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Why sensitivities?

@ Risk management means managing the available capital (CFO
and CRO responsibility)

@ Regulatory capital requirements (e.g., standard model in
Solvency II) are based on parameter scenarios

@ Thus, sensitivities of insurance reserves with respect to the
valuation basis are of particular interest

@ Understanding the sensitivities is key to premium calculation,
reserving and ultimately the survival of the insurer
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Thiele's differential equation |

@ The reserve is usually defined as the discounted expected benefit
payments less than the discounted expected premium payments
(equivalence principle)

@ In 1875 Thiele devised a differential equation (and difference
equation) for the evolution of the reserve

d
th = T — Deflyye + (" + Nx+t) V;.

@ Unification of the time discrete and continuous case in a
stochastic integral equation [MS97]
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Thiele's differential equation Il

@ Combination with developments in financial mathematics
(Black-Scholes, term-structure models, ...) leads to generalized
Thiele equations, cf. [Nor91] or [Ste06]

@ These generalizations model modern life insurance products
whose benefits explicitly depend on capital markets

@ In product design and capital requirements current attention
shifts towards worst-case analyses with respect to the valuation
basis

e Examples include [Chrllb], [Chrlla], [Chr10] and [CS11]
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Our model life insurance contract

@ We consider a multi-state life insurance policy with distribution
of a surplus as in [Ste07]

@ The surplus can be invested in a risk-free asset and a risky asset,
the latter being modelled by an [t6 process

@ The reserve satisfies a system of partial differential equations
(PDEs)

@ Objective: solve the PDEs by semigroup techniques and then
assess sensitivities
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The aim is to investigate the Thiele PDE using
linear operators

@ Basic idea is to express economic forces by linear operators

@ Motivation: quantum mechanics and operator algebras
o Key results
» Uniform continuity of the reserve with respect to financial,
mortality and payment assumptions
» Pointwise bounds on the gradient of the reserve as a function of
the surplus
» Factorization of the reserve into risk types (financial, insurance,
payment)
@ Basis for treatment of polynomial processes (including Lévy and
affine processes)
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Selected other approaches to sensitivities

Key ideas from the literature

@ Valuation basis depends on a single parameter . Differentiate
Thiele's equation with respect to # and solve ensuing PDE. Cf.
[KNO3]

@ Valuation basis lives in a Hilbert space. Consider the reserve as a
functional of the valuation basis and apply Fréchet derivative
with respect to valuation basis. Cf. [Chr08]
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The Thiele PDE

Start with the reserve as a conditional expectation

Consider a life insurance policy with benefit payments that depend on
a surplus. The surplus can be invested in a risk-free and a risky asset.
All processes are (jointly) Markov:

@ Z;: process with values in {1,..., n}, state of the insured person
@ X;: process for the value of the surplus (SDE)

@ B.: process for benefit payments

@ D;: process for dividend payments from the surplus

Define the market reserve V/ of the contract in state j as

Vi(t,x)=E {/Te(s‘t)fd(B + D)(s)| Z(t) =, X(t) = x| ,

t

with the policy terminating at time T
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The reserve satisfies a PDE system |

The reserve vector V = (V... , V)T satisfies

0 = 0:Vi(t,x)+ D/ (t)Vi(t,x) + F(t,x) — rVi(t, x), }
0 = VI{(T,x),

on [0, T] x R where

D/(t) =3n(t,x)?0°x°02 + (rx + ¢/ (t) — ¥(t, x)) O«

+ 3 () (VE(E x + (1) — 55(t, X)) — VI(t, %)),
ksﬁj

Bt x) =b(t) + 0 (t,x) + > (£) + o™ (¢,x)) .
k#j

For the derivation of these equations see [Ste06, Ste07]
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The Thiele PDE

The reserve satisfies a PDE system |

Meaning of the variables and coefficients

t

.

Vi(t, x)
m(t, x)
bX(t), b(t

&(t, x), %(t, x

c(t), *(t

~
=
—
~
~— — — —

time

value of the surplus

maturity of the contract

reserve in state j

constant risk-free interest rate
surplus share invested in the risky asset
diffusion coefficient for the risky asset
benefit payments

transition intensities

dividends from the surplus
contributions to the surplus
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The Thiele PDE

The reserve satisfies a PDE system |l

Hypothesis

(i) Coefficients of the differential operators
(a) there is a mg > 0 with w(x) > mo for all x € R,
(b) m,c,¥ arein Claoé2’a([0, T] xRy) foraa € (0,1),

(c) the function 7 is bounded and ¢/ > 0.

(ii) Regularity of payments, dividends and intensities
(a) b and p* belong to C([0, T]),
(b) &* belongs to C%([0, T] x R) for all j, k.

