On the dual of the solvency cone

Birgit Rudloff

Princeton University

Joint work with:

Andreas Löhne (Martin-Luther-Universität Halle-Wittenberg)

Hannover, December 11, 2014

The setting

- d assets with bid-ask prices, modeled by solvency cone K_d (fixed time t and state ω)
- Varying t: cone-valued stochastic process $(K_t)_{t=0}^T$ (replaces stock price process $(S_t)_{t=0}^T$ in frictionless market)
- Consistent price process is a martingale $(Z_t)_{t=0}^T$ with $Z_t \in K_t^+$ (positive dual cone) P a.s. for all t

(replaces equivalent martingale measures in frictionless market)

The question

Generating vectors of K_d^+ ? (Calculation? How many? Is there a structure?)

Posed as an open problem in Bouchard, Touzi (2000, AAP)

Why important?

Characterize efficient trades:

- A portfolio $x \in \mathbb{R}^d$ can be traded into $y \in x K_d$
- but only trades on the boundary of $x K_d$ (i.e. the faces of $x K_d$) are reasonable (do not burn money)
- faces of K_d correspond to generating vectors of K_d^+

Dual variables:

Play the role of equivalent martingale measures: appear in dual characterization of superhedging, portfolio optimization, market-risk measures, ... in markets with proportional transaction cost (and even in limit order book markets)

Algorithm:

 K_d^+ needed as an input in algorithms to compute superhedging prices, market-risk measures in transaction cost markets

The results (Löhne, Rudloff (2014), Forthcoming at Discrete Applied Mathematics.)

- Complete characterization of K_d^+ (structure, upper and lower bound for number, exact number for important special cases) for **arbitrary dimension** d
- Algorithm to compute K_d^+
- For special cases no algorithm necessary as K_d^+ has a simple recursive structure
- Uses graph theory, combinatorial optimization

The starting point

- easy for d = 2 and d = 3
- no clue for $d \ge 4...$
- brutal force gives generating vectors of dual in numerical examples (until d = 7) by vertex enumeration (very expensive)
- no structural results ...

$ K_d , K_d^+ $	d = 2	3	4	5	6	7	 d
general	2, 2	6, 6	12, 20	20, 70	30, <mark>25</mark> 2	42, 924	 d(d-1), ???
case 1	2, 2	6, 6	12, 14	20, 30	30 , 62	42, 126	 $d(d-1), 2^d-2?$
case 2	2, 2	4, 4	6, <mark>8</mark>	8,16	10, 32	12, 64	 $2(d-1), 2^{d-1}?$

case 1: d currencies with positive bid-ask-spread. case 2: d assets all denoted in domestic currency (= asset 1), exchanges only via domestic currency.

The final result

$ K_d , K_d^+ $	d = 2	3	4	 7	 d
general	2, 2	6, 6	12, 20	 42, 924	 $d(d-1)$, $\sum_{p=1}^{d-1} {d-2 \choose p-1} {d \choose p}$
case 1	2, 2	6, 6	12, 14	 42, 126	 $d(d-1), 2^d-2$
case 2	2, 2	4, 4	6, <mark>8</mark>	 12, <mark>64</mark>	 $2(d-1)$, 2^{d-1}

case 1: d currencies with positive bid-ask-spread. **case 2**: d assets all denoted in domestic currency (= asset 1), exchanges only via domestic currency.

The final result

Recursive representation in special cases:

E.g. case 2: bid and ask prices $b_i < a_i$ for $i \in \{2, ..., d\}$ expressed by asset 1 ('cash').

For $d \ge 3$ (columns of Y_d are generating vectors of K_d^+)

$$Y_2 = \begin{pmatrix} 1 & 1 \\ a_2 & b_2 \end{pmatrix} \qquad Y_d = \begin{pmatrix} Y_{d-1} & Y_{d-1} \\ a_d & \dots & a_d & b_d & \dots & b_d \end{pmatrix}$$

The details

Definition (solvency cone)

 π_{ij} : number of units of asset *i* for which an agent can buy one unit of asset *j*.

