On the dual of the solvency cone

Birgit Rudloff

Princeton University

Joint work with:
Andreas Löhne (Martin-Luther-Universität Halle-Wittenberg)

Hannover, December 11, 2014

The setting

- d assets with bid-ask prices, modeled by solvency cone K_{d} (fixed time t and state ω)
- Varying t : cone-valued stochastic process $\left(K_{t}\right)_{t=0}^{T}$ (replaces stock price process $\left(S_{t}\right)_{t=0}^{T}$ in frictionless market)
- Consistent price process is a martingale $\left(Z_{t}\right)_{t=0}^{T}$ with $Z_{t} \in K_{t}^{+}$ (positive dual cone) P-a.s. for all t (replaces equivalent martingale measures in frictionless market)

The question

Generating vectors of K_{d}^{+}? (Calculation? How many? Is there a structure?)
Posed as an open problem in Bouchard, Touzi (2000, AAP)

Why important?

Characterize efficient trades:

- A portfolio $x \in \mathbb{R}^{d}$ can be traded into $y \in x-K_{d}$
- but only trades on the boundary of $x-K_{d}$ (i.e. the faces of $x-K_{d}$) are reasonable (do not burn money)
- faces of K_{d} correspond to generating vectors of K_{d}^{+}

Dual variables:

Play the role of equivalent martingale measures: appear in dual characterization of superhedging, portfolio optimization, market-risk measures, ... in markets with proportional transaction cost (and even in limit order book markets)

Algorithm:

K_{d}^{+}needed as an input in algorithms to compute superhedging prices, market-risk measures in transaction cost markets

The results (Löhne, Rudloff (2014), Forthcoming at Discrete Applied Mathematics.)

- Complete characterization of K_{d}^{+}(structure, upper and lower bound for number, exact number for important special cases) for arbitrary dimension d
- Algorithm to compute K_{d}^{+}
- For special cases no algorithm necessary as K_{d}^{+}has a simple recursive structure
- Uses graph theory, combinatorial optimization

The starting point

- easy for $d=2$ and $d=3$
- no clue for $d \geq 4 \ldots$
- brutal force gives generating vectors of dual in numerical examples (until $d=7$) by vertex enumeration (very expensive)
- no structural results ...

$\left\|K_{d}\right\|,\left\|K_{d}^{+}\right\|$	$d=2$	3	4	5	6	7	\cdots	d
general	2,2	6,6	12,20	20,70	30,252	42,924	\cdots	$d(d-1), ? ? ?$
case 1	2,2	6,6	12,14	20,30	30,62	42,126	\cdots	$d(d-1), 2^{d}-2 ?$
case 2	2,2	4,4	6,8	8,16	10,32	12,64	\cdots	$2(d-1), 2^{d-1} ?$

case 1: d currencies with positive bid-ask-spread.
case 2: d assets all denoted in domestic currency (= asset 1), exchanges only via domestic currency.

The final result

$\left\|K_{d}\right\|,\left\|K_{d}^{+}\right\|$	$d=2$	3	4	\cdots	7	\cdots	d
general	$2, ~ 2$	6,6	12,20	\cdots	42,924	\cdots	$d(d-1), \sum_{p=1}^{d-1}\binom{d-2}{p-1}\binom{d}{p}$
case 1	2,2	6,6	12,14	\cdots	42,126	\cdots	$d(d-1), 2^{d}-2$
case 2	2,2	4,4	6,8	\ldots	12,64	\cdots	$2(d-1), 2^{d-1}$

case 1: d currencies with positive bid-ask-spread.
case 2: d assets all denoted in domestic currency (= asset 1), exchanges only via domestic currency.

