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Motivation

B What are the properties that a risk measure should
satisfy?

I Diversification & subadditivity
(Artzner et al., 1999; Dhaene et al., 2008)

I Estimation & robustness
(Cont et al., 2010; Krätschmer et al., 2013)

I Backtesting & elicitability
(Gneiting, 2011; Ziegel, 2014; Bellini and B., 2013)

B Embrechts et al. (2014); Emmer et al. (2013)
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Our contribution
Assume a risk measure is NOT subadditive, i.e. there exist
losses X ,Y such that

ρ(X + Y ) > ρ(X ) + ρ(Y ),

HOW MUCH SUPERADDITIVE CAN IT BE?

B Aggregation of positions may be penalized

B Quantifying worst-case scenario

B No obvious upper bound for the risk of the aggregate
position

B Measure model/dependence uncertainty
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Our contribution

B For distortion risk measures:
I The boundary is given by the smallest coherent distortion

risk measure dominating the risk measure

B For shortfall risk measures:
I The boundary is given by the smallest coherent expectile

dominating the risk measure

B Further risk measures are considered in the paper

We lend support to coherent risk measures...
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Risk measures

B Let (Ω,F ,P) be an atomless probability space

B L0 = L0(Ω,F ,P) is the space of all measurable random
variables

B X ∈ L0 represents a financial loss

B When needed we denote XF , a random variable X ∼ F

A risk measure is any functional

ρ : L0 → R ∪ {−∞,+∞}
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Standard properties for risk measures

The following properties are assumed throughout the
presentation: for any X ,Y ∈ L0

B Law-invariance: If X ,Y ∼ F , then ρ(X ) = ρ(Y )

B Monotonocity: If X ≥ Y then ρ(X ) ≥ ρ(Y )

B Cash-invariance: ∀m ∈ R, ρ(X −m) = ρ(X )−m

B Normalization: ρ(0) = 0
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Key extra properties
For this presentation we focus on risk measures that satisfy
B Convexity:
∀λ ∈ [0, 1], ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y )

I Convex risk measures (Föllmer and Schied, 2002, Frittelli
and Rosazza Giannin, 2002), and/or

B Positive homogeneity: ∀α ≥ 0, ρ(αX ) = αρ(X )
I Coherent risk measures (Artzner et al. 1999), and/or

B Comonotonicity: If X and Y are comonotonic,
ρ(X + Y ) = ρ(X ) + ρ(Y )

Subadditivity (NOT ASSUMED):

ρ(X + Y ) ≤ ρ(X ) + ρ(Y )
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Classical examples
B Value-at-Risk is positively homogeneous and comonotonic

but not subadditive

VaRp(X ) = inf{x : P(X ≤ x) ≥ p}, p ∈ (0, 1)

B Expected Shortfall is positively homogeneous,
comonotonic and subadditive

ESp(X ) =
1

1− p

∫ 1

p

VaRα(X )dα, p ∈ [0, 1)

B Entropic risk measure is convex, but not positively
homogeneous, comonotonic or subadditive

ERλ(X ) =
1
λ
logE[eλX ], λ > 0
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The lack of subadditivity...
For comonotonic (or positive homogeneous) risk measures
implies:
B X ,Y ∈ L0, X ,Y ∼ F such that

ρ(X + Y ) > ρ(X ) + ρ(Y )

but...
B For X c ,Y c ∼ F comonotonic

ρ(X c + Y c) = ρ(X c) + ρ(Y c) < ρ(X + Y )

B Comonotonic risks do not represent the worst-case
dependence

B Inconsistent ordering of risk (Bäuerle and Müller, 2006)
B VaR
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The lack of subadditivity...
For convex, normalized (not homogeneous) risk measures
implies:

B For X ,Y ,X c ,Y c as before

ρ(X c + Y c) ≥ ρ(X + Y ) > ρ(X ) + ρ(Y )

B Comonotonic risks represent the worst-case dependence
B There is no inconsistent ordering, but an aggregation

penalty designed in the risk measure
B E.g. for including liquidity risks

ρ(nX ) ≥ nρ(X ) n ≥ 1

B Entropic Risk Measure
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Superadditivity ratio

B Let X = (X1, . . . ,Xn) be a vector of risks

B Xi ∈ L0, Xi ∼ Fi for i = 1, . . . , n (for now)

B ρ(Xi) ∈ (0,∞) for i = 1, . . . , n (for now)

Superadditivity ratio

∆X(ρ) =
ρ(X1 + . . . + Xn)

ρ(X1) + . . . + ρ(Xn)
, n ∈ N

B ∆X(ρ) ≤ 1 for subadditive risk measures
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Superadditivity ratio (Cont’ed)

B For a homogeneous portfolio:

∆F
n (ρ) = sup

{ ρ(X1 + . . . + Xn)

ρ(X1) + . . . + ρ(Xn)
, X1, . . . ,Xn ∼ F

}
B Law-invariant

B ρ(XF ) ∈ (0,∞)

B Worst-case superadditivity for a given portfolio size n

B Worst-case dependence structure (Bernard et al., 2014)
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Superadditivity ratio (Cont’ed)

B Sn(F ) := {X1 + . . . + Xn : Xi ∼ F , i = 1, . . . , n}

∆F
n (ρ) =

1
nρ(XF )

sup
{
ρ(S) : S ∈ Sn(F )

}
B The hypothesis ρ(XF ) ∈ (0,∞) is not mathematically

required

B We define

Γρ,n(XF ) =
1
n
sup{ρ(S) : S ∈ Sn(F )}
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The extreme aggregation measure

The extreme aggregation measure (Slightly cheating!)

