From Ruin Theory to Solvency in Non-Life Insurance

Mario V. Wüthrich RiskLab ETH Zurich & Swiss Finance Institute SFI

January 23, 2014 LUH Colloquium "Versicherungs- und Finanzmathematik" Leibniz Universität Hannover

Aim of this presentation

We start from Lundberg's thesis (1903) on ruin theory and modify his model step by step until we arrive at today's solvency considerations.

Cramér-Lundberg model

Consider the surplus process $(C_t)_{t>0}$ given by

$$C_t = c_0 + \pi t - \sum_{i=1}^{N_t} Y_i,$$

where

 $c_0 \ge 0$ initial capital, $\pi > 0$ premium rate, $L_t = \sum_{i=1}^{N_t} Y_i \ge 0$ homogeneous compound Poisson claims process, i=1

Harald Cramér

satisfying the net profit condition (NPC): $\pi > \mathbb{E}[L_1]$.

Ultimate ruin probability

The ultimate run probability for initial capital $c_0 \ge 0$ is given by

$$\psi(c_0) = \mathbb{P}\left[\inf_{t \in \mathbb{R}_+} C_t < 0 \middle| C_0 = c_0\right] = \mathbb{P}_{c_0}\left[\inf_{t \in \mathbb{R}_+} C_t < 0\right],$$

i.e. this is the infinite time horizon ruin probability.

Lundberg's exponential bound

Assume (NPC) and that the Lundberg coefficient $\gamma > 0$ exists. Then, we have exponential bound

 $\psi(c_0) \leq \exp\{-\gamma c_0\},$

for all $c_0 \ge 0$ (large deviation principle (LDP)).


```
Filip Lundberg
```

This is the light-tailed case, i.e. for the existence of $\gamma > 0$ we need *exponentially decaying* survival probabilities of the claim sizes Y_i ,

because we require $\mathbb{E}[\exp\{\gamma Y_i\}] < \infty$.

Subexponential case

Von Bahr, Veraverbeke, Embrechts investigate the heavy-tailed case.

In particular, for $Y_i \stackrel{\text{i.i.d.}}{\sim} \operatorname{Pareto}(\alpha > 1)$ and (NPC):

$$\psi(c_0) \sim \text{const } c_0^{-\alpha+1} \quad \text{as } c_0 \to \infty.$$

Heavy-tailed case provides a much slower decay.

Paul Embrechts

Discrete time ruin considerations

Insurance companies cannot continuously control their surplus processes $(C_t)_{t\geq 0}$.

They close their books and check their surplus on a *yearly time grid*. > Consider the discrete time ruin probability

$$\mathbb{P}_{c_0}\left[\inf_{n\in\mathbb{N}_0}C_n<0\right] \leq \mathbb{P}_{c_0}\left[\inf_{t\in\mathbb{R}_+}C_t<0\right] = \psi(c_0).$$

This leads to the study of the random walk $(C_n - c_0)_{n \in \mathbb{N}_0}$ for (discrete time) accounting years $n \in \mathbb{N}_0$.

One-period ruin problem

Insured buy *one-year* nonlife insurance contracts: why bother about *ultimate* ruin probabilities?

Moreover, initial capital $c_0 \ge 0$ needs to be re-adjusted every accounting year.

▷ Consider the (discrete time) one-year ruin probability

$$\mathbb{P}_{c_0}\left[C_1 < 0\right] \le \mathbb{P}_{c_0}\left[\inf_{n \in \mathbb{N}_0} C_n < 0\right] \le \mathbb{P}_{c_0}\left[\inf_{t \in \mathbb{R}_+} C_t < 0\right] = \psi(c_0).$$

This leads to the study of the surplus $C_1 = c_0 + \pi - \sum_{i=1}^{N_1} Y_i$ at time 1.

One-period problem and real world considerations

Why do we study so complex models when the real world problem is so simple?

- Total asset value at time 1: $A_1 = c_0 + \pi$.
- Total liabilities at time 1: $L_1 = \sum_{i=1}^{N_1} Y_i$.

$$C_1 = c_0 + \pi - \sum_{i=1}^{N_1} Y_i = A_1 - L_1 \stackrel{???}{\geq} 0.$$
 (1)

There are many modeling issues hidden in (1)! We discuss them step by step.

