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CPPI and recent developments

→ Constant proportion portfolio insurance (CPPI)
→ Protection without options
→ Dynamic portfolio of underlying and risk–free asset
→ Cushion C management technique
→ Cushion = difference between portfolio value V and floor F
→ Floor is defined by the guarantee scheme (e.g. simple floor

growing with risk free rate or drawdown constraints)

Exposure E in the risky asset

E = multiplier × cushion = m × C

Recent developments in (C)PPI investments

→ Variable multiples

→ Products allow for the multiple to vary over time in relation to
the volatility of the risky asset

Antje Mahayni Performance evaluation of optimized portfolio insurance strategies 3/38



Motivation and Outline
CPPI and recent developments
Outline of the further talk

Advantages (disadvantages) of (C)PPI method

Portfolio insurance:

→ PI investor must give up upward participation to achieve the
downward protection

Advantages of (C)PPI method

→ Simple investment rule, easy to explain to the customer

→ (C)PPI can be applied to an infinite investment horizon

→ Robustness (model risk): No gap risk within class of stochastic
volatility models

Disadvantage of (C)PPI (complete market!)

→ Investor gives up more upward participation than OBPI investor

→ Put option is cheaper than zero bond (kinked vs smooth solution)
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Outline

→ Performance evaluation of CPPI and variable multiplier strategies

Outline

→ Theoretical foundation and implementation of strategies

→ Expected cushion growth rate maximizing
(stochastic volatility setup)

→ Assumption on risk premium: CPPI or variable multiplier

→ S&P 500 index return (and interest rate) data for 1985–2012

→ Data and yearly evaluation of strategies (descriptive results)

→ Simulation model (EGARCH model, bootstrap on the residuals)

→ Simulation setup accounting of

→ Transaction costs (trigger trading) and
→ Gap risk

→ Conclusion and outlook
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Strategies – Theoretical foundation

Model setup – stochastic volatility
→ Price dynamics of underlying

dSt = St(µt dt + σt dW
S
t )

→ W S is one dimensional Brownian motion

→ σt is diffusion driven by W σ

→ W S and W σ may be correlated

Proportional portfolio insurance (PPI) strategy ...

... with multiplier mt

→ at t, mt times the cushion is invested in the stock S

→ (1−mt) is invested in the bank account B where

dBt = Btrt dt
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Optimization criterion

Cushion dynamics

dCt = Ct

(
mt

dSt
St

+ (1−mt)
dBt

Bt

)
= Ct

(
(rt + mtλt) dt + mtσt dW

S
t

)
→ λt = µt − rt denotes the equity risk premium

Optimization criterion

→ Maximize expected cushion growth rate

E

[
1

T
ln

CT

C0

]
=

1

T
E

[∫ T

0

(
ru + muλu −

1

2
(muσu)2

)
du

]
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Optimal strategy/multiplier

→ No inter–temporal hedging demand

→ For all t ∈ [0,T ], the optimal multiplier m∗,sv
t is given by the optimal

multiplier of an investor with a very short investment horizon, i.e.

m∗,sv
t = argmaxmt

[
mtλt −

1

2
(mtσt)

2

]
=
µt − rt
σ2
t

=
λt
σ2
t

Remark

→ Perspective of asset manager (index product, not individual (C)PPI)

→ Index products are based on TIPP (drawdown constraints)

→ We use a simple floor (initial floor F0 which is then growing with r)

→ Qualitatively, evaluation of TIPP strategies gives same results
(but, interpretation of cushion is difficult)
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Optimal strategy and assumptions on equity risk premium

Optimal strategy and assumptions on equity risk premium

Assumption risk premium λ optimal multiple m∗

(A0) λt = λ̄σ2
t m∗

t = λ̄ constant
SR increasing in volatility

(A1) λt = λ̄σt m∗
t = λ̄ 1

σt
prop. to inverse of

SR constant local volatility

(A2) λt = λ̄ m∗
t = λ̄ 1

σ2
t

prop. to inverse of

RP constant local variance
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Strategies – Implementation

Implementation

→ Strategies are implemented in discrete–time (daily rebalancing)