(iii) Boundedness of dividend payments
(a) there is a constant k > 0 with 0 < &/(t, x) < kx,
(b) the term &(t, x)ﬁfgﬁx) is bow?ded for x — 0,
(c) for all x, t we have x + c/*(t) — &/%(t,x) > 0.
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The Thiele PDE

Relaxation of assumptions |

Coefficients of the differential operators

(a) there is a mp > 0 with 7(x) > mp for all x € Ry,
(b) 7, ¢, 8 arein C/**([0, T] x Ry) for a a € (0, 1),
(c) the function 7 is bounded and ¢/ > 0.

@ Allow for m(x) > 0 i.e., surrender uniform ellipticity, the PDE is
degenerate

@ The analysis is done by regularizing the equation i.e., one
considers A/ + €A for € > 0 and the Laplace operator A

@ This leads to a solution V.. Now consider ¢ — 0 and show weak
convergence e.g., in L2
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The Thiele PDE

Relaxation of assumptions |l

Regularity of payments, dividends and intensities
(a) & and /¥ belong to C([0, T]),
(b) &% belongs to C%([0, T] x R) for all j, k.

@ Allow for measurable coefficients

@ Leads to solution in L* or LP-spaces
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The Thiele PDE

Relaxation of assumptions |l|

Boundedness of dividend payments
(a) there is a constant k > 0 with 0 < ¥(t, x) < kx,

(b) the term &(t, x)% is bounded for x — 0,

(c) for all x,t we have x + ¢ (t) — &*(t,x) > 0.

@ Crucial in our framework

@ However, no practical limitations as the important case of 0*
linear in x is covered
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Solution semigroups of PDEs |

The basic example is the heat equation on R":
Oru(t,x) = Au(t, x),
u(0,x) = g(x).

View this as an abstract evolution equation in C12(IR") by regarding
u(t,-) as and element of C([0, T]; C?(R")). Then rewrite the PDE as

Oru(t) = Au(t),
u(0) = g

a first-order ordinary differential equation in t. Formally solve this as
u(t) = e u(0).

Does this make sense?
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Properties of semigroups

Operator families of the type e acting on a Banach space X, should
have the following properties:

(i) eeA = elt+9)4 for t, s > 0 (semigroup property)
(ii) lim,_oe"x = x for all x € X (strong continuity)
(i) 0;a* = Ae*A = e*AA (solution of the PDE)
In our case we will not have strong continuity, still e = id.

See also [Ama95], [Paz83], [EN0OQ], [Lun95] for the construction of
semigroups and their application to PDEs
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The generator of a semigroup

Let T(t) be a strongly continuous semigroup acting on a Banach
space X. Define

T(t)f —f
D(A) = {f eX: = f converges in norm for t — O+}
and set T f
A(f) = lim (t)% for f € D(A).

t—04

We call A the (infinitesimal) generator of the semigroup and D(A)
the domain of A. D(A) is a linear subspace of X and A is a linear
map D(A) — X. Usually, D(A) is very hard to identify precisely
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Construction of semigroups

There are several ways to construct operators e*:

@ as the solution to 0,u = Au

@ as a Taylor series in case A: X — X is bounded

A=+ tA+ 24 +

@ by functional calculus on a Banach algebra
e by a Cauchy integral, if the resolvent (A — A)~! is bounded

A At 1
A .
e zﬁ/ (A — A)~1dA
@ by the theorems of Hille-Yosida, Ray, Phillipps, etc.
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Relationship with stochastic processes

Morally: let (X;):>0 be a stochastic process with state space R". Fix
x € R". The semigroup T(t) for X; acts on functions v : R" = R

as follows
[T(t)u] (x) = E* (u(X:)) -

The generator A is given by

T —
Ay — fim Tty —u
t—0 t

In case of a Brownian motion with drift A has the form
0? 0
A= Z a,-j(x)m + Z b'(X)a_X,

iJ i
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Generalization to evolution families

So far we had time-independent (autonomous) generators. Now
generalization to time-dependence which leads to evolution families.
A family of linear operators {G(t,s) : 0 <s <t < T} in B(X) is
called evolution family if
(i) G(t,s)G(s,r)=G(t,r)for0<r<s<t<Tand
G(s,s)=id
(i) G(t,s) maps X to D with D the domain of A(t), where we
assume that all A(t) have the same domain
(iii) The map t — G(t,s) is differentiable on (s, T] with values in
B(X) and for 0 < s <t < T we have
0:G(t,s) = A(t)G(t,s) = G(t,s)A(t).
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Thiele as an abstract evolution equation

Consider Thiele as an abstract evolution equation |

Step 1: define a time-dependent linear operator T = T(t) acting on
Co([0, T] x R) @ R" by

_ Zk;ﬁl ulkl #12 T12 u13 T13 L ,uln Tln
T N21 T21 _ Zk;ﬂ Iu2k1 #23 T23 o ,u2n T2n
Mnl Tn2 an Tn2 lun3 Tn3 R Zk;én ,Ltnk].

