A Fourier approach to the computation of risk measures and risk contributions

Antonis Papapantoleon

Collaborators: Samuel Drapeau and Michael Kupper

LUH-Kolloquium "Versicherungs- und Finanzmathematik" Hannover, 27 May 2014

Outline

1 Motivation

- **2** Optimized Certainty Equivalents
- **3** Numerical Computation: Transform Methods
- 4 Risk Contributions
- 5 Numerical Results
- 6 Conclusions

Motivation

The financial crisis has higlighted the importance of reliable risk assessment

Relevance: Economically sound (Diversification, Aggregation, Basel)

Performance: Numerically efficient (real time, huge number of assets)

Motivation Value at Risk (V@R)

Motivation Value at Risk (V@R)

Motivation Value at Risk (V@R)

 $X \sim Y$ and X independent of Y

 $-100K = V@R_{\alpha}(X) + V@R_{\alpha}(Y) < V@R(X+Y) = 250K$

Monetary Risk Measures: Artzner, Delbaen, Eber, Heath (1999); Föllmer, Schied (2002)

"Diversification should not increase risk"

Definition (Monetary Risk Measure)

A monetary risk measure ρ is

Diversifying: for any two assets X and Y the diversified asset profile $\lambda X + (1 - \lambda)Y$ is less risky than the worse outcome

$$\rho(\lambda X + (1 - \lambda)Y) \le \sup \{\rho(X), \rho(Y)\}$$

Monotone: $\rho(X) \ge \rho(Y)$ if loss -X is greater than loss -Y;

Monetary: $\rho(X + m) = \rho(X) - m$ for every amount of cash *m*.

Monetary and diversification implies that ρ is **convex**

$$\rho(\lambda X + (1 - \lambda)Y) \le \lambda \rho(X) + (1 - \lambda)\rho(Y)$$

Examples: CV@R, Entropic Risk Measure, Shortfall Risk Measure, etc.

Motivation

Monetary Risk Measures: Conditional Value at Risk (CV@R)

Motivation

Monetary Risk Measures: Conditional Value at Risk (CV@R)

$$CV@R (Artzner et al.)$$
Illustration $CV@R_{\alpha}(X) := -\frac{1}{\alpha} \int_{0}^{\alpha} q_{X}(s) ds$ $CDF(x)$ • Consistent aggregation $CDF(x)$ • Basel III / Swiss Solvency Test $CV@R_{\alpha}(X)$ • Good interpretation $CV@R_{\alpha}(X)$ • Increased numerical complexity α • Increased numerical complexity• Backtesting - Elicitability• Statistical robustness

Optimized Certainty Equivalents Definition

Optimized Certainty Equivalents Definition

Optimized Certainty Equivalents Definition

Theorem

- The optimized certainty equivalent ρ is a monetary risk measure
- Optimal allocation

$$\rho(X) = \inf_{\eta} \{ E[I(\eta - X)] - \eta \} = E[I(\eta^* - X)] - \eta^*$$

where η^* fulfills

$$E\left[l'\left(\eta^*-X\right)\right]=1$$

Robust Representation

$$\rho(X) = \sup_{Q} \left\{ E_{Q}\left[-X\right] - E\left[I^{*}\left(\frac{dQ}{dP}\right)\right] \right\} = E_{Q^{*}}\left[-X\right] - E\left[I^{*}\left(\frac{dQ^{*}}{dP}\right)\right]$$

Theorem

- The optimized certainty equivalent ρ is a monetary risk measure
- Optimal allocation

$$\rho(X) = \inf_{\eta} \{ E[I(\eta - X)] - \eta \} = E[I(\eta^* - X)] - \eta^*$$

where η^{\ast} fulfills

$$\mathsf{E}\left[l'\left(\eta^*-X\right)\right]=1$$

Robust Representation

$$\rho(X) = \sup_{Q} \left\{ E_{Q} \left[-X \right] - E \left[l^{*} \left(\frac{dQ}{dP} \right) \right] \right\} = E_{Q^{*}} \left[-X \right] - E \left[l^{*} \left(\frac{dQ^{*}}{dP} \right) \right]$$

