Stochastic analysis for Markov processes

Michael Hinz

Bielefeld University

Colloquium Stochastic Analysis, Leibniz University Hannover Jan. 29, 2015

Michael Hinz

Bielefeld University

Markov processes: trivia.

- 2 Stochastic analysis for additive functionals.
- Output Applications to geometry.

Michael Hinz

Markov processes

X locally compact separable metric space.

A stochastic process $Y = (Y_t)_{t \ge 0}$ is *Markov process* with state space X if (very loosely speaking !)

there is a family $(\mathbb{P}^x)_{x \in X}$ of p.m.'s on (Ω, \mathcal{F}) such that

- $x \mapsto \mathbb{P}^{x}(Y_{t} \in A)$ is a Borel function for all Borel sets $A \subset X$ and all $t \ge 0$,
- with $\mathcal{F}_t := \sigma(Y_s : s \le t)$ we have

$$\mathbb{P}^{\mathsf{x}}\left[\mathsf{Y}_{t+s} \in \mathsf{A}|\mathcal{F}_{t}\right] = \mathbb{P}^{\mathsf{Y}_{t}}\left[\mathsf{Y}_{s} \in \mathsf{A}\right]$$

for all $s, t \ge 0$ and $A \subset X$ Borel ('process forgets past, given present')

Michael Hinz

Bielefeld University

Example

d-dim. Brownian motion $(B_t)_{t\geq 0}$ (with varying starting points) is a Markov process with state space \mathbb{R}^d .

Michael Hinz

Bielefeld University

Consider suitable volume measure m on X ('speed measure'). Y is *m*-symmetric if

$$\mathbb{E}^m[f(Y_t)g(Y_0)] = \mathbb{E}^m[f(Y_0)g(Y_t)]$$

for all t > 0 and bounded Borel f, g. Here $\mathbb{P}^m = \int_X \mathbb{P}^x m(dx)$ and \mathbb{E}^m expectation w.r.t. \mathbb{P}^m .

Michael Hinz

Bielefeld University

There is a probability kernel $P_t(x, dy)$ such that

$$\mathbb{P}^{x}(Y_{t}\in A)=\int_{A}P_{t}(x,dy).$$

By *m*-symmetry

$$P_t f(x) := \mathbb{E}^x [f(Y_t)]$$

defines a strongly continuous *Markovian semigroup* $(P_t)_{t\geq 0}$ of symmetric operators on $L_2(X, m)$ with *generator*

$$Lf := \lim_{t\to 0} \frac{1}{t} (P_t f - f), \ f \in dom L.$$

L non positive definite self-adjoint on $L_2(X, m)$.

Michael Hinz

Bielefeld University

Example

For *d*-dim. Brownian motion $(B_t)_{t\geq 0}$ have

$$P_t f(x) = \int_{\mathbb{R}^d} p(t, x - y) f(y) dy$$

with

$$p(t,x) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{|x|^2}{2t}\right),$$

symmetric on $L_2(\mathbb{R}^d)$. Generator is

$$\frac{1}{2}\Delta = \frac{1}{2}\sum_{i}\frac{\partial^{2}f}{\partial x_{i}^{2}}$$

(Friedrichs extension $(\frac{1}{2}\Delta, H^2(\mathbb{R}^d))$).

Michael Hinz

Bielefeld University

Connect with martingale theory:

Theorem

(Doob, Kakutani, Dynkin) If $f \in \text{dom } L$ (and nice) then for q.e. $x \in X$

$$f(Y_t) - f(Y_0) - \int_0^t (Lf)(Y_s) ds$$

is a \mathbb{P}^{x} -martingale (w.r.t. 'natural filtration').

Michael Hinz

Bielefeld University

Example

If $(B_t)_{t\geq 0}$ Brownian motion on \mathbb{R}^d and f is C^2 then Itô formula holds,

$$f(B_t) - f(B_0) - rac{1}{2}\int_0^t (\Delta f)(B_s)ds = \sum_i \int_0^t rac{\partial f}{\partial x_i}(B_s)dB_s^i.$$

If *h* harmonic then $h(B_t)$ forms martingale for any \mathbb{P}^x .

