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Introduction
Pricing and Hedging

Given:
I Risk-free bond S0 normalized to 1
I Discounted stock price process modeled by semimartingale S
I H: Random payoff, e.g., option written on S

Classical problems of Mathematical Finance:
I Reasonable price for H?
I How to hedge the resulting risk by dynamic trading in S0, S?



Introduction
Pricing and hedging in incomplete markets?

Complete markets:
I Any payoff is replicable ⇒ perfect hedging strategy.
I Unique price compatible with No Arbitrage.

Incomplete markets:
I Incompleteness caused by, e.g., jumps or stochastic volatility.
I Replication no longer possible.
I Many different prices consistent with No Arbitrage.

Additional criterion for pricing and hedging?



Introduction
Martingale modeling

Popular approach in practice:
I Model liquid primary securities directly under EMM Q.
I Existence guaranteed by FTAP.
I Price illiquid claims by their Q-expectation.
I Yields consistent, arbitrage-free prices.
I But:

I Unique only in complete markets.
I Extrapolates to non-traded claims.
I Ignores residual risk.
I Says nothing about hedging.

I How to price hedging errors in incomplete markets?



Introduction
Mean-variance hedging

Popular approach in Mathematical Finance:
I Replication impossible ⇒ minimize expected squared hedging

error:
(v , ϕ) 7→ E

((
v + ϕ • ST︸ ︷︷ ︸

:=VT (ϕ)

−H
)2)

I Hedge: minimizer ϕ
I Price: minimizer v plus some(?) function of hedging error.
I Advantage: analytically tractable.
I Disadvantage: economically questionable. Gains and losses

punished alike.

Economically better founded alternative?



Asymptotic Utility-Based Pricing and Hedging
Utility-based pricing and hedging

Use increasing utility function, maximize expected utility:
I Without options:

U(v) := sup
ϕ

E (u(v + ϕ • ST )) (?)

I After selling q options H for πq each:

Uq(v + qπq) := sup
ϕ

E (u(v + qπq + ϕ • ST − qH)) (??)

Indifference price: threshold πq for which U(v) = Uq(v + qπq).

Utility-based hedge: difference between optimizers ϕq in (??)
and ϕ̂ in (?).



Asymptotic Utility-Based Pricing and Hedging
Asymptotic expansions

I Advantage: economically plausible.
I Disadvantage: computation usually impossible
I Way out: first-order approximations for small number of

claims (q → 0):

πq = π0 + qπ′ + o(q2)

ϕq = ϕ̂+ qϕ′ + o(q2)

I ϕ̂: optimal strategy for pure investment problem
I π0: expectation under dual EMM dQ0/dP ∼ u′(VT (ϕ̂))

[Davis (1997), Karatzas and Kou (1996)]

⇒ What about hedge ϕ′ and risk premium π′?



Asymptotic Utility-Based Pricing and Hedging
The results of Kramkov and Sîrbu

Goal: first-order approximations

πq = π0 + qπ′ + o(q2), ϕq = ϕ̂+ qϕ′ + o(q2)

Kramkov & Sîrbu (2006,2007) for utilities on R+, Sirbû (2010) on
R: if risk-tolerance wealth process R exists with

RT = − u′(VT (ϕ̂))

u′′(VT (ϕ̂))
,

then:
I ϕ′: mean-variance optimal hedge
I π′: multiple of corresponding expected squared hedging error
I But: relative to numeraire R and under adjusted dual EMM

Q0, i.e. under dQ$/dQ0 ∼ VT (ϕ̂)



Asymptotic Utility-Based Pricing and Hedging
The Results of Kramkov and Sîrbu ct’d

Asymptotic utility-based hedging:
I Mean-variance hedging strategy.
I Limiting price is expectation under specific EMM.
I Risk premium for incompleteness is squared hedging error.
I But: computed under marginal pricing measure, and relative

to numeraire given by the optimal wealth process for the pure
investment problem.

I Interpretation: any utility function is locally quadratic around
the optimum.

I Tractable examples?