Let $d \in \{2, 3, \ldots\}$, $V = \{1, \ldots, d\}$ and let $\Pi = (\pi_{ij})$ be a $(d \times d)$ -matrix such that

$$\forall i \in V : \quad \pi_{ii} = 1, \tag{1}$$

$$\forall i, j \in V : \quad 0 < \pi_{ij}, \tag{2}$$

$$\forall i, j, k \in V : \quad \pi_{ij} \le \pi_{ik} \pi_{kj}, \tag{3}$$

$$\exists i, j, k \in V : \quad \pi_{ij} < \pi_{ik} \pi_{kj}. \tag{4}$$

Sometimes, (3) and (4) is replaced by (efficient frictions)

$$\forall i, j \in V, \ \forall k \in V \setminus \{i, j\} : \quad \pi_{ij} < \pi_{ik} \pi_{kj}.$$
(5)

The polyhedral convex cone

$$K_d := \operatorname{cone} \left\{ \pi_{ij} e^i - e^j | ij \in V \times V \right\}$$

is called solvency cone induced by Π .

The dual cone

 $K_d^+ := \left\{ y \in \mathbb{R}^d | \ \forall x \in K_d : \ x^T y \ge 0 \right\} \dots \text{ (positive) dual cone of } K_d$

Trivial: generating vectors of solvency cone give inequality representation of dual cone:

Proposition 1. One has
$$K_d^+ = \{y \in \mathbb{R}^d | \forall i, j \in V : \pi_{ij}y_i \ge y_j\}$$
.

Proof: obvious Recall: $K_d := \operatorname{cone} \left\{ \pi_{ij} e^i - e^j | ij \in V \times V \right\}$

Thus, vertex enumeration gives generating vectors of dual in numerical examples.

Generating vectors of dual cone correspond to faces of the primal cone (efficient trades!)

Bi-partitions

$$V = \{1, \dots, d\}$$

(P,N) ... bi-partition of V, i.e., $\emptyset \neq P \subsetneq V$, $N = V \setminus P$

Motivation for use of bi-partitions:

Cone K_d has faces in any orthant in \mathbb{R}^d (except in \mathbb{R}^d_+ and \mathbb{R}^d_-). All points in one of those orthants correspond to a bi-partition: let $x \in \mathbb{R}^d$. Collect $i \in P$ (Positive) if $x_i > 0$ and $j \in N$ (Negative) if $x_j \leq 0$.

Want to find all faces of K_d in a given orthant (= a given bi-partition).

 $V = \{1, \dots, d\}$ (P,N) ... bi-partition of V, i.e., $\emptyset \neq P \subsetneq V$, $N = V \setminus P$ G(P,N) ... bi-partite digraph with arc set $E = P \times N$

Spanning tree of G(P, N) ... connected, no cycles (d - 1 edges)

 $y \in \mathbb{R}^d$ is called feasible tree solution w.r.t (P, N) if there is a spanning tree T of G(P, N) such that

$$\forall ij \in E(T) \subseteq P \times N : \ \pi_{ij}y_i = y_j > 0.$$
(6)

and

$$\forall ij \in P \times N : \pi_{ij} y_i \ge y_j > 0.$$
(7)

 $V = \{1, 2, 3, 4, 5, 6, 7\}, P = \{1, 2, 3, 4\}, N = \{5, 6, 7\}$

Tree solution: $\pi_{ij}y_i = y_j$ for $ij \in E(T)$

 $V = \{1, 2, 3, 4, 5, 6, 7\}, P = \{1, 2, 3, 4\}, N = \{5, 6, 7\}$

Feasibility: e.g. $\pi_{37}y_3 \ge y_7$

 $V = \{1, 2, 3, 4, 5, 6, 7\}, P = \{1, 2, 3, 4\}, N = \{5, 6, 7\}$

Feasibility: e.g. $\pi_{37}y_3 \ge y_7$ i.e. $\frac{\pi_{37}}{\pi_{35}} \ge \frac{\pi_{27}}{\pi_{25}}$

Characterization of K_d^+

Theorem 1. For $y \in \mathbb{R}^d$, the following statements are equivalent. (i) y is an extreme direction of K_d^+ ; (ii) y is a feasible tree solution w.r.t. some bipartition (P, N) of V.

