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@ Markov processes: trivia.
@ Stochastic analysis for additive functionals.
© Applications to geometry.
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Markov processes

Markov processes

X locally compact separable metric space.

A stochastic process Y = (Y;)i>0 is Markov process with state space
X if (very loosely speaking !)

there is a family (P¥)xcx of p.m.s on (2, F) such that

@ x — PX(Y; € A) is a Borel function for all Borel sets A ¢ X and all
t>0,

@ with 7; :=o(Ys: s <t)we have
P*[Yiss € AF] =PY[Ys € A

forall s,t > 0and A C X Borel
('process forgets past, given present’)
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d-dim. Brownian motion (B;)~o (with varying starting points) is a
Markov process with state space RY.
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Consider suitable volume measure m on X ('speed measure’).
Y is m-symmetric if
E™[f(Y)a(Yo)] = E™[f(Yo)g(Y?)]
for all t > 0 and bounded Borel f, g.
Here P = [, P* m(dx) and E™ expectation w.r.t. P".
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Geometry of rough

There is a probability kernel P;(x, dy) such that

PX(Yi e A) = /APt(x, ay).

By m-symmetry
Pif(x) := EX[f(Y})]

defines a strongly continuous Markovian semigroup (P;)s>o of
symmetric operators on Ly(X, m) with generator

Lf := lim 1(Ptf— f), fe domlL.
t—0 t

L non positive definite self-adjoint on Lo(X, m).
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For d-dim. Brownian motion (B;);>o have

PI) = [ pltx=p)itn)dy

with

2
1 x|
p(t,X): \/277I'texp _271, )

symmetric on Ly(RY). Generator is
1 1 O2f
22722 52

(Friedrichs extension (34, H3(RY)).

v
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Connect with martingale theory:

(Doob, Kakutani, Dynkin)
If f € dom L (and nice) then for g.e. x € X

t
F(Ye) — f(Yo) - /0 (LF)(Ye)ds

is a PX-martingale (w.r.t. ‘natural filtration’).
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If (Bt)t>0 Brownian motion on R? and f is C? then It6 formula holds,

180~ 1(B0) 3 [ (aN(Bo)a =3 | o 82y,

If h harmonic then h(B;) forms martingale for any P*.
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Energy and additive functionals

Relax hypotheses by using energy forms. Consider the unique
symmetric positive definite bilinear form (Q, dom Q) on Ly(X, m) such
that

Q(f,g9) == —(Lf,g),(x,m), fe€domL, gedomQ.

(Dirichlet form).

Examples

(Bt)t=0 d-dim Brownian motion, then

1
alt.g) = /Rd VIVg dx,

f.g € H'(RY) 2 dom A = H3(R?).

v
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Theorem

(Fukushima)
If f € dom Q and nice, then

MM = £(vy) — £(Yo) — NI (uniquely)

where ( M}f ]) >0 @ continuous ‘martingale additive functional’ of Y of

finite energy, and (Nt[f])tzo an continuous ‘additive functional’ of Y of
zero energy.

This is sth. like a semimartingale decomposition.
Problem: family (P¥),cx of p.m.s.
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Geometry of rough

Additive functionals:

If B Brownian motion on RY then

t
A — /0 9(Bs)ds

is a continuous additive functional of B, additivity property is

t+s

s t
g(B,)dr:/ g(B,)dr+/ 9(Brys)dr a.s.
0 0
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Space of continuous AF’s of zero energy (‘analytically nice’):

N := {N: N finite continuous AF of Y with e(N) =0
and such that Ex(|N;|) < +o0 g.e. for each t > 0},

where

_ i N omopg2
e(M) = lim - E"(M?).

('finite quadratic variation part’)
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Space of martingale additive functionals of finite energy
('probabilistically nice’):

M = {M : M AF of Y with e(M) < oo such that
for g.e. x € X, EX(M?) < o0 and EX(M;) = 0, t > o} ,

The space (M, e) is Hilbert.
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To each M € M assign energy measure tmy -~ Revuz measure of its
sharp bracket (M):

For g.e. x € X, M?> — (M) is a PX-martingale (Doob-Meyer version).
For h > 0 Borel and f € dom Q (nice) have

Epm (/Otf(Ys)d<M>s> :/Ot/XIEXh(YS)f(x) o (x)ds, t> 0.