Value-at-Risk (VaR) risk measure

$$C_1 = A_1 - L_1 \stackrel{???}{\geq} 0.$$

Freddy Delbaen

> Value-at-Risk on confidence level
$$p = 99.5\%$$
 (Solvency II): choose c_0 minimal such that

$$\mathbb{P}_{c_0}[C_1 \ge 0] = \mathbb{P}[A_1 \ge L_1] = \mathbb{P}[L_1 - c_0 - \pi \le 0] \ge p.$$

 \triangleright Choose other (normalized) risk measures $\varrho : \mathcal{M} \subset L^1(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ and study

$$\varrho(L_1 - A_1) = \varrho(L_1 - c_0 - \pi) \stackrel{???}{\leq} 0,$$

where " \leq " implies **SOLVENCY** w.r.t. risk measure ϱ .

Asset return and financial risk (1/2)

- Initial capital at time 0: $c_0 \ge 0$.
- Premium received at time 0 for accounting year 1: $\pi > 0$.
- ▷ Total asset value at time 0: $a_0 = c_0 + \pi > 0$.

This asset value a_0 is *invested in different assets* $k \in \{1, \ldots, K\}$ at time 0.

asset classes

- cash and cash equivalents
- debt securities (bonds, loans, mortgages)
- real estate & property
- equity, private equity
- derivatives & hedge funds
- insurance & reinsurance assets
- other assets

Asset return and financial risk (2/2)

Choose an asset portfolio $\boldsymbol{x} = (x_1, \ldots, x_K)' \in \mathbb{R}^K$ at time 0 with initial value

$$a_0 = \sum_{k=1}^{K} x_k S_0^{(k)},$$

where $S_t^{(k)}$ is the price of asset k at time t. This provides value at time 1

$$A_1 = \sum_{k=1}^{K} x_k S_1^{(k)} = a_0 \left(1 + \boldsymbol{w}' \boldsymbol{R}_1 \right),$$

for buy & hold asset strategy $\boldsymbol{w} = \boldsymbol{w}(\boldsymbol{x}) \in \mathbb{R}^{K}$ and (random) return vector \boldsymbol{R}_{1} .

$$\varrho(L_1 - A_1) = \varrho(L_1 - a_0(1 + w'R_1)) \stackrel{???}{\leq} 0.$$

where " \leq " implies solvency w.r.t. risk measure ρ and business plan (L_1, a_0, w) .

Insurance claim (liability) modeling (1/2)

MAIN ISSUE: modeling of insurance claim $L_1 = \sum_{i=1}^{N_1} Y_i$.

> Insurance claims are neither known nor can immediately be settled at occurrence!

 \triangleright Insurance claims of accounting year 1 generate insurance liability cash flow X:

 $X = (X_1, X_2, \ldots)$ with X_t being the payment in accounting year t.

Question: How is the cash flow X related to the insurance claim L_1 ?

Insurance claim (liability) modeling (2/2)

> Main tasks:

- cash flow $\boldsymbol{X} = (X_1, X_2, \ldots)$ modeling,
- cash flow $\boldsymbol{X} = (X_1, X_2, \ldots)$ prediction,
- cash flow $\boldsymbol{X} = (X_1, X_2, \ldots)$ valuation,

using *all* available relevant information:

▷ exactly here the one-period problem turns into a multi-period problem.

Best-estimate reserves

Choose a filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F})$ with filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{N}_0}$ and

assume cash flow X is \mathbb{F} -adapted.

1st attempt to define L_1 (interpretation of Solvency II):

$$L_1 = X_1 + \sum_{s \ge 2} P(1, s) \mathbb{E} [X_s | \mathcal{F}_1],$$

where

- $\mathbb{E}[X_s | \mathcal{F}_1]$ is the best-estimate reserve (prediction) of X_s at time 1;
- P(1,s) is the zero-coupon bond price at time 1 for maturity date s.

Note that L_1 is \mathcal{F}_1 -measurable, i.e. observable w.r.t. \mathcal{F}_1 (information at time 1).

1st attempt to define L_1

$$L_1 = X_1 + \sum_{s \ge 2} P(1, s) \mathbb{E} [X_s | \mathcal{F}_1].$$
(2)

Issue: Solvency II asks for economic balance sheet, but L_1 is *not* an economic value.

- (a) Risk margin is missing: any risk-averse risk bearer asks for such a (profit) margin.
- (b) Zero-coupon bond prices and claims cash flows X_s , $s \ge 2$, may be influenced by the same risk factors and, thus, *there is no decoupling* such as (2).

