Performance evaluation of optimized portfolio insurance strategies (Joint work with: D. Zieling, S. Balder)

Antje Mahayni

Department of Accounting and Finance, Mercator School of Management, University of Duisburg–Essen

LUH–Kolloquium "Versicherungs– und Finanzmathematik" *The Future of Life Insurance* May 2013, Hannover

Motivation and Outline

- CPPI and recent developments
- Outline of the further talk

CPPI and recent developments

- \rightarrow Constant proportion portfolio insurance (CPPI)
 - ightarrow Protection without options
 - → Dynamic portfolio of underlying and risk-free asset
 - \rightarrow Cushion C management technique
 - \rightarrow Cushion = difference between **portfolio value** V and **floor** F
 - \rightarrow **Floor** is defined by the **guarantee scheme** (e.g. simple floor growing with risk free rate or drawdown constraints)

Exposure E in the risky asset

E = multiplier × cushion = $m \times C$

Recent developments in (C)PPI investments

\rightarrow Variable multiples

 $\rightarrow\,$ Products allow for the multiple to vary over time in relation to the volatility of the risky asset

Antje Mahayni

Advantages (disadvantages) of (C)PPI method

Portfolio insurance:

 $\rightarrow\,$ PI investor must give up upward participation to achieve the downward protection

Advantages of (C)PPI method

- $\rightarrow\,$ Simple investment rule, easy to explain to the customer
- \rightarrow (C)PPI can be applied to an infinite investment horizon
- \rightarrow Robustness (model risk): No gap risk within class of stochastic volatility models

Disadvantage of (C)PPI (complete market!)

- $\rightarrow\,$ Investor gives up more upward participation than OBPI investor
- \rightarrow Put option is cheaper than zero bond (kinked vs smooth solution)

Outline

 $\rightarrow\,$ Performance evaluation of CPPI and variable multiplier strategies

Outline

- $\rightarrow\,$ Theoretical foundation and implementation of strategies
 - → Expected cushion growth rate maximizing (stochastic volatility setup)
 - \rightarrow Assumption on risk premium: CPPI or variable multiplier
- \rightarrow S&P 500 index return (and interest rate) data for 1985–2012
 - ightarrow Data and yearly evaluation of strategies (descriptive results)
- ightarrow Simulation model (EGARCH model, bootstrap on the residuals)
- $\rightarrow~$ Simulation setup accounting of
 - $\rightarrow~$ Transaction costs (trigger trading) and
 - \rightarrow Gap risk
- $\rightarrow~$ Conclusion and outlook

2 Strategies, data, and descriptive results

Strategies – Theoretical foundation

Model setup - stochastic volatility

 $\rightarrow\,$ Price dynamics of underlying

$$dS_t = S_t(\mu_t \, dt + \sigma_t \, dW_t^S)$$

- $\rightarrow W^{S}$ is one dimensional Brownian motion
- $ightarrow \, \sigma_t$ is diffusion driven by W^σ
- $ightarrow ~ W^{\mathcal{S}}$ and W^{σ} may be correlated

Proportional portfolio insurance (PPI) strategy ...

... with multiplier m_t

- \rightarrow at *t*, *m*_t times the cushion is invested in the stock *S*
- \rightarrow (1 m_t) is invested in the bank account B where

$$dB_t = B_t r_t dt$$

Optimization criterion

Cushion dynamics

$$dC_t = C_t \left(m_t \frac{dS_t}{S_t} + (1 - m_t) \frac{dB_t}{B_t} \right)$$
$$= C_t \left((r_t + m_t \lambda_t) dt + m_t \sigma_t dW_t^S \right)$$

 $ightarrow \lambda_t = \mu_t - \mathit{r}_t$ denotes the equity risk premium

Optimization criterion

 $\rightarrow\,$ Maximize expected cushion growth rate

$$E\left[\frac{1}{T}\ln\frac{C_T}{C_0}\right] = \frac{1}{T}E\left[\int_0^T \left(r_u + m_u\lambda_u - \frac{1}{2}(m_u\sigma_u)^2\right) du\right]$$

Optimal strategy/multiplier

- $\rightarrow\,$ No inter–temporal hedging demand
- → For all $t \in [0, T]$, the optimal multiplier $m_t^{*, sv}$ is given by the optimal multiplier of an investor with a very short investment horizon, i.e.