Michael Hinz

Bielefeld University

Energy and additive functionals

Relax hypotheses by using *energy forms*. Consider the unique symmetric positive definite bilinear form (Q, dom Q) on $L_2(X, m)$ such that

$$Q(f,g) := -(Lf,g)_{L_2(X,m)}, \ f \in dom L, \ g \in dom Q$$

(Dirichlet form).

Examples

 $(B_t)_{t\geq 0}$ *d*-dim Brownian motion, then

$$Q(f,g)=\frac{1}{2}\int_{\mathbb{R}^d}\nabla f\nabla g\,dx,$$

 $f,g\in H^1(\mathbb{R}^d) \supsetneq = dom \, \Delta = H^2(\mathbb{R}^d).$

Michael Hinz

Bielefeld University

(Fukushima) If $f \in \text{dom } Q$ and nice, then

$$M_t^{[f]} = f(Y_t) - f(Y_0) - N_t^{[f]}$$
 (uniquely)

where $(M_t^{[f]})_{t\geq 0}$ a continuous 'martingale additive functional' of Y of finite energy, and $(N_t^{[f]})_{t\geq 0}$ an continuous 'additive functional' of Y of zero energy.

This is sth. like a semimartingale decomposition. Problem: family $(\mathbb{P}^{x})_{x \in X}$ of p.m.'s.

Michael Hinz

Additive functionals:

Examples

If *B* Brownian motion on \mathbb{R}^d then

$$m{A}_t = \int_0^t g(m{B}_s) ds$$

is a continuous additive functional of B, additivity property is

$$\int_{0}^{t+s} g(B_r) dr = \int_{0}^{s} g(B_r) dr + \int_{0}^{t} g(B_{r+s}) dr$$
 a.s.

Michael Hinz

Bielefeld University

Space of continuous AF's of zero energy ('analytically nice'):

 $\mathcal{N}_c := \{ N : N \text{ finite continuous AF of } Y \text{ with } \mathbf{e}(N) = 0$ and such that $\mathbb{E}_x(|N_t|) < +\infty$ q.e. for each $t > 0 \}$,

where

$$\mathbf{e}(M) = \lim_{t\to 0} \frac{1}{2t} \mathbb{E}^m(M_t^2).$$

('finite quadratic variation part')

Michael Hinz

Bielefeld University

Space of martingale additive functionals of finite energy ('probabilistically nice'):

 $\overset{\,\,{}_{\scriptstyle{\mathcal{M}}}}{\overset{\,\,{}_{\scriptstyle{\mathcal{M}}}}{=}} \left\{ M : M \text{ AF of } Y \text{ with } \mathbf{e}(M) < \infty \text{ such that} \\ \text{ for q.e. } x \in X, \, \mathbb{E}^{x}(M_{t}^{2}) < \infty \text{ and } \mathbb{E}^{x}(M_{t}) = 0, \, t > 0 \right\},$

The space $(\mathcal{M}, \mathbf{e})$ is Hilbert.

Michael Hinz

Bielefeld University

To each $M \in \mathring{M}$ assign *energy measure* $\mu_{\langle M \rangle}$... *Revuz measure* of its sharp bracket $\langle M \rangle$:

For q.e. $x \in X$, $M^2 - \langle M \rangle$ is a \mathbb{P}^x -martingale (*Doob-Meyer version*).

For $h \ge 0$ Borel and $f \in dom Q$ (nice) have

$$\mathbb{E}_{hm}\left(\int_0^t f(Y_s) d\langle M \rangle_s\right) = \int_0^t \int_X \mathbb{E}_x h(Y_s) f(x) \mu_{\langle M \rangle}(dx) ds, \ t > 0.$$

('Fubini with trading strange scaling (time change) between time and space')

Examples

If *B* is BM on \mathbb{R}^d and $\mu(dx) = g(x)dx$ then μ is Revuz measure of

$$A_t = \int_0^t g(B_s) ds.$$

Examples

If *B* is BM on \mathbb{R} and δ_y Dirac at *y*, then up to a constant, δ_y is the Revuz measure of Brownian local time L(t, y),

$$\int_0^t \mathbf{1}_E(B_s) ds = 2 \int_E L(t,y) dy, \;\; E \subset \mathbb{R} \; ext{Borel}.$$