Asymptotic Utility-Based Pricing and Hedging
Exponential utility

CARA, i.e., Exponential utility u(x) = − exp(−px):
I Constant risk-tolerance wealth process replicating

RT = −u′(VT (ϕ̂))/u′′(VT (ϕ̂)) = p

I Hence: mean-variance hedging under Minimal Entropy
Martingale Measure, w.r.t. original numeraire.

I Compare Mania & Schweizer (2005), Becherer (2006), and
Kallsen & Rheinländer (2009) for continuous asset prices.

I As tractable as mean-variance hedging for Lévy and some
affine models [Kallsen, Rheinländer & Vierthauer (2010)].

What about CRRA, i.e., power utility u(x) = x1−p/(1− p)?



Asymptotic Utility-Based Pricing and Hedging
Power utility

For CRRA, i.e., power utility u(x) = x1−p/(1− p):
I Risk tolerance replicated by scaled optimal wealth process:

RT = −u′(VT (ϕ̂))/u′′(VT (ϕ̂)) = pVT (ϕ̂)

I Hence: mean-variance hedging under q-optimal martingale
measure. Additional change of numeraire.

I As for mean-variance hedging à là Gourieroux et al. (1998).
I In principle feasible for Lévy and some affine models.
I But: additional redundant asset:

(1,S$) :=

(
1, 1

V (ϕ̂)/v ,
S

V (ϕ̂)/v

)
instead of (1,S)

I Does not allow to apply results from the mean-variance
literature directly. Complicates interpretation.



Asymptotic Utility-Based Pricing and Hedging
An alternative representation

I Kramkov & Sîrbu (2007): Hedge ϕ′ minimizes

EQ$

((
π0$ + ψ′ • S$

T − H$
)2
)
= EQ$

(π0 + ψ′ • S − H
V (ϕ̂)/v

)2


over all strategies ψ′.
I Idea: Equivalent to minimizing

EPe

((
π0 + ψ′ • ST − H

)2
)

for dPe

dQ$
=

1
(V (ϕ̂)/v)2

⇒ Mean-variance hedging under auxiliary measure Pe w.r.t
original numeraire!



Asymptotic Utility-Based Pricing and Hedging
An alternative representation

Disadvantage of alternative approach:
I Pe typically is not an EMM ⇒ harder hedging problem.

Advantages of alternative approach:
I Original numeraire.
I Černý & Kallsen (2007): solution via Föllmer-Schweizer

decomposition after suitable change of measure.
I New measure already determined by solution to pure

investment problem.
I Hence: same complexity as for mean-variance hedging in the

martingale case.
I Results from the literature directly applicable.

But: Delicate technical obstacle!



Asymptotic utility-based pricing and hedging
An alternative approach

Reconsider

min
{

EQ$

((
π0$ + ψ′ • S$

T − H$
)2
)
: ψ′ admissible

}
?⇔ min

{
EPe

((
π0 + ψ′ • ST − H

)2
)
: ψ′admissible

}
Technical problem:

I Admissibility not invariant under change of numeraire.
I Only equivalent, if the process ϕ̂ • S that links Q$ and Pe is a

martingale under any EMM.
I Typically impossible to check even in concrete models.
I No reason why this should hold in general.

So how to make the heuristic argument precise?



Asymptotic utility-based pricing and hedging
An alternative approach ct’d

Characterization of mean-variance hedging problem by Černý &
Kallsen (2007) consists of two parts:

I Local characterization of candidates via semimartingale
characteristics.

I Global admissibility conditions that ensure optimality.

Key idea:
I Admissibility not satisfied, but also not needed.
I First-order terms from Kramkov and Sîrbu (2006, 2007)

characterized by local conditions of Černý & Kallsen (2007).
I Interpretation as mean-variance hedging problem requires

extra assumptions, but is not needed to apply formulas.
I Key tool for derivation: semimartingale calculus. Does not

require global assumptions.



Asymptotic Utility-Based Pricing and Hedging
An alternative approach ct’d

In summary: for power utility-based pricing and hedging...
I Start from optimal wealth process V (ϕ̂) for pure investment

problem.
I Limiting price for small claims is expectation under dual EMM

Q0 with density ∼ VT (ϕ̂)
−p.

