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Abstract

We develop a new approach to pricing European and American payoffs in an arbitrage-free
market. Our analysis is grounded on market-consistent prices for off-market transactions,
i.e., prices that ensure neither seller nor buyer can achieve better outcomes through direct
market trading, rather than arbitrage-free prices, i.e., prices that preclude arbitrage oppor-
tunities when the payoff is added to the market as a new security. This approach addresses
the theoretically inconsistent assumption that introducing a new security leaves original se-
curity prices unchanged — an inconsistency already noted by Kreps in [13]. Our approach
avoids complex martingale theory while addressing: what prices rational agents should con-
sider, which exercise strategies are optimal for American option holders, and their equivalent
martingale measure representations. Our approach yields a more economically coherent and
mathematically streamlined treatment, particularly valuable for understanding pricing and
optimal exercise in incomplete markets.

Keywords: American options, arbitrage pricing, market-consistent pricing, exercise strategies
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1 Introduction

European and American contracts represent two basic types of financial instruments. European
contracts deliver either a single payoff at maturity or a payoff stream with predetermined payments
at multiple intermediate dates prior to maturity. By contrast, American contracts, henceforth
“American options”, are characterized by a stream of potential payoffs with the following special
feature: At any date during the lifetime of the contract, the holder can either exercise the option
and receive the payment specified for that date, thereby forfeiting all posterior payoffs, or decline
the current payment to maintain the right to exercise later. The ability to strategically time the
exercise decision introduces analytical complexities for American options that significantly exceed
those encountered when studying their European counterparts.

American options have attracted considerable attention in the literature starting with [18] and [14]
as well as [2] and [9]; see [4] for an extensive bibliography up to 2005 focusing on continuous-time
models. In the discrete-time case, which is the one we are concerned with, the most comprehensive
treatment is found in [6, Chapters 6 and 7]. Even a cursory examination of those chapters reveals
that the topic is quite technical and makes heavy use of martingale theory in the form of a
combination of martingale representation theorems, uniform Doob decompositions, robust Snell
envelopes, and stability under pasting.

In this paper we propose a new approach to price and determine the optimal exercise of American
options that emphasizes the financial interpretation and deliberately avoids the technical machinery
of martingale theory, in particular, eliminating the need for robust Snell envelopes. In fact, our
approach provides a novel perspective also for European contracts. This results in a substantially
simplified framework compared to the standard methodology. As we explain further down, the
new approach provides a better economic foundation for Arbitrage Pricing Theory in general.
For American options, this new approach yields two significant benefits: first, it naturally leads
to new concepts and results, particularly regarding optimal exercise strategies, that enhance our
understanding of American options, particularly in incomplete markets; second, it provides a more
accessible pedagogical framework for teaching American options beyond the usual complete market
setting.

Our analysis centers on the following three fundamental questions:

(1) Market-consistent (buyer and seller) prices : What price ranges should rational buyers and
sellers consider when transacting American options?

(2) Market-consistent exercise strategies : Which exercise strategies should rational option hold-
ers consider adopting?

(3) Representation of market-consistent exercise strategies : How can market-consistent prices
and exercise strategies be represented in terms of equivalent martingale measures?

To the best of our knowledge, the second question has not been systematically studied outside a
complete market setting — a setting which, in discrete time, presupposes a finite state space. Our
paper addresses this gap by providing a comprehensive analysis of exercise strategies. However,
by grounding our analysis in the concept of market-consistent prices rather than the usual notion
of arbitrage-free prices, our approach offers a fresh perspective also for pricing related questions
— not only for American options but for European contracts as well. Importantly, our analysis
makes a clear distinction between financial concepts and their dual representations which are
meant to provide useful mathematical ways to represent these concepts but should ideally not be
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a surrogate for a sound “primal” formulation. Indeed, despite their mathematical equivalence,
arbitrage-free and market-consistent prices reflect fundamentally different economic intuitions. In
the next section of this introduction, we elaborate on this critical distinction.