Γρ(XF ) = sup
n∈N
{1
n
sup{ρ(S) : S ∈ Sn(F )}}

= lim
n→∞
{1
n
sup{ρ(S) : S ∈ Sn(F )}}

B ρ is comonotonic and/or positive homogeneous and/or
convex with ρ(0) = 0

B If well defined

sup
n∈N

∆F
n (ρ) = sup

n∈N

{ 1
nρ(XF )

sup{ρ(S) : S ∈ Sn(F )}
}

=
Γρ(XF )

ρ(XF )
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The extreme aggregation measure

Γρ : L0 → [−∞,+∞]

Lemma
B Γρ is a law-invariant risk measure

B It inherits the properties of monotonicity, cash-invariance,
positive homogeneity, subadditivity, convexity, normality,
from ρ

B Given any subadditive risk measure ρ+ dominating ρ,
Γρ ≤ ρ+

B Generally Γρ ≥ ρ
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Superadditivity of distortion risk measures

B Assume here that random variables are bounded from
below, i.e. F−1(0) > −∞

B A distortion risk measure is defined as

ρh(XF ) =

∫ 1

0
VaRα(XF )dh(α)

where
I h is an increasing, right-continuous and left-limit

function, with h(0) = h(0+) = 0 and h(1−) = h(1) = 1
(Wang et al.,1997)
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Properties of distortion risk measures

B Law-invariant, monotone, cash-invariant, positively
homogeneous, comonotonic

B If h is convex then ρh is coherent (Acerbi, 2002)

B VaR, ES

B A robust alternative to expected shortfall is
Range-Value-at-Risk (Cont et al., 2010):

RVaRp,q(XF ) =
1

q − p

∫ q

p

VaRα(XF )dα 0 ≤ p < q < 1
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Distortion function of VaRp
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Distortion function of ESp
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Distortion function of RVaRp,q
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How superadditive can a distortion risk measure
be?

For the risk measures VaRp and RVaRp,q:

sup
n∈N

∆F
n (VaRp) =

ΓVaRp(XF )

VaRp(XF )
=

ESp(XF )

VaRp(XF )

B Puccetti and Rüschendorf (2014), complete mixability
B Puccetti et al. (2013), strictly positive densities
B Wang (2014), bounded densities
B Wang and Wang (2014), for any distribution
B The same holds for RVaRp
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Main Theorem

B Let ρ+h be the smallest coherent distortion risk measure
dominating ρh

Lemma
ρ+h exists and is given by ρ+h = ρh∗ , where for t ∈ [0, 1],

h∗(t) = sup{g(t) : g : [0, 1]→ [0, 1], g ≤ h,

g is increasing, and convex on [0, 1]}
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Main Theorem

Main Theorem
For any distortion risk measure ρh, the extreme aggregation
measure is Γρh = ρ+h (10 pages proof...)

Corollary
Γρh is the smallest coherent risk measure dominating ρ

B Γρh inherits all the properties of ρh (including
comonotonicity)

B Γρh gains subadditivity (coherency)
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VaRp: functions h and h∗
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VaRp: functions h and h∗
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RVaRp,q: functions h and h∗
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RVaRp,q: functions h and h∗
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For general distortion risk measures...

B Assume that h is piecewise linear

B Assume that F has bounded support

B Add 10 pages of proof!

We generalize this result to

ρG (XF ) = sup
h∈G

ρh(XF ) ΓρG = sup
h∈G

ρ+h (XF )
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Convex shortfall risk measures

A convex shortfall risk measure ρ` is defined as the
unique solution of

E[`(X − x)] = 0,

where ` is an increasing not identically constant convex
function with 0 in the interior of its range

B Assume all X in L1

B Convex measures of risk (Föllmer and Schied, 2011)
B ER measure generated by `(x) = exp(λx)− 1
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Loss functions
B Since ` is convex, we know that

a` := lim
x→∞

`′(x) exists in [0,∞]

b` := lim
x→−∞

`′(x) exists in [0,∞)

b` ≤ a`

B Define the convex loss function
`∗(x) = a`x+ − b`x−

B The shortfall risk measure ρ`∗ is identified with ep` , the
p`-expectile (Newey and Powell, 1987), for
p` = a`

a`+b`
B Expectiles are defined as the unique solution to

pE[(X − x)+]− (1− p)E[(X − x)−] = 0, p ∈ (0, 1)

B We define

e0(XF ) = ess-infXF , e1(XF ) = ess-sup(XF )
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Extreme-scenario measures

Theorem

For any shortfall risk measure ρ`, it is Γρ` = ρ`∗ = ep` .

Corollary
Γρ` is the smallest coherent risk measure dominating ρ`

B Once more Γρ` is coherent, even though ρ` is not!
B Expectiles make an appearance as the only elicitable

coherent shortfall risk measures (Ziegel, 2013, Bellini and
B. 2013).
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The Entropic Risk Measure

B The ER1(X ) = log(E(eX )) is consistent with second
order stochastic dominance

B Worst-case dependence is given by comonotonic risks

ΓER1,n(XF ) =
1
n
sup{ER1(S) : S ∈ Sn(F )}

= ess-sup(XF )

= e1(XF )
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Conclusion

B Γρ gains positive homogeneity, subadditivity and convexity
in all cases studied

B It is always a coherent risk measure
B We do not have yet a universal result on this

Even if you work with a non-coherent risk measure, under
dependence uncertainty its extreme behavior leads to
coherency...
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Thank you for your kind attention!
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