('Fubini with trading strange scaling (time change) between time and
space’)
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If Bis BM on R and p(dx) = g(x)dx then . is Revuz measure of

t
A= /0 9(Bs)ds.

If Bis BM on R and 4, Dirac at y, then up to a constant, ¢, is the
Revuz measure of Brownian local time L(t, y),

t
/ 1E(Bs)ds:2/ L(t,y)dy, E C R Borel.
0 E
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Stochastic integrals

For f € Lo(X, umy) can define the stochastic integral f e M € Mof f
with respect to M € M by

e(f o M, N) = /famM,\,> N e M.

The integral f ¢ M is an Lo-limit of sums

DY) (Mg, — My)
i
(I1t6 type). Not known how to use ’general integrands’.
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If B=(B',...,B% is the d-dim. Brownian motion, seen as Markov
process, then

d
M=3>"fieB :fic [p(RY),i=1,....d
i=1

and

d d
; 1
e g feB | = > E ||fiH%2(Rd).
i=1 i=1
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(Motoo/Watanabe, Hino)
The martingale dimension of (Y}):>o is the smallest natural number p
such that there exist M(V)_ ..., M(P) ¢ M allowing the representation

p
M, = Z(h,- e M), t>0, P-ae.forge. x € X,

i=1

with suitable h; € Ly(X, N(M(n)) for every M e M. If no such p exists,
we define the martingale dimension to be infinity.
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Martingale dimension of d-dim. Brownian motion is d.

’Additive functional version of martingale representation’. Exact
relation between the formulations is not yet understood.
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(Bt)t=0 one dim. Brownian motion on a p. space (2, F, P),
Fii=0(Bs:0<s<1t), Fooi=0 (U,ZO .7-}).

For all random variables F € L,(Q, F,P) there exists a unique
predictable process H which is in L, and satisfies

F:EF+/ HsdBs P — a.s.
0

('space of stochastic integrals is large’).
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Now based on d-dim. Brownian motion (B',..., BY):

Theorem
Let (Mt)t>0 be an d-dim. Lp-integrable (Ft)t>o-martingale. Then there
are a constant C and predictable processes H', i =1,...,d in L, such
that

d t . .
M; = C+Z/O H.dB. a.s.
i=1

Think of d as 'degree of freedom’ for ’heat particle’.
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Artificial fern.
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Sponge.
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Menger sponge.
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Refraction patterns in Laser optics.
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Hofstadter Butterfly observed on Graphene structure.
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Interest:
Geometry, analysis, stochastic processes, math. physics

on rough spaces

(no rectifiability or curvature dimension bounds, ‘fractals’)
@ Study microstructure ... complement homogenization.
Problem:

@ Classical differentiation unavailable.
@ Diffusion processes exist and can be used.
@ Dimension issues (topological, Hausdorff, martingale, ...)

Credo:

@ ’'Diffusion does not need smoothness.
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Some applications / motivations:
@ Waveguides for optical high frequency signals.
@ Fractal antennas
@ ’'Fractal structuring’: Separating layers between polymer films.
@ Ultra light weight materials.
@ Networks at different scales.
@ ’Fractal microcavities’.
@ Nanotubes.
@ Geometric learning and pattern recognition.
@ Space-time scaling in models for quantum gravity.
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Sierpinski carpet

Barlow/Bass '89 (existence of Brownian motion),
Barlow/Bass/Kumagai/Teplyaev 10 (uniqueness).
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Honeycomb structure (stable ultra light weight material, US patent).
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Pyramid structure with huge surface.
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Sierpinski gasket SG

2.£J> 441“{

&ﬁﬁé&?&xﬁ&

Andh  Aadh A A

AhindbAndndhindd

Barlow/Perkins '88, Kigami ‘89 (ex. and uniqueness of Brownian
motion).
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° dy= :g%g Hausdorff dimension of SG
@ dy = 95 - 2 walk index,

~ Tog2
Cq tz/dw < EX‘ Y: — Y0’2 < Cgtz/dw
('particle moves slower than normal’)

@ ds = 2dy/dw < 2 spectral dimension, short time exponent
@ diffusion is sub-Gaussian, i.e.