Market-consistent prices

Arbitrage Pricing Theory is essentially about the pricing of financial contracts — European or
American — in the presence of a liquid market for basic securities in which no arbitrage opportu-
nities exist. Here, arbitrage opportunities are self-financing dynamic portfolios of basic securities
that have a nonzero positive terminal payoff but can be implemented without requiring an initial
investment. The absence of arbitrage opportunities is typically justified based on an equilibrium ar-
gument: arbitrage opportunities would attract unlimited demand, causing market forces to rapidly
eliminate them.

When pricing a payoff that is not traded in the market, the typical narrative is that its price
should be arbitrage-free, meaning that incorporating a new security with this payoff into the
original market at this specific price should not create arbitrage opportunities in the thus extended
(hypothetical) market. This reasoning, however, lacks economic coherence. As Kreps observed
in [13], the introduction of a new security “creates new economic opportunities for agents and
may therefore change the prices of bundles [securities]” in the original market. This reveals a
fundamental inconsistency in the standard narrative: it relies on equilibrium considerations to
justify arbitrage-free markets, yet disregards these same considerations when defining its core
theoretical concept—arbitrage-free prices.1

An economically compelling alternative view is that arbitrage theory is concerned with prices at
which a payoff could be transacted outside of the market between two rational parties with full
access to the market. In this case, imposing a “no arbitrage” requirement would be conceptually
misplaced: the rationale for the absence of arbitrage was that market forces would eliminate it,
but in an isolated transaction between two parties no such mechanism exists. There is, however, a
more intuitive alternative requirement, which we postulate as the Principle of Market Consistency:

When a financial contract is transacted off-market, only prices at which neither the
buyer nor the seller can do better by trading directly in the market should be considered.

We call prices obtained by applying this principle market-consistent prices. In the one-period
case, it is easy to see that market-consistent prices and arbitrage-free prices are mathematically
equivalent. In the multi-period case this is less obvious and requires proof. We believe that
the Principle of Market Consistency provides a better economic foundation for the theory than
the requirement that a hypothetically extended market is arbitrage free. At the same time this
principle provides strong guidance in formulating the questions that the theory should answer and
in identifying the right concepts to study.

In Section 3 we describe the theory of market-consistent prices for European payoffs, which pre-
scribe a single payment at a fixed maturity, and for European payoff streams, which prescribe
payments not only at maturity but also at intermediate times. The latter arise naturally when

1In [6, Page 23] the following justification for this narrative is offered: “In the previous definition [of an arbitrage-
free price], we made the implicit assumption that the introduction of a contingent claim C as a new asset does
not affect the prices of primary assets. This assumption is reasonable as long as the traded volume of C is small
compared to that of the primary assets”. However, this explanation remains inadequate because the formal model
requires a liquid frictionless market where both primary assets and the contingent claim can be freely traded in
arbitrary quantities.
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studying market-consistent prices of American options in Section 4 because choosing an exercise
strategy for an American option results in a payoff stream. In fact, a critical reframing driving our
analysis is that an American option can be conceptualized as a basket of European payoff streams,
with each exercise strategy generating a distinct payoff stream. This perspective allows us to build
upon the results established for European contracts to provide a full characterization of the set of
market-consistent prices for American options. We show that this set is either a singleton or an
order interval. Notably, this interval always excludes its essential supremum (the superreplication
price) and sometimes includes its essential infimum (the subreplication price), which aligns with
the main results in [1] about arbitrage-fee prices. We emphasise, however, that the theory of
market-consistent prices, including this last characterization, is developed entirely without refer-
ence to dual representations and martingale theory and relies solely on “primal” concepts with a
clear financial interpretation.