The final result

Recursive representation in special cases:
E.g. case 2: bid and ask prices $b_{i}<a_{i}$ for $i \in\{2, \ldots, d\}$ expressed by asset 1 ('cash').
For $d \geq 3$ (columns of Y_{d} are generating vectors of K_{d}^{+})

$$
Y_{2}=\left(\begin{array}{cc}
1 & 1 \\
a_{2} & b_{2}
\end{array}\right) \quad Y_{d}=\left(\begin{array}{cccccc}
& Y_{d-1} & & & Y_{d-1} & \\
& & & & & \\
a_{d} & \ldots & a_{d} & b_{d} & \ldots & b_{d}
\end{array}\right)
$$

The details

Definition (solvency cone)

$\pi_{i j}$: number of units of asset i for which an agent can buy one unit of asset j.

Let $d \in\{2,3, \ldots\}, V=\{1, \ldots, d\}$ and let $\Pi=\left(\pi_{i j}\right)$ be a $(d \times d)$-matrix such that

$$
\begin{align*}
\forall i \in V: & \pi_{i i}=1, \tag{1}\\
\forall i, j \in V: & 0<\pi_{i j}, \tag{2}\\
\forall i, j, k \in V: & \pi_{i j} \leq \pi_{i k} \pi_{k j}, \tag{3}\\
\exists i, j, k \in V: & \pi_{i j}<\pi_{i k} \pi_{k j} . \tag{4}
\end{align*}
$$

Sometimes, (3) and (4) is replaced by (efficient frictions)

$$
\begin{equation*}
\forall i, j \in V, \forall k \in V \backslash\{i, j\}: \quad \pi_{i j}<\pi_{i k} \pi_{k j} \tag{5}
\end{equation*}
$$

The polyhedral convex cone

$$
K_{d}:=\text { cone }\left\{\pi_{i j} e^{i}-e^{j} \mid i j \in V \times V\right\}
$$

is called solvency cone induced by Π.

The dual cone

$$
K_{d}^{+}:=\left\{y \in \mathbb{R}^{d} \mid \forall x \in K_{d}: x^{T} y \geq 0\right\} \ldots \text { (positive) dual cone of } K_{d}
$$

Trivial: generating vectors of solvency cone give inequality representation of dual cone:

Proposition 1. One has $K_{d}^{+}=\left\{y \in \mathbb{R}^{d} \mid \forall i, j \in V: \pi_{i j} y_{i} \geq y_{j}\right\}$.

Proof: obvious

Recall: $K_{d}:=$ cone $\left\{\pi_{i j} e^{i}-e^{j} \mid i j \in V \times V\right\}$
Thus, vertex enumeration gives generating vectors of dual in numerical examples.

Generating vectors of dual cone correspond to faces of the primal cone (efficient trades!)

Bi-partitions

$V=\{1, \ldots, d\}$
$(P, N) \ldots$ bi-partition of V, i.e., $\emptyset \neq P \subsetneq V, N=V \backslash P$

Motivation for use of bi-partitions:

Cone K_{d} has faces in any orthant in \mathbb{R}^{d} (except in \mathbb{R}_{+}^{d} and \mathbb{R}_{-}^{d}). All points in one of those orthants correspond to a bi-partition: let $x \in \mathbb{R}^{d}$. Collect $i \in P$ (Positive) if $x_{i}>0$ and $j \in N$ (Negative) if $x_{j} \leq 0$.

Want to find all faces of K_{d} in a given orthant ($=$ a given bi-partition).

Feasible tree solution

$V=\{1, \ldots, d\}$
$(P, N) \ldots$ bi-partition of V, i.e., $\emptyset \neq P \subsetneq V, N=V \backslash P$
$G(P, N) \ldots$ bi-partite digraph with arc set $E=P \times N$
Spanning tree of $G(P, N) \ldots$ connected, no cycles ($d-1$ edges)
$y \in \mathbb{R}^{d}$ is called feasible tree solution w.r.t (P, N) if there is a spanning tree T of $G(P, N)$ such that

$$
\begin{equation*}
\forall i j \in E(T) \subseteq P \times N: \pi_{i j} y_{i}=y_{j}>0 . \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall i j \in P \times N: \pi_{i j} y_{i} \geq y_{j}>0 . \tag{7}
\end{equation*}
$$

