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A Quotation

Two men are preparing to go hiking. While one is lacing up

hiking boots, he sees that the other man is forgoing his usual

boots in favor of sporty running shoes. ”Why the running

shoes?” he asks. The second man responds, ”I heard there

are bears in this area and I want to be prepared.” Puzzled,

the first man points out, ”But even with those shoes, you

can’t outrun a bear.” The second man says, ”I don’t have

to outrun the bear, I just have to outrun you.”

(See Hubbard [1], p. 157/158)
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1. Literature Review

1. Minimising Probability of Ruin, introduced by Lundberg (1909),

Cramér (1930, 1955); for recent results see for instance Hipp

and Vogt (2003), Schmidli (2001, 2002, 2004), or Eisenberg

and Schmidli (2009): [→ usually involves PIDE].

2. Maximise the expected discounted sum of dividend pay-

ments until ruin occurs, see e.g. Gerber (1969), Azcue and

Muler (2005), Albrecher and Thonhauser (2008).

3. Another approach is to maximise expected utility (e.g. Liu/Ma

(2009) or Liang/Guo (2010)). [→ Conjecture: argmax expected

exp-utility is sufficient close to argmin ruin probability, e.g.: Fer-

guson (1965), Brown (1995), or Fernández et al. (2008)].

4. Determine worst-case bounds for the performance of op-

timal investment, see e.g. Korn and Wilmott (2002), Korn

(2005), Korn and M. (2005), M. (2006), Korn and Steffensen

(2007), Seifried (2010) [→ known as Wald’s Maximin approach

in decision theory, Wald (1945, 1950)].
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2. The Model Setup

Assumptions:

• continuously paid premium π.

• claims which occur at random times, modelled by the claims

arrival process Nc. Note, that the exact dynamics of Nc plays

no role, as long as the process has paths which are RCLL.

• the number of claims arriving in [0, T ] are bounded, i.e. we

assume
Nc (T ) ≤ N

with N being the maximum possible number of claims in [0, T ].

• all claims have a non-negative size bi – bounded above by β,

that is bi ∈ [0, β].

• the insurance company can reinsure the fraction p(t) ∈ [0,1]

of its business. To do so, it has to pay π p(t) [1 + ε], where

ε ≥ 0 is the load or premium. The case of ε = 0 is known as

cheap reinsurance compared to ε > 0 which is called non-cheap

reinsurance.
c© Olaf Menkens School of Mathematical Sciences, DCU
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Assumptions (continued):

• all insurance policies will be terminated at time T and no claim

is possible thereafter.

Thus, the dynamics of the reserve process R(t), the income/outflow

from reinsurance Ip(t), and the net reserve process Rp(t) are given

by
dR(t) = π dt− β dNc

dIp(t) = −π p(t) [1 + ε] dt+ β p(t) dNc

dRp(t) = dR(t) + dIp(t)

= π [1− p(t) [1 + ε]] dt− β [1− p(t)] dNc . (1)

The second assumption (Nc ≤ N) can be included into our setting

above by assuming
dR(t) = π dt

after having observed N claims.
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3. Worst Case Scenario Optimization

Our aim is to maximize the worst-case expected utility of final

reserves, that is

sup
p∈A

inf
Nc∈B

E [U (Rp (T ))] , (2)

where

• A is the set of all predictable processes with respect to the σ–

algebra generated by the reserve process and the jump process

which determines how many claims are still possible.

• B denotes the set of all such possible jump processes.

• the utility function U(x) is strictly increasing and defined on R.

With this, the value function V n(t, x) of our problem is given by

V n(t, x) = sup
p∈A

inf
Nc∈B

E
t,x,n [U (Rp (T ))] ,

where E
t,x,n is the conditional expectation given that Rp(t) = x and

given that there are at most n claims left.

c© Olaf Menkens School of Mathematical Sciences, DCU



Worst-Case-Optimal Dynamic Reinsurance for Large Claims 7

Theorem 3.1 (Verification Theorem)
Let the function U(x) be strictly increasing and be defined on R. Given that
n ∈ {1, ..., N} possible claims can still occur, the optimal worst-case reinsurance
strategy pn(t) is defined through the following property of the value function

