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Motivation

Increased interest in reinsurance and longevity bonds to manage
longevity risk for products that guarantee a retirement income
(life annuities, pensions)
Longevity risk management strategies

I Capital and product pricing under different solvency regimes
Nirmalendran et al. (2012)

I Reinsurance (Olivieri, 2005; Olivieri and Pitacco, 2008; Levantesi
and Menzietti, 2008)

I Securitization (Cowley and Cummins, 2005; Wills and Sherris,
2010; Biffis and Blake, 2010; Gupta and Wang, 2011)

Each strategy involves differing costs and risks
Research Question: How do longevity risk management decisions
impact the firm’s value for an insurer issuing life annuities allowing
for frictional costs, market premiums, and solvency?
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Introduction

Investigate the impact of longevity risk transfer strategies on
an insurer’s solvency and shareholder value for an annuity
portfolio.
A multi-period valuation framework: one of the main contributions
of the paper, allows for

I The costs of transferring longevity risk.
I Regulatory capital requirements and capital relief.
I Cost of holding capital.
I Financial distress costs.
I Policyholders’ price-default-demand elasticity.

Analyze the interaction between capital management and
reinsurance or securitization.
Valuation approaches

I Economic Balance Sheet (EBS)
I Market-Consistent Embedded Value (MCEV)
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Introduction

Stochastic mortality model with both systematic and idiosyncratic
longevity risk.
Risk transfer strategies

I Reinsurance: indemnity-based, covers both systematic and
idiosyncratic longevity risk.

I Securitization: index-based, covers only systematic longevity risk.

Solvency capital requirements - Solvency II.
Results: Longevity risk management strategies...

I reduce the insurer’s default probability.
I increase shareholder value and,
I reduce the volatility of the shareholder value.
I reduce the level and the volatility of frictional costs.
I reduce investor uncertainty.

5 / 28



Affine Mortality Model

Stochastic mortality model by Blackburn and Sherris (2012).
I Based on forward (cohort) mortality rates
I Avoids need for nested simulations at future time points when

valuing future liabilities.
I Model structure: HJM forward rate models (Heath et al., 1992).
I Model gives stochastic forward interest rates and forward mortality

rates.

Use a model variant with 2-stochastic mortality risk factors, a
deterministic volatility function and Gaussian dynamics
(Blackburn, 2013).
Model is calibrated to Australian male population ages 50-100,
years 1965-2007
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Pricing Measure

Risk-neutral measure: best estimate cohort survivor curve, used
to value annuity cash flows without loading.
Pricing and market valuation measure: construct a new
martingale measure.

I λ: constant price of risk: instantaneous Sharpe ratio (Milevsky and
Promislow, 2001).

I No impact on the volatility function, but scaling of the initial forward
mortality curve.

I Calibrate from quoted reinsurance loadings (survivor swap
premium): λ = 0.1555

Assume interest and mortality rates are independent.
Assume interest rates are deterministic.
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Pricing Measure
Best estimate and market pricing survivor curves with 99%
confidence intervals.
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Framework
Monte-Carlo simulation of an insurer with an annuity portfolio

I Portfolio run-off from ages 65 to 100
I Annuity demand related to premium loading and default probability

Idiosyncratic risk due to portfolio size
Risk transfer (static hedge) through:

I Survivor Swap - indemnity based
I Survivor Bond - index based

Risk transfer options
I 50% or 100% risk transfer
I 50% or 100% capital relief

Mark-to-Market valuation of liabilities / reserve
EBS and MCEV balance sheet items

I Frictional costs due to holding capital
I Recapitalization costs
I Excess capital distributed as dividends
I Initial shareholder capital
I Expenses
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Monte Carlo Simulation and Idiosyncratic Longevity
Risk

Implement the mortality model as a discrete time version of the
HJM model.
Use Monte Carlo simulation based on Glasserman (2003).
For each simulation path m:

