Equilibrium in risk-sharing games

Michail Anthropelos (University of Piraeus) joint with Constantinos Kardaras (LSE)

LUH-Kolloquium "Versicherungs und Finanzmathematik" The Future of Risk Measurement Hannover, December 2014

イロト イロト イヨト イヨト

- Financial agents share their risky positions by designing new (or trading given) financial securities in a mutually beneficial way.
- These transactions are normally **not cooperative**. They involve only a small number of agents, each of which can influence the equilibrium.
- Agents' strategic behaviour in risk sharing should be introduced.

We ask:

- ✓ How should an agent respond to the actions of the others? (Best response problem)
- ✓ How and at which point the market equilibrate? (Nash equilibrium)
- ✓ Do certain agents benefit from the game? (Equilibria comparison)

- On optimal risk sharing: Seminal works of Borch ['62, '68] and Wilson ['68]. See also Duffie & Rahi ['95], Barrieu & El Karoui ['04, '05], Jouini, Schachermayer & Touzi ['08] etc.
- Non-cooperative risk sharing games: Horst & Moreno-Bromberg ['08, '12] (adverse selection), Vayanos ['99], Carvajal et al. ['12], Rostek & Weretka ['12]

- Financial agents share their risky positions by designing new (or trading given) financial securities in a mutually beneficial way.
- These transactions are normally **not cooperative**. They involve only a small number of agents, each of which can influence the equilibrium.

• Agents' strategic behaviour in risk sharing should be introduced.

We ask:

- ✓ How should an agent respond to the actions of the others? (Best response problem)
- ✓ How and at which point the market equilibrate? (Nash equilibrium)
- ✓ Do certain agents benefit from the game? (Equilibria comparison)

- On optimal risk sharing: Seminal works of Borch ['62, '68] and Wilson ['68]. See also Duffie & Rahi ['95], Barrieu & El Karoui ['04, '05], Jouini, Schachermayer & Touzi ['08] etc.
- Non-cooperative risk sharing games: Horst & Moreno-Bromberg ['08, '12] (adverse selection), Vayanos ['99], Carvajal et al. ['12], Rostek & Weretka ['12]

- Financial agents share their risky positions by designing new (or trading given) financial securities in a mutually beneficial way.
- These transactions are normally **not cooperative**. They involve only a small number of agents, each of which can influence the equilibrium.
- Agents' strategic behaviour in risk sharing should be introduced.

We ask:

- How should an agent respond to the actions of the others? (Best response problem)
- ✓ How and at which point the market equilibrate? (Nash equilibrium)
- ✓ Do certain agents benefit from the game? (Equilibria comparison)

- On optimal risk sharing: Seminal works of Borch ['62, '68] and Wilson ['68]. See also Duffie & Rahi ['95], Barrieu & El Karoui ['04, '05], Jouini, Schachermayer & Touzi ['08] etc.
- Non-cooperative risk sharing games: Horst & Moreno-Bromberg ['08, '12] (adverse selection), Vayanos ['99], Carvajal et al. ['12], Rostek & Weretka ['12]

- Financial agents share their risky positions by designing new (or trading given) financial securities in a mutually beneficial way.
- These transactions are normally **not cooperative**. They involve only a small number of agents, each of which can influence the equilibrium.
- Agents' strategic behaviour in risk sharing should be introduced.

We ask:

- ✓ How should an agent respond to the actions of the others? (Best response problem)
- ✓ How and at which point the market equilibrate? (Nash equilibrium)
- ✓ Do certain agents benefit from the game? (Equilibria comparison)

- On optimal risk sharing: Seminal works of Borch ['62, '68] and Wilson ['68]. See also Duffie & Rahi ['95], Barrieu & El Karoui ['04, '05], Jouini, Schachermayer & Touzi ['08] etc.
- Non-cooperative risk sharing games: Horst & Moreno-Bromberg ['08, '12] (adverse selection), Vayanos ['99], Carvajal et al. ['12], Rostek & Weretka ['12]

- Financial agents share their risky positions by designing new (or trading given) financial securities in a mutually beneficial way.
- These transactions are normally **not cooperative**. They involve only a small number of agents, each of which can influence the equilibrium.
- Agents' strategic behaviour in risk sharing should be introduced.

We ask:

- ✓ How should an agent respond to the actions of the others? (Best response problem)
- ✓ How and at which point the market equilibrate? (Nash equilibrium)
- (Do certain agents benefit from the game? (Equilibria comparison)

- On optimal risk sharing: Seminal works of Borch ['62, '68] and Wilson ['68]. See also Duffie & Rahi ['95], Barrieu & El Karoui ['04, '05], Jouini, Schachermayer & Touzi ['08] etc.
- Non-cooperative risk sharing games: Horst & Moreno-Bromberg ['08, '12] (adverse selection), Vayanos ['99], Carvajal et al. ['12], Rostek & Weretka ['12]

- Financial agents share their risky positions by designing new (or trading given) financial securities in a mutually beneficial way.
- These transactions are normally **not cooperative**. They involve only a small number of agents, each of which can influence the equilibrium.
- Agents' strategic behaviour in risk sharing should be introduced.

We ask:

- How should an agent respond to the actions of the others? (Best response problem)
- ✓ How and at which point the market equilibrate? (Nash equilibrium)
- ✓ Do certain agents benefit from the game? (Equilibria comparison)

- On optimal risk sharing: Seminal works of Borch ['62, '68] and Wilson ['68]. See also Duffie & Rahi ['95], Barrieu & El Karoui ['04, '05], Jouini, Schachermayer & Touzi ['08] etc.
- Non-cooperative risk sharing games: Horst & Moreno-Bromberg ['08, '12] (adverse selection), Vayanos ['99], Carvajal et al. ['12], Rostek & Weretka ['12]

- Financial agents share their risky positions by designing new (or trading given) financial securities in a mutually beneficial way.
- These transactions are normally **not cooperative**. They involve only a small number of agents, each of which can influence the equilibrium.
- Agents' strategic behaviour in risk sharing should be introduced.

We ask:

- How should an agent respond to the actions of the others? (Best response problem)
- ✓ How and at which point the market equilibrate? (Nash equilibrium)
- ✓ Do certain agents benefit from the game? (Equilibria comparison)

- On optimal risk sharing: Seminal works of Borch ['62, '68] and Wilson ['68]. See also Duffie & Rahi ['95], Barrieu & El Karoui ['04, '05], Jouini, Schachermayer & Touzi ['08] etc.
- Non-cooperative risk sharing games: Horst & Moreno-Bromberg ['08, '12] (adverse selection), Vayanos ['99], Carvajal et al. ['12], Rostek & Weretka ['12].

Outline

1 Risk sharing and Arrow-Debreu equilibrium

- 2 Agent's best endowment response
- 3 Nash equilibria in risk sharing
- Extreme risk tolerance
- 5 Games in incomplete risk sharing
- 6 Conclusive remarks & open questions

• • • • • • • • • • • • •

Outline

1 Risk sharing and Arrow-Debreu equilibrium

- 2 Agent's best endowment response
 - 3 Nash equilibria in risk sharing
 - 4 Extreme risk tolerance
 - 5 Games in incomplete risk sharing
- 6 Conclusive remarks & open questions

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Agents and preferences

Static probability model

- $\mathbb{L}^0 \equiv \mathbb{L}^0(\Omega, \mathcal{F}, \mathbb{P})$: discounted future payoffs.
- $I = \{0, \ldots, n\}$: index set of n + 1 economic agents.

Preferences

• Agents' risk preferences modelled via *monetary* utility functionals:

$$\mathbb{L}^0 \ni X \mapsto \mathbb{U}_i(X) := -\delta_i \log \left(\mathbb{E} \left[\exp \left(-\frac{X}{\delta_i} \right) \right] \right) \in [-\infty, \infty).$$

• Define the aggregate risk tolerance $\delta := \sum_{i \in I} \delta_i$, as well as

$$\lambda_i := \frac{\delta_i}{\delta}, \quad \delta_{-i} := \delta - \delta_i, \quad \forall i \in I.$$

イロト イヨト イヨト イヨト

Agents and preferences

Static probability model

- $\mathbb{L}^0 \equiv \mathbb{L}^0(\Omega, \mathcal{F}, \mathbb{P})$: discounted future payoffs.
- $I = \{0, \ldots, n\}$: index set of n + 1 economic agents.