V n(t, x) = V n−1 (t, x− β (1− pn(t))) (3)

= U

(

x+ π (T − t)− β

n
∑

i=1

(

1− pi(t)
)

)

. (4)

and is given as the unique solution of the (system of) ordinary differential equation

pn
t (t) =

π

β
[1 + ε]

[

pn (t)− pn−1 (t)
]

(5)

with boundary conditions

pn(T ) = 1 for n = 1,2, ..., N (6)

p0(t) ≡ 0 for all t ∈ [0, T ]. (7)

In particular, we have that the value functions are monotonically increasing.
Further, with the notation of α = π

β
[1 + ε], the optimal worst-case reinsurance

strategy pn has the explicit form of

pn(t) = exp (−α [T − t])

n−1
∑

k=0

1

k!
(α [T − t])k , n = 1,2, ... (8)

p0(t) = 0. (9)
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Example π = 1, β = 1, T = 4, N = 4, and ε = 0
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This graphic shows the worst-case optimal reinsurance strategy for
π = 1, β = 1, T = 4, N = 4, and ε = 0.
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Example π = 1, β = 1, T = 4, N = 4, and ε = 0.5
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This graphic shows the worst-case optimal reinsurance strategy for
π = 1, β = 1, T = 4, N = 4, and ε = 0.5.
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Remark 3.2

The strategy pn can be interpreted as the probability of experiencing

less than N claims in an artificial model where the claim numbers

are Poisson distributed with intensity α, i.e.

pn (t) = P
(

NP (T ) < N
∣

∣

∣NP (t) = N − n
)

,

where
{

NP (t)
}

t≥0
is a Poisson process with intensity α.

This is a convenient way to think about the result in the form of a

rule-of-thumb:

Calculate an intensity α as the worst-case premium to claim

ratio. Then, reinsure the proportion of your portfolio corre-

sponding to the probability of experiencing less than a given

number of N claims.

Clearly, NP is independent of Nc. Indeed, NP is an artificial con-

struct not belonging to the model setup.
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4. Evolution of the Net Reserve Process
Definition 4.3

Let 0 ≤ s ≤ t ≤ T . Denote by R (s, t; p, n) the net reserve process

between time s and t which consists of the incoming premia and

the outgoing reinsurance premia given that the insurance company

uses the reinsurance strategy p(u) with u ∈ [s, t], given that at most

n claims can come in, and given that no claim occurs in [s, t]. If

the optimal worst-case reinsurance strategy pn is considered, the

notation is simplified to R (s, t; pn) := R (s, t; pn, n).

With this definition, one has that

R (s, t; pn) =

t
∫

s

π [1− pn(u) [1 + ε]] du = π [t− s]− π [1 + ε]

t
∫

s

pn(u) du

= π [t− s]− β
n
∑

k=1

[

pk (t)− pk (s)
]

,

provided the reinsurance strategy pn is used and no claims occur in

[s, t].
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There are two special cases which will be considered more closely

in the following. The first one is given by setting s = 0, that is

R (0, t; pn) = πt− β
n
∑

k=1

[

pk (t)− pk (0)
]

, (10)

which will simply be called the forward net reserve process with-

out claims and second,

R (t, T ; pn) = π (T − t)− β
n
∑

k=1

[

1− pk (t)
]

, (11)

which will simply be called the backward net reserve process

without claims. Before continuing let us establish an important

property of R (t, T ; pn) which can be verified either by direct com-

putation or by using Theorem 3.1 with U(x) = x.

Corollary 4.4 (Backward Reserve Process)
For any t ∈ [0, T ] and n ∈ {1, . . . , N} the following holds

R (t, T ; pn) ≤ R
(

t, T ; pn−1
)

− bn (1− pn(t)) , (12)

where bn ≤ β denotes the actually observed claim size for the N −n+1–st claim.
Equality holds in (12) if and only if bn = β.

c© Olaf Menkens School of Mathematical Sciences, DCU



Worst-Case-Optimal Dynamic Reinsurance for Large Claims 13

Proposition 4.5 (Forward Reserve Process)
Denote by τ i the arrival time of the N − i+ 1–st claim and its size by bi, then