Here, 1% = 1#/%(t) and the T7% = T7(t) are linear operators:
(T*F) (t.x) = f (t.x + *(t) — (¢, x))

Morally: insurance risk expressed by T
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Thiele as an abstract evolution equation

Consider Thiele as an abstract evolution equation |l

Step 2: spacetime transformation 7= T — t and y = log x. Define
A = %7?20265 + (r + (Cj — 5j) eV — %7m2) dy .

.Al
With the diagonal operator A = the reserve vector
An

satisfies

(1)

OV = ATNV+TV—rV+es
V(0) = 0,

an abstract initial value problem on a suitable Banach space
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Formulation as an integral equation with
Ssemigroups

o Let G be the evolution family generated by A i.e., a family of
linear operators G(7, s) on a suitable space such that

G(7,5)G(s, p) = G(7, p)

for p<s<r7and G(1,7) = id
@ The existence of G is non-trivial as A has exponentially growing
first-order coefficients

e V is a mild solution of (1) if the Duhamel formula is satisfied
/ G(r,s) [T(s)V(s) +e " *)B(s)] ds  (2)
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The PDE has a unique mild solution |

Theorem

Assume the coefficients of A are in C*/?>* for a a € (0,1). Then
there is a unique mild solution V in the space C%*([0, T] x R) ® R".

The Duhamel decomposition (2) of V shows the factorization of the
integrand into operators:

(i) market risks from the investment in the risky asset as
represented by G,

(i) the effect of net payments represented by the multiplication
operator 3, and

(iii) insurance risk represented by T
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The PDE has a unique mild solution [l

Express the solution explicitly in terms of a Neumann series (Dyson
series in physics, Peano series in matrix analysis). Let
= |, €*f(s) ds, then

V=e " (f+GTHf + GTH#GTHf +---) (3)

under the operation

(GT#&)(7 / G(r,s)T(s)é(s)ds.

The series converges in C%*([0, T] x R) ® R". This leads to a
conceptual explanation how the reserve depends on payments. The
series is also an asymptotic expansion in 7 and can be used to
approximate V
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Main results

Continuous dependence of the reserve on the data

Theorem
Let Yl Cb(]R) X ]Rn Y2 Cb([O T] X ]R) X ]Rn
= [f e"0=5)ds, and T = sup, || T(7)||. Then

(.) growth: IV(7)llv, < [18llva (e J§ o(s)ds + (7))

(ii) dependence on payments:

IVa(r) = Va(llva < 1161 = Ballve (feﬂ [ eteas+ @(T))
(iii) dependence on insurance risk:

IV1(7) = Va(7)llvs < 1Bl C(T1, Tai 7) sup || Ta(7) = Ta(7)]],

with C(T1, To;7) = Tre™™ [T [* o(u)duds + eT2™ [T o(s)ds.

y
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One recovers the conditional expectation almost
explicitly

@ Recall the stochastic representation

VZO(t X(t)) = E® [/Te—r(s‘f)d(B + D)(s) Z(t),X(t)]

@ Now special case where the surplus is unchanged in transitions
between states ie., c/*(t) — &*(t,x) =0
@ Then (2) becomes

V(r,y) = / ") [G(r, 5) exp M(s)3(5)] () ds.

Here M(s fo ") ds’ by componentwise integration

@ The product of commutmg operators G(7, s) exp M(s)
corresponds tp the product measure ©Q
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Pointwise sensitivities in the special case
Define f'(s,y) = e™3(s) exp M(s).
Theorem
Choose p > 1 and let Wi(t,y) be a solution of the PDE
O W = M)W — (r — o)W + | TP, (7, )|
Wi(0) = 0,

where o, is a constant depending on AJ. The the gradient of the
reserve is bounded pointwise

|69y \/j(7_7)/)|p f; ld/j(7-7)/)

for (1,y) € [0, T] xR
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Sketch of the proofs

Existence via operator algebra |

Proposition

Let 0 € [0,1]. Then T is a bounded linear operator mapping
Co%([0, T] x R) ® R" to itself.

Moreover there exists an evolution family G which is smoothing
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Sketch of the proofs

Existence via operator algebra Il

Proposition ([Lorl1])

Each operator A/ generates an evolution system G/(t,s) of bounded
linear operators such that for every 0 < o < v < 1 there is a
constant ¢ with

167(7,9)fll g my < (7 = 8)" 2| || cpm)

for f € C¥(R) and everys <7< T
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Sketch of the proofs

Existence via operator algebra Ill

Idea for showing existence and uniqueness of solutions:
(i) a-priori estimates via Gronwall's inequality

(ii) Explicit construction of a solution through a Neumann series, it
converges by the a-priori estimates

(iii) Uniqueness of the solution again by Gronwall
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Sketch of the proofs

Existence via operator algebra IV

Lemma (Gronwall's inequality)

Suppose that for a non-negative absolutely continuous function n on
[0, T]

' (t) < o(t)n(t) + ¥(1).
Then

0(e) < 6205 o)+ tw(s)ds] .