Feasible tree solution

$$
V=\{1,2,3,4,5,6,7\}, P=\{1,2,3,4\}, N=\{5,6,7\}
$$

Tree solution: $\pi_{i j} y_{i}=y_{j}$ for $i j \in E(T)$

Feasible tree solution

$$
V=\{1,2,3,4,5,6,7\}, P=\{1,2,3,4\}, N=\{5,6,7\}
$$

Feasibility: e.g. $\pi_{37} y_{3} \geq y_{7}$

Feasible tree solution

$$
V=\{1,2,3,4,5,6,7\}, P=\{1,2,3,4\}, N=\{5,6,7\}
$$

Feasibility: e.g. $\pi_{37} y_{3} \geq y_{7}$ i.e. $\frac{\pi_{37}}{\pi_{35}} \geq \frac{\pi_{27}}{\pi_{25}}$

Characterization of K_{d}^{+}

Theorem 1. For $y \in \mathbb{R}^{d}$, the following statements are equivalent.
(i) y is an extreme direction of K_{d}^{+};
(ii) y is a feasible tree solution w.r.t. some bipartition (P, N) of V.

Degree vectors

Degree vectors of spanning trees

$c \in \mathbb{N}^{P}$ is called P-configuration if $\sum_{i \in P} c_{i}=d-1$
$b \in \mathbb{N}^{N}$ is called N-configuration if $\sum_{i \in N} b_{i}=d-1$

$$
\mathbb{N}=\{1,2, \ldots\}
$$

Degree vectors of spanning trees

$c \in \mathbb{N}^{P}$ is called P-configuration if $\sum_{i \in P} c_{i}=d-1$
$b \in \mathbb{N}^{N}$ is called N-configuration if $\sum_{i \in N} b_{i}=d-1$

$$
\mathbb{N}=\{1,2, \ldots\}
$$

Degree vectors of spanning trees

$c \in \mathbb{N}^{P}$ is called P-configuration if $\sum_{i \in P} c_{i}=d-1$
$b \in \mathbb{N}^{N}$ is called N-configuration if $\sum_{i \in N} b_{i}=d-1$

$$
\mathbb{N}=\{1,2, \ldots\}
$$

Degree vectors of spanning trees

$c \in \mathbb{N}^{P}$ is called P-configuration if $\sum_{i \in P} c_{i}=d-1$
$b \in \mathbb{N}^{N}$ is called N-configuration if $\sum_{i \in N} b_{i}=d-1$

$$
\mathbb{N}=\{1,2, \ldots\}
$$

Existence of feasible tree solutions

Theorem 2. For every bi-partition (P, N) of V and every P-configuration $c \in \mathbb{N}^{P}$ there exists a feasible tree solution $y \in \mathbb{R}^{d}$ generated by a spanning tree T of the bi-partite graph $G(P, N)$ with $\operatorname{deg}_{T}(P)=c$. An analogous statement holds if an N-configuration is given.

Towards a proof of Theorem 2

Towards a proof of Theorem 2

1 (4)

Towards a proof of Theorem 2

Towards a proof of Theorem 2

Is there an N-configuration $b \in \mathbb{N}^{N}$ and a feasible tree solution y generated by T such that $b=\operatorname{deg}_{T}(N)$ and $c=\operatorname{deg}_{T}(P)$?