Market-consistent exercise strategies

The bulk of the literature on optimal exercise strategies for American options does not focus
on strategies a rational option holder would actually implement. Instead, it emphasizes exercise
strategies yielding subreplication and superreplication prices, which could be more appropriately
termed pricing bounds strategies. Moreover, with [6] being the most notable exception, they only
deal with complete markets. In the literature, pricing bounds strategies are characterized using
Snell envelopes. While this ensures an elegant treatment within a complete market setting, its
extension to incomplete markets requires introducing more sophisticated mathematical machin-
ery such as upper and lower Snell envelopes. Our approach to exercise strategies is different and
recognizes the multiple distinct roles that exercise strategies may play. We differentiate between
strategies according to which it is reasonable for the holder to exercise (market-consistent exer-
cise strategies), strategies that deliver subreplication or superreplication prices for the American
option (lower pricing-bound, respectively upper pricing-bound, exercise strategies), and strategies
that deliver the sets of market-consistent seller or buyer prices (seller, respectively buyer, exercise
strategies). Concrete examples and results demonstrate that these different notions are fundamen-
tally distinct.

Focusing on market-consistent strategies, the fundamental observation underpinning our analysis
is that exercising an American option is economically equivalent to selling the residual option (the
right to exercise in the future) for a price equal to the current exercise value. Conversely, not
exercising is equivalent to purchasing the residual option for a price equal to the current exercise
value. From the Principle of Market Consistency we can therefore derive the following general
rule:

The holder of an American option should never exercise when the exercise value is not
a market-consistent seller price for the residual option and should always exercise when
the exercise value is not a market-consistent buyer price for the residual option.

Section 5 provides a comprehensive characterization of market-consistent exercise strategies and
identifies the precise earliest and latest times at which exercising the option is market consistent.
Interestingly enough, the key stopping time used in [6, Theorem 6.47] in the context of lower Snell
envelopes — the first time when the exercise value coincides with the option’s subreplication price
— fails to be market consistent. This exemplifies the focus on pricing rather than optimal rational
exercise in the literature.
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Representation theorems

The core financial concepts of our theory are market-consistent prices and market-consistent ex-
ercise strategies. These “primal” concepts can be expressed in equivalent mathematical terms
using “dual representations” involving, e.g., equivalent martingale measures or stochastic discount
factors. Each of these representations provides access to powerful mathematical machinery that
casts new light on the underlying financial concepts, with the preferred choice depending on the
specific context. In this paper, we focus exclusively on equivalent martingale measures, which we
examine in depth in Section 6.

In the literature, dual representations are often used to introduce core financial concepts, thereby
blurring the line between financial notions and their mathematical representations. In contrast, our
approach explicitly and intentionally separates these two distinct perspectives. We first develop
the theory to its fullest extent using only financially meaningful core concepts before turning to the
subject of dual representations. By maintaining this clear distinction, we provide a solid economic
foundation for what is, at its heart, a financially motivated theory.

Two final complementary observations

Along the way to developing the theory of market-consistent prices, we make two observations
that to the best of our knowledge have not been explicitly highlighted before and which flow
very naturally from our approach, even though they could have been made also in the context of
arbitrage-free prices. These are:

(a) The market places no value on the optionality of an American option. This resembles a
situation where an option to select an item from a basket of goods is being transacted: a
buyer would only pay a price if at least one item in the basket merits paying that much,
while a seller would only accept a price if every item in the basket is worth at least that
amount. In both cases and perhaps surprisingly, the flexibility to choose when to exercise
— the defining characteristic of American options — adds no additional value beyond what
is already captured by the market-consistent prices of the single items in the basket. It is
important to note, however, that while the market as a whole places no additional value on
this optionality, individual agents with specific preferences or constraints may still value the
flexibility to exercise at any time. Nonetheless, they do not need to pay for it. Despite the
absence of a premium for optionality, there remain compelling reasons why the purchase of
American options may be suboptimal as explained in our next observation.

