How superadditive can a risk measure be?

Valeria Bignozzi¹

joint work with Andreas Tsanakas² and Ruodu Wang³

¹Dept of Mathematics, RiskLab, ETH Zurich ²Cass Business School, City University London ³Dept of Statistics and Actuarial Science, University of Waterloo

> Risk Management and Risk Measures, Hannover, 28 May 2014

Motivation

- What are the properties that a risk measure should satisfy?
 - Diversification & subadditivity (Artzner et al., 1999; Dhaene et al., 2008)
 - Estimation & robustness (Cont *et al.*, 2010; Krätschmer *et al.*, 2013)
 - Backtesting & elicitability (Gneiting, 2011; Ziegel, 2014; Bellini and B., 2013)

▷ Embrechts et al. (2014); Emmer et al. (2013)

Our contribution

Assume a risk measure is NOT subadditive, i.e. there exist losses X, Y such that

$$\rho(X+Y) > \rho(X) + \rho(Y),$$

HOW MUCH SUPERADDITIVE CAN IT BE?

- > Aggregation of positions may be penalized
- ▷ Quantifying worst-case scenario
- No obvious upper bound for the risk of the aggregate position

Measure model/dependence uncertainty

Our contribution

▷ For distortion risk measures:

- The boundary is given by the smallest coherent distortion risk measure dominating the risk measure
- ▷ For shortfall risk measures:
 - The boundary is given by the smallest coherent expectile dominating the risk measure
- > Further risk measures are considered in the paper

We lend support to coherent risk measures...

Risk measures

- \triangleright Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an atomless probability space
- $\triangleright L^0 = L^0(\Omega, \mathcal{F}, \mathbb{P})$ is the space of all measurable random variables
- $\triangleright X \in L^0$ represents a financial loss
- \triangleright When needed we denote X_F , a random variable $X \sim F$ A risk measure is any functional

$$\rho: L^0 \to \mathbb{R} \cup \{-\infty, +\infty\}$$

Standard properties for risk measures

The following properties are assumed throughout the presentation: for any $X, Y \in L^0$

▷ Law-invariance: If $X, Y \sim F$, then $\rho(X) = \rho(Y)$

- ▷ Monotonocity: If $X \ge Y$ then $\rho(X) \ge \rho(Y)$
- ▷ Cash-invariance: $\forall m \in \mathbb{R}$, $\rho(X m) = \rho(X) m$

▷ Normalization: $\rho(0) = 0$

For this presentation we focus on risk measures that satisfy

- ▷ Convexity:
 - $\forall \lambda \in [0,1], \
 ho(\lambda X + (1-\lambda)Y) \leq \lambda
 ho(X) + (1-\lambda)
 ho(Y)$
 - Convex risk measures (Föllmer and Schied, 2002, Frittelli and Rosazza Giannin, 2002), and/or

For this presentation we focus on risk measures that satisfy

▷ Convexity:

$$\forall \lambda \in [0, 1], \
ho(\lambda X + (1 - \lambda)Y) \leq \lambda
ho(X) + (1 - \lambda)
ho(Y)$$

- Convex risk measures (Föllmer and Schied, 2002, Frittelli and Rosazza Giannin, 2002), and/or
- \triangleright Positive homogeneity: $\forall \alpha \geq 0$, $\rho(\alpha X) = \alpha \rho(X)$
 - Coherent risk measures (Artzner et al. 1999), and/or

For this presentation we focus on risk measures that satisfy

▷ Convexity:

$$\forall \lambda \in [0, 1], \
ho(\lambda X + (1 - \lambda)Y) \leq \lambda
ho(X) + (1 - \lambda)
ho(Y)$$

- Convex risk measures (Föllmer and Schied, 2002, Frittelli and Rosazza Giannin, 2002), and/or
- ▷ Positive homogeneity: $\forall \alpha \ge 0$, $\rho(\alpha X) = \alpha \rho(X)$
 - Coherent risk measures (Artzner et al. 1999), and/or
- $\triangleright \quad \frac{\text{Comonotonicity: If } X \text{ and } Y \text{ are comonotonic,}}{\rho(X + Y) = \rho(X) + \rho(Y)}$