Proof: A calculation shows
d — [2p(r)dr — [$o(r)dr /
= (n(9)em 207} = =40 (3(5) — 6 (s)n(s))
< elo ¢(r)dr¢(5)7

whence the assertion.
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Sketch of the proofs

Existence via operator algebra V

Let Y; = C*(R) ® R" and Y, = C%*([0, T] x R) ® R". Uniform
estimates yield

IV(D)lIn < Cf/o IV($)lIwa + cllBllcoso. 1xmyorne(7),

with 7A'—sups||T( )],
and ¢ f e "("=%)ds. The constant ¢ comes from Proposition
6. Gronwall now implies

V@) < cllBlly, (T | ety W)) @

Gives a-priori estimates: uniform norm of the reserve is bounded by
global constants
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Existence via operator algebra VI

Existence: General approach to solving Volterra equations of the
form

u(t) =f(1)+ /OT T(s)u(s)ds,
cf. [Kre99]: set Au= [ T(s)u(s)ds and write

u=Au+f or (I —Au=f.
The idea is then to invert the operator | — A as

(I-AT=1+A+ A+

Application of this Neumann series in spectral theory of Banach
algebras, PDEs, etc.
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Sketch of the proofs

Existence via operator algebra VII

Use this to find a solution for small values of T in a Neumann series
with f(7) = [ €”5(s) ds as

V =e " (f + GTH#f + GTHGTHS +---).

under the operation

(GTH#E)(r / G(7,s)T(s)&(s)ds.

Now iterate on the time axis with new initial conditions. This works
because the a-priori estimates (4) only depend on global constants
(and not on the time T)
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Existence via operator algebra VIII

Uniqueness: Let V; and V, be two solutions of the PDE. Then
consider U = V1 — V3, which satisfies a linear homogeneous integral
equation with initial condition U(0) = V4(0) — V,(0) = 0:

u(r) = /0 " G(r.$)T(s)U(s) ds.

Gronwall then shows that U(7) = 0 for all 7
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Sketch of the proofs

Proof of the sensitivities |
This also follows from operator estimates

Uniform estimates: lllustration for the dependence on T: consider

the PDEs for V; and V, for two values of the operator T; and T».
By linearity

Vi(7) — Va(r) = / " G(r.5) (T1(s)Va(s) — Ta(s)Va(s)) ds
/ G(r, $)Ta(s) (Va(s) — Va(s)) ds
/ G(r,5) (T1(s) — Ta(s)) Va(s)ds.

Then apply Gronwall twice to obtain the result.
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Sketch of the proofs

Proof of the sensitivities |l

Pointwise estimates: The basis is the

Theorem ([KLL10])

For every p > 1 we have for all f € CL(R) that

| (0xG(7.5)f) ()I” < e (G/(7,5)[0uF|P) (x) (5)

with s < 7 and x € R. Here c is a constant depending on p and A

4
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Sketch of the proofs

Proof of the sensitivities ||
Application to

V(r.y) = / ") [G(r, 5) exp M(s)3(s)] (v) ds

leads to an integral equation whose upper bound (5) can be
translated to the PDE

0. W = M)W — (r — )W/ + | TP, (7, )|
W4(0) = 0.

This is possible as V is a classical solution i.e., belongs to C*?
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@ Next steps
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Next steps

Potential next steps |

Polynomial processes

@ Model the risky asset by polynomial processes e.g., a Lévy
process

@ The operator approach can be applied formally. The operators
A/ become pseudo-differential operators which are defined by
Fourier analysis (a is the symbol of the process)

Au() = [ [ e atx, ., uly) e,

precise structure of a from Lévy-Khinchin

@ Increased technical requirements and solution living in Sobolev
spaces or C™
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Potential next steps Il

Heat kernel methods
@ Short-time asymptotic expansion of the reserve in 7 around
maturity T

@ Basis is an asymptotic expansion of the Schwartz kernel of
G~ Gp+ (7 —5)Gy + - - -, the so-called heat kernel. This is
standard in differential geometry (Atiyah-Singer index theorem),
quantum gravity, financial maths, ...

@ Looks like

V(r) ~ /OT e’(T’s)’Go(T, s)B(s)ds + - - -
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Next steps

Potential next steps Il

Liquidity risk
@ Incorporate liquidity risk in the behaviour of the risky asset

@ Leads to diffusion-degenerate nonlinear Thiele equation with
error term quadratic in the spatial gradient of the reserve

@ Solution given as weak solution in an L?-space
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