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Model risk

I Model risk is a recurrent theme in Economics and Finance.

I It broadly refers to the (bad) impact the choice of a wrong
model can have.

I It is difficult to define or measure. Also, it is questionable what
the correct model is (and whether it exists)

I It certainly affects areas such as portfolio choice, pricing,
hedging and measurement of risk

I A distinction should be made between model (or
misspecification) risk and estimation risk.

I In general, two broad approaches have been pursued: model
averaging (Bayesian or not) and worst-case approach.

G.Scandolo Assessing financial model risk 4 / 48



Model risk
I Model risk has a strong impact when assessing the risk of a

portfolio.

I Several model assumptions affect the final VaR (or ES) figure
I Volatilities
I Other marginal distributions
I Correlations
I Other joint distributions (copulae)
I Pricing models for derivatives and choice of the relevant

factors

I Worst-case risk measures under different sets of models
(incomplete information) have been intensively studied, also in
connection with robust portfolio optimization. See Ghaoui, Oks
and Oustry (2003) among many others.

I Kerkhof, Melenberg and Schuhmacher (2010) introduce a
measure of model risk which is based on the worst-case risk
figure. It is different from what we propose here.
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A motivation: the Basel multiplier
I Within the Basel framework, financial institutions are allowed

to use internal models to assess the capital requirement due to
market risk.

I The term that measures risk in usual conditions is given by:

CC = max

{
VaR(0),

λ

60

60∑
i=1

VaR(−i)

}
,

where
I VaR(0) is the portfolio’s Value-at-Risk (order 1% and 10-day

horizon) computed/estimated today
I VaR(−i) is the VaR we obtained i days ago
I λ is the multiplier

I Remind:

VaRα(X ) = −F−1
X (α) if FX is invertible

= − inf{x : FX (x) > α} more in general
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A motivation: the Basel multiplier

I Remind
CC = max{VaR0, λVaR}

(VaR average of the last 60 VaR’s)

I The multiplier (λ) is assigned to each institution by the
regulator

I It depends on back-testing performances of the system (poor
performance yields higher λ) and it is revised on a periodical
basis

I It is in the interval [3, 4]

I As λ > 3, it is apparent that in normal conditions the second
term is the leading one in the maximum giving the capital
charge CC
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A motivation: the Basel multiplier
I Stahl (1997) offered a simple theoretical justification for λ to be

in the range [3, 4]

I Let X be the portfolio Profits-and-Losses (r.v.) due to market
risk.

I As the time-horizon is short, we can assume E [X ] = 0. From
Chebishev inequality:

P(X 6 −q) 6 P(|X | > q) 6
σ2

q2 , q > 0.

I It immediately follows

VaRα(X ) 6
σ√
α

I The r.h.s. provides an upper bound for the VaR of a r.v. having
mean 0 and variance σ2
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A motivation: the Basel multiplier
I This bound can be compared with the VaR we obtain under the

normal hypothesis (α < 0.5)

VaRα(X ) = σ|zα| (zα = Φ−1(α))

I Here are the two VaRs (normal: black, upper bound: red, σ = 1)
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A motivation: the Basel multiplier

I Here is the ratio (upper bound/normal)
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A Chebishev bound for the Expected Shortfall

I The Chebishev inequality can be used to obtain an upper
bound for the Expected Shortfall

ESα(X ) =
1
α

∫ α

0
VaRu(X ) du

under E [X ] = 0 and σ(X ) = σ.

I Integrating we have

ESα(X ) 6
1
α

∫ α

0

σ√
u

du =
2σ√
α
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A Chebishev bound for the Expected Shortfall
I Under the normal hypothesis for X we have

ESα(X ) =
σϕ(zα)

α

where ϕ is the density of a standard normal.

I Here are the two ESs (normal: black, upper bound: red, σ = 1)
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A Chebishev bound for the Expected Shortfall

I Here is the ratio (upper bound/normal)
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Cantelli upper bounds

I Even though Chebishev inequalities are sharp, the upper
bounds on VaR and ES are not.

I A single-tail sharp inequality is the Cantelli’s one:

P(X 6 −q) 6
σ2

σ2 + q2 (q < 0)

I It follows a sharp bound for VaR

VaRα(X ) 6 σ

√
1− α
α

and a slightly improved (but still not sharp) bound for ES

ESα(X ) 6 σ

(√
1− α
α

+
1
α

arctan

√
1− α
α

)
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An absolute measure of model risk: definition

I We want to generalize the notion of multiplier as the ratio
between the worst-case risk and the risk computed under a
reference model.

I So, we need to consider:
I a risk measure

I a reference model

I a set of alternative models
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An absolute measure of model risk: definition

I A risk measure ρ is given, defined on some set of random
variables.

I We assume ρ is
I law-invariant, i.e. ρ(X ) = ρ(Y ) whenever X ∼ Y

I positive homogeneous: ρ(aX ) = aρ(X ) for any a > 0

I translation invariant: ρ(X + b) = ρ(X )− b for any b ∈ R

I Both VaR and ES satisfy these properties (but also spectral and
other r.m.)
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An absolute measure of model risk: definition

I Let X0 be a reference r.v. Assume ρ(X0) > 0.