For this presentation we focus on risk measures that satisfy

▷ Convexity:

$$\forall \lambda \in [0, 1], \
ho(\lambda X + (1 - \lambda)Y) \leq \lambda
ho(X) + (1 - \lambda)
ho(Y)$$

 Convex risk measures (Föllmer and Schied, 2002, Frittelli and Rosazza Giannin, 2002), and/or

▷ Positive homogeneity: $\forall \alpha \ge 0$, $\rho(\alpha X) = \alpha \rho(X)$

- Coherent risk measures (Artzner et al. 1999), and/or
- $\triangleright \quad \frac{\text{Comonotonicity: If } X \text{ and } Y \text{ are comonotonic,}}{\rho(X + Y) = \rho(X) + \rho(Y)}$

Subadditivity (NOT ASSUMED):

$$\rho(X + Y) \le \rho(X) + \rho(Y)$$

Classical examples

Value-at-Risk is positively homogeneous and comonotonic but not subadditive

$$\mathsf{VaR}_p(X) = \inf\{x : \mathbb{P}(X \le x) \ge p\}, \quad p \in (0, 1)$$

Classical examples

Value-at-Risk is positively homogeneous and comonotonic but not subadditive

$$\operatorname{VaR}_p(X) = \inf\{x : \mathbb{P}(X \le x) \ge p\}, \quad p \in (0, 1)$$

Expected Shortfall is positively homogeneous, comonotonic and subadditive

$$\mathsf{ES}_p(X) = rac{1}{1-p} \int_p^1 \mathrm{VaR}_lpha(X) \mathrm{d}lpha, \quad p \in [0,1)$$

Classical examples

Value-at-Risk is positively homogeneous and comonotonic but not subadditive

$$\operatorname{VaR}_p(X) = \inf\{x : \mathbb{P}(X \le x) \ge p\}, \quad p \in (0, 1)$$

Expected Shortfall is positively homogeneous, comonotonic and subadditive

$$\mathsf{ES}_p(X) = rac{1}{1-p} \int_p^1 \mathrm{VaR}_{\alpha}(X) \mathrm{d}lpha, \quad p \in [0,1)$$

Entropic risk measure is convex, but not positively homogeneous, comonotonic or subadditive

$$\mathsf{ER}_\lambda(X) = rac{1}{\lambda} \log \mathbb{E}[e^{\lambda X}], \quad \lambda > 0$$

The lack of subadditivity...

For comonotonic (or positive homogeneous) risk measures implies:

$$\triangleright X, Y \in L^0$$
, $X, Y \sim F$ such that

$$\rho(X+Y) > \rho(X) + \rho(Y)$$

but...

 \triangleright For $X^c, Y^c \sim F$ comonotonic

$$\rho(X^c + Y^c) = \rho(X^c) + \rho(Y^c) < \rho(X + Y)$$

- Comonotonic risks do not represent the worst-case dependence
- Inconsistent ordering of risk (Bäuerle and Müller, 2006)
- ⊳ VaR

The lack of subadditivity...

For convex, normalized (not homogeneous) risk measures implies:

 \triangleright For X, Y, X^c, Y^c as before

$$\rho(X^c + Y^c) \ge \rho(X + Y) > \rho(X) + \rho(Y)$$

- \triangleright Comonotonic risks represent the worst-case dependence
- There is no inconsistent ordering, but an aggregation penalty designed in the risk measure
- ▷ E.g. for including liquidity risks

$$\rho(nX) \ge n\rho(X) \qquad n \ge 1$$

・ロト (四) (日) (日) (日) (日) (日)

Entropic Risk Measure

Superadditivity ratio

Let X = (X₁,...,X_n) be a vector of risks
X_i ∈ L⁰, X_i ~ F_i for i = 1,...,n (for now)
$$\rho(X_i) \in (0,\infty)$$
 for i = 1,...,n (for now)