→ Now, t = 0, 1, 2, . . . denote daily trading dates

→ λ̂ and σ̂ are long term (daily) estimates

→ σ̂t = σt,xM denote daily volatility estimates using a window of x
months

→ We compare

→ time–varying multiple strategies mt where

mt,(1),xM =
λ̂

σ̂

1

σt,xM
, mt,(2),xM = λ̂

1

σ2
t,xM

→ and optimal CPPI m∗,const = λ̂
σ̂2
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Variable multiplier strategies – Summary

Strategy Variable mt proportional to the inverse of the:

mt,(1),1M standard deviation of the latest 1 month (21 days)
historical returns (t, t − 1, ..., t − 20)

mt,(2),1M variance of the latest 1 month (21 days)
historical returns

mt,(1),2M standard deviation of the latest 2 month (42 days)
historical returns (t, t − 1, ..., t − 41)

mt,(2),2M variance of the latest 2 month (42 days)
historical returns

mt,GARCH one day ahead variance (forecast) based on simulation
model implied σ2

t+1,GARCH
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Return data (S&P500 – price index)

Return data (S&P500 – price index)

→ Bloomberg data for the time period 1985–2012

→ Daily simple returns
→ Number of observation 7,044

→ Interest rate data

→ Discount yields of T-Bills (91 days to maturity)

→ Based on daily simple excess returns, we consider the yearly
outcomes of PPI strategies
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Summary and test statistics of daily (yearly) returns (whole data)

Mean excess return 0.000201 (0.053716)
Standard deviation 0.011677 (0.188286)
Skewness -0.843287
Kurtosis 24.749300
Minimum -0.204590
Maximum 0.115778

t-statistic critical value (α = 0.1%) p-value

Skewness -28.8982 -3.29 0.0000
Kurtosis 745.3170 3.29 0.0000
Normality (Jarque-Bera) 139,958 14.67 0.0000

→ Significant negative skewness

→ Significant excess kurtosis
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Descriptive results – Yearly performance of past 27 years
Panel A: Unbounded investment quote (no borrowing constraints)

1
T E [ln CT

C0
] 1

T E [ln VT

V0
] E [VT ] min VT

mt,(1),1M 0.065 0.045 106.099 79.752
0.318 0.167 19.127

mt,(2),1M 0.074 0.079 121.852 72.317
0.624 0.397 98.088

m = 1 0.030 0.018 102.157 81.567
0.167 0.081 7.992

m∗,const 0.031 0.023 103.057 73.894
=1.4741 0.255 0.120 11.804
m = 2 0.023 0.027 103.962 66.808

0.358 0.163 15.940
m = 4 -0.116 0.019 106.569 52.766

0.851 0.310 31.199

→ Initial investment V0 = 100, guarantee/floor F = 50

→ Standard deviation in italics
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Observations

→ minVT is higher than guarantee (F = 50) (no gap risk)

→ Worst case (minVT = 52.77) is linked to the CPPI with
m = 4

→ Although average value of mt,(2),1M is 3.94 (mt,(2),1M varies
between 0.0587 and 25.84)

→ Among the CPPI strategies, m∗,const gives highest average
cushion growth rate

→ But, time–varying multiples give better results

→ mt,(1),1M yields a 110% higher average cushion growth rate
→ mt,(2),1M even a 130% higher average cushion growth rate

→ Growth rates of leveraged strategies are highly volatile

→ None of the comparative growth rate results is significant!

Antje Mahayni Performance evaluation of optimized portfolio insurance strategies 16/38



Data and descriptive results
Strategies – Theoretical foundation
Strategies – Implementation
Data and descriptive results

Additional performance measures

→ Consider additional performance measures

Additional performance measures – Summary

Sharpe ratio (SR)
E[VT−V0e

rT ]√
Var[VT ]

Adjusted Sharpe ratio (ASSR) SR
√

1 + b3
Skew

3 SR where b3 = 2

Omega measure (Ω) E [max{VT−K ,0}]
E [max{K−VT ,0}]

Sortino ratio (SoR) E [VT−K ]√
E [(max{K−VT ,0})2]

Upside potential ratio (UPR) E [max{VT−K ,0}]√
E [(max{K−VT ,0})2]
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Descriptive results – additional performance measures