Theorem

- **The optimized certainty equivalent** ρ is a monetary risk measure
- Optimal allocation

$$\rho(X) = \inf_{\eta} \{ E[I(\eta - X)] - \eta \} = E[I(\eta^* - X)] - \eta^*$$

where η^{\ast} fulfills

$$\mathsf{E}\left[l'\left(\eta^*-X\right)\right]=1$$

Robust Representation

$$\rho(X) = \sup_{Q} \left\{ E_{Q}\left[-X\right] - E\left[I^{*}\left(\frac{dQ}{dP}\right)\right] \right\} = E_{Q^{*}}\left[-X\right] - E\left[I^{*}\left(\frac{dQ^{*}}{dP}\right)\right]$$

where l^{*} is the convex conjugate of l and $dQ^{*}/dP = l'\left(\eta^{*} - X\right)$

Sketch of Proof

- The function $\eta \mapsto E[I(\eta X)] \eta$ is real-valued, convex and coercive.
- Optimal allocation: first order conditions imply that η* fulfills

$$E\left[l'\left(\eta^*-X
ight)
ight]=1$$

and then

$$\rho(X) := \inf_{\eta} \{ E[I(\eta - X)] - \eta \}$$
$$= E[I(\eta^* - X)] - \eta^*$$

Optimized Certainty Equivalents In a Nutshell

- Easy interpretation: optimal allocation of losses
- Adequate for financial optimization problems (Cherny, Kupper)
- Wide class of monetary risk measures by specifying the loss function *I*

1	RM	η^*	$\rho(X)$
$e^{x}-1$	Entropic	$-\ln E[e^{-X}]$	$\ln E[e^{-X}]$
x^+/α	$CV@R_{lpha}$	$q_X(\alpha)$	$-rac{1}{lpha}\int_0^lpha q_X(s)ds$
$x + x^2/2$	Quadratic RM	\rightsquigarrow monotone mean variance	
$\frac{([x+1]^+)^n - 1}{n}$	Polynomial RM		

Optimized Certainty Equivalents In a Nutshell

An easy two step computation

 $\ensuremath{\mathbf{1}}$ Find the root η^* of

$$\eta \mapsto E\left[l'\left(\eta - X\right)\right] - 1\tag{1}$$

2 Compute an integral

$$\rho(X) = E[I(\eta^* - X)] - \eta^*$$
(2)

Numerical Computation: Transform Methods

Ingredients to compute the risk of X

• Fourier transform
$$\hat{f}(u) = \int e^{iux} f(x) dx$$

Theorem

The optimal allocation η^* is the unique root of

$$\eta \longmapsto rac{1}{2\pi} \int_{\mathbb{R}} e^{(a-iu)\eta} M_X(iu-a) \hat{l'}(u+ia) du-1,$$

and the Optimized Certainty Equivalent is given by

$$\rho(X) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{(b-iu)\eta^*} M_X(iu-b)\hat{l}(u+ib)du - \eta^*$$

Here a, b are adequate constants.

Numerical Computation: Transform Methods

Conditional Value at Risk

Proposition

Given $\eta^* = q_X(\alpha)$ it holds

$$CV@R_{\alpha}(X) = -rac{1}{2\pilpha}\int_{\mathbb{R}}rac{e^{(b-iu)\eta^*}}{(u+ib)^2}M_X(iu-b)du-\eta^*,$$

Alternative representations

Quantile Integration

$$CV@R_{\alpha}(X) = -\frac{1}{\alpha} \int_{0}^{\alpha} q_X(s) ds$$

Increased complexity.