(b) Replicable American options do not enrich the investment opportunity set and should never be
purchased. This is because replicability yields a unique market-consistent price and, as will be
shown, for this price an investor can always construct a superreplication strategy, i.e., a self-
financing portfolio of traded assets whose liquidation value dominates the option’s exercise
value at every possible exercise date. Such a portfolio provides strictly greater flexibility than
the option itself, as it offers the same or better payoff regardless of when the holder chooses
to exercise, showing that if timing flexibility is the desired feature, a better alternative to the
replicable American option exists at no additional cost. The fact that replicable American
options are not worth purchasing suggests reconsidering the theoretical emphasis placed on
American options in complete market settings, where all American options are replicable.
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Plan of the paper

The paper is organized as follows. In Section 2 we describe the underlying market model. In
Section 3 we review European contracts and establish a direct characterization of market-consistent
prices in Theorem 3.9. In Section 4 we shift the focus to American options. The main result on
market-consistent prices is Theorem 4.16, which builds on separate characterizations for seller and
buyer prices. In Section 5 we introduce market-consistent exercise strategies and describe the first
and last time to exercise in a market-consistent way in Theorems 5.3 and 5.6. In Section 6 we
establish a variety of dual representations for prices and exercise strategies by means of equivalent
martingale measures. The final appendix includes a simple conditional version of the intermediate
value theorem used in the dual representation of option prices.

2 The market model

We fix a probability space (Ω,A,P) and consider a discrete-time financial market with dates
0, . . . , T with T ≥ 2. The terminal states of the economy at date T are represented by the
elements of Ω. The particular choice of P is important only up to equivalence, i.e., agents may
hold different beliefs about the probability of occurrence of events as long as they agree on which
events have strictly positive probability. We denote by X the (real) vector space of equivalence
classes of random variables, i.e., of Borel measurable functions X : Ω → R, with respect to almost-
sure equality under P. In line with standard practice, we do not distinguish explicitly between an
element of X and any of its representatives. In particular, the elements of R are identified with the
almost-surely constant random variables. Equalities and inequalities between random variables
are always understood in the almost-sure sense. In the same vein, inclusions between events are
understood to hold up to sets of zero probability. For convenience, for any X, Y ∈ X we write
X ⪈ Y when X ≥ Y but X ̸= Y . A set S ⊂ X is called upward, respectively downward, directed
if for all X, Y ∈ S there exists Z ∈ S such that max{X, Y } ≤ Z, respectively min{X, Y } ≥ Z.
The essential supremum and infimum of S are denoted by ess supS and ess inf S, respectively. If
S is upward directed and ess supS ∈ X , respectively downward directed and ess inf S ∈ X , then
there exists a sequence (Xn) ⊂ S such that Xn ↑ ess supS, respectively Xn ↓ ess inf S, almost
surely.

The flow of information in the economy is modelled by a filtration F = (Ft) with F0 = {∅,Ω} and
FT = A. For every t ∈ {0, . . . , T} we denote by Xt the space of Ft-measurable random variables
and by X0:T the space of F -adapted stochastic processes. The truncation of X ∈ X0:T at date
t ∈ {0, . . . , T} is the process X t := (0, . . . , 0, Xt, . . . , XT ).

Throughout the paper we assume the existence of a frictionless market in which a finite number
N of assets are traded at dates 0, . . . , T − 1 and pay off at date T . As customary, these basic
securities are represented by their price processes Si ∈ X0:T for i ∈ {1, . . . , N}, which are assumed
to be exogenously given. We work under the following assumptions:

(BS1) Si
t ≥ 0 for all i ∈ {1, . . . , N} and t ∈ {0, . . . , T};

(BS2) S1
t = 1 for every t ∈ {0, . . . , T}.

We refer to the first security as the numéraire security.2 By trading in the market, agents can

2We could also have required that S0
t :=

∑N
i=1 S

i
t > 0 for every t ∈ {0, . . . , T}. One can then introduce an

additional artificial security with price process S0 and use this security as the numéraire, i.e., express all security
prices in terms of this artificial security. The new security then satisfies (BS2).
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set up portfolios of basic securities. A trading strategy with starting date t ∈ {0, . . . , T − 1} is an
N -dimensional process of the form

α = (αt, . . . , αT−1) ∈ XN
t × · · · × XN

T−1.