Panel A: Unbounded investment quote (no borrowing constraints)

SR ASSR Ω− 1 SoR UPR

mt,(1),1M 0.319 0.644 1.553 0.798 1.313

mt,(2),1M 0.223 0.709 3.104 1.835 2.426

m = 1 0.270 – 0.966 0.427 0.870

m∗,const 0.259 – 0.904 0.416 0.877

m = 2 0.249 0.082 0.847 0.407 0.888

m = 4 0.211 0.241 0.691 0.375 0.916
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Observations

→ Sharpe ratio (SR) is mean–variance–based

→ If investor values skewness positively, SR overrates strategies
reducing skewness (value strategies) and underrates
momentum (PI) strategies

→ For CPPI strategies, SR is the lower the higher the leverage is
→ Ranking of PI strategies with SR is not meaningful here

→ Adjusted for skewness Sharpe ratio (ASSR) and other
performance measures

→ Better performance of the time–varying multiple strategies
compared to the optimal constant multiple strategy
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Problem

→ Variable multipliers are promising candidates to
outperform (CPPI) strategies (w.r.t. the expected (cushion)
growth rates and other performance measures)

Problem

→ Yearly non–overlapping historical return blocks do not allow
the deduction of any significant performance results

→ Leveraged strategies imply volatile terminal values

→ Sufficiently high number of observations (daily return paths)
needed

→ Construct simulation model which mimics the empirical return
distributions as close as possible
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→ Student’s t–EGARCH model to describe the data
→ Conditional (log) variance model combined with MA(2)

conditional mean model for excess returns Rt is

EGARCH model

MA(2) : Rt = θ0 + θ1εt−1 + θ2εt−2 + εt , εt = σtzt

EGARCH(P,Q) : lnσ2
t = ω +

P∑
j=1

[αj (|zt−j | − E [|zt−j |]) + γjzt−j ]

+
Q∑

k=1

βk lnσ2
t−k

where E [|zt−j |] = E
[
|εt−j |
σt−j

]
=
√

ν−2
π

Γ((ν−1)/2)
Γ(ν/2) for zt ∼ T (ν)

→ Γ(x) denotes the gamma function

→ T (ν) a Student’s t distribution with ν > 2 degrees of freedom
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Parameter estimates

Parameter estimates for the MA(2)-t-EGARCH(1,1) model

Parameter Value Standard Error t-statistic

θ0 0.000201 – –
θ1 -0.013733 0.0122840 -1.1180
θ2 -0.019380 0.0116200 -1.6678
ω -0.106670 0.0151860 -7.0240
α1 0.112720 0.0099974 11.2747
β1 0.988490 0.0016127 612.9561
γ1 -0.084188 0.0071361 -11.7976
ν 5.700800 0.3786400 15.0558

→ θ0 is fixed to mean of empirical excess return series
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We compare

→ Model specified by the estimated parameters (zt ∼ T (ν) with
ν = 5.7008)

→ Semiparametric model with zt drawn randomly from the set of
empirical residuals ẑemp = {ẑt}

Summary statistics of empirical and simulated daily excess returns

Returns Mean Stdev. Skewness Kurtosis Min Max

empirical 0.00020 0.0117 -0.8433 24.7493 -0.2046 0.1158
zt ∼ T (ν) 0.00020 0.0113 0.0054 14.0842 -0.6270 0.8704
zt ∼ ẑemp 0.00020 0.0117 -0.8190 20.6388 -0.6987 0.3629

→ Both simulated series represent 200,000 years, each with 260
daily excess returns
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Simulation results ...