$$m_t^{*,sv} = \operatorname{argmax}_{m_t} \left[m_t \lambda_t - \frac{1}{2} (m_t \sigma_t)^2 \right]$$
$$= \frac{\mu_t - r_t}{\sigma_t^2} = \frac{\lambda_t}{\sigma_t^2}$$

Remark

- $\rightarrow\,$ Perspective of asset manager (index product, not individual (C)PPI)
- \rightarrow Index products are based on TIPP (drawdown constraints)
- \rightarrow We use a simple floor (initial floor F_0 which is then growing with r)
- $\rightarrow\,$ Qualitatively, evaluation of TIPP strategies gives same results (but, interpretation of cushion is difficult)

Antje Mahayni

Optimal strategy and assumptions on equity risk premium

Optimal strategy and assumptions on equity risk premium						
Assumption risk premium λ	optimal multiple <i>m</i> *					
(A0) $\lambda_t = \bar{\lambda}\sigma_t^2$ SR increasing in volatility	$m_t^* = ar{\lambda}$ constant					
(A1) $\lambda_t = \bar{\lambda}\sigma_t$ SR constant	$m_t^* = ar{\lambda} rac{1}{\sigma_t}$ prop. to inverse of local volatility					
(A2) $\lambda_t = \bar{\lambda}$ RP constant	$m_t^* = ar{\lambda} rac{1}{\sigma_t^2} $ prop. to inverse of local variance					

Strategies – Implementation

Implementation

- \rightarrow Strategies are implemented in discrete-time (daily rebalancing)
- \rightarrow Now, $t = 0, 1, 2, \dots$ denote daily trading dates
- $ightarrow \, \hat{\lambda}$ and $\hat{\sigma}$ are long term (daily) estimates
- $\rightarrow \ \hat{\sigma}_t = \sigma_{t,{\rm xM}}$ denote daily volatility estimates using a window of x months
- $\rightarrow\,$ We compare
 - \rightarrow time-varying multiple strategies m_t where

$$m_{t,(1),xM} = \hat{\lambda} \frac{1}{\hat{\sigma}} \frac{1}{\sigma_{t,xM}}, \ m_{t,(2),xM} = \hat{\lambda} \frac{1}{\sigma_{t,xM}^2}$$

$$ightarrow$$
 and **optimal CPPI** $m^{*, \mathsf{const}} = rac{\hat{\lambda}}{\hat{\sigma}^2}$

Variable multiplier strategies – Summary

Strategy	Variable m_t proportional to the inverse of the:
m _{t,(1),1M}	standard deviation of the latest 1 month (21 days) historical returns $(t, t-1,, t-20)$
$m_{t,(2),1M}$	variance of the latest 1 month (21 days) historical returns
$m_{t,(1),2M}$	standard deviation of the latest 2 month (42 days) historical returns $(t, t-1,, t-41)$
$m_{t,(2),2M}$	variance of the latest 2 month (42 days) historical returns
$m_{t, \text{GARCH}}$	one day ahead variance (forecast) based on simulation model implied $\sigma_{t+1,\text{GARCH}}^2$

Return data (S&P500 – price index)

Return data (S&P500 – price index)

- $\rightarrow\,$ Bloomberg data for the time period 1985–2012
 - \rightarrow Daily simple returns
 - \rightarrow Number of observation 7,044
- \rightarrow Interest rate data

 \rightarrow Discount yields of T-Bills (91 days to maturity)

 $\rightarrow\,$ Based on daily simple excess returns, we consider the yearly outcomes of PPI strategies

Summary and test statistics of daily (yearly) returns (whole data)

Mean excess return	0.000201	(0.053716)	
Standard deviation	0.011677	(0.188286)	
Skewness	-0.843287		
Kurtosis	24.749300		
Minimum	-0.204590		
Maximum	0.115778		
	t-statistic	critical value ($lpha=$ 0.1%)	p-value
Skewness	-28.8982	-3.29	0.0000
Kurtosis	745.3170	3.29	0.0000
Normality (Jarque-Bera)	139,958	14.67	0.0000

- $\rightarrow~$ Significant negative skewness
- \rightarrow Significant excess kurtosis

Descriptive results - Yearly performance of past 27 years

Panel A: Unbounded investment quote (no borrowing constraints)

