ∈ T2}. Continuing this
process, we construct a decreasing sequence of compact sets {Sa,m}m≥0 and an associated carpet

Sa :=
⋂

m≥0

Sa,m.

For example, when a = (13 ,
1
3 ,

1
3 , . . .), the set Sa is the classical Sierpiński carpet S1/3 (Figure 1).

For any a, Sa is a compact, connected, locally connected subset of the plane without interior and
with no local cut points. By a standard fact from topology, Sa is homeomorphic to the Sierpiński
carpet S1/3.

For each k ∈ N, we will denote by S1/(2k+1) the self-similar carpet Sa associated to the constant

sequence a = ( 1
2k+1 ,

1
2k+1 ,

1
2k+1 , . . .). For each k, the carpet S1/(2k+1) has Hausdorff dimension equal

to

(1.2) Qk =
log((2k + 1)2 − 1)

log(2k + 1)
=

log(4k2 + 4k)

log(2k + 1)
< 2

and is Ahlfors regular in that dimension.
The starting point for our investigations was the following well-known fact.

Proposition 1.4. For each k, the carpet S1/(2k+1), equipped with Euclidean metric and Hausdorff
measure in its dimension Qk, does not support any Poincaré inequality.

Figure 1. S1/3 Figure 2. S(1/3,1/5,1/7,...)
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THANK YOU.
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