... are stated in two parts

→ First part: Without transaction costs

→ Distribution of variable multipliers
→ Daily changes of variable multipliers
→ Key numbers characterizing the turnovers

→ Second part: Proportional transaction costs

→ Trigger trading (stochastic trading dates)
→ Reconsider the evaluation of the PPI strategies
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Summary statistics of variable multipliers mt and the relative

changes ∆mt = ∆mt =
∣∣∣mt−mt−1

mt−1

∣∣∣
Mean Median Stdev Skewness Kurtosis Min Max

mt,GARCH 3.16 2.47 2.55 2.30 12.17 0.01 46.18
mt,(1),1M 2.19 2.00 1.04 1.31 6.17 0.12 16.11
mt,(2),1M 4.09 2.79 4.35 4.01 36.87 0.01 180.46
mt,(1),2M 2.09 1.95 0.91 1.11 5.14 0.16 12.54
mt,(2),2M 3.62 2.63 3.42 3.12 21.26 0.02 109.37

∆mt,GARCH 0.08 0.07 0.07 3.32 19.94 0 0.83
∆mt,(1),1M 0.04 0.02 0.06 4.12 32.95 0 2.11
∆mt,(2),1M 0.08 0.04 0.12 5.78 83.43 0 8.66
∆mt,(1),2M 0.02 0.01 0.03 5.00 48.71 0 1.25
∆mt,(2),2M 0.04 0.02 0.06 5.47 68.98 0 4.08

→ Results are based on a simulation of 50,000 years, each with 260
trading days
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Observations

→ mt,GARCH is, on average, 3.158

→ More than two times higher than m∗,const = 1.4741

→ Multiplier based on 1M estimation horizon, mt,(2),1M, is even
more extreme

→ It ranges from slightly above zero to a 180.462
→ Distribution is positively skewed and exhibits high kurtosis

(36.866)

→ Variable multiplier based on the inverse of the volatility,
mt,(1), possesses a sample distribution with a skewness of 1.31
(1.11) and a kurtosis of 6.17 (5.14) for the 1M (2M)
estimation window

→ High standard deviations and high average percentage
changes for multiples proportional to the inverse of the
variance

Antje Mahayni Performance evaluation of optimized portfolio insurance strategies 28/38



Simulation Results
Turnovers and transaction costs
Simulation results – Without transaction costs
Simulation results – With transaction costs

Turnovers – Key numbers

→ High turnovers indicate that the performance may deteriorate under
transaction costs

→ Based on relative daily turnovers δSt

δSt :=

∣∣∣mtCt −mt−1Ct−1
St

St−1

∣∣∣
Vt

, we consider

Key numbers

→ Maximum relative daily turnovers
Maxturn = E [maxt∈{1,...n−1} δ

S
t ]

→ Expected total relative turnovers
Totturn = E [

∑n−1
t=1 δ

S
t ]

→ Expected number of trading days per year
Trades = E [

∑n−1
t=0 1δSt >0]
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Performance results for dynamic and constant multiplier strategies
(based on M = 50,000 simulations)

E [ln CT

C0
] E [ln VT

V 0 ] E [VT ] min VT Maxturn Totturn

mt,GARCH 0.070 0.050 106.924 65.609 0.669 15.333
mt,(1),1M 0.065 0.045 105.931 63.134 0.443 9.661
mt,(2),1M 0.065 0.051 107.233 56.206 0.718 12.552
mt,(1),2M 0.063 0.044 105.743 64.162 0.259 5.333
mt,(2),2M 0.064 0.050 107.057 59.512 0.450 7.385

m = 1 0.036 0.022 102.648 54.916 0.000 0.000
m∗,const 0.042 0.031 103.925 50.893 0.019 0.679
m = 2 (0.039); 1 0.038 105.344 48.664 0.049 1.903
m = 4 (-0.051); 41 0.048 109.877 43.244 0.219 6.435
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Observations

→ Basically, descriptive results are confirmed

→ But, the simulation model also accounts of gap risk

→ Guarantee violations (gap events) for m = 2 and m = 4
→ No gap events for variable multiplier strategies

→ Out–performance of time–varying multiplier strategies is valid
(robust w.r.t. all performance measures except SR)

→ Surprisingly, feasible variable multiplier strategies perform quite
similarly

→ Universally, their performance results are rather close to the
optimal result obtained by the variance estimate which is based
on the simulation model

→ But, the time–varying multiple strategies afford high turnovers

→ Reconsider performance evaluation accounting of
transaction costs with adequate trigger
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Transaction Costs

High turnovers

→ Accounting of transaction costs is important for PPI strategies

→ Strategies imply a reduction (increase) of the asset exposure in
falling (rising) markets

