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The setting

• d assets with bid-ask prices, modeled by solvency cone Kd
(fixed time t and state ω )

• Varying t: cone-valued stochastic process (Kt)Tt=0

(replaces stock price process (St)Tt=0 in frictionless market)

• Consistent price process is a martingale (Zt)Tt=0 with Zt ∈ K+
t

(positive dual cone) P − a.s. for all t

(replaces equivalent martingale measures in frictionless market)

The question

Generating vectors of K+
d ? (Calculation? How many? Is there a

structure?)

Posed as an open problem in Bouchard, Touzi (2000, AAP)



Why important?

Characterize efficient trades:

• A portfolio x ∈ Rd can be traded into y ∈ x−Kd

• but only trades on the boundary of x−Kd (i.e. the faces of x−Kd)
are reasonable (do not burn money)

• faces of Kd correspond to generating vectors of K+
d

Dual variables:

Play the role of equivalent martingale measures: appear in dual char-
acterization of superhedging, portfolio optimization, market-risk mea-
sures, ... in markets with proportional transaction cost (and even in
limit order book markets)

Algorithm:

K+
d needed as an input in algorithms to compute superhedging prices,

market-risk measures in transaction cost markets



The results (Löhne, Rudloff (2014), Forthcoming at Discrete Applied Mathematics.)

• Complete characterization of K+
d (structure, upper and lower bound

for number, exact number for important special cases) for arbi-

trary dimension d

• Algorithm to compute K+
d

• For special cases no algorithm necessary as K+
d has a simple

recursive structure

• Uses graph theory, combinatorial optimization



The starting point

• easy for d = 2 and d = 3

• no clue for d ≥ 4...

• brutal force gives generating vectors of dual in numerical examples
(until d = 7) by vertex enumeration (very expensive)

• no structural results ...

|Kd|, |K+
d | d = 2 3 4 5 6 7 ... d

general 2, 2 6, 6 12, 20 20, 70 30, 252 42, 924 ... d(d− 1), ???

case 1 2, 2 6, 6 12, 14 20, 30 30 , 62 42, 126 ... d(d− 1), 2d − 2?

case 2 2, 2 4, 4 6, 8 8 , 16 10, 32 12, 64 ... 2(d− 1), 2d−1?

case 1: d currencies with positive bid-ask-spread.
case 2: d assets all denoted in domestic currency (= asset 1), ex-
changes only via domestic currency.



The final result

|Kd|, |K+
d | d = 2 3 4 ... 7 ... d

general 2, 2 6, 6 12, 20 ... 42, 924 ... d(d− 1),
∑d−1

p=1

(
d−2
p−1

)(
d
p

)
case 1 2, 2 6, 6 12, 14 ... 42, 126 ... d(d− 1), 2d − 2

case 2 2, 2 4, 4 6, 8 ... 12, 64 ... 2(d− 1), 2d−1

case 1: d currencies with positive bid-ask-spread.

case 2: d assets all denoted in domestic currency (= asset 1), ex-

changes only via domestic currency.



The final result

Recursive representation in special cases:

E.g. case 2: bid and ask prices bi < ai for i ∈ {2, ..., d} expressed by

asset 1 (’cash’).

For d ≥ 3 (columns of Yd are generating vectors of K+
d )

Y2 =

(
1 1
a2 b2

)
Yd =

 Yd−1 Yd−1

ad . . . ad bd . . . bd

 .



The details



Definition (solvency cone)

πij : number of units of asset i for which an agent can buy one unit

of asset j.

Let d ∈ {2,3, . . .}, V = {1, . . . , d} and let Π = (πij) be a (d× d)-matrix

such that

∀i ∈ V : πii = 1, (1)

∀i, j ∈ V : 0 < πij, (2)

∀i, j, k ∈ V : πij ≤ πikπkj, (3)

∃i, j, k ∈ V : πij < πikπkj. (4)

Sometimes, (3) and (4) is replaced by (efficient frictions)

∀i, j ∈ V, ∀k ∈ V \ {i, j} : πij < πikπkj. (5)

The polyhedral convex cone

Kd := cone
{
πije

i − ej| ij ∈ V × V
}

is called solvency cone induced by Π.



The dual cone

K+
d :=

{
y ∈ Rd| ∀x ∈ Kd : xTy ≥ 0

}
... (positive) dual cone of Kd

Trivial: generating vectors of solvency cone give inequality represen-

tation of dual cone:

Proposition 1. One has K+
d =

{
y ∈ Rd| ∀i, j ∈ V : πijyi ≥ yj

}
.