Preferences

• Agents' risk preferences modelled via monetary utility functionals:

$$\mathbb{L}^0 \ni X \mapsto \mathbb{U}_i(X) := -\delta_i \log \left(\mathbb{E}\left[\exp\left(-\frac{X}{\delta_i}\right) \right] \right) \in [-\infty,\infty).$$

• Define the aggregate risk tolerance $\delta := \sum_{i \in I} \delta_i$, as well as

$$\lambda_i := \frac{\delta_i}{\delta}, \quad \delta_{-i} := \delta - \delta_i, \quad \forall i \in I.$$

イロト イヨト イヨト イヨト

Agents and preferences

Static probability model

- $\mathbb{L}^0 \equiv \mathbb{L}^0(\Omega, \mathcal{F}, \mathbb{P})$: discounted future payoffs.
- $I = \{0, \ldots, n\}$: index set of n + 1 economic agents.

Preferences

• Agents' risk preferences modelled via monetary utility functionals:

$$\mathbb{L}^0 \ni X \mapsto \mathbb{U}_i(X) := -\delta_i \log \left(\mathbb{E} \left[\exp \left(- \frac{X}{\delta_i} \right) \right] \right) \in [-\infty, \infty).$$

• Define the aggregate risk tolerance $\delta := \sum_{i \in I} \delta_i$, as well as

$$\lambda_i := \frac{\delta_i}{\delta}, \quad \delta_{-i} := \delta - \delta_i, \quad \forall i \in I.$$

<ロ> (日) (日) (日) (日) (日)

Endowments and Securities

Endowments

- $E_i \in \mathbb{L}^0$: random endowment (risky position) of agent $i \in I$.
- Aggregate endowment:

$$E := \sum_{i \in I} E_i.$$

• **Standing assumption** enforced throughout: $(E_i)_{i \in I} \in \mathcal{E}$; in effect,

 $\mathbb{U}_i(E_i) > -\infty, \quad \forall i \in I.$

Sharing-Securities-Valuation measure

A risk sharing transaction consists of a valuation measure $\mathbb{Q} \in \mathcal{P}$ and a collection of security payoffs $(C_i)_{i \in I}$ belonging in the following set:

$$\mathcal{C}_{\mathbb{Q}} := \left\{ (C_i)_{i \in I} \in (\mathbb{L}^0)^I \ \Big| \ \sum_{i \in I} C_i = 0, \ C_i \in \mathbb{L}^1(\mathbb{Q}) \text{ and } \mathbb{E}_{\mathbb{Q}}[C_i] = 0, \ \forall i \in I \right\}$$

 \rightarrow After sharing, position of agent $i \in I$ is $E_i + C_i$.

Endowments and Securities

Endowments

- $E_i \in \mathbb{L}^0$: random endowment (risky position) of agent $i \in I$.
- Aggregate endowment:

$$E := \sum_{i \in I} E_i.$$

• Standing assumption enforced throughout: $(E_i)_{i \in I} \in \mathcal{E}$; in effect,

$$\mathbb{U}_i(E_i) > -\infty, \quad \forall i \in I.$$

Sharing-Securities-Valuation measure

A risk sharing transaction consists of a valuation measure $\mathbb{Q} \in \mathcal{P}$ and a collection of security payoffs $(C_i)_{i \in I}$ belonging in the following set:

$$\mathcal{C}_{\mathbb{Q}} \ := \ \left\{ (C_i)_{i \in I} \in (\mathbb{L}^0)^I \ \Big| \ \sum_{i \in I} C_i = 0, \ C_i \in \mathbb{L}^1(\mathbb{Q}) \text{ and } \mathbb{E}_{\mathbb{Q}}\left[C_i\right] = 0, \ \forall i \in I \right\}$$

 \rightarrow After sharing, position of agent $i \in I$ is $E_i + C_i$.

Endowments and Securities

Endowments

- $E_i \in \mathbb{L}^0$: random endowment (risky position) of agent $i \in I$.
- Aggregate endowment:

$$E := \sum_{i \in I} E_i.$$

• Standing assumption enforced throughout: $(E_i)_{i \in I} \in \mathcal{E}$; in effect,

$$\mathbb{U}_i(E_i) > -\infty, \quad \forall i \in I.$$

Sharing-Securities-Valuation measure

A risk sharing transaction consists of a valuation measure $\mathbb{Q} \in \mathcal{P}$ and a collection of security payoffs $(C_i)_{i \in I}$ belonging in the following set:

$$\mathcal{C}_{\mathbb{Q}} := \left\{ (C_i)_{i \in I} \in (\mathbb{L}^0)^I \ \Big| \ \sum_{i \in I} C_i = 0, \ C_i \in \mathbb{L}^1(\mathbb{Q}) \text{ and } \mathbb{E}_{\mathbb{Q}} \left[C_i \right] = 0, \ \forall i \in I \right\}.$$

 \rightarrow After sharing, position of agent $i \in I$ is $E_i + C_i$.

Complete market equilibrium

Arrow-Debreu equilibrium

Valuation probability $\mathbb{Q}^* \in \mathcal{P}$ and securities $(C_i^*)_{i \in I} \in (\mathbb{L}^0)^I$ such that:

- $(C_i^*)_{i\in I} \in \mathcal{C}_{\mathbb{Q}^*}.$
- For all $C \in \mathbb{L}^1(\mathbb{Q}^*)$ with $\mathbb{E}_{\mathbb{Q}^*}[C] \leq 0$, $\mathbb{U}_i(E_i + C) \leq \mathbb{U}_i(E_i + C_i^*)$, $\forall i \in I$.

Theorem (Borch '62)

A unique Arrow-Debreu equilibrium exists; in fact, $\mathrm{d}\mathbb{Q}^*/\mathrm{d}\mathbb{P}\propto\exp\left(-E/\delta
ight)$ and

$$C_i^* := \lambda_i E - E_i - \mathbb{E}_{\mathbb{Q}^*} \left[\lambda_i E - E_i \right], \quad \forall i \in I.$$

Aggregate monetary utility in Arrow-Debreu equilibrium $(C_i^*)_{i \in I}$ is a maximiser of $\sum_{i \in I} \mathbb{U}_i(E_i + C_i)$; furthermore,

 $\sum_{i \in I} \mathbb{U}_i(E_i + C_i^*) = -\delta \log \mathbb{E}\left[\exp\left(-E/\delta\right)\right] \geq \sum_{i \in I} \mathbb{U}_i(E_i).$

 \rightarrow " \geq " above is "=" \iff $C_i^* = 0, \forall i \in I.$

Complete market equilibrium

Arrow-Debreu equilibrium

Valuation probability $\mathbb{Q}^* \in \mathcal{P}$ and securities $(C_i^*)_{i \in I} \in (\mathbb{L}^0)^I$ such that:

- $(C_i^*)_{i\in I} \in \mathcal{C}_{\mathbb{Q}^*}.$
- For all $C \in \mathbb{L}^1(\mathbb{Q}^*)$ with $\mathbb{E}_{\mathbb{Q}^*}[C] \leq 0$, $\mathbb{U}_i(E_i + C) \leq \mathbb{U}_i(E_i + C_i^*)$, $\forall i \in I$.

Theorem (Borch '62)

A unique Arrow-Debreu equilibrium exists; in fact, $\mathrm{d}\mathbb{Q}^*/\mathrm{d}\mathbb{P}\propto\exp\left(-E/\delta
ight)$ and

$$C_i^* := \lambda_i E - E_i - \mathbb{E}_{\mathbb{Q}^*} [\lambda_i E - E_i], \quad \forall i \in I.$$

Aggregate monetary utility in Arrow-Debreu equilibrium

 $(C_i^*)_{i \in I}$ is a maximiser of $\sum_{i \in I} \mathbb{U}_i(E_i + C_i)$; furthermore,

 $\sum_{i \in I} \mathbb{U}_i(E_i + C_i^*) = -\delta \log \mathbb{E}\left[\exp\left(-E/\delta\right)\right] \geq \sum_{i \in I} \mathbb{U}_i(E_i).$

 \rightarrow " \geq " above is "=" \iff $C_i^* = 0, \forall i \in I.$

Complete market equilibrium

Arrow-Debreu equilibrium

Valuation probability $\mathbb{Q}^* \in \mathcal{P}$ and securities $(C_i^*)_{i \in I} \in (\mathbb{L}^0)^I$ such that:

- $(C_i^*)_{i\in I} \in \mathcal{C}_{\mathbb{Q}^*}.$
- For all $C \in \mathbb{L}^1(\mathbb{Q}^*)$ with $\mathbb{E}_{\mathbb{Q}^*}[C] \leq 0$, $\mathbb{U}_i(E_i + C) \leq \mathbb{U}_i(E_i + C_i^*)$, $\forall i \in I$.