→ Investor suffers from any round–turn in the asset prices

→ Effect is severe if there are in addition transaction costs

→ We consider proportional transaction costs denoted by a
proportionality factor θ

→ For daily trading, the cushion dynamics are the

Ct+ = Ct − θ
∣∣∣∣mtCt+ −mt−1C(t−1)+

St
St−1

∣∣∣∣ ,
where mtCt+ denotes the asset exposure immediately after a
transaction cost adjustment

→ In practice, high turnovers are controlled by trading filters
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Trigger Trading

Trigger design

→ τ is sequence of stopping times where τk ∈ {0, 1, . . . , n − 1},
τ0 = 0 and τk+1 > τk

→ Assume that Cτk+ > 0

→ Number of risky assets (constantly held immediately after τk)

is ητk+ =
mτk

Cτk+

Sτk

→ Implicit multiplier at t (τk+ < t < τk+1) is

mimp
t =

ητk+St
Ct

→ Target multiplier mt is defined by PPI rule
→ Trigger design with trigger level ϕ is

τk := inf

{
t > τk−1

∣∣∣∣{mimp
t ≤ 1

ϕ
mt} ∪ {mimp

t ≥ ϕmt}
}
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→ Each strategy is evaluated w.r.t. its (expected cushion growth
rate) optimal trigger level ϕ∗

Observations (prop. transaction costs with θ = 0.1%)

→ CPPI strategies
→ Optimal level ϕ∗(m) is the higher, the higher the multiplier is
→ Optimized trigger levels are close to one (close to daily trading)

→ Variable multiple strategies
→ Optimized trigger levels range from ϕ∗ = 1.2 for mt,(1),2M to

ϕ∗ = 2.0 for mt,GARCH

→ Optimal trigger level is the higher, the higher the dispersion of
the multiplier values is

→ Corresponding trigger levels are omitted in the following
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Performance results for dynamic and constant multiplier
strategies under transaction costs and optimized trigger

trading

E [ln CT

C0
] E [ln VT

V 0 ] E [VT ] min VT Maxturn Totturn Trades

mt,GARCH 0.059 0.045 106.329 62.978 0.999 3.331 25.348
mt,(1),1M 0.056 0.042 105.682 61.857 0.717 2.378 7.911
mt,(2),1M 0.051 0.046 106.851 55.033 1.007 4.530 51.144
mt,(1),2M 0.056 0.040 105.431 63.170 0.369 2.057 16.876
mt,(2),2M 0.053 0.045 106.675 57.164 0.692 3.079 58.478

m = 1 0.035 0.022 102.596 54.911 0.000 0.000 1.000
m∗,const 0.040 0.029 103.795 50.627 0.027 0.036 1.527
m = 2 (0.037); 1 0.036 105.172 48.512 0.102 0.260 3.653
m = 4 (-0.059); 51 0.046 109.644 26.377 0.365 1.790 47.380
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Observations (prop. transaction costs with θ = 0.1%)

The trigger design implies

(i) Fewer trades (small deviations of target multiple mt and
implied multiple mimp

t are not taken into account)

(ii) Less turnovers in total

→ Expected cumulated turnovers Totturn are reduced by more
than 50% compared to daily trading

(iii) Average and maximum turnover volume per trade Maxturn
increase

→ In practice, maximal turnovers which are above 50% are often
considered as prohibitive

→ Highest average turnovers are ca 100% for mt,GARCH and
mt,(2),1M

→ Drawback of a time–varying multiple proportional to the
inverse of the estimated variance
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Conclusion and outlook Conclusion

Conclusion

→ Industry’s approach (rule based and variable multiplier)
→ In line with well known optimization problems
→ Multipliers based on rolling window of historical volatilities

significantly outperform CPPI
(the result is robust w.r.t. alternative performance measures)

→ Performance of a multiplier prop. to the inverse of the variance
is slightly better than using the inverse of the volatility

→ But, accounting of maximal per annum turnovers are in favor
of a multiple proportional to the inverse of the one day
ahead volatility (industry’s approach)

→ Additional good news

→ Proportionality to the inverse of the volatility also reduces gap
risk
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