Degree vectors

$$\deg_T(P) = \begin{pmatrix} 1\\3\\1\\1 \end{pmatrix}$$

$$\frac{P}{1}$$

$$\frac{1}{3}$$

 $c \in \mathbb{N}^P$ is called *P*-configuration if $\sum_{i \in P} c_i = d - 1$ $b \in \mathbb{N}^N$ is called *N*-configuration if $\sum_{i \in N} b_i = d - 1$

 $c \in \mathbb{N}^P$ is called *P*-configuration if $\sum_{i \in P} c_i = d - 1$ $b \in \mathbb{N}^N$ is called *N*-configuration if $\sum_{i \in N} b_i = d - 1$

 $c \in \mathbb{N}^P$ is called *P*-configuration if $\sum_{i \in P} c_i = d-1$ $b \in \mathbb{N}^N$ is called *N*-configuration if $\sum_{i \in N} b_i = d-1$

 $c \in \mathbb{N}^P$ is called *P*-configuration if $\sum_{i \in P} c_i = d - 1$ $b \in \mathbb{N}^N$ is called *N*-configuration if $\sum_{i \in N} b_i = d - 1$

Existence of feasible tree solutions

Theorem 2. For every bi-partition (P, N) of V and every P-configuration $c \in \mathbb{N}^P$ there exists a feasible tree solution $y \in \mathbb{R}^d$ generated by a spanning tree T of the bi-partite graph G(P, N) with $\deg_T(P) = c$. An analogous statement holds if an N-configuration is given.

 $k \in \arg \max\{y_j/\pi_{1j} \mid j \in N\}$

1 4

Is there an *N*-configuration $b \in \mathbb{N}^N$ and a feasible tree solution *y* generated by *T* such that $b = \deg_T(N)$ and $c = \deg_T(P)$?

1 (4)

 $k \in \arg\min\{y_i \cdot \pi_{ij} \mid i \in P\}$

 $\mathcal{T}(H)$... set of all spanning trees of a graph H

Lemma 1. Let H = H(P, N) be a bi-partite graph. Then $|\{\deg_T(P) | T \in \mathcal{T}(H)\}| = |\{\deg_T(N) | T \in \mathcal{T}(H)\}|.$

Consequences of Theorem 1 and 2

Corollary 1. Assume that also (5) holds. Let x, y be two feasible tree solutions with respect to bi-partitions (P_x, N_x) and (P_y, N_y) of V, respectively. Then $(P_x, N_x) \neq (P_y, N_y)$ implies $x \neq \alpha y$ for all $\alpha > 0$. Moreover, K_d^+ has at least $2^d - 2$ extreme directions.

Corollary 2. K_d^+ has at most $\sum_{p=1}^{d-1} {d-2 \choose p-1} {d \choose p}$ extreme directions.

Example. The upper bound in Corollary 2 cannot be improved.

Let the non-diagonal entries be pairwise different prime numbers such that

$$\left(\min\left\{\pi_{ij} \mid ij \in V \times V, i \neq j\right\}\right)^2 > \max\left\{\pi_{ij} \mid ij \in V \times V, i \neq j\right\}$$

Example. d = 20, $\pi_{ii} = 1$, $\pi_{12} = 59$, $\pi_{12} = 61 \dots \pi_{20,19} = 2713$

$$59^2 > 2713 \implies (5)$$

 K_{20}^+ has exactly $\sum_{p=1}^{19} {18 \choose p-1} {20 \choose p} = 35.345.263.800$ extreme directions.

 $P = \{5, 6, 7, 8, 9, 10, 11\}, N = \{1, \dots, 4, 12, \dots, 20\}.$

 $\binom{d-2}{p-1} = \binom{18}{6} = 18564 P$ -configurations for this bi-partition (p := |P|).

$$c = (3, 2, 4, 2, 2, 2, 4)^T \in \mathbb{N}^P$$

Algorithm (Matlab, about 15 minutes):

 $y = \left(\frac{487 \cdot 757}{503 \cdot 859}, \frac{491 \cdot 757}{503 \cdot 859}, \frac{619 \cdot 947 \cdot 1367}{677 \cdot 953 \cdot 1427}, \frac{757}{859}, \frac{757}{503 \cdot 859}, \frac{947 \cdot 1367}{677 \cdot 953 \cdot 1427}, \frac{1}{859}, \frac{1367}{953 \cdot 1427}, \frac{1}{859}, \frac{1367}{953 \cdot 1427}, \frac{1}{117}, \frac{839}{859 \cdot 1237}, \frac{1}{1427}, \frac{947 \cdot 1367}{953 \cdot 1427}, \frac{1367}{1427}, \frac{1373}{1427}, \frac{829}{859}, \frac{839}{859}, \frac{839 \cdot 1249}{859 \cdot 1237}, \frac{1109}{1117}, 1\right)^{T}$ $b = (1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3)^{T} \in \mathbb{N}^{N}$

Special cases

$$\pi_{ii} := 1$$
 and $\pi_{ij} := a_j/b_i$ $(i \neq j)$, $0 < b_i \le a_i$ $(i \in V)$, $0 < b_k < a_k$ for at least one $k \in V$