Superadditivity ratio

$$\Delta^{\mathbf{x}}(\rho) = \frac{\rho(X_1 + \ldots + X_n)}{\rho(X_1) + \ldots + \rho(X_n)}, \qquad n \in \mathbb{N}$$

 $\triangleright \ \Delta^{\mathbf{X}}(\rho) \leq 1$ for subadditive risk measures

Superadditivity ratio (Cont'ed)

▷ For a homogeneous portfolio:

$$\Delta_n^F(\rho) = \sup\left\{\frac{\rho(X_1 + \ldots + X_n)}{\rho(X_1) + \ldots + \rho(X_n)}, X_1, \ldots, X_n \sim F\right\}$$

Law-invariant

- $\triangleright \rho(X_F) \in (0,\infty)$
- \triangleright Worst-case superadditivity for a given portfolio size *n*
- ▷ Worst-case dependence structure (Bernard et al., 2014)

Superadditivity ratio (Cont'ed)

$$\triangleright \mathfrak{S}_n(F) := \{X_1 + \ldots + X_n : X_i \sim F, i = 1, \ldots, n\}$$

$$\Delta_n^F(\rho) = \frac{1}{n\rho(X_F)} \sup \big\{ \rho(S) : S \in \mathfrak{S}_n(F) \big\}$$

- ▷ The hypothesis $\rho(X_F) \in (0, \infty)$ is not mathematically required
- ▷ We define

$$\Gamma_{\rho,n}(X_F) = \frac{1}{n} \sup\{\rho(S) : S \in \mathfrak{S}_n(F)\}$$

The extreme aggregation measure

The extreme aggregation measure (Slightly cheating!)

$$\Gamma_{\rho}(X_{F}) = \sup_{n \in \mathbb{N}} \{\frac{1}{n} \sup\{\rho(S) : S \in \mathfrak{S}_{n}(F)\}\}$$
$$= \lim_{n \to \infty} \{\frac{1}{n} \sup\{\rho(S) : S \in \mathfrak{S}_{n}(F)\}\}$$

- $\triangleright \ \rho$ is comonotonic and/or positive homogeneous and/or convex with $\rho(0) = 0$
- ▷ If well defined

$$\sup_{n\in\mathbb{N}}\Delta_n^F(\rho) = \sup_{n\in\mathbb{N}}\left\{\frac{1}{n\rho(X_F)}\sup\{\rho(S):S\in\mathfrak{S}_n(F)\}\right\} = \frac{\Gamma_\rho(X_F)}{\rho(X_F)}$$

The extreme aggregation measure

$$\Gamma_{\rho}: L^0 \to [-\infty, +\infty]$$

Lemma

 \triangleright Γ_{ρ} is a law-invariant risk measure

- $\triangleright\,$ It inherits the properties of monotonicity, cash-invariance, positive homogeneity, subadditivity, convexity, normality, from $\rho\,$
- $\begin{tabular}{ll} & \mbox{Given any subadditive risk measure ρ^+ dominating ρ,} \\ & \mbox{$\Gamma_\rho \leq \rho^+$} \end{tabular} \end{tabular}$

$$\triangleright$$
 Generally $\Gamma_{\rho} \ge \rho$

Superadditivity of distortion risk measures

- \vartriangleright Assume here that random variables are bounded from below, i.e. $F^{-1}(0)>-\infty$
- > A distortion risk measure is defined as

$$\rho_h(X_F) = \int_0^1 \mathsf{VaR}_\alpha(X_F) \mathrm{d}h(\alpha)$$

where

h is an increasing, right-continuous and left-limit function, with *h*(0) = *h*(0+) = 0 and *h*(1−) = *h*(1) = 1 (Wang et al.,1997)

Properties of distortion risk measures

- Law-invariant, monotone, cash-invariant, positively homogeneous, comonotonic
- ▷ If *h* is convex then ρ_h is coherent (Acerbi, 2002)
- ⊳ VaR, ES

Properties of distortion risk measures

- Law-invariant, monotone, cash-invariant, positively homogeneous, comonotonic
- ▷ If *h* is convex then ρ_h is coherent (Acerbi, 2002)
- ⊳ VaR, ES
- A robust alternative to expected shortfall is Range-Value-at-Risk (Cont *et al.*, 2010):

$$\mathsf{RVaR}_{p,q}(X_F) = rac{1}{q-p}\int_p^q \mathit{VaR}_lpha(X_F)\mathrm{d}lpha \;\; 0 \leq p < q < 1$$

Distortion function of VaR_p

Distortion function of ES_p

Distortion function of $RVaR_{p,q}$

How superadditive can a distortion risk measure be?