	$\frac{1}{T}E\left[\ln \frac{C_T}{C_0}\right]$	$\frac{1}{T}E[\ln \frac{V_T}{V_0}]$	$E[V_T]$	min V_T
$m_{t,(1),1M}$	0.065	0.045	106.099	79.752
	0.318	0.167	19.127	
$m_{t,(2),1M}$	0.074	0.079	121.852	72.317
	0.624	0.397	98.088	
m = 1	0.030	0.018	102.157	81.567
	0.167	0.081	7.992	
$m^{*,\mathrm{const}}$	0.031	0.023	103.057	73.894
=1.4741	0.255	0.120	11.804	
<i>m</i> = 2	0.023	0.027	103.962	66.808
	0.358	0.163	15.940	
<i>m</i> = 4	-0.116	0.019	106.569	52.766
	0.851	0.310	31.199	

 \rightarrow Initial investment $V_0 = 100$, guarantee/floor F = 50

→ Standard deviation in italics

Antje Mahayni

Observations

- \rightarrow min V_T is higher than guarantee (F = 50) (**no gap risk**)
- \rightarrow Worst case (min $V_{T}=52.77)$ is linked to the CPPI with m=4
 - \rightarrow Although average value of $m_{t,(2),1\rm M}$ is 3.94 ($m_{t,(2),1\rm M}$ varies between 0.0587 and 25.84)
- \rightarrow Among the CPPI strategies, $m^{*,\mathrm{const}}$ gives highest average cushion growth rate
- \rightarrow But, time-varying multiples give better results
 - $ightarrow m_{t,(1),1\mathsf{M}}$ yields a 110% higher average cushion growth rate
 - $ightarrow \, m_{t,(2),1{
 m M}}$ even a 130% higher average cushion growth rate
- $\rightarrow\,$ Growth rates of leveraged strategies are highly volatile
- $\rightarrow\,$ None of the comparative growth rate results is significant!

Additional performance measures

\rightarrow Consider additional performance measures

Additional performance measures – Summary

Descriptive results – additional performance measures

Panel A: Unbounded investment quote (no borrowing constraints)

	SR	ASSR	$\Omega-1$	SoR	UPR
$m_{t,(1),1M}$	0.319	0.644	1.553	0.798	1.313
$m_{t,(2),1M}$	0.223	0.709	3.104	1.835	2.426
m = 1	0.270	-	0.966	0.427	0.870
m ^{*,const}	0.259	-	0.904	0.416	0.877
<i>m</i> = 2	0.249	0.082	0.847	0.407	0.888
<i>m</i> = 4	0.211	0.241	0.691	0.375	0.916

Observations

\rightarrow Sharpe ratio (SR) is mean-variance-based

- \rightarrow If investor values skewness positively, SR overrates strategies reducing skewness (value strategies) and underrates momentum (PI) strategies
- $\rightarrow\,$ For CPPI strategies, ${\it SR}$ is the lower the higher the leverage is
- \rightarrow Ranking of PI strategies with SR is not meaningful here
- \rightarrow Adjusted for skewness Sharpe ratio (ASSR) and other performance measures
 - \rightarrow Better performance of the time-varying multiple strategies compared to the optimal constant multiple strategy

Problem

→ Variable multipliers are promising candidates to outperform (CPPI) strategies (w.r.t. the expected (cushion) growth rates and other performance measures)

Problem

- \rightarrow Yearly non–overlapping historical return blocks do not allow the deduction of any significant performance results
- \rightarrow Leveraged strategies imply volatile terminal values
- \rightarrow Sufficiently high number of observations (daily return paths) needed
- $\rightarrow\,$ Construct simulation model which mimics the empirical return distributions as close as possible

4 Simulation tool

- Construction of simulation tool
- Estimated model

Simulation tool

Construction of simulation tool Estimated model

- \rightarrow Student's *t*–EGARCH model to describe the data
- \rightarrow Conditional (log) variance model combined with MA(2) conditional mean model for excess returns R_t is

EGARCH model

$$\mathsf{MA}(2): R_t = \theta_0 + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \epsilon_t, \qquad \epsilon_t = \sigma_t z_t$$

$$\mathsf{EGARCH}(P,Q): \ \ln \sigma_t^2 = \omega + \sum_{j=1}^{r} \left[\alpha_j \left(|z_{t-j}| - \mathcal{E}[|z_{t-j}|] \right) + \gamma_j z_{t-j} \right] \\ + \sum_{k=1}^{Q} \beta_k \ln \sigma_{t-k}^2$$

where
$$E[|z_{t-j}|] = E\left[\frac{|\epsilon_{t-j}|}{\sigma_{t-j}}\right] = \sqrt{\frac{\nu-2}{\pi}} \frac{\Gamma((\nu-1)/2)}{\Gamma(\nu/2)}$$
 for $z_t \sim T(\nu)$