dr(x.y)% )
)

p(t,x,y) ~ct™%2exp | —c (

@ log-scale fluctuations in on-diagonal behaviour t%/2p(t, x, x)
(Kajino)
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Construct energy functional

5(f) — ”/‘f’(X)|2dX "

as the (rescaled) limit

en=im(3) X (o)~ fa)

P,q€Va, g~p

of discrete energy forms on approximating graphs (Kigami ‘89, '93,
Kusuoka '93)
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Get a space F of functions on SG with finite energy, i.e.
E:F —[0,+00).
Simultaneously get a (resistance) metric dr on SG so that
F C C(SG)

(Sobolev embedding theorem).
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Construction is purely combinatorial.

With "any reasonable’ finite Borel measure p on SG the pair (£, F)
becomes a Dirichlet form on Ly(SG, p).

Integration by parts also yields Laplacian (generator) A, for (speed)
measure p,

E(f,g) = / fA,g dpu.

('Second derivative on fractals’)

Fukushima’s theory yields associated diffusion
('Brownian motion on SG’)
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Analytic counterpart

Recall Pf(x) = EX[f(Y})], where (Y}):>o diffusion on X. Then

Q(f,g) := lim

’
m 27(7‘ — Ptf, @)1, (x,m)-

(Q, dom Q) strongly local regular symmetric Dirichlet form on
LQ(X, m)
The core C := C¢(X) N dom Q is an algebra.
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On C ® C consider the nonnegative def. symmetric bilinear form
(a® b, c® d),, = Q(bda,c) + Q(a, bdc) — Q(ac, bd).
Factoring out zero seminorm elements yields Hilbert space H of

differential 1-forms / vector fields.

(Mokobodzki, LeJan, Nakao, Lyons/Zhang, Eberle,
Cipriani/Sauvageot, etc.)

Close to algebra and NCG.
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@ 7 can be given module structure
@ the operator 0 : C — H with

of =f®1

is a bounded derivation
(Of is H-class universal derivation / Kahler differential of f).

M compact Riemannian manifold, (Y});>o Brownian motion on M,

Qf.9) = [ (d.dg)r.udvol, f.g < H'(M)
M

dvol Riemannian volume, d exterior derivative. Then
H = Ly(M, dvol, T*M) and 0 coincides with d.

v
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There are a suitable measure v and suitable Hilbert spaces Hy such
that H may be written as direct integral,

H = /X@ Hyw(dx).

The fibers Hx may be regarded as (co)tangent spaces at x to X.

Manifold case: H, = T, M for dvol-a.e. x.
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The spaces H and M are isometrically isomorphic under
gof — g e MU,

(Nakao: manifolds, H./Teplyaev/Réckner: fractals)

(Hino)
The martingale dimension of (Yt)i>o equals ess sup,x dim Hy.

('maximal degree of freedom for diffusing particle is essentially given
by maximal tangent space dimension’)
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The (harmonic) Sierpinski gasket has tangent spaces of dimension
one a.e.
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Play with this correspondence:
@ gradient 9f ... martingale AF Ml
@ divergence 9*v ... Revuz measure (density) of Nakao functional
@ vector field gof ... stochastic integral g e M!/]

etc.
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Some results

PAVH(x) = Ex[e' Mo @l (Y995 y )
with Stratonovich integral

t
/ a:= e(a)+/ (9°a)(Ys)ds
Y([0,1]) 0

is semigroup for magnetic Hamiltonian

H#V = —(0 + ia)*(0 + ia) + v.

© : H — M Nakao isomorphism.

(Feynman-Kac-It6’, H.14)
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Hodge theorem in topo dim one:

'"H = Im 0 @ (locally) harmonic forms'.

(lonescu/Rogers/Teplyaev 11, H./Teplyaev '12)

"Harmonic forms give Cech cohomology’

(lonescu/Rogers/Teplyaev 11, H./Teplyaev '12)
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’If topo dimension is one (but Hausdorff dim 10 000), Navier-Stokes
system reduces to Euler equation’.

(H./Teplyaev '12)
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If topo dimension is one, then either martingale dimension is one or
exterior derivation is not closable.

(H./Teplyaev ’15) (unprecedented in diff. geo)

FIGURE 1. S} FIGURE 2. S(1/3,1/5,1/7,...)
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THANK YOU.
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