For the risk measures VaR_p and $RVaR_{p,q}$:

$$\sup_{n\in\mathbb{N}}\Delta_n^F(VaR_p)=\frac{\Gamma_{\mathsf{VaR}_p}(X_F)}{VaR_p(X_F)}=\frac{\mathsf{ES}_p(X_F)}{\mathsf{VaR}_p(X_F)}$$

Puccetti and Rüschendorf (2014), complete mixability

・ロト (四) (日) (日) (日) (日)

- ▷ Puccetti et al. (2013), strictly positive densities
- ▷ Wang (2014), bounded densities
- ▷ Wang and Wang (2014), for any distribution
- \triangleright The same holds for RVaR_p

Main Theorem

 \triangleright Let ρ_h^+ be the smallest coherent distortion risk measure dominating ρ_h

Lemma

 ho_h^+ exists and is given by $ho_h^+ =
ho_{h^*}$, where for $t \in [0, 1]$,

 $h^*(t) = \sup\{g(t) : g : [0, 1] \rightarrow [0, 1], g \le h, g \text{ is increasing, and convex on } [0, 1]\}$

Main Theorem

Main Theorem

For any distortion risk measure ρ_h , the extreme aggregation measure is $\Gamma_{\rho_h} = \rho_h^+$ (10 pages proof...)

Corollary

 $\Gamma_{
ho_h}$ is the smallest coherent risk measure dominating ho

 $\succ \Gamma_{\rho_h}$ inherits all the properties of ρ_h (including comonotonicity)

 \triangleright Γ_{ρ_h} gains subadditivity (coherency)

 VaR_p : functions h and h^*

 VaR_p : functions h and h^*

$\mathsf{RVaR}_{p,q}$: functions h and h^*

$\mathsf{RVaR}_{p,q}$: functions h and h^*

For general distortion risk measures...

- \triangleright Assume that *h* is piecewise linear
- \triangleright Assume that F has bounded support
- ▷ Add 10 pages of proof!

We generalize this result to

$$\rho_G(X_F) = \sup_{h \in G} \rho_h(X_F) \qquad \Gamma_{\rho_G} = \sup_{h \in G} \rho_h^+(X_F)$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

Convex shortfall risk measures

A convex shortfall risk measure ρ_ℓ is defined as the unique solution of

$$\mathbb{E}[\ell(X-x)]=0,$$

where ℓ is an increasing not identically constant convex function with 0 in the interior of its range

Convex shortfall risk measures

A convex shortfall risk measure ρ_ℓ is defined as the unique solution of

$$\mathbb{E}[\ell(X-x)]=0,$$

where ℓ is an increasing not identically constant convex function with 0 in the interior of its range

- \triangleright Assume all X in L^1
- ▷ Convex measures of risk (Föllmer and Schied, 2011)
- \triangleright ER measure generated by $\ell(x) = \exp(\lambda x) 1$

Loss functions

 $\triangleright~$ Since $\ell~$ is convex, we know that

$$\begin{aligned} a_\ell &:= \lim_{x \to \infty} \ell'(x) \text{ exists in } [0,\infty] \\ b_\ell &:= \lim_{x \to -\infty} \ell'(x) \text{ exists in } [0,\infty) \\ b_\ell &\leq a_\ell \end{aligned}$$