Theorem (Borch '62)

A unique Arrow-Debreu equilibrium exists; in fact, $\mathrm{d}\mathbb{Q}^*/\mathrm{d}\mathbb{P}\propto\exp\left(-E/\delta
ight)$ and

$$C_i^* := \lambda_i E - E_i - \mathbb{E}_{\mathbb{Q}^*} \left[\lambda_i E - E_i \right], \quad \forall i \in I.$$

Aggregate monetary utility in Arrow-Debreu equilibrium

 $(C_i^*)_{i \in I}$ is a maximiser of $\sum_{i \in I} \mathbb{U}_i(E_i + C_i)$; furthermore,

 $\sum_{i \in I} \mathbb{U}_i(E_i + C_i^*) = -\delta \log \mathbb{E} \left[\exp\left(-E/\delta\right) \right] \geq \sum_{i \in I} \mathbb{U}_i(E_i).$

 \rightarrow " \geq " above is "=" $\iff C_i^* = 0, \forall i \in I.$

Outline

Risk sharing and Arrow-Debreu equilibrium

- 2 Agent's best endowment response
 - 3 Nash equilibria in risk sharing
 - 4 Extreme risk tolerance
 - 5 Games in incomplete risk sharing
- 6 Conclusive remarks & open questions

・ロト ・回ト ・ヨト ・

Agents may have motive to report different endowments than their actual ones.

Stage 1: Agents agree on the sharing rules of the *reported* endowments.

What if instead of $(E_i)_{i \in I} \in \mathcal{E}$, agents choose to report $(F_i)_{i \in I} \in \mathcal{E}$?

• With $F := \sum_{i \in I} F_i$, the valuation measure \mathbb{Q}^F is such that $\mathrm{d}\mathbb{Q}^F/\mathrm{d}\mathbb{P} \propto \exp\left(-F/\delta\right)$.

• Leads to risk sharing with securities

$$C_{i} = \lambda_{i}F - F_{i} - \mathbb{E}_{\mathbb{Q}^{F}} [\lambda_{i}F - F_{i}]$$

= $\lambda_{i}F_{-i} - \lambda_{-i}F_{i} - \mathbb{E}_{\mathbb{Q}^{F}-i}F_{i} [\lambda_{i}F_{-i} - \lambda_{-i}F_{i}], \quad \forall i \in I.$ (*)

Revealed endowments via valuation measure and securities Given \mathbb{Q} and $(C_i)_{i \in I} \in C_{\mathbb{Q}}$, $\exists (F_i)_{i \in I}$ (unique up to cash translation) such that

 $\mathbb{Q} = \mathbb{Q}^F$ and $(C_i)_{i \in I}$ are given by (\star) .

イロン イロン イヨン イヨン

Agents may have motive to report different endowments than their actual ones.

Stage 1: Agents agree on the sharing rules of the *reported* endowments.

What if instead of $(E_i)_{i \in I} \in \mathcal{E}$, agents choose to report $(F_i)_{i \in I} \in \mathcal{E}$?

• With $F := \sum_{i \in I} F_i$, the valuation measure \mathbb{Q}^F is such that $\mathrm{d}\mathbb{Q}^F/\mathrm{d}\mathbb{P} \propto \exp(-F/\delta)$.

• Leads to risk sharing with securities

$$C_{i} = \lambda_{i}F - F_{i} - \mathbb{E}_{\mathbb{Q}^{F}}[\lambda_{i}F - F_{i}]$$

= $\lambda_{i}F_{-i} - \lambda_{-i}F_{i} - \mathbb{E}_{\mathbb{Q}^{F_{-i}+F_{i}}}[\lambda_{i}F_{-i} - \lambda_{-i}F_{i}], \quad \forall i \in I.$ (*)

Revealed endowments via valuation measure and securities Given \mathbb{Q} and $(C_i)_{i \in I} \in C_{\mathbb{Q}}$, $\exists (F_i)_{i \in I}$ (unique up to cash translation) such that $\mathbb{Q} = \mathbb{Q}^F$ and $(C_i)_{i \in I}$ are given by (\star) .

<ロ> (日) (日) (日) (日) (日)

Agents may have motive to report different endowments than their actual ones.

Stage 1: Agents agree on the sharing rules of the *reported* endowments.

What if instead of $(E_i)_{i \in I} \in \mathcal{E}$, agents choose to report $(F_i)_{i \in I} \in \mathcal{E}$?

- With $F := \sum_{i \in I} F_i$, the valuation measure \mathbb{Q}^F is such that $\mathrm{d}\mathbb{Q}^F/\mathrm{d}\mathbb{P} \propto \exp\left(-F/\delta\right)$.
- Leads to risk sharing with securities

$$C_{i} = \lambda_{i}F - F_{i} - \mathbb{E}_{\mathbb{Q}^{F}} [\lambda_{i}F - F_{i}]$$

= $\lambda_{i}F_{-i} - \lambda_{-i}F_{i} - \mathbb{E}_{\mathbb{Q}^{F_{-i}+F_{i}}} [\lambda_{i}F_{-i} - \lambda_{-i}F_{i}], \quad \forall i \in I.$ (*)

Revealed endowments via valuation measure and securities Given \mathbb{Q} and $(C_i)_{i \in I} \in C_{\mathbb{Q}}$, $\exists (F_i)_{i \in I}$ (unique up to cash translation) such that $\mathbb{Q} = \mathbb{Q}^F$ and $(C_i)_{i \in I}$ are given by (*).

<ロ> (日) (日) (日) (日) (日)

Agents may have motive to report different endowments than their actual ones.

Stage 1: Agents agree on the sharing rules of the *reported* endowments.

What if instead of $(E_i)_{i \in I} \in \mathcal{E}$, agents choose to report $(F_i)_{i \in I} \in \mathcal{E}$?

- With $F := \sum_{i \in I} F_i$, the valuation measure \mathbb{Q}^F is such that $\mathrm{d}\mathbb{Q}^F/\mathrm{d}\mathbb{P} \propto \exp(-F/\delta)$.
- Leads to risk sharing with securities

$$C_{i} = \lambda_{i}F - F_{i} - \mathbb{E}_{\mathbb{Q}^{F}} [\lambda_{i}F - F_{i}]$$

= $\lambda_{i}F_{-i} - \lambda_{-i}F_{i} - \mathbb{E}_{\mathbb{Q}^{F_{-i}+F_{i}}} [\lambda_{i}F_{-i} - \lambda_{-i}F_{i}], \quad \forall i \in I.$ (*)

Revealed endowments via valuation measure and securities Given \mathbb{Q} and $(C_i)_{i \in I} \in C_{\mathbb{Q}}$, $\exists (F_i)_{i \in I}$ (unique up to cash translation) such that

$$\mathbb{Q} = \mathbb{Q}^F$$
 and $(C_i)_{i \in I}$ are given by (\star) .

イロト イヨト イヨト イヨト

Best endowment response: the problem

Consider the position of agent $i \in I$. Given

- the agreed mechanism that produces the optimal sharing securities; and
- the endowment F_{-i} reported by the rest *n* agents in $I \setminus \{i\}$,

a natural question is:

Which random quantity should agent $i \in I$ report as actual endowment?

Response function

Let F_{-i} given. The **response function** of agent $i \in I$ is

$$\mathbb{V}_i(F_i;F_{-i}) := \mathbb{U}_i\left(E_i + \lambda_iF_{-i} - \lambda_{-i}F_i - \mathbb{E}_{\mathbb{Q}^{F_{-i}+F_i}}\left[\lambda_iF_{-i} - \lambda_{-i}F_i\right]
ight).$$

• $\mathbb{V}_i(F_i + c; F_{-i}) = \mathbb{V}_i(F_i; F_{-i})$ holds for all $c \in \mathbb{R}$.

• $\mathbb{V}_i(\cdot; F_{-i})$ is *not* concave in general.

Best response

For given F_{-i} , we seek F_i^r such that

 $\mathbb{V}_i(F_i^{\mathsf{r}}; F_{-i}) = \sup_{F_i} \mathbb{V}_i(F_i; F_{-i}).$

Best endowment response: the problem

Consider the position of agent $i \in I$. Given

- the agreed mechanism that produces the optimal sharing securities; and
- the endowment F_{-i} reported by the rest *n* agents in $I \setminus \{i\}$,

a natural question is:

Which random quantity should agent $i \in I$ report as actual endowment?

Response function

Let F_{-i} given. The **response function** of agent $i \in I$ is

$$\mathbb{V}_i(F_i;F_{-i}) := \mathbb{U}_i\left(E_i + \lambda_iF_{-i} - \lambda_{-i}F_i - \mathbb{E}_{\mathbb{Q}^{F_{-i}+F_i}}\left[\lambda_iF_{-i} - \lambda_{-i}F_i\right]
ight).$$

•
$$\mathbb{V}_i(F_i + c; F_{-i}) = \mathbb{V}_i(F_i; F_{-i})$$
 holds for all $c \in \mathbb{R}$.