Michael Hinz

Bielefeld University

Stochastic integrals

For $f \in L_2(X, \mu_{\langle M \rangle})$ can define the *stochastic integral* $f \bullet M \in \mathring{\mathcal{M}}$ of f with respect to $M \in \mathring{\mathcal{M}}$ by

$$\mathbf{e}(f \bullet M, N) = \frac{1}{2} \int_X f d\mu_{\langle M, N \rangle}, \ N \in \mathring{\mathcal{M}}.$$

The integral $f \bullet M$ is an L_2 -limit of sums

$$\sum_i f(Y_{t_i})(M_{t_{i+1}}-M_{t_i})$$

(Itô type). Not known how to use 'general integrands'.

1.	haal	I Down
VIIC	naei	HINZ

Bielefeld University

Example

If $B = (B^1, \dots, B^d)$ is the *d*-dim. Brownian motion, seen as Markov process, then

$$\mathring{\mathcal{M}} = \left\{ \sum_{i=1}^{d} f_i \bullet B^i : f_i \in L_2(\mathbb{R}^d), i = 1, \dots, d \right\}$$

and

$$\mathbf{e}\left(\sum_{i=1}^d f_i \bullet B^i\right) = \frac{1}{2}\sum_{i=1}^d \|f_i\|_{L_2(\mathbb{R}^d)}^2.$$

Michael Hinz

Bielefeld University

Definition

(Motoo/Watanabe, Hino)

The martingale dimension of $(Y_t)_{t\geq 0}$ is the smallest natural number p such that there exist $M^{(1)}, ..., M^{(p)} \in \mathcal{M}$ allowing the representation

$$M_t = \sum_{i=1}^{p} (h_i \bullet M^{(i)})_t, \quad t > 0, \mathbb{P}^x$$
-a.e. for q.e. $x \in X$,

with suitable $h_i \in L_2(X, \mu_{\langle M^{(i)} \rangle})$ for every $M \in \mathcal{M}$. If no such *p* exists, we define the martingale dimension to be infinity.

Michael Hinz

Examples

Martingale dimension of *d*-dim. Brownian motion is *d*.

'Additive functional version of martingale representation'. Exact relation between the formulations is not yet understood.

Michael Hinz

Bielefeld University

 $(B_t)_{t\geq 0}$ one dim. Brownian motion on a p. space $(\Omega, \mathcal{F}, \mathbb{P})$, $\mathcal{F}_t := \sigma(B_s : 0 \leq s \leq t), \ \mathcal{F}_\infty := \sigma\left(\bigcup_{t\geq 0} \mathcal{F}_t\right).$

Lemma

For all random variables $F \in L_2(\Omega, \mathcal{F}_{\infty}, \mathbb{P})$ there exists a unique predictable process H which is in L_2 and satisfies

$$F = \mathbb{E}F + \int_0^\infty H_s dB_s \mathbb{P} - a.s.$$

('space of stochastic integrals is large').

Michael Hinz

Bielefeld University

Now based on *d*-dim. Brownian motion (B^1, \ldots, B^d) :

Theorem

Let $(M_t)_{t\geq 0}$ be an d-dim. L₂-integrable $(\mathcal{F}_t)_{t\geq 0}$ -martingale. Then there are a constant *C* and predictable processes H^i , i = 1, ..., d in L₂ such that

$$M_t = C + \sum_{i=1}^a \int_0^t H_s^i dB_s^i \quad a.s.$$

Think of *d* as 'degree of freedom' for 'heat particle'.

Michael Hinz

Bielefeld University

Geometry of rough spaces

Lungs.

Michael Hinz

Bielefeld University

Artificial fern.

Michael Hinz

Bielefeld University

Sponge.

Michael Hinz

Bielefeld University

Menger sponge.

Michael Hinz

Bielefeld University

Fractal Laser Modes

Refraction patterns in Laser optics.

Michael Hinz

Bielefeld University

Hofstadter Butterfly (energy spectra, magnetic field on square lattice).

Michael Hinz

Bielefeld University

Hofstadter Butterfly observed on Graphene structure.

Michael Hinz

Bielefeld University

Interest:

Geometry, analysis, stochastic processes, math. physics

on rough spaces

(no rectifiability or curvature dimension bounds, 'fractals')

• Study microstructure ... complement homogenization.