Proof: obvious

Recall: Kd := cone
{
πije

i − ej| ij ∈ V × V
}

Thus, vertex enumeration gives generating vectors of dual in numerical

examples.

Generating vectors of dual cone correspond to faces of the primal

cone (efficient trades!)



Bi-partitions

V = {1, . . . , d}
(P,N) ... bi-partition of V , i.e., ∅ 6= P ( V , N = V \ P

Motivation for use of bi-partitions:

Cone Kd has faces in any orthant in Rd (except in Rd+ and Rd−). All

points in one of those orthants correspond to a bi-partition: let x ∈ Rd.
Collect i ∈ P (Positive) if xi > 0 and j ∈ N (Negative) if xj ≤ 0.

Want to find all faces of Kd in a given orthant (= a given bi-partition).



Feasible tree solution

V = {1, . . . , d}
(P,N) ... bi-partition of V , i.e., ∅ 6= P ( V , N = V \ P
G(P,N) ... bi-partite digraph with arc set E = P ×N

Spanning tree of G(P,N) ... connected, no cycles (d− 1 edges)

y ∈ Rd is called feasible tree solution w.r.t (P,N) if there is a spanning

tree T of G(P,N) such that

∀ij ∈ E(T ) ⊆ P ×N : πijyi = yj > 0. (6)

and

∀ij ∈ P ×N : πijyi ≥ yj > 0. (7)



Feasible tree solution

V = {1,2,3,4,5,6,7}, P = {1,2,3,4}, N = {5,6,7}

y7 =
π15π27

π25

y4 =
π15π27

π25π47

y3 =
π15

π35

y2 =
π15

π25

y6 =
π15π26

π25

y5 = π15

y1 = 1 1

2

3

4

7

6

5

T

Tree solution: πijyi = yj for ij ∈ E(T )
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Feasibility: e.g. π37y3 ≥ y7



Feasible tree solution
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π15π27
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π15π26

π25

y5 = π15

y1 = 1 1
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4

7

6

5

T

Feasibility: e.g. π37y3 ≥ y7 i.e. π37
π35
≥ π27

π25



Characterization of K+
d

Theorem 1. For y ∈ Rd, the following statements are equivalent.

(i) y is an extreme direction of K+
d ;

(ii) y is a feasible tree solution w.r.t. some bipartition (P,N) of V .



Degree vectors

degT (P ) =


1
3
1
1



N

P

T

7

5

1

2

3

4

6
degT (N) =

3
1
2





Degree vectors of spanning trees


3 1 1 1 2 2 2 1 1 1
1 3 1 1 2 1 1 2 2 1
1 1 3 1 1 2 1 2 1 2
1 1 1 3 1 1 2 1 2 2



N

P

7

5

1

2

3

4

6

4 1 1 3 3 2 1 2 1 2
1 4 1 2 1 3 3 1 2 2
1 1 4 1 2 1 2 3 3 2



c ∈ NP is called P -configuration if
∑
i∈P

ci = d− 1

b ∈ NN is called N-configuration if
∑
i∈N

bi = d− 1

N = {1,2, . . .}
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Existence of feasible tree solutions

Theorem 2. For every bi-partition (P,N) of V and every P -configuration

c ∈ NP there exists a feasible tree solution y ∈ Rd generated by a span-

ning tree T of the bi-partite graph G(P,N) with degT (P ) = c. An

analogous statement holds if an N-configuration is given.



Towards a proof of Theorem 2
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Towards a proof of Theorem 2

k = 6

2

1
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1

6

3

k ∈ arg max{yj/π1j | j ∈ N}



Towards a proof of Theorem 2
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Is there an N-configuration

b ∈ NN and a feasible tree

solution y generated by T

such that b = degT (N) and

c = degT (P ) ?



Towards a proof of Theorem 2
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Towards a proof of Theorem 2
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k ∈ arg min{yi · πij | i ∈ P}



Towards a proof of Theorem 2

T (H) ... set of all spanning trees of a graph H

Lemma 1. Let H = H(P,N) be a bi-partite graph. Then

|{degT (P )| T ∈ T (H)}| = |{degT (N)| T ∈ T (H)}|.


1 2 2 1 1 1
1 1 1 2 2 1
3 2 1 2 1 2
1 1 2 1 2 2



N

P

H

7

5

1

2

3

4

6

1 2 1 2 1 2
4 3 3 1 2 2
1 1 2 3 3 2





Consequences of Theorem 1 and 2

Corollary 1. Assume that also (5) holds. Let x, y be two feasible

tree solutions with respect to bi-partitions (Px, Nx) and (Py, Ny) of V ,

respectively. Then (Px, Nx) 6= (Py, Ny) implies x 6= αy for all α > 0.