• $\mathbb{V}_i(\cdot; F_{-i})$ is *not* concave in general.

Best response

For given F_{-i} , we seek F_i^r such that

$\mathbb{V}_i(F_i^{\mathsf{r}}; F_{-i}) = \sup_{F_i} \mathbb{V}_i(F_i; F_{-i}).$

Best endowment response: the problem

Consider the position of agent $i \in I$. Given

- the agreed mechanism that produces the optimal sharing securities; and
- the endowment F_{-i} reported by the rest *n* agents in $I \setminus \{i\}$,

a natural question is:

Which random quantity should agent $i \in I$ report as actual endowment?

Response function

Let F_{-i} given. The **response function** of agent $i \in I$ is

$$\mathbb{V}_i(F_i;F_{-i}) := \mathbb{U}_i\left(E_i + \lambda_iF_{-i} - \lambda_{-i}F_i - \mathbb{E}_{\mathbb{Q}^{F_{-i}+F_i}}\left[\lambda_iF_{-i} - \lambda_{-i}F_i\right]
ight).$$

•
$$\mathbb{V}_i(F_i + c; F_{-i}) = \mathbb{V}_i(F_i; F_{-i})$$
 holds for all $c \in \mathbb{R}$.

• $\mathbb{V}_i(\cdot; F_{-i})$ is *not* concave in general.

Best response

For given F_{-i} , we seek F_i^r such that

$$\mathbb{V}_i(F_i^{\mathsf{r}}; F_{-i}) = \sup_{F_i} \mathbb{V}_i(F_i; F_{-i}).$$

Best endowment response: results

Proposition (Necessary and sufficient conditions for optimality) Let $i \in I$, F_{-i} and F_i^r given. The following are equivalent: $\frac{\delta}{\delta_{i}} \frac{C_{i}}{\delta_{i}} + \log\left(1 + \frac{C_{i}}{\delta_{i}}\right) = \zeta_{i} - \frac{E_{i}}{\delta_{i}} + \frac{F_{-i}}{\delta_{i}},$ (note the *a-priori* necessary bound $C_i^r > -\delta_{-i}$) and $\zeta_i \in \mathbb{R}$ is such that $\zeta_i = \frac{\mathbb{U}_i(E_i + C_i^r)}{\delta_i} - \frac{\mathbb{U}_i(F_{-i} - C_i^r)}{\delta_i}.$

 $(1) \Rightarrow (2)$: 1st-order conditions. $\mathbb{V}_i(\cdot; F_{-i})$ is not concave: $(2) \Rightarrow (1)$ is tricky.

Theorem

There exists unique (up to constants) F_i^r s.t. $\mathbb{V}_i(F_i^r; F_{-i}) = \sup_{F_i} \mathbb{V}_i(F_i; F_{-i})$

M. Anthropelos (Un. of Piraeus)

Best endowment response: results

Proposition (Necessary and sufficient conditions for optimality) Let $i \in I$, F_{-i} and F_i^r given. The following are equivalent: $\frac{\delta}{\delta_{i}} \frac{C_{i}}{\delta_{i}} + \log\left(1 + \frac{C_{i}}{\delta_{i}}\right) = \zeta_{i} - \frac{E_{i}}{\delta_{i}} + \frac{F_{-i}}{\delta_{i}},$ (note the *a-priori* necessary bound $C_i^r > -\delta_{-i}$) and $\zeta_i \in \mathbb{R}$ is such that $\zeta_i = \frac{\mathbb{U}_i(E_i + C_i^r)}{\delta_i} - \frac{\mathbb{U}_i(F_{-i} - C_i^r)}{\delta_i}.$

 $(1) \Rightarrow (2)$: 1st-order conditions. $\mathbb{V}_i(\cdot; \mathcal{F}_{-i})$ is not concave: $(2) \Rightarrow (1)$ is tricky.

Theorem

There exists unique (up to constants) F_i^r s.t. $\mathbb{V}_i(F_i^r; F_{-i}) = \sup_{F_i} \mathbb{V}_i(F_i; F_{-i})$

M. Anthropelos (Un. of Piraeus)

Best endowment response: results

Proposition (Necessary and sufficient conditions for optimality) Let $i \in I$, F_{-i} and F_i^r given. The following are equivalent: $\frac{\delta}{\delta_{i}} \frac{C_{i}}{\delta_{i}} + \log\left(1 + \frac{C_{i}}{\delta_{i}}\right) = \zeta_{i} - \frac{E_{i}}{\delta_{i}} + \frac{F_{-i}}{\delta_{i}},$ (note the *a-priori* necessary bound $C_i^r > -\delta_{-i}$) and $\zeta_i \in \mathbb{R}$ is such that $\zeta_i = \frac{\mathbb{U}_i(E_i + C_i^r)}{\delta_i} - \frac{\mathbb{U}_i(F_{-i} - C_i^r)}{\delta_{-i}}.$

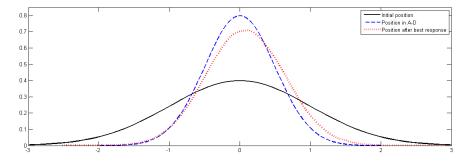
 $(1) \Rightarrow (2)$: 1st-order conditions. $\mathbb{V}_i(\cdot; \mathcal{F}_{-i})$ is not concave: $(2) \Rightarrow (1)$ is tricky.

Theorem

There exists unique (up to constants) F_i^r s.t. $\mathbb{V}_i(F_i^r; F_{-i}) = \sup_{F_i} \mathbb{V}_i(F_i; F_{-i})$.

M. Anthropelos (Un. of Piraeus)

An illustrative example



Two-agent example, where endowments are correlated ($\rho = -0.2$) and normal distributed, $\delta_i = 1$ for i = 0, 1.

イロト イヨト イヨト イヨト

Outline

Risk sharing and Arrow-Debreu equilibrium

2 Agent's best endowment response

3 Nash equilibria in risk sharing

Extreme risk tolerance

Games in incomplete risk sharing

6 Conclusive remarks & open questions

・ロト ・回ト ・ヨト ・

Nash Equilibrium

Stage 2

- All agents have same strategic behaviour.
- Given the agreed risk sharing rules (stage 1), agents negotiate the securities they are going to trade and the valuation measure they are going to apply.

Definition

The pair $(\mathbb{Q}^{\diamond}, (C_i^{\diamond})_{i \in I}) \in \mathbb{P} \times (\mathbb{L}^0)^I$ will be called a **Nash risk sharing** equilibrium if

$$\mathbb{V}_i\left(F_i^\diamond;F_{-i}^\diamond\right) = \sup_{F_i} \mathbb{V}_i\left(F_i;F_{-i}^\diamond\right), \quad \forall i \in I,$$

where $(F_i^{\diamond})_{i \in I}$ are the corresponding revealed endowments, given implicitly by

$$rac{\mathrm{d}\mathbb{Q}^\diamond}{\mathrm{d}\mathbb{P}}\propto\exp\left(-F^\diamond/\delta
ight)$$

and

$$C_i^{\diamond} = \lambda_i F^{\diamond} - F_i^{\diamond} - \mathbb{E}_{\mathbb{Q}^{\diamond}} \left[\lambda_i F^{\diamond} - F_i^{\diamond} \right].$$

イロト イポト イヨト イヨン

Nash Equilibrium

Stage 2

- All agents have same strategic behaviour.
- Given the agreed risk sharing rules (stage 1), agents negotiate the securities they are going to trade and the valuation measure they are going to apply.

Definition

The pair $(\mathbb{Q}^\diamond, (C_i^\diamond)_{i \in I}) \in \mathbb{P} \times (\mathbb{L}^0)^I$ will be called a Nash risk sharing equilibrium if

$$\mathbb{V}_i\left(F_i^\diamond;F_{-i}^\diamond\right) = \sup_{F_i} \mathbb{V}_i\left(F_i;F_{-i}^\diamond\right), \quad \forall i \in I,$$

where $(F_i^{\diamond})_{i \in I}$ are the corresponding revealed endowments, given implicitly by

$$rac{\mathrm{d}\mathbb{Q}^\diamond}{\mathrm{d}\mathbb{P}}\propto\exp\left(-{\pmb{F}^\diamond}/\delta
ight)$$

and

$$C_i^{\diamond} = \lambda_i F^{\diamond} - F_i^{\diamond} - \mathbb{E}_{\mathbb{Q}^{\diamond}} \left[\lambda_i F^{\diamond} - F_i^{\diamond} \right].$$

Necessary and sufficient conditions for Nash equilibrium

Theorem

The collection $(\mathbb{Q}^\diamond, (C_i^\diamond)_{i \in I}) \in \mathbb{P} \times (\mathbb{L}^0)^I$ is a Nash equilibrium if and only if the following three conditions hold:

• $C_i^\diamond > -\delta_{-i}$ for all $i \in I$, and there exists $z^\diamond \equiv (z_i^\diamond)_{i \in I} \in \mathbb{R}^I$ with $\sum_{i \in I} z_i^\diamond = 0$ such that

$$C_i^{\diamond} + \delta_i \log\left(1 + \frac{C_i^{\diamond}}{\delta_{-i}}\right) = z_i^{\diamond} + C_i^* + \lambda_i \sum_{j \in I} \delta_j \log\left(1 + \frac{C_j^{\diamond}}{\delta_{-j}}\right), \quad \forall i \in I.$$

イロト イヨト イヨト イヨト

Existence (and uniqueness) of Nash equilibria?