Problem:

- Classical differentiation unavailable.
- Diffusion processes exist and can be used.
- Dimension issues (topological, Hausdorff, martingale, ...)

Credo:

• 'Diffusion does not need smoothness.'

Some applications / motivations:

- Waveguides for optical high frequency signals.
- Fractal antennas
- 'Fractal structuring': Separating layers between polymer films.
- Ultra light weight materials.
- Networks at different scales.
- 'Fractal microcavities'.
- Nanotubes.
- Geometric learning and pattern recognition.
- Space-time scaling in models for quantum gravity.

Sierpinski carpet

Barlow/Bass '89 (existence of Brownian motion), Barlow/Bass/Kumagai/Teplyaev '10 (uniqueness).

Michael Hinz

Bielefeld University

Honeycomb structure (stable ultra light weight material, US patent).

Michael Hinz

Bielefeld University

Pyramid structure with huge surface.

Michael Hinz

Bielefeld University

Sierpinski gasket SG

Barlow/Perkins '88, Kigami '89 (ex. and uniqueness of Brownian motion).

Michael Hinz

Bielefeld University

•
$$d_H = \frac{\log 3}{\log 2}$$
 Hausdorff dimension of SG

•
$$d_w = \frac{\log 5}{\log 2} > 2$$
 walk index,

$$c_1 t^{2/d_w} \leq \mathbb{E}^x |Y_t - Y_0|^2 \leq c_2 t^{2/d_w}$$

('particle moves slower than normal')

- $d_S = 2d_H/d_w < 2$ spectral dimension, short time exponent
- diffusion is sub-Gaussian, i.e.

$$p(t, x, y) \sim ct^{-d_s/2} \exp\left(-c \left(\frac{d_R(x, y)^{d_w}}{t}\right)^{1/(1-d_w)}\right)$$

• log-scale fluctuations in on-diagonal behaviour $t^{d_s/2}p(t, x, x)$ (*Kajino*)

Michael Hinz

Bielefeld University

Construct energy functional

$$\mathcal{E}(f) = \ '' \int |f'(x)|^2 dx \ ''$$

as the (rescaled) limit

$$\mathcal{E}(f) = \lim_{n} \left(\frac{5}{3}\right)^{n} \sum_{p,q \in V_n, q \sim p} (f(p) - f(q))^2$$

of discrete energy forms on approximating graphs (*Kigami '89, '93, Kusuoka '93*)

Michael Hinz

Bielefeld University

Michael Hinz

Bielefeld University

Get a space \mathcal{F} of functions on SG with finite energy, i.e.

$$\mathcal{E}: \mathcal{F} \to [0, +\infty).$$

Simultaneously get a (resistance) metric d_R on SG so that

 $\mathcal{F} \subset \mathcal{C}(SG)$

(Sobolev embedding theorem).

Michael Hinz

Construction is purely combinatorial.

With 'any reasonable' finite Borel measure μ on *SG* the pair (\mathcal{E}, \mathcal{F}) becomes a *Dirichlet form* on $L_2(SG, \mu)$.

Integration by parts also yields Laplacian (generator) Δ_{μ} for (speed) measure μ ,

$$\mathcal{E}(f,g) = -\int_{\mathcal{S}G} f \Delta_{\mu} g \, d\mu.$$

('Second derivative on fractals')

Fukushima's theory yields associated diffusion ('Brownian motion on SG')

Michael Hinz

Bielefeld University

Analytic counterpart

Recall $P_t f(x) = \mathbb{E}^x [f(Y_t)]$, where $(Y_t)_{t \ge 0}$ diffusion on X. Then

$$Q(f,g):=\lim_{t\to 0}\frac{1}{2t}(f-P_tf,g)_{L_2(X,m)}.$$

(Q, dom Q) strongly local regular symmetric Dirichlet form on $L_2(X, m)$.

The core $C := C_c(X) \cap dom Q$ is an algebra.

Michael Hinz

On $\mathcal{C}\otimes\mathcal{C}$ consider the nonnegative def. symmetric bilinear form

 $\langle a \otimes b, c \otimes d \rangle_{\mathcal{H}} := Q(bda, c) + Q(a, bdc) - Q(ac, bd).$

Factoring out zero seminorm elements yields *Hilbert space* \mathcal{H} *of differential* 1-*forms / vector fields*.