 \rightarrow $\Gamma(x)$ denotes the gamma function

 $ightarrow ~{\cal T}(
u)$ a Student's t distribution with u>2 degrees of freedom

Antje Mahayni

Parameter estimates

Parameter estimates for the MA(2)-*t*-EGARCH(1,1) model

Parameter	Value	Standard Error	t-statistic
θ_0	0.000201	_	_
θ_1	-0.013733	0.0122840	-1.1180
θ_2	-0.019380	0.0116200	-1.6678
ω	-0.106670	0.0151860	-7.0240
α_1	0.112720	0.0099974	11.2747
β_1	0.988490	0.0016127	612.9561
γ_1	-0.084188	0.0071361	-11.7976
u	5.700800	0.3786400	15.0558

 $ightarrow heta_0$ is fixed to mean of empirical excess return series

We compare

- ightarrow Model specified by the estimated parameters ($z_t \sim T(\nu)$ with $\nu = 5.7008$)
- → Semiparametric model with z_t drawn randomly from the set of empirical residuals $\hat{z}_{emp} = \{\hat{z}_t\}$

Summary statistics of empirical and simulated daily excess returns

Returns	Mean	Stdev.	Skewness	Kurtosis	Min	Max
empirical	0.00020	0.0117	-0.8433	24.7493	-0.2046	0.1158
$z_t \sim T(u)$	0.00020	0.0113	0.0054	14.0842	-0.6270	0.8704
$z_t \sim \hat{z}_{emp}$	0.00020	0.0117	-0.8190	20.6388	-0.6987	0.3629

 $\rightarrow\,$ Both simulated series represent 200,000 years, each with 260 daily excess returns

5 Simulation Results

- Turnovers and transaction costs
- Simulation results Without transaction costs
- Simulation results With transaction costs

Simulation results ...

- ... are stated in two parts
 - → First part: Without transaction costs
 - \rightarrow Distribution of variable multipliers
 - \rightarrow Daily changes of variable multipliers
 - → Key numbers characterizing the turnovers
 - → Second part: Proportional transaction costs
 - → Trigger trading (stochastic trading dates)
 - \rightarrow Reconsider the evaluation of the PPI strategies

Summary statistics of variable multipliers m_t and the relative

changes $\Delta m_t = \Delta m_t = $	$\frac{m_t-m_{t-1}}{m_{t-1}}$
---------------------------------------	-------------------------------

	Mean	Median	Stdev	Skewness	Kurtosis	Min	Max
m _{t,GARCH}	3.16	2.47	2.55	2.30	12.17	0.01	46.18
$m_{t,(1),1M}$	2.19	2.00	1.04	1.31	6.17	0.12	16.11
$m_{t,(2),1M}$	4.09	2.79	4.35	4.01	36.87	0.01	180.46
$m_{t,(1),2M}$	2.09	1.95	0.91	1.11	5.14	0.16	12.54
<i>m</i> _{t,(2),2M}	3.62	2.63	3.42	3.12	21.26	0.02	109.37
$\Delta m_{t,\text{GARCH}}$	0.08	0.07	0.07	3.32	19.94	0	0.83
$\Delta m_{t,(1),1M}$	0.04	0.02	0.06	4.12	32.95	0	2.11
$\Delta m_{t,(2),1M}$	0.08	0.04	0.12	5.78	83.43	0	8.66
$\Delta m_{t,(1),2M}$	0.02	0.01	0.03	5.00	48.71	0	1.25
$\Delta m_{t,(2),2M}$	0.04	0.02	0.06	5.47	68.98	0	4.08

 $\rightarrow\,$ Results are based on a simulation of 50,000 years, each with 260 trading days