In search of equilibrium

Parametrise candidate optimal securities in

$$\Delta^{I} := \left\{ (z_i)_{i \in I} \in \mathbb{R}^{I} \mid \sum_{i \in I} z_i = 0 \right\} \equiv \mathbb{R}^n \quad (\text{where } n = \#I - 1).$$

• For all $z \in \Delta^{I}$, $\exists ! (C_{i}(z))_{i \in I}$ with $\sum_{i \in I} C_{i}(z) = 0$ satisfying equations (1).

• <u>Aim</u>: find $z \in \Delta^{I}$ such that $\mathbb{E}_{\mathbb{Q}(z)}[C_{i}(z)] = 0$ holds for all $i \in I$.

Theorem

- In a Nash equilibrium, $\mathbb{E}_{\mathbb{Q}(z^{\diamond})}[C_i(z^{\diamond})] = 0$ holds $\forall i \in I$.
- Let $z^{\diamond} \in \Delta^{I}$ be such that $\mathbb{E}_{\mathbb{Q}(z^{\diamond})}[C_{i}(z^{\diamond})] = 0$ holds $\forall i \in I$. Then, $(\mathbb{Q}^{\diamond}, (C_{i}^{\diamond})_{i \in I})$ defined by (1) and (2) for $z = z^{\diamond}$ is a Nash equilibrium.

Theorem

If $I = \{0,1\}$, there exists a unique $z^{\diamond} \in \Delta^I \equiv \mathbb{R}$ with $\mathbb{E}_{\mathbb{Q}(z^{\diamond})}[C_i(z^{\diamond})] = 0, \, \forall i \in I$.

(a)

Existence (and uniqueness) of Nash equilibria?

In search of equilibrium

Parametrise candidate optimal securities in

$$\Delta^I := \left\{ (z_i)_{i \in I} \in \mathbb{R}^I \mid \sum_{i \in I} z_i = 0 \right\} \equiv \mathbb{R}^n \quad (\text{where } n = \#I - 1).$$

• For all $z \in \Delta^{I}$, $\exists ! (C_{i}(z))_{i \in I}$ with $\sum_{i \in I} C_{i}(z) = 0$ satisfying equations (1).

• <u>Aim</u>: find $z \in \Delta^{I}$ such that $\mathbb{E}_{\mathbb{Q}(z)}[C_{i}(z)] = 0$ holds for all $i \in I$.

Theorem

• In a Nash equilibrium, $\mathbb{E}_{\mathbb{Q}(z^{\diamond})}[C_i(z^{\diamond})] = 0$ holds $\forall i \in I$.

■ Let $z^{\diamond} \in \Delta^{I}$ be such that $\mathbb{E}_{\mathbb{Q}(z^{\diamond})}[C_{i}(z^{\diamond})] = 0$ holds $\forall i \in I$. Then, $(\mathbb{Q}^{\diamond}, (C_{i}^{\diamond})_{i \in I})$ defined by (1) and (2) for $z = z^{\diamond}$ is a Nash equilibrium.

Theorem

If $I = \{0, 1\}$, there exists a unique $z^{\diamond} \in \Delta^{I} \equiv \mathbb{R}$ with $\mathbb{E}_{\mathbb{Q}(z^{\diamond})}[C_{i}(z^{\diamond})] = 0, \forall i \in I$.

<ロ> (日) (日) (日) (日) (日)

Existence (and uniqueness) of Nash equilibria?

In search of equilibrium

Parametrise candidate optimal securities in

$$\Delta^I := \left\{ (z_i)_{i \in I} \in \mathbb{R}^I \mid \sum_{i \in I} z_i = 0 \right\} \equiv \mathbb{R}^n \quad \text{(where } n = \#I - 1\text{)}.$$

• For all $z \in \Delta^{I}$, $\exists ! (C_{i}(z))_{i \in I}$ with $\sum_{i \in I} C_{i}(z) = 0$ satisfying equations (1).

• <u>Aim</u>: find $z \in \Delta^{I}$ such that $\mathbb{E}_{\mathbb{Q}(z)}[C_{i}(z)] = 0$ holds for all $i \in I$.

Theorem

- **9** In a Nash equilibrium, $\mathbb{E}_{\mathbb{Q}(z^{\diamond})}[C_i(z^{\diamond})] = 0$ holds $\forall i \in I$.
- Output Let z[◊] ∈ Δ^I be such that $\mathbb{E}_{\mathbb{Q}(z^{◊})}[C_i(z^{◊})] = 0$ holds ∀i ∈ I. Then, (Q[◊], (C[◊]_i)_{i∈I}) defined by (1) and (2) for z = z[◊] is a Nash equilibrium.

Theorem

If $I = \{0, 1\}$, there exists a unique $z^{\diamond} \in \Delta^{I} \equiv \mathbb{R}$ with $\mathbb{E}_{\mathbb{Q}(z^{\diamond})}[C_{i}(z^{\diamond})] = 0, \forall i \in I$.

<ロ> (日) (日) (日) (日) (日)

Existence (and uniqueness) of Nash equilibria?

In search of equilibrium

Parametrise candidate optimal securities in

$$\Delta^{I} := \left\{ (z_i)_{i \in I} \in \mathbb{R}^{I} \mid \sum_{i \in I} z_i = 0 \right\} \equiv \mathbb{R}^n \quad (\text{where } n = \#I - 1).$$

• For all $z \in \Delta^{I}$, $\exists ! (C_{i}(z))_{i \in I}$ with $\sum_{i \in I} C_{i}(z) = 0$ satisfying equations (1).

• <u>Aim</u>: find $z \in \Delta^{I}$ such that $\mathbb{E}_{\mathbb{Q}(z)}[C_{i}(z)] = 0$ holds for all $i \in I$.

Theorem

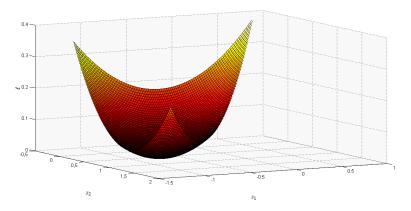
- In a Nash equilibrium, $\mathbb{E}_{\mathbb{Q}(z^{\diamond})}[C_i(z^{\diamond})] = 0$ holds $\forall i \in I$.
- Output Let z[◊] ∈ Δ^I be such that $\mathbb{E}_{\mathbb{Q}(z^{◊})}[C_i(z^{◊})] = 0$ holds ∀i ∈ I. Then, ($\mathbb{Q}^{◊}, (C_i^{◊})_{i \in I}$) defined by (1) and (2) for z = z[◊] is a Nash equilibrium.

Theorem

If $I = \{0, 1\}$, there exists a unique $z^{\diamond} \in \Delta^{I} \equiv \mathbb{R}$ with $\mathbb{E}_{\mathbb{Q}(z^{\diamond})}[C_{i}(z^{\diamond})] = 0, \forall i \in I$.

イロト イヨト イヨト イヨト

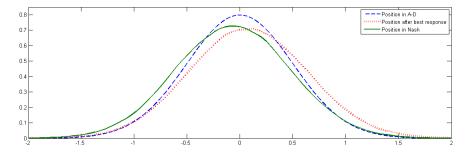
An example



Three-agent example, where endowments are correlated and normal distributed, $\delta_i = 1$ for i = 0, 1, 2 and

$$\mathsf{Distance}(z) = \sum_{i=0}^{2} -\delta_{-i} \log \left(1 + \frac{\mathbb{E}_{\mathbb{Q}(z)} \left[C_{i}(z) \right]}{\delta_{-i}} \right), \quad z \in \Delta^{I}.$$

A two-agent example



Two-agent example, where endowments are correlated ($\rho = -0.2$) and normal distributed, $\delta_i = 1$ for i = 0, 1.