Rockafellar and Uryasev

$$CV@R_{\alpha}(X) = \frac{1}{\alpha} E\left[[q_X(\alpha) - X]^+\right] - q_X(\alpha)$$

Either Monte Carlo or direct integration if density $P_X(dx) = f_X(x)dx$ is known.

Numerical Computation: Transform Methods

Polynomial loss functions

Proposition

The optimal allocation is the unique root of

$$\boldsymbol{\eta} \mapsto \frac{(\gamma-1)!}{2\pi} \int_{\mathbb{R}} M_X(iu-R) \frac{e^{(R-iu)(1+\boldsymbol{\eta})}}{(R-iu)^{\gamma}} du - 1.$$
(3)

Once η^{\ast} is determined, then

$$\rho(X) = \frac{(\gamma - 1)!}{2\pi} \int_{\mathbb{R}} M_X(iu - R) \frac{e^{(R - iu)(1 + \eta^*)}}{(R - iu)^{\gamma + 1}} du - \frac{1}{\gamma} - \eta^*.$$
(4)

Remark

The same method applies to other risk measures, e.g. expectiles or shortfall risk measures

$$\rho_{SR} \mapsto E[I(-\rho_{SR} - X)] - \lambda$$

Numerical Computation: Transform Methods

This approach is particularly flexible for the following reasons:

- We only need the moment generating function of X
- A whole class of risk instruments parametrized by \hat{l} ;
- We can immediately aggregate portfolios if the factors are independent, e.g. $X = \sum_{i=1}^{N} X_i$ where N is a random variable and X_i independent, then

$$M_X(v) = \sum_{k=1}^{\infty} P[N=k] \prod_{i=1}^k M_{X_i}(v)$$

- Weighted portfolios and loss models à la Dembo et al.
- Linear mixture models for dependence: Y_1, \ldots, Y_m independent random variables, then the dependent factors $U = (U_1, \ldots, U_n)$ are defined via U = AY for $A \in \mathbb{R}^{n \times m}$. The moment generating function of the risk factor $X = \sum_{i=1}^{n} U_i$ is provided by

$$M_X(u) = \prod_{l=1}^m M_{Y_l}(u\alpha_l), \qquad lpha_l := \sum_{i=1}^n A_i$$

Elliptical distributions, . . .

Risk Contribution OCE and Risk Contributions

 $\mathsf{OCE} \rightsquigarrow \mathsf{straightforward} \ \mathsf{expression} \ \mathsf{for} \ \mathsf{risk} \ \mathsf{contributions}$

Theorem

The contribution of a factor Y to the risk of a financial position X is given by

$$RC(X;Y) := \lim_{\varepsilon \downarrow 0} \frac{\rho(X + \varepsilon Y) - \rho(X)}{\varepsilon} = E\left[l'(\eta^* - X)Y\right]$$

where η^* fulfills

$$E\left[l'\left(\eta^*-X\right)\right]=1$$

Once again a two step computation with a root finding and an expectation.

The optimal allocation η^{*} is already computed!

Risk Contribution

- X = Σ^N_{i=1} X_i aggregation for N lines of independent risks X_i
 η^{*} = q_X(α)
- Goal: Contribution of the line X_i to the aggregated risk X.

Example (CV@R Risk Contribution)

$$RC(X;X_i) = \frac{1}{4\pi^2\alpha} \int_{\mathbb{R}^2} M(R+iu) \frac{e^{-(R_1+iu_1)\eta^*}}{(R_1+iu_1)(u_1-u_2-iR_1-iR_2)^2} du$$

where

$$M(u_1, u_2) = M_{X_i}(u_2) \prod_{j \neq i}^n M_{X_j}(u_1),$$

for adequate constants $R = (R_1, R_2)$.

2 dimensional integration! Monte Carlo needs to simulate N random variables.

Remark

In the linear mixture model: replace the moment generating function.