I By law-invariance, what really matters is the distribution of X0.

I Let L be a set of alternative r.v.’s, with X0 ∈ L.

I Define
ρ(L) = inf

X∈L
ρ(X ), ρ(L) = sup

X∈L
ρ(X )

and assume they are finite.
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An absolute measure of model risk: definition

I The absolute measure of model risk is defined as

AM = AM (ρ,X0,L) =
ρ(L)

ρ(X0)
− 1.

I AM > 0 with equality if and only if X0 has already a worst-case
distribution, i.e. ρ(X0) = ρ(L)

I We see that AM + 1 can be interpreted as a generalized
multiplier

I The larger is L, the higher is AM (hence absolute measure)
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An absolute measure of model risk: properties

I (scale invariance) For any a > 0 it holds

AM (aX0,aL) = AM (X0,L)

where aL = {aX : X ∈ L}.

I (translation) For b ∈ R it holds

AM (X0 + b,L+ b)

{
> AM (X0,L), for b > 0
< AM (X0,L), for b < 0

where L+ b = {X + b : X ∈ L}.
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An absolute measure of model risk: an example

I For X having mean µ and variance σ2, consider the set of
alternative models

Lµ,σ = {X : E [X ] = µ, σ(X ) = σ}

I Set, as before, µ = 0.

I By scale invariance, w.l.o.g. we concentrate on the case σ = 1.

I If X0 ∈ L0,1, we have

AM =
ρ(L0,1)

ρ(X0)
− 1
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An absolute measure of model risk: an example

I We already know (sharp Cantelli ineq.) that

sup
X∈L0,1

VaRα(X ) =

√
1− α
α

I Bertsimas et al (2004), using convex programming techniques,
proved that

sup
X∈L0,1

ESα(X ) =

√
1− α
α

(a much lower bound than that derived using Cantelli)

I Therefore

AM =
1

ρ(X0)

√
1− α
α
− 1

for ρ = VaRα or ESα
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An absolute measure of model risk: an example

I X0 standard normal. Black: VaR, red: ES.
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An absolute measure of model risk: an example

I X0 student-t with ν = 3 degrees of freedom. Black: VaR, red: ES.
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A relative measure of model risk: definition

I The relative measure of model risk is defined as

RM = RM (ρ,X0,L) =
ρ(L)− ρ(X0)

ρ(L)− ρ(L)
.

I For instance

ρ ρρ(X0)

RM = 0.75

I 0 6 RM 6 1 and RM = 0 or 1 precisely when ρ(X0) = ρ(L) (no
model risk) or ρ(X0) = ρ(L) (full model risk)

I RM need not be increasing in L, thus providing a relative
assessment of model risk

G.Scandolo Assessing financial model risk 26 / 48



A relative measure of model risk: properties

I (scale and translation invariance) For any a > 0 and b ∈ R it
holds

RM (aX0 + b,aL+ b) = RM (X0,L).

I As Lµ,σ = σL0,1 + µ it follows

RM (X0,Lµ,σ) = RM (X̃0,L0,1),

where

X̃0 =
X − µ
σ

I A more general result holds for L ⊂ Lµ,σ, with L̃ = {X̃ : X ∈ L}
replacing L0,1

I Therefore, w.l.o.g. we can concentrate on standard r.v. (i.e. in
L0,1)
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A relative measure of model risk: an example

I We already know that

sup
X∈L0,1

VaRα(X ) = sup
X∈L0,1

ESα(X ) =

√
1− α
α

I Using bi-atomic distributions it is quite easy to see that

inf
X∈L0,1

VaRα(X ) = −
√

α

1− α
(negative!)

I Using tri-atomic distributions we can also prove that

inf
X∈L0,1

ESα(X ) = 0

(see also Bertsimas et al, 2004)
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A relative measure of model risk: an example

I Let X0 standard.

I For VaR we immediately find

RM = 1− α−
√
α(1− α)VaRα(X0)

I In a similar way, for ES

RM = 1−
√

α

1− α
ESα(X0)
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A relative measure of model risk: an example

I X0 standard normal. Black: VaR, red: ES.
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A relative measure of model risk: an example

I X0 student-t with ν = 3 degrees of freedom. Black: VaR, red: ES.
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A local measure of model risk: definition
I Finally, we want to assess model risk locally around X0

I Let (Lε)ε>0 a decreasing (as ε decreases) family of alternative
distributions sets, meaning that

I Lε is a set of r.v. for any ε > 0
I if ε < ε′, then Lε ⊂ Lε′
I ∩εLε = {X0}

I Examples (assume X0 ∈ L0,1)
I If d is some distance between distributions (Levy,

Kolmogorov, Kullback-Leibler divergence, etc) consider

Lε = {X : d(X ,X0) 6 ε}

In particular, Kullback-Leibler (or relative entropy) is
considered by Alexander and Sarabia (2012) and by
Glasserman and Xu (2013)