・ロン ・回 と ・ ヨン・

Some consequences of Nash equilibrium

You trade, you share endowment different than your true one

$$\mathcal{F}_i^\diamond = \mathcal{E}_i - z_i^\diamond + \delta_i \log\left(1 + rac{\mathcal{C}_i^\diamond}{\delta_{-i}}
ight).$$

• For any fixed $i \in I$, $F_i^{\diamond} - E_i = \text{constant} \iff C_i^{\diamond} = 0 \iff C_i^* = 0$.

Endogenous bounds on securities

It holds that $C_i^\diamond > -\delta_{-i}$ for all $i \in I$. Hence,

 $-\delta_{-i} < C_i^\diamond < (n-1)\delta + \delta_i, \quad \forall i \in I.$ [Contrast with A-D equilibrium.]

Aggregate loss of efficiency (in monetary terms)

$$\sum_{i \in I} \mathbb{U}_i(E_i + C_i^*) - \sum_{i \in I} \mathbb{U}_i(E_i + C_i^\diamond) = -\delta \log \mathbb{E}_{\mathbb{Q}^\diamond} \left[\prod_{i \in I} \left(1 + \frac{C_i^\diamond}{\delta_{-i}} \right)^{\delta_i/\delta} \right] \ge 0.$$

No loss of efficiency M. Anthropelos (Un. of Piraeus)

Equilibrium in Risk Sharing Games

Some consequences of Nash equilibrium

You trade, you share endowment different than your true one

$$F_i^\diamond = E_i - z_i^\diamond + \delta_i \log\left(1 + rac{C_i^\diamond}{\delta_{-i}}
ight).$$

• For any fixed $i \in I$, $F_i^{\diamond} - E_i = \text{constant} \iff C_i^{\diamond} = 0 \iff C_i^* = 0$.

Endogenous bounds on securities

It holds that $C_i^\diamond > -\delta_{-i}$ for all $i \in I$. Hence,

 $-\delta_{-i} < C_i^\diamond < (n-1)\delta + \delta_i, \quad \forall i \in I.$ [Contrast with A-D equilibrium.]

Aggregate loss of efficiency (in monetary terms)

$$\sum_{i \in I} \mathbb{U}_i(E_i + C_i^*) - \sum_{i \in I} \mathbb{U}_i(E_i + C_i^\diamond) = -\delta \log \mathbb{E}_{\mathbb{Q}^\diamond} \left[\prod_{i \in I} \left(1 + \frac{C_i^\diamond}{\delta_{-i}} \right)^{\delta_i/\delta} \right] \ge 0.$$

No loss of efficiency M. Anthropelos (Un. of Piraeus)

Some consequences of Nash equilibrium

You trade, you share endowment different than your true one

$$F_i^\diamond = E_i - z_i^\diamond + \delta_i \log\left(1 + rac{C_i^\diamond}{\delta_{-i}}
ight).$$

• For any fixed $i \in I$, $F_i^{\diamond} - E_i = \text{constant} \iff C_i^{\diamond} = 0 \iff C_i^* = 0$.

Endogenous bounds on securities

It holds that $C_i^\diamond > -\delta_{-i}$ for all $i \in I$. Hence,

 $-\delta_{-i} < C_i^\diamond < (n-1)\delta + \delta_i, \quad \forall i \in I.$ [Contrast with A-D equilibrium.]

Aggregate loss of efficiency (in monetary terms)

$$\sum_{i \in I} \mathbb{U}_i (E_i + C_i^*) - \sum_{i \in I} \mathbb{U}_i (E_i + C_i^\diamond) = -\delta \log \mathbb{E}_{\mathbb{Q}^\diamond} \left[\prod_{i \in I} \left(1 + \frac{C_i^\diamond}{\delta_{-i}} \right)^{\delta_i / \delta} \right] \ge 0.$$

M. Anthropelos (Un. of Piraeus)

What about the M-V preferences?

Let the agents' preferences be mean-variance ones:

$$\mathbb{L}^0
i X \mapsto \mathbb{U}_i(X) := \mathbb{E}\left[X\right] - rac{1}{\delta_i} \mathbb{V}$$
ar $[X] \in [-\infty,\infty).$

 \hookrightarrow Also in this case, the optimal sharing rules are of the form:

$$C_i^* := \lambda_i E - E_i - \mathbf{p}_i^*$$
. [The CAPM.]

Proposition

Under M-V preferences, the unique (up to constants) Nash risk sharing securities are given by

$$C_i^\diamond = \alpha_i E_i + \alpha_{-i} E_{-i} - \mathbf{p}_i^\diamond, \quad \forall i \in I,$$

for some constants α_i and α_{-i} and \mathbf{p}_i^{\diamond} is a price vector.

✓ Just as the exponential case, $C_i^{\diamond} = C_i^*$ if and only if they are constants.

✓ Under the first order approximation $\log(x) \approx x - 1$, Nash risk sharing securities with M-V and exponential preferences are of the equal (up to constants).

What about the M-V preferences?

Let the agents' preferences be mean-variance ones:

$$\mathbb{L}^0
i X\mapsto \mathbb{U}_i(X):=\mathbb{E}\left[X
ight]-rac{1}{\delta_i}\mathbb{V} ext{ar}\left[X
ight]\in [-\infty,\infty).$$

 $\,\hookrightarrow\,$ Also in this case, the optimal sharing rules are of the form:

$$C_i^* := \lambda_i E - E_i - \mathbf{p}_i^*$$
. [The CAPM.]

Proposition

Under M-V preferences, the unique (up to constants) Nash risk sharing securities are given by

$$C_i^\diamond = \alpha_i E_i + \alpha_{-i} E_{-i} - \mathbf{p}_i^\diamond, \quad \forall i \in I,$$

for some constants α_i and α_{-i} and \mathbf{p}_i^\diamond is a price vector.

✓ Just as the exponential case, C_i[◦] = C_i^{*} if and only if they are constants.
 ✓ Under the first order approximation log(x) ≈ x − 1, Nash risk sharing securities with M-V and exponential preferences are of the equal (up to constants).

What about the M-V preferences?

Let the agents' preferences be mean-variance ones:

$$\mathbb{L}^0
i X \mapsto \mathbb{U}_i(X) := \mathbb{E}\left[X
ight] - rac{1}{\delta_i} \mathbb{V}$$
ar $[X] \in [-\infty,\infty).$

 \hookrightarrow Also in this case, the optimal sharing rules are of the form:

$$C_i^* := \lambda_i E - E_i - \mathbf{p}_i^*$$
. [The CAPM.]

Proposition

Under M-V preferences, the unique (up to constants) Nash risk sharing securities are given by

$$C_i^\diamond = \alpha_i E_i + \alpha_{-i} E_{-i} - \mathbf{p}_i^\diamond, \quad \forall i \in I,$$

for some constants α_i and α_{-i} and \mathbf{p}_i^\diamond is a price vector.

- ✓ Just as the exponential case, $C_i^\diamond = C_i^*$ if and only if they are constants.
- ✓ Under the first order approximation $\log(x) \approx x 1$, Nash risk sharing securities with M-V and exponential preferences are of the equal (up to constants).

Outline

Risk sharing and Arrow-Debreu equilibrium

- 2 Agent's best endowment response
- 3 Nash equilibria in risk sharing
- Extreme risk tolerance
 - 5 Games in incomplete risk sharing
- 6 Conclusive remarks & open questions

・ロト ・回ト ・ヨト ・

A sequence of markets

Set-up and notation

- Two agents: $I = \{0, 1\}$.
- A sequence of markets, indexed by $m \in \mathbb{N}$.
- $\delta_1^m \equiv \delta_1 \in (0,\infty)$ for all $m \in \mathbb{N}$, whereas $\lim_{m \to \infty} \delta_0^m = \infty$.
- E_0 and E_1 fixed.

Arrow-Debreu limit

- Limiting valuation measure $\mathbb{Q}^{\infty,*} = \mathbb{P}$.
- Limiting securities: $C_0^{\infty,*}$ and $C_1^{\infty,*} = -C_0^{\infty,*}$, with

$$C_0^{\infty,*}=E_1-\mathbb{E}\left[E_1\right].$$

• Limiting utility gain (in monetary terms): with

 $u_i^{\infty,*} := \lim_{m \to \infty} \left(\mathbb{U}_i^m \left(E_i + C_i^{m,*} \right) - \mathbb{U}_i^m \left(E_i \right) \right), \quad \forall i \in \{0,1\},$ holds that

$$u_0^{\infty,*} = 0, \quad u_1^{\infty,*} = \mathbb{E}[E_1] - \mathbb{U}_1(E_1).$$

・ロン ・聞と ・ヨン ・ヨン

A sequence of markets

Set-up and notation

- Two agents: $I = \{0, 1\}$.
- A sequence of markets, indexed by $m \in \mathbb{N}$.
- $\delta_1^m \equiv \delta_1 \in (0,\infty)$ for all $m \in \mathbb{N}$, whereas $\lim_{m \to \infty} \delta_0^m = \infty$.
- E_0 and E_1 fixed.