For every s ∈ {t, . . . , T − 1}, the N -dimensional random vector αs = (α1
s, . . . , α

N
s ) describes the

number of physical units of the various basic securities held at date s. The set of trading strategies
with starting date t is denoted by St. The acquisition value of α at date s ∈ {t, . . . , T − 1} and
the liquidation value of α at date s ∈ {t+ 1, . . . , T} are respectively defined by

V acq
s (α) :=

N∑
i=1

αi
sS

i
s, V liq

s (α) :=
N∑
i=1

αi
s−1S

i
s.

We say that α is self-financing if V acq
s (α) = V liq

s (α) for every s ∈ {t + 1, . . . , T − 1}, i.e., at any
date t ∈ {1, . . . , T − 1}, the acquisition of portfolio αt+1 can be fully financed by the liquidation
of portfolio αt. In this case, we may define the value of α at date s ∈ {t, . . . , T} by setting

Vs(α) :=


V acq
t (α) if s = t,

V acq
s (α) = V liq

s (α) if s ∈ {t+ 1, . . . , T − 1},
V liq
T (α) if s = T.

The set of self-financing trading strategies with starting date t is denoted by S0
t . For backward

induction arguments that involve trading strategies it is convenient to view a random vector
α ∈ XN

T as a trading strategy starting at date T and set

VT (α) := V acq
T (α) := V liq

T (α) :=
N∑
i=1

αiSi
T .

The set of trading strategies starting at date T is denoted by ST or S0
T . We will often use the

“static” self-financing strategy η ∈ S0
0 corresponding to holding one unit of the numéraire security

from the initial date until maturity, i.e.,

η0 := · · · := ηT−1 := (1, 0, . . . , 0) ∈ RN . (2.1)

Finally, for each t ∈ {0, . . . , T − 1} and u ∈ {t + 1, . . . , T}, we say that a self-financing strategy
α ∈ S0

t is an arbitrage opportunity (between t and u) if Vt(α) ≤ 0 and Vu(α) ⪈ 0. The remainder of
this paper is concerned with pricing payoffs in a market with given equilibrium prices. Therefore,
we assume that the market is arbitrage-free, i.e., no arbitrage opportunities exist between any
two dates.

3 Market-consistent prices for European contracts

In preparation for our treatment of American options, this section examines the range of prices
at which two rational agents might consider transacting a European contract off-market. A (Eu-
ropean) contract entitles the holder to receiving either a single payment at a given maturity, the
contract’s payoff, or a stream of payments through time, the contract’s payoff stream. As usual in
the context of no-arbitrage pricing, we make no assumptions about agents’ monetary preferences
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other than that they prefer more to less. It is also worth emphasizing that the question we ask is
not at what price agents should transact, but rather at what prices they should not, because they
could otherwise do better by trading directly in the market. The complement of the set of these
prices is then the set of prices at which they might consider transacting, i.e., the set of prices at
which it would not be foolish to transact. Whether they actually transact depends on whether they
find common ground given their individual preferences, but that is beyond the scope of arbitrage
pricing theory. Therefore, arbitrage pricing theory examines whether the existence of a market
accessible to all agents imposes preference-free “rationality” constraints on off-market transactions
between these agents; see also Remark 3.4.

3.1 European payoffs

In this subsection we fix a European payoff X ∈ Xu maturing at date u ∈ {1, . . . , T} and such
that X ≥ 0. A superreplication strategy is a trading strategy that generates a market payoff that
is more favorable than X from the perspective of a potential buyer. Similarly, a subreplication
strategy is a trading strategy that generates a market payoff that is more favorable than X from
the perspective of a potential seller. The cost of implementing sub- and superreplication strategies
place natural limits on the price at which a seller or a buyer might reasonably consider transacting.