0 ≤ τN < . . . < τ i < . . . < τn+1 ≤ t∗ ≤ T and bi ≤ β with i = n+1, . . . , N . Assuming
that the insurance follows the worst–case reinsurance strategy – that is up to the
first claim pN , between the first and second claim pN−1, etc., the reserve process
at time t∗ computes to

R
(

0, τN ; pN
)

− bN
[

1− pN
(

τN
)]

+

N−1
∑

i=n+1

{

R
(

τ i+1, τ i; pi
)

− bi
[

1− pi
(

τ i
)]}

+

+R
(

τn+1, t∗; pn
)

= R
(

0, t∗; pN
)

+

N
∑

k=n+1

(β − bk)
[

1− pk
(

τk
)]

− β

N
∑

i=n+1

[

1− pi (t∗)
]

. (13)

In particular, the lower bound or the worst-case bound for the reserve process
at time T is given by

R
(

0, T ;pN
)

= πT − β

N
∑

k=1

[

1− pk (0)
]

, (14)

assuming that the insurance follows the worst-case reinsurance strategy (pn),
n = 0,1, . . . , N . This bound will be reached if either no claim is made or if all
claims that are made are of the worst-case size β.
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Possible Scenarios for the Net Reserve Process with ε = 0
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Possible Scenarios for the Net Reserve Process with ε = 0.5
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5. Computing the Probability of Ruin

Lemma 5.6 (Average Upper Bound for the Reinsurance Strategy)

Given that the initial reserve is R(0) = y ≥ 0 and that the weak

solvency condition R (0, t; p,N, y) := y+R (0, t; p,N) ≥ 0 holds for

all t ∈ [0, T ], then the reinsurance strategy p satisfies

1

t

t
∫

0

p(s) ds ≤
1

1+ ε
+

y

π (1 + ε) t
for all t ∈ [0, T ] ,

which is a strict bound for ε > 0 and y = 0. Moreover, the worst-

case reinsurance strategy satisfies this weak solvency condition if

and only if

βN ≤ y+ πT + β
N
∑

k=1

[

1− pk(0)
]

. (15)
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In order to identify the scenarios where the reserve level is negative,
the zeros of Equation (13), adjusted by the initial capital y, are
calculated for n = 0,1, . . . , N −1. The zeros are denoted by tn0(y) or
simply tn0 as they clearly depend on the initial capital y. This means

that N−n claims have been made so far (at times 0 ≤ τN ≤ τN−1 ≤
. . . ≤ τn+1 ≤ tn0 ≤ T ) and n claims might still be made. This can be
written as

πtn0 + β

n
∑

k=1

[

1− pk (tn0)
]

= β

N
∑

k=1

[

1− pk (0)
]

−

N
∑

k=n+1

(β − bk)
[

1− pk
(

τk
)]

− y ,

which can be solved explicitly just for n = 0:

t00 =
β

π

N
∑

i=1

[

1− pi(0)
]

−
y

π
−

1

π

N
∑

k=1

(β − bk)
[

1− pk
(

τk
)]

. (16)

Given the initial reserve y and the reinsurance strategy p, denote by

ψp(y) the probability of ruin. With this, the probability of survival

is given by δp(y) = 1− ψp(y).
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Ruin occurs for instance, if one claim is made between time 0 and

tN−1
0 , or two claims are made between time 0 and tN−2

0 , and so on.

In general, ruin occurs if N−n claims are made between time 0 and

tn0 for n = 0,1, . . . , N − 1. Hence,

ψ(pn)(y) =

P

(

R
(

0, t; pN , y
)

< 0
)

+
N−1
∑

n=0
P

(

Nc
(

tn0(y)
)

= N − n
)

P (Nc (T ) ≤ N)
.

(17)

The first term on the right side is due to the possibility that ruin

may occur even with no claims being made. The denominator is

due to the assumption that at most N claims can be made. Note

that P

(

R
(

0, t; pN , y
)

< 0
)

= 0 if tN0 < 0 or if Lemma 5.6 holds.

c© Olaf Menkens School of Mathematical Sciences, DCU



Worst-Case-Optimal Dynamic Reinsurance for Large Claims 19

Example 5.7

Assuming that Condition (15) holds (that is Lemma 1 holds) and

that Nc is Poisson distributed with parameter λ, the worst-case

bound of the probability of ruin (that means setting bi = β for

all i) calculates to

ψ(pn)(y) =

N−1
∑

n=0

(λtn0(y))
N−n

(N−n)!