Arrow-Debreu limit

- Limiting valuation measure $\mathbb{Q}^{\infty,*} = \mathbb{P}$.
- \bullet Limiting securities: $C_0^{\infty,*}$ and $C_1^{\infty,*}=-C_0^{\infty,*},$ with

$$C_0^{\infty,*}=E_1-\mathbb{E}\left[E_1\right].$$

• Limiting utility gain (in monetary terms): with

$$U_{i}^{\infty,*} := \lim_{m \to \infty} \left(\mathbb{U}_{i}^{m} \left(E_{i} + C_{i}^{m,*} \right) - \mathbb{U}_{i}^{m} \left(E_{i} \right)
ight), \quad \forall i \in \{0,1\},$$

it holds that

$$u_0^{\infty,*} = 0, \quad u_1^{\infty,*} = \mathbb{E}[E_1] - \mathbb{U}_1(E_1).$$

(日) (四) (三) (三)

Game limit

Limiting securities and valuation

 \bullet Limiting Nash-equilibrium security ${\it C}_0^{\infty,\diamond}$ for agent 0 satisfies

$$C_0^{\infty,\diamond} + \delta_1 \log \left(1 + \frac{C_0^{\infty,\diamond}}{\delta_1} \right) = z^{\infty,\diamond} + E_1,$$

where
$$z^{\infty,\diamond} \in \mathbb{R}$$
 is such that $\mathbb{E}\left[\left(1 + C_0^{\infty,\diamond}/\delta_1\right)^{-1}\right] = 1$. Furthermore,
 $\mathrm{d}\mathbb{Q}^{\infty,\diamond} = \left(1 + C_0^{\infty,\diamond}/\delta_1\right)^{-1}\mathrm{d}\mathbb{P}.$

• $F_1^{\infty,\diamond} - E_1 = \text{constant.}$ On the other hand, $F_0^{m,\diamond}$ is $O_p(\delta_0^m)$ as $m \to \infty$.

Limiting utility gain/loss (in monetary terms)

With $u_i^{\infty,\diamond} := \lim_{m \to \infty} \left(\mathbb{U}_i^m \left(E_i + C_i^{m,\diamond} \right) - \mathbb{U}_i^m \left(E_i \right) \right)$ for $i \in \{0,1\}$, it holds that

$$\begin{split} u_0^{\infty,\diamond} &- u_0^{\infty,*} = + \frac{1}{\delta_1} \mathbb{V} \mathrm{ar}_{\mathbb{Q}^{\infty,\diamond}} \left(C_0^{\infty,\diamond} \right), \\ u_1^{\infty,\diamond} &- u_1^{\infty,*} = - \frac{1}{\delta_1} \mathbb{V} \mathrm{ar}_{\mathbb{Q}^{\infty,\diamond}} \left(C_0^{\infty,\diamond} \right) - \delta_1 \mathcal{H} \left(\mathbb{P} \mid \mathbb{Q}^{\infty,\diamond} \right). \end{split}$$

Game limit

Limiting securities and valuation

 \bullet Limiting Nash-equilibrium security ${\it C}_0^{\infty,\diamond}$ for agent 0 satisfies

$$C_0^{\infty,\diamond} + \delta_1 \log \left(1 + \frac{C_0^{\infty,\diamond}}{\delta_1} \right) = z^{\infty,\diamond} + E_1,$$

where
$$z^{\infty,\diamond} \in \mathbb{R}$$
 is such that $\mathbb{E}\left[\left(1 + C_0^{\infty,\diamond}/\delta_1\right)^{-1}\right] = 1$. Furthermore,
 $\mathrm{d}\mathbb{Q}^{\infty,\diamond} = \left(1 + C_0^{\infty,\diamond}/\delta_1\right)^{-1}\mathrm{d}\mathbb{P}.$

• $F_1^{\infty,\diamond} - E_1 = \text{constant.}$ On the other hand, $F_0^{m,\diamond}$ is $O_p(\delta_0^m)$ as $m \to \infty$.

Limiting utility gain/loss (in monetary terms)

With $u_i^{\infty,\diamond}$:= $\lim_{m\to\infty} \left(\mathbb{U}_i^m \left(E_i + C_i^{m,\diamond} \right) - \mathbb{U}_i^m \left(E_i \right) \right)$ for $i \in \{0,1\}$, it holds that

$$\begin{split} u_0^{\infty,\diamond} &- u_0^{\infty,*} = + \frac{1}{\delta_1} \mathbb{V} \mathrm{ar}_{\mathbb{Q}^{\infty,\diamond}} \left(C_0^{\infty,\diamond} \right), \\ u_1^{\infty,\diamond} &- u_1^{\infty,*} = - \frac{1}{\delta_1} \mathbb{V} \mathrm{ar}_{\mathbb{Q}^{\infty,\diamond}} \left(C_0^{\infty,\diamond} \right) - \delta_1 \mathcal{H} \left(\mathbb{P} \mid \mathbb{Q}^{\infty,\diamond} \right). \end{split}$$

Outline

Risk sharing and Arrow-Debreu equilibrium

- 2 Agent's best endowment response
- 3 Nash equilibria in risk sharing
- 4 Extreme risk tolerance
- 5 Games in incomplete risk sharing

6 Conclusive remarks & open questions

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The competitive prices

- The agents do not design new but **trade given security payoffs** in order to share their risky endowments.
- In **no** strategic behaviour case, each agent *i* submits his demand function on a given vector of securities $\mathbf{C} \in (\mathbb{L}^0)^k$

$$Z_i(\mathbf{p}) = rgmax_{\mathbf{a} \in \mathbb{R}^k} \left\{ \mathbb{U}_i(E_i + \mathbf{a} \cdot \mathbf{C} - \mathbf{a} \cdot \mathbf{p})
ight\}.$$

• The (partially) optimal equilibrium on **C** is a pair of prices and allocations $(p^*, A^*) \in \mathbb{R}^k \times \mathbb{R}^{(n+1) \times k}$ for which

$$Z_i(\mathbf{p}^*) = \mathbf{a}_i^*, \quad \forall i \in I,$$

where \mathbf{a}_{i}^{*} denotes the *i*-th row of A^{*} .

✓ Under M-V this is the CAPM:

$$\mathbf{p}^* = \mathbb{E}[\mathbf{C}] - \frac{2}{\delta} \mathbb{C} \text{ov}(\mathbf{C}, E).$$

M. Anthropelos (Un. of Piraeus)

Equilibrium in Risk Sharing Games

Hannover 2014 25 / 30

The competitive prices

- The agents do not design new but **trade given security payoffs** in order to share their risky endowments.
- In **no** strategic behaviour case, each agent *i* submits his demand function on a given vector of securities $\mathbf{C} \in (\mathbb{L}^0)^k$

$$Z_i(\mathbf{p}) = \operatorname*{argmax}_{\mathbf{a} \in \mathbb{R}^k} \left\{ \mathbb{U}_i(E_i + \mathbf{a} \cdot \mathbf{C} - \mathbf{a} \cdot \mathbf{p})
ight\}.$$

• The (partially) optimal equilibrium on **C** is a pair of prices and allocations $(p^*, A^*) \in \mathbb{R}^k \times \mathbb{R}^{(n+1) \times k}$ for which

$$Z_i(\mathbf{p}^*) = \mathbf{a}_i^*, \quad \forall i \in I,$$

where \mathbf{a}_i^* denotes the *i*-th row of A^* .

✓ Under M-V this is the CAPM:

$$\mathbf{p}^* = \mathbb{E}[\mathbf{C}] - \frac{2}{\delta} \mathbb{C} \text{ov}(\mathbf{C}, E).$$

M. Anthropelos (Un. of Piraeus)

Equilibrium in Risk Sharing Games

Hannover 2014 25 / 30

The competitive prices

- The agents do not design new but **trade given security payoffs** in order to share their risky endowments.
- In **no** strategic behaviour case, each agent *i* submits his demand function on a given vector of securities $\mathbf{C} \in (\mathbb{L}^0)^k$

$$Z_i(\mathbf{p}) = \operatorname*{argmax}_{\mathbf{a} \in \mathbb{R}^k} \left\{ \mathbb{U}_i(E_i + \mathbf{a} \cdot \mathbf{C} - \mathbf{a} \cdot \mathbf{p})
ight\}.$$

• The (partially) optimal equilibrium on **C** is a pair of prices and allocations $(p^*, A^*) \in \mathbb{R}^k \times \mathbb{R}^{(n+1) \times k}$ for which

$$Z_i(\mathbf{p}^*) = \mathbf{a}_i^*, \quad \forall i \in I,$$

where \mathbf{a}_{i}^{*} denotes the *i*-th row of A^{*} .