Loss functions

 $\triangleright~$ Since $\ell~$ is convex, we know that

$$\begin{aligned} a_\ell &:= \lim_{x \to \infty} \ell'(x) \text{ exists in } [0,\infty] \\ b_\ell &:= \lim_{x \to -\infty} \ell'(x) \text{ exists in } [0,\infty) \\ b_\ell &\leq a_\ell \end{aligned}$$

 \triangleright Define the convex loss function

$$\ell^*(x) = a_\ell x_+ - b_\ell x_-$$

Loss functions

 $\triangleright~$ Since $\ell~$ is convex, we know that

$$\begin{aligned} a_{\ell} &:= \lim_{x \to \infty} \ell'(x) \text{ exists in } [0, \infty] \\ b_{\ell} &:= \lim_{x \to -\infty} \ell'(x) \text{ exists in } [0, \infty) \\ b_{\ell} &\leq a_{\ell} \end{aligned}$$

Define the convex loss function

$$\ell^*(x) = a_\ell x_+ - b_\ell x_-$$

- ▷ The shortfall risk measure ρ_{ℓ^*} is identified with $e_{p_{\ell}}$, the p_{ℓ} -expectile (Newey and Powell, 1987), for $p_{\ell} = \frac{a_{\ell}}{a_{\ell}+b_{\ell}}$
- > Expectiles are defined as the unique solution to

$$p\mathbb{E}[(X-x)_+] - (1-p)\mathbb{E}[(X-x)_-] = 0, \quad p \in (0,1)$$

▷ We define

$$e_0(X_F) = \operatorname{ess-inf} X_F, \quad e_1(X_F) = \operatorname{ess-sup}(X_F)$$

Extreme-scenario measures

Theorem

For any shortfall risk measure ρ_{ℓ} , it is $\Gamma_{\rho_{\ell}} = \rho_{\ell^*} = e_{\rho_{\ell}}$.

Extreme-scenario measures

Theorem

For any shortfall risk measure ρ_{ℓ} , it is $\Gamma_{\rho_{\ell}} = \rho_{\ell^*} = e_{p_{\ell}}$.

Corollary

 $\Gamma_{
ho_\ell}$ is the smallest coherent risk measure dominating ho_ℓ

- \triangleright Once more $\Gamma_{\rho_{\ell}}$ is coherent, even though ρ_{ℓ} is not!
- Expectiles make an appearance as the only elicitable coherent shortfall risk measures (Ziegel, 2013, Bellini and B. 2013).

The Entropic Risk Measure

- ▷ The $ER_1(X) = log(\mathbb{E}(e^X))$ is consistent with second order stochastic dominance
- ▷ Worst-case dependence is given by comonotonic risks

$$\Gamma_{\mathsf{ER}_{1,n}}(X_{F}) = \frac{1}{n} \sup\{\mathsf{ER}_{1}(S) : S \in \mathfrak{S}_{n}(F)\}$$
$$= \operatorname{ess-sup}(X_{F})$$
$$= e_{1}(X_{F})$$

・ロト (四) (ヨト (ヨト) ヨー つくつ

Conclusion

- $\,\triangleright\,$ Γ_{ρ} gains positive homogeneity, subadditivity and convexity in all cases studied
- ▷ It is always a coherent risk measure
- ▷ We do not have yet a universal result on this

Even if you work with a non-coherent risk measure, under dependence uncertainty its extreme behavior leads to coherency...

Thank you for your kind attention!

- F. Bellini and V. Bignozzi *Elicitable risk measures.* Preprint ETH
- R. Cont, R. Deguest, G. Scandolo Robustness and sensitivity analysis of risk measurement procedures Quantitative Finance, Vol 10, No. 6, 2010
- P. Embrechts, G. Puccetti, L. Rüschendorf, R. Wang, A. Beleraj An Academic response to Basel 3.5. Risks, Vol 2, No. 1, 2014.
- S. Emmer, M. Kratz, D. Tasche What is the best risk measure in practice?A comparison of standard measures. Preprint, ESSEC Business School, 2014. Journal of the American Statistical Association, Vol 106, No. 494, 2011.
- J. Ziegel *Coherence and elicitability.* To appear in Mathematical Finance, 2014.