I Generate mortality rates to give a survivor index.
I Generate forward mortality curves for each discrete time point ti .
I Expected number of survivors: Î(m)(ti ; x)

Idiosyncratic longevity risk:
I Random death times for individuals: the first time the implied force

of mortality for path m is above %.
I % is an exponential random variable with parameter 1.
I Gives the actual number of survivors: Ĩ(m)(ti ; x)
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Idiosyncratic Longevity Risk
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Annuity Pricing and Reserving
The market value of an annuity that pays $b per year to each
annuitant in a cohort age x at time-0 is

â(0, tn; x) =

tn∑
ts=t1

b · exp
(
−

ts−1∑
tj=t0

(̂
f(0, tj) + µ̂(0, tj ; x) · [tj+1 − tj]

))
.

The path dependent forward market value of an annuity is

â(0, ti , tn; x) =

tn∑
ts=ti+1

b · exp
(
−

ts−1∑
tj=t0

(̂
f(0, tj) + µ̂(0, tj ; x) · [tj+1 − tj]

))
.

The fair value of an annuity that pays $b per year to each
annuitant in a cohort age x at time-0 is

â(0, tn; x) =

tn∑
ts=t1

b · exp
(
−

ts−1∑
tj=t0

(̂
f(0, tj) + µ̂(0, tj ; x)

)
· [tj+1 − tj]

)
,

where µ̂(0, tj ; x) is the best estimate cohort forward survivor curve.
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Portfolio
Annuity single premium, γP - premium loading

π = b ·
(
1 + γP

)
· â(0, tn; x).

Market reserve - unhedged

Ṽ (m)
p (ti ; x) = Ĩ(m)(ti ; x) · â(m)(ti ; x).

Market reserve - hedged

V̂h(ti ; x) = n0 · Ŝ(0, ti ; x) · â(0, ti , tn; x).

Total portfolio reserve

Ṽs
(m)

(ti ; x) = (1 − ωh)Ṽ (m)
p (ti ; x) + ωhV̂h(ti ; x).
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Portfolio

Solvency Capital Requirement - φ = 0.2

M̃(m)
p (ti) =Ṽ (m)

p (ti)|Longevityshock − Ṽ (m)
p (ti)

Total SCR, assuming ωc , is the proportion of hedged liabilities that
are given capital relief.

M̃(m)

h (ti) =M̃(m)
p (ti) · (1 − ωc).

Total Reserve

Ṽ (m)(ti) = Ṽ (m)
s (ti) + M̃(m)(ti) + Ṽ (m)

e (ti) (1)
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Cash Flows

No hedging

C̃F
(m)

(ti) = −b · Ĩ(m)(ti ; x) − Ẽ(m)(ti).

Survivor Swap

= −b ·
[̃
I(m)(ti ; x) + ωh

(
(1 + γR) · Ŝ(0, ti ; x) − Ĩ(m)(ti ; x)

)]
− Ẽ(m)(ti).

Survivor Bond

= −b ·
[̃
I(m)(ti ; x) + ωh

(
(1 + γR) · Ŝ(0, ti ; x) − Î(m)(ti ; x)

)]
− Ẽ(m)(ti).
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Solvency, Dividends, and Recapitalization

Ã (m)(ti) < Ṽ (m)
s (ti): there are insufficient assets to cover time-t

liabilities and the insurer defaults.
I Annuitants receive only the residual assets
I Limited Liability Put Option:

L̃LPO
(m)

(ti) = max{0, Ṽ (m)
s (ti) − Ã (m)(ti)}.

Ã (m)(ti) − Ṽ (m)(ti) < 0: no default, but insufficient capital to meet
regulatory obligations. The shortfall, R̃(m)(ti), is recapitalized from
shareholders.