Moreover, K+
d has at least 2d − 2 extreme directions.

Corollary 2. K+
d has at most

∑d−1
p=1

(
d−2
p−1

)(
d
p

)
extreme directions.

Example. The upper bound in Corollary 2 cannot be improved.

Let the non-diagonal entries be pairwise different prime numbers such

that

(
min

{
πij| ij ∈ V × V, i 6= j

})2
> max

{
πij| ij ∈ V × V, i 6= j

}



Example. d = 20, πii = 1, π12 = 59, π12 = 61 ... π20,19 = 2713

592 > 2713 =⇒ (5)

K+
20 has exactly

∑19
p=1

(
18
p−1

)(
20
p

)
= 35.345.263.800 extreme directions.

P = {5,6,7,8,9,10,11}, N = {1, . . . ,4,12, . . . ,20}.

(
d−2
p−1

)
=
(

18
6

)
= 18564 P -configurations for this bi-partition (p := |P |).

c = (3,2,4,2,2,2,4)T ∈ NP

Algorithm (Matlab, about 15 minutes):

y =
(

487·757
503·859,

491·757
503·859,

619·947·1367
677·953·1427,

757
859,

757
503·859,

947·1367
677·953·1427,

1
859,

1367
953·1427,

1
1117,

839
859·1237,

1
1427,

1327
1427,

947·1367
953·1427,

1367
1427,

1373
1427,

829
859,

839
859,

839·1249
859·1237,

1109
1117,1

)T
b = (1,1,1,2,1,2,2,1,1,2,1,1,3)T ∈ NN



Special cases

πii := 1 and πij := aj/bi (i 6= j), 0 < bi ≤ ai (i ∈ V ),

0 < bk < ak for at least one k ∈ V

⇒ (1) to (4)

[ if 0 < bi < ai (i ∈ V ) ⇒ (5)]

Then, every bi-partition yields only one feasible tree solution (and thus

just one generating vector of K+
d ):

Corollary 3.

K+
d = cone

{
y ∈ Rd| (P,N) bi-part. of V, ∀i ∈ P : yi = bi, ∀j ∈ N : yj = aj

}
K+
d has at most 2d − 2 extreme directions.

If (5) is satisfied, K+
d has exactly 2d − 2 extreme directions.



Special cases

Case 1: d currencies with positive bid-ask-spread.

d currencies with bid prices b = (1, S1, ..., Sd) and ask prices ai =

(1 + k)bi for all i. Proportional transaction costs k > 0.

⇒ (5). ⇒ exactly 2d − 2 extreme directions.

Recursive representation case 1:

For d ≥ 3 (columns of Yd are generating vectors of K+
d ):

Y2 =

(
a1 b1
b2 a2

)
Yd =


b1 a1

Yd−1
... Yd−1

...
bd−1 ad−1

ad . . . ad ad bd . . . bd bd

 .

Note: 2d − 2 = 2(2d−1 − 2) + 2



Special cases

Case 2: d assets all denoted in domestic currency (= asset 1), ex-

changes only via domestic currency.

Recursive representation case 2:

bid and ask prices bi < ai for i ∈ {2, ..., d} expressed by asset 1 (’cash’).

Since a1 = b1 = 1 (cash) ⇒ (5) is not satisfied, ⇒ less than 2d − 2

extreme directions.

For d ≥ 3 (columns of Yd are generating vectors of K+
d )

Y2 =

(
1 1
a2 b2

)
Yd =

 Yd−1 Yd−1

ad . . . ad bd . . . bd

 .

K+
d has exactly 2d−1 extreme directions.



Recall:

|Kd|, |K+
d | d = 2 3 4 ... 7 ... d

general 2, 2 6, 6 12, 20 ... 42, 924 ... d(d− 1),
∑d−1

p=1

(
d−2
p−1

)(
d
p

)
case 1 2, 2 6, 6 12, 14 ... 42, 126 ... d(d− 1), 2d − 2

case 2 2, 2 4, 4 6, 8 ... 12, 64 ... 2(d− 1), 2d−1

case 1: d currencies with positive bid-ask-spread.

case 2: d assets all denoted in domestic currency (= asset 1), ex-

changes only via domestic currency.
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Thank you!

Löhne, Rudloff (2014): On the dual of the solvency cone. Discrete

Applied Mathematics. Forthcoming.