N
∑

k=0

(λT )k

(k)!

.
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Probability of Survival with ε = 0.5
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This graphic shows the worst-case bound for the probability of survival for various
initial reserves y and various λ if the worst-case reinsurance strategy (pn) with
n = 0,1, . . . , N is used for π = 1, β = 1, T = 4, N = 4, and ε = 0.5.
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6. The Intrinsic Risk–free Rate of Return

The insurance cannot go bankrupt if the initial reserve satisfies

y ≥ β
N
∑

k=1

[

1− pk (0)
]

=: y∗ .

Note, that y∗ ∈ [0, βN ]. Hence, the worst-case bound for the

return or the intrinsic risk–free rate of return is given by

R
(

0, T ; pN
)

y∗
=

πT

β
n
∑

k=1

[

1− pk (0)
]

− 1 =
πT

y∗
− 1 .
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Profitability of the Worst Case Reinsurance strategy with

πT = βN

ε 0 0.1 0.5 0 0.1 0.5

β 1 1 1 2 2 2

N 4 4 4 2 2 2

R(0, T ; pN) 0.7815 0.6232 0.2330 1.0827 0.9307 0.4979

y∗ 3.2185 3.3768 3.7670 2.9173 3.0693 3.5021

risk–free

return
0.2428 0.1845 0.0619 0.3711 0.3032 0.1422

This table is calculated using π = 1 and T = 4.
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7. Comparing Different Business Strategies
Example π = 1, T = 4, and ε = 0
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This graphic shows the worst-case optimal reinsurance strategy for π = 1, T = 4,
and ε = 0 for β = 1, N = 4 (solid lines) and β = 2, N = 2 (dashed lines).
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Example π = 1, T = 10, and ε = 0.5
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This graphic shows the worst-case optimal reinsurance strategy for
π = 1, T = 10, and ε = 0.5 for β = 1, N = 10 (solid lines), β = 2,
N = 5 (dashed lines), and β = 10, N = 1 (dashed-dotted line).
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Let be K, L ∈ N with K, L ≥ 1. Compare the following business

strategies:

• the case of K contracts (or possible claims) with potential

worst-case claim size β = b with

• the case of K+L contracts with potential worst-case claim size

β = Kb
K+L.

Setting πT = bK = Kb
K+L(K + L), it is clear that both business

strategies have the same volume. If Markowitz’s principle is not

true, the following inequality should hold

R
(

0, T ; pK
)

−R
(

0, T ; pK+L
)

≥ 0 .

Define

fK,L(x) :=
K−1
∑

l=0

(K − l)
xl

l!
−e−

L
K
x K

K + L

K+L−1
∑

l=0

(K + L− l)

[

K+L
K

x
]l

l!
.
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Proposition 7.8

(i) The business strategy of having K contracts gives a higher

worst-case bound than the strategy of having K+L contracts

with the same turnover volume, if αT is sufficiently large.

(ii) In the special case K = 1, the business strategy of having only

K = 1 contract is always superior to having 1 + L contracts

(with L ≥ 1) given that both business strategies generate the

same turnover volume.

Thus, diversification can have a negative effect, that is the

Principle of Markowitz – don’t put all your eggs in one basket

– does not always hold.
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8. Conclusion and Outlook

We demonstrated the attractive properties of this model, specifi-

cally

• explicitly computable, worst-case optimal reinsurance strategies,

• robustness against choice of utility function,

• robustness against modeling of claim sizes and claim numbers,

• and giving fresh insights on the aspects of diversification.

It is interesting, in future studies to include further aspects of the

non-life insurance company’s decision making, including

• investment risk modeling and control,

• small claims modeling and control, e.g. by a Gaussian process

for the small claims surplus, thereby adding noise to the system

and the results, and

• alternative ways of formalizing the worst-case, e.g. comparing

with worst–case bounds on the (claim–number independent)

intensity.
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Thank you

very much

for your attention!
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