Towards a proof of Theorem 2

Towards a proof of Theorem 2

$k \in \arg \min \left\{y_{i} \cdot \pi_{i j} \mid i \in P\right\}$

Towards a proof of Theorem 2

$\mathcal{T}(H) \ldots$ set of all spanning trees of a graph H

Lemma 1. Let $H=H(P, N)$ be a bi-partite graph. Then

$$
\left|\left\{\operatorname{deg}_{T}(P) \mid T \in \mathcal{T}(H)\right\}\right|=\left|\left\{\operatorname{deg}_{T}(N) \mid T \in \mathcal{T}(H)\right\}\right|
$$

Consequences of Theorem 1 and 2

Corollary 1. Assume that also (5) holds. Let x, y be two feasible tree solutions with respect to bi-partitions $\left(P_{x}, N_{x}\right)$ and $\left(P_{y}, N_{y}\right)$ of V, respectively. Then $\left(P_{x}, N_{x}\right) \neq\left(P_{y}, N_{y}\right)$ implies $x \neq \alpha y$ for all $\alpha>0$. Moreover, K_{d}^{+}has at least $2^{d}-2$ extreme directions.

Corollary 2. K_{d}^{+}has at most $\sum_{p=1}^{d-1}\binom{d-2}{p-1}\binom{d}{p}$ extreme directions.
Example. The upper bound in Corollary 2 cannot be improved.

Let the non-diagonal entries be pairwise different prime numbers such that
$\left(\min \left\{\pi_{i j} \mid i j \in V \times V, i \neq j\right\}\right)^{2}>\max \left\{\pi_{i j} \mid i j \in V \times V, i \neq j\right\}$

Example. $d=20, \pi_{i i}=1, \pi_{12}=59, \pi_{12}=61 \ldots \pi_{20,19}=2713$

$$
59^{2}>2713 \Longrightarrow
$$

K_{20}^{+}has exactly $\sum_{p=1}^{19}\binom{18}{p-1}\binom{20}{p}=35.345 .263 .800$ extreme directions.
$P=\{5,6,7,8,9,10,11\}, N=\{1, \ldots, 4,12, \ldots, 20\}$.
$\binom{d-2}{p-1}=\binom{18}{6}=18564 P$-configurations for this bi-partition $(p:=|P|)$.
$c=(3,2,4,2,2,2,4)^{T} \in \mathbb{N}^{P}$

Algorithm (Matlab, about 15 minutes):
$y=\left(\frac{487 \cdot 757}{503 \cdot 859}, \frac{491 \cdot 757}{503 \cdot 859}, \frac{619.947 \cdot 1367}{677 \cdot 953 \cdot 1427}, \frac{757}{859}, \frac{757}{503 \cdot 859}, \frac{947 \cdot 1367}{677 \cdot 953 \cdot 1427}, \frac{1}{859}, \frac{1367}{953 \cdot 1427}\right.$,
$\left.\frac{1}{1117}, \frac{839}{859 \cdot 1237}, \frac{1}{1427}, \frac{1327}{1427}, \frac{947 \cdot 1367}{953 \cdot 1427}, \frac{1367}{1427}, \frac{1373}{1427}, \frac{829}{859}, \frac{839}{859}, \frac{839 \cdot 1249}{859 \cdot 1237}, \frac{1109}{1117}, 1\right)^{T}$
$b=(1,1,1,2,1,2,2,1,1,2,1,1,3)^{T} \in \mathbb{N}^{N}$

Special cases

$\pi_{i i}:=1$ and $\pi_{i j}:=a_{j} / b_{i}(i \neq j), 0<b_{i} \leq a_{i}(i \in V)$,
$0<b_{k}<a_{k}$ for at least one $k \in V$

$$
\Rightarrow(1) \text { to }(4)
$$

[if $\left.0<b_{i}<a_{i}(i \in V) \Rightarrow(5)\right]$

Then, every bi-partition yields only one feasible tree solution (and thus just one generating vector of K_{d}^{+}):

Corollary 3.

$K_{d}^{+}=$cone $\left\{y \in \mathbb{R}^{d} \mid(P, N)\right.$ bi-part. of $\left.V, \forall i \in P: y_{i}=b_{i}, \forall j \in N: y_{j}=a_{j}\right\}$
K_{d}^{+}has at most $2^{d}-2$ extreme directions.
If (5) is satisfied, K_{d}^{+}has exactly $2^{d}-2$ extreme directions.