✓ Under M-V this is the CAPM:

$$\mathbf{p}^* = \mathbb{E}[\mathbf{C}] - \frac{2}{\delta} \mathbb{C} \text{ov}(\mathbf{C}, E).$$

The competitive prices

- The agents do not design new but **trade given security payoffs** in order to share their risky endowments.
- In **no** strategic behaviour case, each agent *i* submits his demand function on a given vector of securities $\mathbf{C} \in (\mathbb{L}^0)^k$

$$Z_i(\mathbf{p}) = \operatorname*{argmax}_{\mathbf{a} \in \mathbb{R}^k} \left\{ \mathbb{U}_i(E_i + \mathbf{a} \cdot \mathbf{C} - \mathbf{a} \cdot \mathbf{p})
ight\}.$$

• The (partially) optimal equilibrium on **C** is a pair of prices and allocations $(p^*, A^*) \in \mathbb{R}^k \times \mathbb{R}^{(n+1) \times k}$ for which

$$Z_i(\mathbf{p}^*) = \mathbf{a}_i^*, \quad \forall i \in I,$$

where \mathbf{a}_{i}^{*} denotes the *i*-th row of A^{*} .

✓ Under M-V this is the CAPM:

$$\mathbf{p}^* = \mathbb{E}[\mathbf{C}] - \frac{2}{\delta} \mathbb{C} \text{ov}(\mathbf{C}, E).$$

The preferable price vector

Given the aggregate demand submitted by the rest of the agents, agent i is going to respond a demand function that clears out the market at his preferable price:

$$\mathbf{p}_i^{\mathrm{r}} := \operatorname*{argmax}_{\mathbf{p} \in \mathbb{R}^k} \{ \mathbb{U}_i(E_i - Z_{-i}(\mathbf{p}) \cdot \mathbf{C}) + Z_{-i}(\mathbf{p}) \cdot \mathbf{p} \}.$$

Best demand response

Let Z_i be the set of all possible demand functions submitted by the agent *i*. Then, the *best demand response* of agent *i* is the demand function $Z_i^t \in Z_i$ for which

 $Z_i^{\mathrm{r}}(\mathbf{p}_i^{\mathrm{r}}) + Z_{-i}(\mathbf{p}_i^{\mathrm{r}}) = 0.$

イロト イヨト イヨト イヨト

The preferable price vector

Given the aggregate demand submitted by the rest of the agents, agent i is going to respond a demand function that clears out the market at his preferable price:

$$\mathbf{p}_i^r := \operatorname*{argmax}_{\mathbf{p} \in \mathbb{R}^k} \{ \mathbb{U}_i(E_i - Z_{-i}(\mathbf{p}) \cdot \mathbf{C}) + Z_{-i}(\mathbf{p}) \cdot \mathbf{p} \}.$$

Best demand response

Let \mathcal{Z}_i be the set of all possible demand functions submitted by the agent *i*. Then, the *best demand response* of agent *i* is the demand function $Z_i^r \in \mathcal{Z}_i$ for which

 $Z_i^{\mathsf{r}}(\mathbf{p}_i^{\mathsf{r}}) + Z_{-i}(\mathbf{p}_i^{\mathsf{r}}) = 0.$

イロト イポト イヨト イヨ

Define $\mathcal{Z} = \mathcal{Z}_0 \times ... \times \mathcal{Z}_n$.

Nash equilibrium in incomplete market

A pair $(\mathbf{p}^{\diamond}, (Z_i^{\diamond})_{i \in I}) \in \mathbb{R}^k \times \mathcal{Z}$ is called Nash price-demand equilibrium of a vector of securities $\mathbf{C} \in (\mathbb{L}^0)^k$ if

 $\sum_{i\in I} Z_i^\diamond(\mathbf{p}^\diamond) = 0$

and \mathbf{p}^{\diamond} the preferable price for each agent, given the aggregate demand Z_{-i}^{\diamond} .

Under M-V preferences

 $\checkmark \mathbf{p}^{\diamond} = \mathbb{E}[\mathbf{C}] - \frac{2}{\delta} \mathbb{C} \text{ov}(\mathbf{C}, F^{\diamond})$ (oligopoly version of CAPM).

 $\checkmark \mathbf{p}^{\diamond} = \mathbf{p}^*$ if and only if $\delta_i = \delta_j$, for all $i, j \in I$.

 \checkmark For sufficiently low risk averse agents, \mathbf{p}^\diamond is always better price than \mathbf{p}^* .

イロト イヨト イヨト イヨト

Define $\mathcal{Z} = \mathcal{Z}_0 \times ... \times \mathcal{Z}_n$.

Nash equilibrium in incomplete market

A pair $(\mathbf{p}^{\diamond}, (Z_i^{\diamond})_{i \in I}) \in \mathbb{R}^k \times \mathcal{Z}$ is called Nash price-demand equilibrium of a vector of securities $\mathbf{C} \in (\mathbb{L}^0)^k$ if

$$\sum_{i\in I} Z_i^\diamond(\mathbf{p}^\diamond) = 0$$

and \mathbf{p}^{\diamond} the preferable price for each agent, given the aggregate demand Z_{-i}^{\diamond} .

Under M-V preferences

$$\checkmark \mathbf{p}^{\diamond} = \mathbb{E}[\mathbf{C}] - \frac{2}{\delta} \mathbb{C} \text{ov}(\mathbf{C}, \mathbf{F}^{\diamond}) \text{ (oligopoly version of CAPM).}$$

✓
$$\mathbf{p}^{\diamond} = \mathbf{p}^*$$
 if and only if $\delta_i = \delta_j$, for all $i, j \in I$.

✓ For sufficiently low risk averse agents, \mathbf{p}^{\diamond} is always better price than \mathbf{p}^{*} .

(a)

Outline

Risk sharing and Arrow-Debreu equilibrium

- 2 Agent's best endowment response
 - 3 Nash equilibria in risk sharing
 - 4 Extreme risk tolerance
 - Games in incomplete risk sharing
- 6 Conclusive remarks & open questions

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conclusive remarks & open questions

Conclusive remarks

- This work attempts to introduce **strategic behaviour** in the risk sharing literature.
- Such strategic behaviour gives an explanation of the **risk sharing inefficiency** and **security mispricing** that occur in markets with few agents.
- In Nash equilibrium, agents never choose to share their true risk exposure.
- In symmetric games, every agent suffers loss of utility as compared to the Arrow-Debreu equilibrium one.
- Strategic games **benefit** agents with **high risk tolerance**.

The future of risk sharing games...

- Existence (and uniqueness?) for more than two players.
- What about the presence of market makers in the transaction?
- Other risk-sharing rules?
- Include risk tolerance as control?
- Dynamic framework?

Conclusive remarks & open questions

Conclusive remarks

- This work attempts to introduce **strategic behaviour** in the risk sharing literature.
- Such strategic behaviour gives an explanation of the **risk sharing inefficiency** and **security mispricing** that occur in markets with few agents.
- In Nash equilibrium, agents never choose to share their true risk exposure.
- In symmetric games, every agent suffers loss of utility as compared to the Arrow-Debreu equilibrium one.
- Strategic games **benefit** agents with **high risk tolerance**.

The future of risk sharing games...

- Existence (and uniqueness?) for more than two players.
- What about the presence of market makers in the transaction?
- Other risk-sharing rules?
- Include risk tolerance as control?
- Dynamic framework?

The End

- "The effect of market power in risk sharing", M.A., submitted.
- "Equilibrium in risk sharing games", M.A. and C. Kardaras, working paper (*Extremely soon uploaded in arxiv.org*).
- "Equilibrium with two large agents trading at market makers' indifference prices", M.A., P. Bank and S. Gökay, working paper.

Thank you for your attention!

イロト 不得下 イヨト イヨト

The End

- "The effect of market power in risk sharing", M.A., submitted.
- "Equilibrium in risk sharing games", M.A. and C. Kardaras, working paper (*Extremely soon uploaded in arxiv.org*).
- "Equilibrium with two large agents trading at market makers' indifference prices", M.A., P. Bank and S. Gökay, working paper.

Thank you for your attention!

イロト 不得下 イヨト イヨト