Observations

- $ightarrow m_{t, {
 m GARCH}}$ is, on average, 3.158
 - \rightarrow More than two times higher than $m^{*,\text{const}} = 1.4741$
- \rightarrow Multiplier based on 1M estimation horizon, $m_{t,(2),1M}$, is even more extreme
 - $\rightarrow~$ It ranges from slightly above zero to a 180.462
 - \rightarrow Distribution is positively skewed and exhibits high kurtosis (36.866)
- → Variable multiplier based on the inverse of the volatility, $m_{t,(1)}$, possesses a sample distribution with a skewness of 1.31 (1.11) and a kurtosis of 6.17 (5.14) for the 1M (2M) estimation window
- \rightarrow High standard deviations and high average percentage changes for multiples proportional to the inverse of the variance

Turnovers – Key numbers

- $\rightarrow\,$ High turnovers indicate that the performance may deteriorate under transaction costs
- ightarrow Based on relative daily turnovers $\delta_t^{\mathcal{S}}$

$$\delta_t^{\mathcal{S}} := \frac{\left| m_t C_t - m_{t-1} C_{t-1} \frac{S_t}{S_{t-1}} \right|}{V_t}, \text{ we consider}$$

Key numbers

- \rightarrow **Maximum relative daily turnovers** $Maxturn = E[\max_{t \in \{1,...n-1\}} \delta_t^S]$
- \rightarrow **Expected total relative turnovers** $Totturn = E[\sum_{t=1}^{n-1} \delta_t^S]$
- \rightarrow Expected number of trading days per year $Trades = E[\sum_{t=0}^{n-1} 1_{\delta_t^S > 0}]$

Performance results for dynamic and constant multiplier strategies (based on M = 50,000 simulations)

	$E[\ln \frac{C_T}{C_0}]$	$E[\ln \frac{V_T}{V0}]$	$E[V_T]$	min V_T	Maxturn	Totturn
m _{t,GARCH}	0.070	0.050	106.924	65.609	0.669	15.333
$m_{t,(1),1M}$	0.065	0.045	105.931	63.134	0.443	9.661
$m_{t,(2),1M}$	0.065	0.051	107.233	56.206	0.718	12.552
$m_{t,(1),2M}$	0.063	0.044	105.743	64.162	0.259	5.333
$m_{t,(2),2M}$	0.064	0.050	107.057	59.512	0.450	7.385
m = 1	0.036	0.022	102.648	54.916	0.000	0.000
m ^{*,const}	0.042	0.031	103.925	50.893	0.019	0.679
<i>m</i> = 2	(0.039); 1	0.038	105.344	48.664	0.049	1.903
<i>m</i> = 4	(-0.051); 41	0.048	109.877	43.244	0.219	6.435

Observations

- $\rightarrow\,$ Basically, descriptive results are confirmed
- $\rightarrow\,$ But, the simulation model also accounts of gap risk
 - \rightarrow Guarantee violations (gap events) for m = 2 and m = 4
 - \rightarrow No gap events for variable multiplier strategies
- \rightarrow Out-performance of time-varying multiplier strategies is valid (robust w.r.t. all performance measures except *SR*)
 - $\rightarrow\,$ Surprisingly, feasible variable multiplier strategies perform quite similarly
 - $\rightarrow\,$ Universally, their performance results are rather close to the optimal result obtained by the variance estimate which is based on the simulation model
 - $\rightarrow\,$ But, the time–varying multiple strategies afford high turnovers

\rightarrow Reconsider performance evaluation accounting of transaction costs with adequate trigger

Transaction Costs

High turnovers

- $\rightarrow\,$ Accounting of transaction costs is important for PPI strategies
- $\rightarrow\,$ Strategies imply a reduction (increase) of the asset exposure in falling (rising) markets
- $\rightarrow\,$ Investor suffers from any round–turn in the asset prices
- $\rightarrow\,$ Effect is severe if there are in addition transaction costs
- \rightarrow We consider proportional transaction costs denoted by a proportionality factor θ
- $\rightarrow~$ For daily trading, the cushion dynamics are the

$$C_{t+} = C_t - \theta \left| m_t C_{t+} - m_{t-1} C_{(t-1)+} \frac{S_t}{S_{t-1}} \right|,$$

where $m_t C_{t+}$ denotes the asset exposure immediately after a transaction cost adjustment