Special cases

Case 1: d currencies with positive bid-ask-spread.
d currencies with bid prices $b=\left(1, S_{1}, \ldots, S_{d}\right)$ and ask prices $a_{i}=$ $(1+k) b_{i}$ for all i. Proportional transaction costs $k>0$.
$\Rightarrow(5) . \Rightarrow$ exactly $2^{d}-2$ extreme directions.

Recursive representation case 1:

For $d \geq 3$ (columns of Y_{d} are generating vectors of K_{d}^{+}):

$$
Y_{2}=\left(\begin{array}{cc}
a_{1} & b_{1} \\
b_{2} & a_{2}
\end{array}\right) \quad Y_{d}=\left(\right)
$$

Note: $2^{d}-2=2\left(2^{d-1}-2\right)+2$

Special cases

Case 2: d assets all denoted in domestic currency (= asset 1), exchanges only via domestic currency.

Recursive representation case 2:

bid and ask prices $b_{i}<a_{i}$ for $i \in\{2, \ldots, d\}$ expressed by asset 1 ('cash'). Since $a_{1}=b_{1}=1$ (cash) \Rightarrow (5) is not satisfied, \Rightarrow less than $2^{d}-2$ extreme directions.

For $d \geq 3$ (columns of Y_{d} are generating vectors of K_{d}^{+})

$$
Y_{2}=\left(\begin{array}{cc}
1 & 1 \\
a_{2} & b_{2}
\end{array}\right) \quad Y_{d}=\left(\begin{array}{ccccccc}
& Y_{d-1} & & & & Y_{d-1} & \\
a_{d} & \ldots & a_{d} & b_{d} & \ldots & b_{d}
\end{array}\right)
$$

K_{d}^{+}has exactly 2^{d-1} extreme directions.

Recall:

$\left\|K_{d}\right\|,\left\|K_{d}^{+}\right\|$	$d=2$	3	4	\cdots	7	\cdots	d
general	2,2	6,6	12,20	\cdots	42,924	\cdots	$d(d-1), \sum_{p=1}^{d-1}\binom{d-2}{p-1}\binom{d}{p}$
case 1	2,2	6,6	12,14	\cdots	42,126	\cdots	$d(d-1), 2^{d}-2$
case 2	2,2	4,4	6,8	\cdots	12,64	\cdots	$2(d-1), 2^{d-1}$

case 1: d currencies with positive bid-ask-spread.
case 2: d assets all denoted in domestic currency (= asset 1), exchanges only via domestic currency.

References

Combinatorial optimization, network flow problems:
Cook, W. J.; Cunningham, W. H.; Pulleyblank, W. R.; Schrijver, A.: Combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization, New York, 1998

Jewell, W. S.: Optimal flow through networks with gains. Operations Research, 10, 476-499 (1962)

Lemma 1 based on: (communicated by Sang-Il Oum (Paul Seymour, Richard Stanley))
Postnikov, A.: Permutohedra, associahedra, and beyond, Int. Math. Res. Not. 6 (2009), 1026-1106

References

Financial Math:

Jouini E., Kallal H.: Martingales and Arbitrage in Securities Markets with Transaction Costs. Journal of Economic Theory 66(1), 178-197, (1995)

Kabanov, Y. M.: Hedging and liquidation under transaction costs in currency markets. Finance and Stochastics 3, 237-248 (1999)

Schachermeyer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14:1 (2004), 19-48

Bouchard, B.; Touzi, N.: Explicit solution to the multivariate superreplication problem under transaction costs. Ann. Appl. Probab. 10:3 (2000), 685-708

Thank you!

Löhne, Rudloff (2014): On the dual of the solvency cone. Discrete Applied Mathematics. Forthcoming.