I First-order correction is minimal squared hedging error under
measure Pe with density ∼ VT (ϕ̂)

−1−p.
I Asymptotic hedging strategy is corresponding mean-variance

hedge.
I Tractable examples?

I Need tractable pure investment problem.
I Need “nice” structure under Q0 and Pe.
I OK for some “affine” models.



Application to affine models
Affine stochastic volatility models

Activity v and log-price X modeled as bivariate affine process:

E
(

eiu1vT +iu2XT

∣∣∣∣Ft

)
= eΨ0(t,T ,iu)+Ψ1(t,T ,iu)vt +Ψ2(t,T ,iu)Xt

I Thoroughly analyzed by Duffie et al. (2003).
I Flexible and tractable
I Example: OU-time change model of Carr et al. (2003):

dvt = −λvtdt + dZt

Xt = L∫ t
0 vsds

for Lévy process L, subordinator Z .



Application to Affine Models
Asymptotic utility-based pricing and hedging

Step 1: Solve the pure investment problem.
I Computation though appropriate ansatz.
I Verification via Martingale Optimality Principle.

Step 2: Mean-variance hedging under Pe.
I Need: tractable model (e.g., Lévy, affine) under Pe.
I Works for Lévy and some affine models under P.

I Wealth process V (ϕ̂) needs to be exponentially affine.
I Requires excess return proportional to local variance.

Satisfied for time-change models.
I Then: density processes given by moments. Again affine by

transform formula. Change of measure retains affine structure.
I In this case: first-order approximations given by formulas from

Hubalek et al. (2006) resp. Kallsen & Vierthauer (2009).



Application to Affine Models
Example: utility-based hedges in OU time-change model

Numerical example:
I Returns follow NIG Lévy process in business time.
I Time change to calendar time given by Gamma-OU process.
I Parameters estimated from 20 years of DAX data.
I Skewness: -0.4. Excess kurtosis: 5.8.
I Evaluation of the integral-transform formulas from Kallsen &

Vierthauer (2009) by numerical quadrature.
I European call option with payoff H = (S0.25 − 100)+.



Application to Affine Models
Example: utility-based hedges in OU time-change model

Hedges for varying initial stock prices, risk aversion:
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Application to Affine Models
Example: Utility-Based Hedges in OU time-change model ct’d

Asymptotic power utility-based hedges:
I Almost independent of risk aversion.
I Very close to both Black-Scholes and exponential hedge (limit

for high risk aversion, p →∞).
I Incompleteness, preferences do not cause big deviation from

Black-Scholes.
I Delta-hedging is surprisingly robust even with jumps and

stochastic volatility [compare Denkl et al. (2012)].
What about price corrections?



Application to affine models
Example: Utility-based prices in OU time-change model ct’d

For low risk aversion p = 2:
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Application to Affine Models
Example: utility-based prices in OU time-change model ct’d

For high risk aversion p = 150:
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Application to Affine Models
Example: utility-based prices in OU time-change model ct’d

Asymptotic power utility-based prices:
I Very close to Black-Scholes for risk aversions as in most of the

economic literature.
I In particular, bid- and ask prices typically on the same side.
I For much larger risk aversions: bid-ask spread above and

below Black-Scholes price.
I With estimated parameters, model incompleteness due to

jumps and stochastic volatility can explain large option
spreads only with very high risk aversion.



Summary
Asymptotic utility-based pricing and hedging

To compute first-order approximations

πq = π0 + qπ′ + o(q2), ϕq = ϕ̂+ qϕ′ + o(q2)

1. Solve the pure investment problem maxψ E (u(VT (ψ))).
2. Apply local characterizations for the mean-variance hedging

problem of the claim under dPe/dP ∼ VT (ϕ̂)
−1−p.

I Step 1 is a classical problem, more or less explicit solutions in
a wide range of Markovian models.

I Step 2 is easier than mean-variance hedging under Pe, since
one does not have to verify admissibility of ϕ̂.

I Semi-explicit, numerically tractable formulas for Lévy and
some affine models.
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