Ã (m)(ti) − Ṽ (m)(ti) ≥ 0: no default and enough capital to meet
regulatory requirements. The excess capital is distributed to
shareholders as a dividend, D̃(m)(ti).
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Annuity Demand
Exponential demand function (Zimmer et al., 2009, 2011)

I Default sensitivity α, price sensitivity β
I Annuity premium loading factor γP

I Cumulative default probability d

φ∗(γP ,d) = e(α·d+β·γP+θ).

The number n0 of annuities sold at time-0
I nm is the total market size

n0 = nm · φ
∗(γP ,d).
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Economic Balance Sheet (EBS)

Frictional Costs: F̃C
(m)

(t) = ρ · [Ṽ (m)(t) − Ṽ (m)
s (t)]

Recapitalization Costs: F̃C
(m)

R (t) = ψ · R̃(m)(t)

LLPO: see slide 16
X(0) represents shareholder value at time-0

Assets Liabilities
Π V (m)

s (0)

P̃V
(m)

FC (0)

P̃V
(m)

FCR (0)

P̃V
(m)

E (0)
−LLPO(0)

X(0)
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Market-Consistent Embedded Value (MCEV)
The present value of future profits

F̃P
(m)

(ti) =

tn−1∑
ts=ti+1

[(
Ṽ (m)(ts) − Ṽ (m)(ts−1)

)
+ i · Ã (m)(ts−1) + C̃F

(m)
(ts)

]
· ν(ti , ts).

The Value of the In-Force business (VIF)

VIF(t) = F̃P
(m)

(ti) − P̃V
(m)

FC (ti) − P̃V
(m)

FCR (ti) + L̃LPO(ti).

MCEV at time-ti is

MCEV(ti) = VIF(ti) + EQ(ti), (2)

where EQ(ti) is the time-ti equity of the insurer.
Valuation at t = 0: EQ(ti) = 0, SHV is VIF(ti).
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Results
Assume fixed one-year default probability of 0.5%.
Portfolio size depends on premium loading.
Insurer’s actual default probability depends on premium loading.
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Results: One-Year Default Probabilities
Bond: higher premium loading - smaller portfolio size - higher
default prob.
Swap: not a problem, idiosyncratic risk is hedged
No effect of capital relief when insurer is fully hedged.
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Results: Shareholder Value
Longevity risk transfer: small gains to the expected VIF and EV
values for any fixed premium loading.
Reason: reduction of frictional costs.
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(e) Economic Balance Sheet

5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

% Premium Loading

V
I
F
(
M
i
l
l
i
o
n
$
)

 

 

No Reinsurance

Swap & Bond: 50% Weight, 50% Capital Relief

Swap & Bond: 50% Weight, 100% Capital Relief

Swap & Bond: 100% Weight, 50% Capital Relief

Swap & Bond: 100% Weight, 100% Capital Relief

(f) MCEV

22 / 28



Results: Volatility of Shareholder Value
Longevity risk transfer reduces the volatility of SHV
Here: SHV from the Economic Balance Sheet
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Results: Volatility of Shareholder Value
Longevity risk transfer reduces the volatility of SHV
Here: MCEV (=VIF in our model)
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Results: Frictional Costs
FC: F̃C

(m)
(t) = ρ · [Ṽ (m)(t) − Ṽ (m)

s (t)]
Longevity risk transfer reduces the expected value and the
volatility of frictional costs.
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Results: Financial Distress Costs
Longevity risk transfer reduces the expected value and the
volatility of recapitalization costs.
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Conclusion

Stochastic mortality model with systematic and idiosyncratic
longevity risk
Test risk transfer strategies

I Survivor Swap : indemnity based
I Survivor Bond : index based

EBS and MCEV valuation methods
Maintain Solvency II SCR
Benefits of Longevity risk transfer

I Reduce the insurer’s default probability.
I Increases shareholder value and,
I Reduces the volatility of the shareholder value.
I Reduces the friction costs and the volatility of friction costs.
I Reduces the volatility of dividend payment and recapitalization

requirements.
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