I As before, with all X in L0,1
I if F0 is the distribution of X0,

Lε = {X : FX = (1− θ)F0 + θG, G ∈ L0,1, θ ∈ (0, ε)}
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A local measure of model risk: definition

I The local measure of model risk is

LM = lim
ε→0

RM (Lε) = lim
ε→0

ρ(Lε)− ρ(X0)

ρ(Lε)− ρ(Lε)

I The limit is in the form 0/0

I If it exists, then it is in [0, 1]

I It describes the relative position of ρ(X0) w.r.t. the worst and
best case for infinitesimal perturbations.
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A local measure of model risk: an example

I Consider again the set of ε-mixtures

Lε = {X : FX = (1− θ)F0 + θG, G ∈ L0,1, θ ∈ (0, ε)}

I It is immediate to see that Lε ⊂ L0,1

I Using results from the theory of Markov-Chebishev extremal
distributions we can prove that for ρ = VaRα we have

ρ(Lε) = inf
X∈Lε

VaRα(X ) = VaR α
1−ε

(X0)

provided α is small enough (α < (1− ε)F0(0))

I Also, r = ρ(Lε) is solution of the following equation

(1− ε)F0(−r) +
ε

1 + r2 = α

which can easily be treated numerically.
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A local measure of model risk: an example
I X0 standard normal, ρ = VaRα. Black: ε = 0.2, red: ε = 0.05.
α on the x-axis

0 0.05 0.1 0.15 0.2 0.25 0.3
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

G.Scandolo Assessing financial model risk 36 / 48



A local measure of model risk: an example
I X0 standard normal, ρ = VaRα. Black: α = 1%, red: α = 3%.
ε on the x-axis
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A local measure of model risk: an example

I Using de l’Hôpital and the particular form of the extremal
distribution we can also explicitly compute (remind: ρ = VaRα)

LM = lim
ε→0

RM (Lε) = 1− α(1 + qα(X0)2)

provided X0 is a.c.

I If X0 is standard normal

LM = 1− α(1 + z2
α)
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A local measure of model risk: an example
I X0 standard normal, ρ = VaRα. LM as a function of α on the

x-axis
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The portfolio
I As a numerical example, we apply the relative measure of

model risk to daily Value-at-Risk (1% and 5%) estimation for a
portfolio investing in the (German) electricity market

I In particular, let Pt be the price at day t for 1 MWh in the
day-ahead market (this is considered as a spot market). Notice
that Pt may become negative in Germany!

I At every day, the portfolio invests in 1 unit (i.e. 1 MWh), so that
its daily Profit and Loss is

PLt+1 = ∆t+1P = Pt+1 − Pt .

I If Ft is the information up to time t , we want to estimate

VaRα,t+1 = VaRα(PLt+1 | Ft ),

where α = 1% or 5%.
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Electricity prices

I Day-ahead price for 1 MWh (in Euro) in the German market
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GARCH modeling
I Price differences Xt = ∆t P are usually assumed to be nearly

stationary. However, contrarily to equity prices, the mean
component is not negligible.

I We estimate (daily) an AR(5)-GARCH(1,1) model for Xt ,
meaning that

Xt = µt + εt = µt + σt Zt ,

where
I µt = E [Xt | Ft−1] is defined according to the AR(5)

µt = c + φ1Xt−1 + . . .+ φ5Xt−5

I σt = σ(Xt | Ft−1) is defined according to the GARCH(1,1) model

σ2
t = ω + αε2

t−1 + βσ2
t−1

I the innovations (Zt ) are IID∼ D(0, 1) (i.e. standard)

I According to this specification

VaRα(PLt+1 | Ft ) = −µt+1 + σt+1VaRα(Z)
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Reference and alternative distributions
I In the classical ”normal GARCH”, we assume Z ∼ N (0, 1). This

is our reference distribution.

I Then we consider as alternative distributions:
I Skew Normal
I t-Student and Skew t-Student
I Generalized Error Distributions (GED) and Skew GED
I Johnson’s SU;
I Normal Inverse Gaussian (NIG);
I Generalized Hyperbolic (a superclass including some of the

previous classes).

I These are distributions of common use in risk management.
Note that some allow for asymmetry, some for heavy tails and
for both.

I The parameters of alternative distributions are fitted with ML
using observed innovations (i.e. the series Ẑt = (Xt − µt )/σt )
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Relative measure of model risk

I Day by day we compute

VaRα,t = sup
Z∈Models

VaRα(PLt | Ft−1) = −µt + σt sup
Z∈Models

VaRα(Z),

where ”Models” is a suitable class of models for Z .

I We define VaRα,t similarly.

I Therefore, the empirical measure of relative model risk at date t
is

RMt =
VaRα,t − VaRNormal

α,t

VaRα,t − VaRα,t
=

supZ VaRα(Z)− VaRα(N (0, 1))

supZ VaRα(Z)− infZ VaRα(Z)

I Notice that the rhs depends on day t as the parameters for the
distributions of innovations are fitted to past observations.
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Results

I Relative measure of model risk for VaR1%
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Results

I Rel. measure of model risk for VaR5% (red) and VaR1% (black)
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