 \Rightarrow (1) to (4)

$$[if 0 < b_i < a_i \ (i \in V) \Rightarrow (5)]$$

Then, every bi-partition yields only one feasible tree solution (and thus just one generating vector of K_d^+):

Corollary 3.

$$K_d^+ = \operatorname{cone} \left\{ y \in \mathbb{R}^d | (P, N) \text{ bi-part. of } V, \forall i \in P : y_i = b_i, \forall j \in N : y_j = a_j \right\}$$

 K_d^+ has **at most** $2^d - 2$ extreme directions.
If (5) is satisfied, K_d^+ has **exactly** $2^d - 2$ extreme directions.

Special cases

Case 1: *d* currencies with positive bid-ask-spread.

d currencies with bid prices $b = (1, S_1, ..., S_d)$ and ask prices $a_i = (1 + k)b_i$ for all *i*. Proportional transaction costs k > 0. \Rightarrow (5). \Rightarrow **exactly** $2^d - 2$ extreme directions.

Recursive representation case 1:

For $d \ge 3$ (columns of Y_d are generating vectors of K_d^+):

$$Y_{2} = \begin{pmatrix} a_{1} & b_{1} \\ b_{2} & a_{2} \end{pmatrix} \qquad Y_{d} = \begin{pmatrix} b_{1} & & a_{1} \\ Y_{d-1} & \vdots & Y_{d-1} & \vdots \\ & & b_{d-1} & & a_{d-1} \\ a_{d} & \dots & a_{d} & a_{d} & b_{d} & \dots & b_{d} & b_{d} \end{pmatrix}$$

Note: $2^d - 2 = 2(2^{d-1} - 2) + 2$

Special cases

Case 2: *d* assets all denoted in domestic currency (= asset 1), exchanges only via domestic currency.

Recursive representation case 2:

bid and ask prices $b_i < a_i$ for $i \in \{2, ..., d\}$ expressed by asset 1 ('cash'). Since $a_1 = b_1 = 1$ (cash) \Rightarrow (5) is not satisfied, \Rightarrow less than $2^d - 2$ extreme directions.

For $d \ge 3$ (columns of Y_d are generating vectors of K_d^+)

$$Y_2 = \begin{pmatrix} 1 & 1 \\ a_2 & b_2 \end{pmatrix} \qquad Y_d = \begin{pmatrix} Y_{d-1} & Y_{d-1} \\ a_d & \dots & a_d & b_d & \dots & b_d \end{pmatrix}$$

 K_d^+ has exactly 2^{d-1} extreme directions.

Recall:

$ K_d , K_d^+ $	d = 2	3	4		7		d
general	2, 2	6, 6	12, <mark>2</mark> 0		42, 924		$d(d-1)$, $\sum_{p=1}^{d-1} {d-2 \choose p-1} {d \choose p}$
case 1	2, 2	6, 6	12, 14		42, 126		$d(d-1), 2^d-2$
case 2	2, 2	4, 4	6, <mark>8</mark>		12, 64		$2(d-1)$, 2^{d-1}

case 1: *d* currencies with positive bid-ask-spread. **case 2**: *d* assets all denoted in domestic currency (= asset 1), exchanges only via domestic currency.

References

Combinatorial optimization, network flow problems:

Cook, W. J.; Cunningham, W. H.; Pulleyblank, W. R.; Schrijver, A.: Combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization, New York, 1998

Jewell, W. S.: Optimal flow through networks with gains. Operations Research, 10, 476-499 (1962)

Lemma 1 based on: (communicated by Sang-Il Oum (Paul Seymour, Richard Stanley)) Postnikov, A.: Permutohedra, associahedra, and beyond, *Int. Math. Res. Not.* 6 (2009), 1026–1106

References

Financial Math:

Jouini E., Kallal H.: Martingales and Arbitrage in Securities Markets with Transaction Costs. Journal of Economic Theory 66(1), 178-197, (1995)

Kabanov, Y. M.: Hedging and liquidation under transaction costs in currency markets. Finance and Stochastics 3, 237-248 (1999)

Schachermeyer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. *Math. Finance* 14:1 (2004), 19–48

Bouchard, B.; Touzi, N.: Explicit solution to the multivariate superreplication problem under transaction costs. *Ann. Appl. Probab.* 10:3 (2000), 685–708

Thank you!

Löhne, Rudloff (2014): On the dual of the solvency cone. Discrete Applied Mathematics. Forthcoming.