(Mokobodzki, LeJan, Nakao, Lyons/Zhang, Eberle, Cipriani/Sauvageot, etc.)

Close to algebra and NCG.

Michael Hinz

- \mathcal{H} can be given module structure
- the operator $\partial : \mathcal{C} \to \mathcal{H}$ with

$$\partial f := f \otimes \mathbf{1}$$

is a bounded derivation $(\partial f \text{ is } \mathcal{H}\text{-class universal derivation } / Kähler differential of f).$

Examples

M compact Riemannian manifold, $(Y_t)_{t\geq 0}$ Brownian motion on *M*,

$$Q(f,g) = \int_M \langle df, dg
angle_{T^*M} dvol, f, g \in H^1(M),$$

dvol Riemannian volume, *d* exterior derivative. Then $\mathcal{H} = L_2(M, dvol, T^*M)$ and ∂ coincides with *d*.

Michael Hinz

Bielefeld University

There are a suitable measure ν and suitable Hilbert spaces \mathcal{H}_x such that \mathcal{H} may be written as direct integral,

$$\mathcal{H}=\int_X^\oplus \mathcal{H}_x\nu(dx).$$

The fibers \mathcal{H}_x may be regarded as (co)tangent spaces at *x* to *X*.

Examples

Manifold case: $\mathcal{H}_x \cong T_x M$ for *dvol*-a.e. *x*.

Michael Hinz

Bielefeld University

The spaces \mathcal{H} and $\mathring{\mathcal{M}}$ are isometrically isomorphic under $g\partial f \mapsto g \bullet M^{[f]}$.

(Nakao: manifolds, H./Teplyaev/Röckner: fractals)

Theorem

(Hino)

The martingale dimension of $(Y_t)_{t\geq 0}$ equals ess $\sup_{x\in X} \dim \mathcal{H}_x$.

('maximal degree of freedom for diffusing particle is essentially given by maximal tangent space dimension')

Michael Hinz

Bielefeld University

Examples

The (harmonic) Sierpinski gasket has tangent spaces of dimension one a.e.

Michael Hinz

Bielefeld University

Play with this correspondence:

- gradient ∂f ... martingale AF $M^{[f]}$
- divergence $\partial^* v$... Revuz measure (density) of Nakao functional
- vector field $g\partial f$... stochastic integral $g \bullet M^{[f]}$

etc.

Some results

Theorem

$$P_t^{a,v}f(x) := \mathbb{E}_x[e^{i\int_{Y([0,t])}a - \int_0^t v(Y_s)ds}f(Y_t)]$$

with Stratonovich integral

$$\int_{Y([0,t])} a := \Theta(a) + \int_0^t (\partial^* a)(Y_s) ds$$

is semigroup for magnetic Hamiltonian

$$H^{a,v} = -(\partial + ia)^*(\partial + ia) + v.$$

 $\Theta: \mathcal{H} \rightarrow \mathring{\mathcal{M}}$ Nakao isomorphism.

('Feynman-Kac-Itô', H.'14)

Michael Hinz

Stochastic analysis for Markov processes

Bielefeld University

```
Hodge theorem in topo dim one:
```

 ${}^{\prime}\mathcal{H} = \text{Im } \partial \oplus (\text{locally}) \text{ harmonic forms}'.$

(Ionescu/Rogers/Teplyaev '11, H./Teplyaev '12)

Theorem

'Harmonic forms give Čech cohomology'

(Ionescu/Rogers/Teplyaev '11, H./Teplyaev '12)

Michael Hinz

Bielefeld University

'If topo dimension is one (but Hausdorff dim 10 000), Navier-Stokes system reduces to Euler equation'.

(H./Teplyaev '12)

Michael Hinz

Bielefeld University

If topo dimension is one, then either martingale dimension is one or exterior derivation is not closable.

(H./Teplyaev '15) (unprecedented in diff. geo)

FIGURE 1. $S_{1/3}$

Michael Hinz

FIGURE 2. $S_{(1/3,1/5,1/7,...)}$

Bielefeld University

THANK YOU.

Michael Hinz

Bielefeld University