Trigger Trading

Trigger design

- $\label{eq:tau} \begin{array}{l} \to \ \tau \ \text{is sequence of stopping times where} \ \tau_k \in \{0,1,\ldots,n-1\}, \\ \tau_0 = 0 \ \text{and} \ \tau_{k+1} > \tau_k \end{array}$
- ightarrow Assume that $\mathit{C}_{ au_k+}>$ 0
 - → Number of risky assets (constantly held immediately after τ_k) is $\eta_{\tau_k+} = \frac{m_{\tau_k} C_{\tau_k+}}{S_{\tau_k}}$

ightarrow Implicit multiplier at $t \ (au_{k+} < t < au_{k+1})$ is

$$m_t^{imp} = \frac{\eta_{\tau_k+} S_t}{C_t}$$

→ Target multiplier m_t is defined by PPI rule → Trigger design with trigger level φ is

$$\tau_k := \inf \left\{ t > \tau_{k-1} \left| \{ m_t^{imp} \leq \frac{1}{\varphi} \ m_t \} \cup \{ m_t^{imp} \geq \varphi \ m_t \} \right. \right\}$$

33/38

 \rightarrow Each strategy is evaluated w.r.t. its (expected cushion growth rate) optimal trigger level φ^*

Observations (prop. transaction costs with $\theta = 0.1\%$)

\rightarrow CPPI strategies

- \rightarrow Optimal level $\varphi^*(m)$ is the higher, the higher the multiplier is
- \rightarrow Optimized trigger levels are close to one (close to daily trading)

\rightarrow Variable multiple strategies

- \to Optimized trigger levels range from $\varphi^*=1.2$ for $m_{t,(1),2\rm M}$ to $\varphi^*=2.0$ for $m_{t,\rm GARCH}$
- $\rightarrow\,$ Optimal trigger level is the higher, the higher the dispersion of the multiplier values is

$\rightarrow\,$ Corresponding trigger levels are omitted in the following

Simulation Results

Turnovers and transaction costs Simulation results – Without transaction costs Simulation results – With transaction costs

Performance results for dynamic and constant multiplier strategies under transaction costs and optimized trigger trading

	$E[\ln \frac{C_T}{C_0}]$	$E[\ln rac{V_T}{V0}]$	$E[V_T]$	min V_T	Maxturn	Totturn
m _{t,GARCH}	0.059	0.045	106.329	62.978	0.999	3.331
$m_{t,(1),1M}$	0.056	0.042	105.682	61.857	0.717	2.378
$m_{t,(2),1M}$	0.051	0.046	106.851	55.033	1.007	4.530
$m_{t,(1),2M}$	0.056	0.040	105.431	63.170	0.369	2.057
$m_{t,(2),2M}$	0.053	0.045	106.675	57.164	0.692	3.079
m = 1	0.035	0.022	102.596	54.911	0.000	0.000
m ^{*,const}	0.040	0.029	103.795	50.627	0.027	0.036
<i>m</i> = 2	(0.037); 1	0.036	105.172	48.512	0.102	0.260
<i>m</i> = 4	(-0.059); 51	0.046	109.644	26.377	0.365	1.790

Observations (prop. transaction costs with $\theta = 0.1\%$)

The trigger design implies

- (i) Fewer trades (small deviations of target multiple m_t and implied multiple m_t^{imp} are not taken into account)
- (ii) Less turnovers in total
 - $\rightarrow\,$ Expected cumulated turnovers $\mathit{Totturn}$ are reduced by more than 50% compared to daily trading
- (iii) Average and maximum turnover volume per trade *Maxturn* increase
 - $\rightarrow\,$ In practice, maximal turnovers which are above 50% are often considered as prohibitive
 - \rightarrow Highest average turnovers are ca 100% for $m_{t, {\rm GARCH}}$ and $m_{t,(2), {\rm 1M}}$
 - $\rightarrow\,$ Drawback of a time-varying multiple proportional to the inverse of the estimated variance

Conclusion

ightarrow Industry's approach (rule based and variable multiplier)

- $\rightarrow\,$ In line with well known optimization problems
- \rightarrow Multipliers based on rolling window of historical volatilities significantly outperform CPPI
 - (the result is robust w.r.t. alternative performance measures)
- $\rightarrow\,$ Performance of a multiplier prop. to the inverse of the variance is slightly better than using the inverse of the volatility
- → But, accounting of maximal per annum turnovers are in favor of a multiple proportional to the inverse of the one day ahead volatility (industry's approach)
- \rightarrow Additional good news
 - \rightarrow Proportionality to the inverse of the volatility also reduces gap $\underset{\mbox{risk}}{\mbox{risk}}$