2nd attempt to define L_1

Choose an appropriate state-price deflator $\varphi = (\varphi_t)_{t \ge 1}$ and

$$L_1 = X_1 + \sum_{s \ge 2} \frac{1}{\varphi_1} \mathbb{E} \left[\varphi_s | X_s | \mathcal{F}_1 \right].$$

- $\varphi = (\varphi_t)_{t \ge 1}$ is a strictly positive, a.s., and \mathbb{F} -adapted.
- $\varphi = (\varphi_t)_{t \ge 1}$ reflects price formation at financial markets, in particular,

$$P(1,s) = \frac{1}{\varphi_1} \mathbb{E} \left[\varphi_s | \mathcal{F}_1 \right].$$

• If φ_s and X_s are **positively correlated**, given \mathcal{F}_1 , then

$$L_1 \geq X_1 + \sum_{s \geq 2} P(1,s) \mathbb{E} [X_s | \mathcal{F}_1].$$

Hans Bühlmann

Solvency at time 0

 \triangleright Choose a filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F})$ such that it caries the random vectors φ (state-price deflator), \mathbf{R}_1 (returns of assets) and \mathbf{X} (insurance liability cash flows) in a reasonable way.

> The business plan (X, a_0, w) is solvent w.r.t. the risk measure ϱ and state-price deflator φ if

$$\varrho(L_1 - A_1) = \varrho\left(X_1 + \sum_{s \ge 2} \frac{1}{\varphi_1} \mathbb{E}\left[\varphi_s X_s | \mathcal{F}_1\right] - a_0 \left(1 + \boldsymbol{w}' \boldsymbol{R}_1\right)\right) \le 0.$$

Thus, it is likely (measured by ρ and φ) that the liabilities L_1 are covered by assets A_1 at time 1 in an economic balance sheet.

Acceptability arbitrage

- The choice of the state-price deflator φ and the risk measure ϱ cannot be done independently of each other:
 - $\star \varphi$ describes the risk reward;
 - $\star \varrho$ describes the risk punishment.
- Assume there exist acceptable zero-cost portfolios ${f Y}$ with

$$\mathbb{E}[\boldsymbol{\varphi}'\mathbf{Y}] = 0 \quad \text{and} \quad \varrho\left(Y_1 + \sum_{s \ge 2} \frac{1}{\varphi_1} \mathbb{E}\left[\varphi_s Y_s | \mathcal{F}_1\right]\right) < 0.$$

Then, unacceptable positions can be turned into acceptable ones just by loading on more risk \implies acceptability arbitrage.

• Reasonable solvency models (φ, ϱ) should exclude acceptability arbitrage, see Artzner, Delbaen, Eisele, Koch-Medina.

P. Artzner

Asset & liability management (ALM)

The business plan $({\bf X},a_0,{\bm w})$ is solvent w.r.t. risk measure ϱ and state-price deflator φ if

$$\varrho(L_1 - A_1) = \varrho\left(X_1 + \sum_{s \ge 2} \frac{1}{\varphi_1} \mathbb{E}\left[\varphi_s X_s | \mathcal{F}_1\right] - a_0 \left(1 + \boldsymbol{w}' \boldsymbol{R}_1\right)\right) \le 0.$$

ALM optimize this business plan $(\mathbf{X}, a_0, \boldsymbol{w})$: Which asset strategy $\boldsymbol{w} \in \mathbb{R}^K$ minimizes the capital $a_0 = c_0 + \pi$ and we still remain solvent?

This is a non-trivial optimization problem.

 \triangleright Of course, we need to exclude acceptability arbitrage, which may also provide restrictions on the possible asset strategies $w \implies$ eligible assets.

Summary of modeling tasks

- Provide reasonable stochastic models for $m{R}_1$, $m{X}$ and $m{arphi}$ (yield curve extrapolation).
- What is a reasonable profit margin for risk bearing expressed by arphi?
- Which risk measure(s) ρ should be preferred? (\Rightarrow No-acceptability arbitrage!)
- Modeling is often split into different risk modules:
 - ★ (financial) market risk
 - ★ insurance risk (underwriting and reserve risks)
 - \star credit risk
 - \star operational risk
 - ▷ Issue: dependence modeling and aggregation of risk modules.
- Aggregation over different accounting years and lines of business?

Dynamic considerations

Are we happy with the above considerations?

▷ Not entirely!

Liability run-off is a multi-period problem:

We also want *sensible dynamic behavior*.

