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The setting

e d assets with bid-ask prices, modeled by solvency cone K,
(fixed time ¢t and state w )

e Varying t: cone-valued stochastic process (Kt)fzo

(replaces stock price process (St)tT:O in frictionless market)

e Consistent price process is a martingale (Zt)tT:O with Z; € Kt+
(positive dual cone) P — a.s. for all ¢

(replaces equivalent martingale measures in frictionless market)

T he question

Generating vectors of Kc"l"? (Calculation? How many? Is there a
structure?)

Posed as an open problem in Bouchard, Touzi (2000, AAP)



wWhy important?

Characterize efficient trades:
e A portfolio z € R% can be traded into y € z — K

e but only trades on the boundary of x— K; (i.e. the faces of x— K;)
are reasonable (do not burn money)

e faces of K, correspond to generating vectors of KC'Z"

Dual variables:

Play the role of equivalent martingale measures: appear in dual char-
acterization of superhedging, portfolio optimization, market-risk mea-
sures, ... in markets with proportional transaction cost (and even in
limit order book markets)

Algorithm:

Kc_zl_ needed as an input in algorithms to compute superhedging prices,
market-risk measures in transaction cost markets



T he resultsS (Lshne, Rudioff (2014), Forthcoming at Discrete Applied Mathematics.)

e Complete characterization of Kc'l" (structure, upper and lower bound
for number, exact number for important special cases) for arbi-
trary dimension d

e Algorithm to compute K;'

e For special cases no algorithm necessary as Kj has a simple
recursive structure

e Uses graph theory, combinatorial optimization



T he starting point

e easy ford=2 and d =3

e NO Clue for d > 4...

e brutal force gives generating vectors of dual in numerical examples
(until d = 7) by vertex enumeration (very expensive)

e NO structural results ...

|Kql, |KF| || d=2 3 4 5 6 7 d

general 2, 2 [ 6, 6] 12, 20 | 20, 70 | 30, 252 [ 42, 924 | ... d(d—1), 777
case 1 2, 2 |6, 6|12, 14 [ 20, 30 | 30, 62 | 42, 126 | ... | d(d—1), 29 —-27
case 2 2, 2 | 4, 4 6, 8 8, 16 | 10, 32 12, 64 | ... | 2(d—1), 217

case 1: d currencies with positive bid-ask-spread.
case 2: d assets all denoted in domestic currency (= asset 1), ex-
changes only via domestic currency.



T he final result

Kql, |Kf| || d=2 3 4 7 d

general 2, 216, 6|12 20| .. |42 924 | ... | dd-1), Zz;ll (2) (9
case 1 2, 2 16, 6|12, 14 | ... | 42, 126 | .. d(d—1), 29-2
case 2 2, 2 | 4, 4 6, 8 .. | 12, 64 | ... 2(d—1), 241

case 1: d currencies with positive bid-ask-spread.
case 2: d assets all denoted in domestic currency (= asset 1), ex-
changes only via domestic currency.



T he final result

Recursive representation in special cases:

E.g. case 2: bid and ask prices b; < a; for ¢ € {2,...,d} expressed by
asset 1 ('cash’).

For d > 3 (columns of Y; are generating vectors of Kj')

1 1 Y, Y, _
YQ:(a b) Y, = d—1 d—1
2 0o

ad ad bd bd



T he details



m;; - number of units of asset ¢ for which an agent can buy one unit
of asset j.

Let d € {2,3,...}, V={1,...,d} and let I = (m;;) be a (d x d)-matrix
such that

VieV . m@y;=1, (1)
Vi,geV: 0K Tijs (2)
Vi,j,k €V i mi < mipTg, (3)
di, 5,k € V. T < TikThkj- (4)

Sometimes, (3) and (4) is replaced by (efficient frictions)
Vi,j eV, Vk e V\{i,j}: 5 < TikTk;j- (5)

The polyhedral convex cone
K, = cone {wijei — ej| 1] €V X V}

is called solvency cone induced by I1.



K= {y cERIVz e Ky: 2Ty > o} ... (positive) dual cone of K

Trivial: generating vectors of solvency cone give inequality represen-
tation of dual cone:

Proposition 1. One has KC‘Z" = {y € Rd| Vi, g €V Imy; 2 yj}.

Proof. obvious
Recall: K, := cone {mjei —el|ij eV x V}

T hus, vertex enumeration gives generating vectors of dual in numerical
examples.

Generating vectors of dual cone correspond to faces of the primal
cone (efficient trades!)



V={1,...,d}

(P,N) ... bi-partition of V,ie., 0 P CV, N=V\P

Motivation for use of bi-partitions:

Cone K4 has faces in any orthant in R? (except in R% and R%). All
points in one of those orthants correspond to a bi-partition: let x &€ R4,

Collect ¢ € P (Positive) if z; >0 and j € N (Negative) if z; < 0.

Want to find all faces of K, in a given orthant (= a given bi-partition).



V={1,...,d}
(P,N) ... bi-partition of V,i.e.,, 0 #PCV, N=V\P
G(P,N) ... bi-partite digraph with arc set E =P x N

Spanning tree of G(P,N) ... connected, no cycles (d — 1 edges)
y € R% is called feasible tree solution w.r.t (P, N) if there is a spanning
tree T of G(P, N) such that

Vij € E(T) C P x N : Y = Yj > 0. (6)

and

\V/ijEPXNIﬂ'ijinyj>O. (7)
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Feasible tree solution
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Feasible tree solution
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Theorem 1. For y € Rd, the following statements are equivalent.