Numerical Results NIG

The Moment generating function of NIG is given by

$$M_X(u) = \exp\left(u\mu + \delta\left[\sqrt{\alpha^2 - \beta^2} - \sqrt{\alpha^2 - (\beta + u)^2}\right]\right),$$

where $\alpha = \text{shape}, \beta = \text{skewness and } \delta = \text{scaling parameters (zero mean)}$

	Parameters				
	α	β	δ		
NIG ₁	106.00	-26.00	0.0110		
NIG ₂ NIG ₃	26.00 6.20	-10.60 -3.90	0.0070		
NIG ₄	1.00	0.00	1.0000		

Table : Parameter sets for NIG distributions.

$\underset{\scriptscriptstyle \mathsf{CV@R}}{\mathsf{Numerical Results}}$

rogrammed in Mariab, it and Multi/Sci-ry (same results)						
	V@R			CV@R		
	Value	СТ		Value	CT (F)	CT (S)
NIG ₁ NIG ₂ NIG ₃ NIG ₄	0.0210 0.0311 0.0073 1.5914	92 ms 87 ms 88 ms 89 ms		0.0298 0.0585 0.0352 2.2872	99 ms 94 ms 97 ms 97 ms	212 ms 359 ms 636 ms 197 ms

Programmod in Matlab, R and Num/Sci Py (same results)

Table : Numerical results for V@R and CV@R at the 5% level.

	V@R					
	Value	СТ		Value	CT (F)	CT (S)
NIG ₁ NIG ₂ NIG ₃ NIG ₄	0.0350 0.0737 0.0369 2.7019	95 ms 92 ms 88 ms 94 ms		0.0444 0.1108 0.1162 3.4503	104 ms 99 ms 100 ms 99 ms	211 ms 360 ms 507 ms 194 ms

Table : Numerical results for V@R and CV@R at the 1% level.

Numerical Results Polynomial loss function

Polynomial loss function	, Fourier vs Stochastic	Root Finding (Weber et al	.)
--------------------------	-------------------------	----------------	-------------	----

		SRF		
	η^*	$\rho(X)$	CT(F)	СТ
NIG ₁ NIG ₂ NIG ₃ NIG ₄	0.0028 0.0031 0.0008 -0.0957	-0.0027 -0.0029 -0.0007 0.4380	62 ms 71 ms 129 ms 39 ms	455 ms 449 ms 443 ms 448 ms

Table : Polynomial risk measure with $\gamma = 2$.

	$\gamma = 4$				$\gamma = 5$		
	η^*	$\rho(X)$	CT(F)	η^*	$\rho(X)$	CT(F)	
NIG ₁	0.0027	-0.0026	70 ms	0.0026	-0.0026	30 ms	
NIG ₂ NIG ₃ NIG ₄	0.0028 0.0006 -1.0283	-0.0026 -0.0005 1.4994	40 ms 39 ms 124 ms	0.0026 0.0005 -1.8095	-0.0025 -0.0004 2.3915	32 ms 27 ms 103 ms	

Table : Polynomial risk measures with $\gamma = 4$ and $\gamma = 5$.

Conclusions

Optimized certainty equivalents and Fourier methods offer

- economically reasonable risk assessment tools
- very competitive computational times
- realistic scenarios

Conclusions

Optimized certainty equivalents and Fourier methods offer

- economically reasonable risk assessment tools
- very competitive computational times
- realistic scenarios

S. Drapeau, M. Kupper, A. Papapantoleon: A Fourier approach to the computation of CV@R and optimized certainty equivalents Journal of Risk (forthcoming, arXiv:1212.6732)

Conclusions

Optimized certainty equivalents and Fourier methods offer

- economically reasonable risk assessment tools
- very competitive computational times
- realistic scenarios

S. Drapeau, M. Kupper, A. Papapantoleon: A Fourier approach to the computation of CV@R and optimized certainty equivalents Journal of Risk (forthcoming, arXiv:1212.6732)

Thank you for your attention!