Definition 3.1. Let t ∈ {0, . . . , u} and E ∈ Ft. A self-financing trading strategy α ∈ S0
t is a

subreplication strategy for X on E if Vu(α) ≤ X on E and a superreplication strategy for X on
E if Vu(α) ≥ X on E. If P(E) = 1 we omit the reference to E. The subreplication price and
superreplication price, of X at date t are defined, respectively, by

π−
t,u(X) := ess sup{Vt(α) ; α ∈ S0

t is a subreplication strategy for X},
π+
t,u(X) := ess inf{Vt(α) ; α ∈ S0

t is a superreplication strategy for X}.

In particular, note that π−
u,u(X) = π+

u,u(X) = X.

In the above definition, we could have restricted our attention to trading strategies terminating
at the maturity date u as the behavior of a sub- and superreplication strategy after the payoff’s
maturity is irrelevant. Nevertheless, for ease of notation, we will consistently work with trading
strategies that are liquidated at the terminal date T .

Remark 3.2. It is clear how to define local versions π±
t,u(X|E) of the sub/superreplication prices

restricted to events E ∈ Ft. However, this is unnecessary since these local versions can always be
expressed using the global definitions. Specifically,

π±
t,u(X|E) = π±

t,u(1EX) = 1Eπ
±
t,u(X).

This relationship between local and global pricing operators would be consistently repeated through-
out the subsequent concepts we introduce, allowing us to work primarily with the global definitions
without risk of confusion. So while we will define price-related concepts also locally, we will refrain
from providing local versions of price operators.

As already mentioned, the concept of a market-consistent price is based on the principle that if
two rational parties transact X at that price, neither the buyer nor the seller should be able to
achieve a better outcome by trading directly in the market. A “localized” version of this concept,
which is useful when considering intermediate dates, is formalized in the following definition.
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Definition 3.3. Let t ∈ {0, . . . , u} and E ∈ Ft. We say that P ∈ Xt is a market-consistent price
for X at date t on E if for all self-financing trading strategies α ∈ S0

t and A ∈ Ft with A ⊂ E:

(1) If Vu(α) ⪈ X on A, then Vt(α) ⪈ P on A.

(2) If Vu(α) ⪇ X on A, then Vt(α) ⪇ P on A.

We say that P is a market-consistent buyer price at date t on E if (1) holds and a market-consistent
seller price at date t on E if (2) holds. If P(E) = 1 we omit the reference to E. The set of market-
consistent prices is denoted byMCPt,u(X) and the sets of market-consistent buyer and seller prices
by MCP b

t,u(X) and MCP s
t,u(X), respectively.

Note that, since X is assumed to be nonnegative, the set of subreplication strategies is always
nonempty as it contains at least the zero strategy. As a result, π−

t,u(X) belongs to Xt and is
nonnegative. By contrast, superreplication strategies may not always exist. When this is the case,
the buyer cannot directly compare X with any market alternative and the market remains silent
about the prices at which the buyer may consider buying X. In other words, every price is a
market-consistent buyer price. Therefore, to avoid keeping track of this trivial case, we assume
that X admits a superreplication strategy starting at date 0. This assumption, along with
the absence of arbitrage opportunities, implies that both π−

t,u(X) and π+
t,u(X) belong to Xt and

satisfy 0 ≤ π−
t,u(X) ≤ π+

t,u(X) for every t ∈ {0, . . . , u}.

Remark 3.4. (i) Unlike most literature, we consider prices at any date before the maturity of
X, not just at the initial date. This helps clarify many of the concepts related to American
options and allows us to provide better economic interpretation of key results.