(i) y is an extreme direction of KT

(ii) y is a feasible tree solution w.r.t. some bipartition (P, N) of V.



Degree vectors

degr(P) = (



Degree vectors of spanning trees

P
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c € N¥' is called P-configuration if Y ¢ =d—1
1€P
b € NV is called N-configuration if Y b =d—1
1€EN

N=1{1,2,...}



Degree vectors of spanning trees
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Degree vectors of spanning trees
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Degree vectors of spanning trees
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c € N¥' is called P-configuration if Y ¢ =d—1
1€P
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N=1{1,2,...}



Theorem 2. For every bi-partition (P, N) of V and every P-configuration
c € N¥ there exists a feasible tree solution Y € R generated by a span-
ning tree T of the bi-partite graph G(P,N) with degp(P) = ¢. An
analogous statement holds if an N-configuration is given.






Towards a proof of Theorem 2




Towards a proof of Theorem 2

k € argmax{y;/m1;|j € N}




Is there an N-configuration
b € NV and a feasible tree
solution y generated by T
such that b = degp(IN) and
c=degr(P) 7






Towards a proof of Theorem 2

k €argmin{y; - m;;| i € P}



Towards a proof of Theorem 2
T(H) ... set of all spanning trees of a graph H

Lemma 1. Let H = H(P,N) be a bi-partite graph. Then

[{degr(P)| T € T(H)}| = {degr(N)| T € T(H)}|.




Corollary 1. Assume that also (5) holds. Let z,y be two feasible
tree solutions with respect to bi-partitions (P, Nz) and (Py, Ny) of V,
respectively. Then (P, Nz) #= (Py, Ny) implies x # ay for all o > 0.
Moreover, Kj has at least 29 — 2 extreme directions.

Corollary 2. K has at most Y027 (977)(¢) extreme directions.

Example. The upper bound in Corollary 2 cannot be improved.

Let the non-diagonal entries be pairwise different prime numbers such
that

(min{mijl ij € V x Vi # j})° > max {myjl ij € V x Vi # j}



Example. d =20, m;; =1, 1o =59, mjo =61 ... 720,19 = 2713
592 > 2713 = (5)

K3 has exactly ¥.12, (p1_81> <2p0) = 35.345.263.800 extreme directions.

P=1{5,6,7,8,9,10,11}, N ={1,...,4,12,...,20}.

(43) = (%) = 18564 P-configurations for this bi-partition (p := |P|).

c=(3,2,4,2,2,2.4)1 e NP

Algorithm (Matlab, about 15 minutes):

— (487-757 491-757 619-947-1367 757 57 947-1367 1 1367
Y — (503859’ 503859’ 677-953-1427° 859’ 503-859° 677-953-1427° 859’ 953.1427°

1 839 1 1327 947-1367 1367 1373 829 839 839-1249 1109 1)T
1117° 859-1237° 1427 1427 953-1427° 1427° 1427°> 859’ 859’ 859-1237° 1117

b=1(1,1,1,2,1,2,2,1,1,2,1,1,3) e NV



m;; = 1 and Mij += CI,J/bZ (1£34), 0<b;<aqa; (1€V),
O <bp <ay for at least one k €V

= (1) to (4)
[ifO<b;,<a; (1€V) = (5)]

Then, every bi-partition yields only one feasible tree solution (and thus
just one generating vector of Kc"i"):

Corollary 3.
K;‘ = cone {y € Rd| (P,N) bi-part. of V, Vie P: y; =b;, VjEN : y; = aj}

KT has at most 2¢ — 2 extreme directions.
If (5) is satisfied, K;l" has exactly 2¢ — 2 extreme directions.



Case 1: d currencies with positive bid-ask-spread.

d currencies with bid prices b = (1,51,...,S4) and ask prices a; =
(14 k)b; for all <. Proportional transaction costs k > 0.
= (5). = exactly 29 — 2 extreme directions.

Recursive representation case 1:

For d > 3 (columns of Y, are generating vectors of KC"Z"):

b1 al
a1 b1 Y1 : Yi1 -
Y, = Y, =
2 (bz a2> ¢ ba—1 ag—1
aq aq aq bd bd bd

Note: 24 — 2 =2(24-1 _2) 42



Case 2: d assets all denoted in domestic currency (= asset 1), ex-
changes only via domestic currency.

Recursive representation case 2:
bid and ask prices b; < a; for i € {2,...,d} expressed by asset 1 ('cash’).
Since a; = by = 1 (cash) = (5) is not satisfied, = less than 2¢ — 2

extreme directions.

For d > 3 (columns of Y, are generating vectors of Kj)

_ (1 1 _ Yo_1 Yo_1
Yo = (aQ b2> Yo =

CLd ad bd bd

Kc"i" has exactly 2d—1 extreme directions.



Recall:

Kql, |Kf| || d=2 3 4 7 d

general 2, 216, 6|12 20| .. |42 924 | ... | dd-1), Zz;ll (2) (9
case 1 2, 2 16, 6|12, 14 | ... | 42, 126 | .. d(d—1), 29-2
case 2 2, 2 | 4, 4 6, 8 .. | 12, 64 | ... 2(d—1), 241

case 1: d currencies with positive bid-ask-spread.
case 2: d assets all denoted in domestic currency (= asset 1), ex-
changes only via domestic currency.
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