(ii) Recall that P ∈ R is an arbitrage-free price at date 0 for X if there exists a positive process
SN+1 ∈ X0:T satisfying SN+1

0 = P and SN+1
T = X such that the extended market with basic

securities S1, . . . , SN+1 is arbitrage-free; see, e.g., [6, Definition 5.28]. We will later establish
the non-trivial equivalence of arbitrage-free prices and market-consistent prices. At this point
we stress that, as observed in the introduction, there is no compelling economic reason for
requiring that a price at which X is transacted should be based on arbitrage considerations:

• When new securities enter a market, prices of existing securities typically adjust — a
market with unchanged prices after introducing new securities is unrealistic.

• Arbitrage considerations are irrelevant for off-market transactions between parties, as
there is no market mechanism to eliminate arbitrage opportunities. However, rational
parties should not transact if better opportunities exist in the market.

• Finally, it is unclear why the existence of an hypothetical future price process for X
should have any bearing on a transaction happening today. While pricing X today
requires considering dynamic trading strategies involving future market prices of the
basic securities, it should not depend on the theoretical ability to transact X itself at
all future dates. A transaction’s economic validity should be determined by current
market conditions and available trading opportunities, independent of whether X could
hypothetically be traded again in the future.

For these reasons, we prefer market-consistent prices as the primitive notion of the theory.
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It is evident from the definition of a market-consistent price that every market-consistent price is
contained between the sub- and superreplication prices. The next proposition is the key technical
result needed to show that the sub- and superreplication prices are sharp bounds for the set of
market-consistent prices, and to provide a complete characterization of this set. As a byproduct,
the proposition establishes a useful “time consistency” formula for sub- and superreplication prices.

Proposition 3.5. For every t ∈ {0, . . . , u} the following statements hold:

(i) π+
t,u(X) = Vt(α) for some superreplication strategy α ∈ S0

t for X. Moreover, for t < u,

π+
t,u(X) = π+

t,t+1(π
+
t+1,u(X)).

(ii) π−
t,u(X) = Vt(α) for some subreplication strategy α ∈ S0

t for X. Moreover, for t < u,

π−
t,u(X) = π−

t,t+1(π
−
t+1,u(X)).

Proof. We only prove (i). The proof of (ii) is similar and omitted. As a preliminary step, let
s ∈ {0, . . . , T − 1} and take any payoff Z ∈ Xs+1 admitting a superreplication strategy starting at
date s. We claim that

π+
s,s+1(Z) = Vs(α) for some superreplication strategy α ∈ S0

s for Z, (3.1)

The set of payoffs maturing at time s+ 1 that can be superreplicated at date s at zero cost is

Cs+1 :=
{
Y ∈ Xs+1 ; ∃α ∈ S0

s : Vs(α) = 0, Vs+1(α) ≥ Y
}
.

Setting Ps(Z) := (Z − Cs+1) ∩ Xs, a straightforward verification shows that

π+
s,s+1(Z) = ess inf{P ∈ Xs ; Z − P ∈ Cs+1} = ess inf Ps(Z).

By [6, Lemma 1.68], the set Cs+1 is closed with respect to convergence in probability. Note that
Ps(Z) is downward directed. Indeed, take P1, P2 ∈ Ps(Z) and α1, α2 ∈ S0

s such that Vs(α
1) =

Vs(α
2) = 0 and Vs+1(α

1) ≥ Z−P1 and Vs+1(α
2) ≥ Z−P2. Set E = {P1 ≤ P2} and define α ∈ S0

s by
setting αu = 1Eα

1
u+1Ecα2

u for u ∈ {s, . . . , T−1}. Then, Vs(α) = 0 and Vs+1(α) ≥ Z−min{P1, P2},
proving that Ps(Z) is downward directed. Hence, π+

s,s+1(Z) is the almost-sure limit, and thus the
limit in probability, of a sequence in Ps(Z). The closedness of Cs+1 implies that π+

s,s+1(Z) ∈ Ps(Z).
As a result, there exists β ∈ S0

s such that Vs(β) = 0 and Vs+1(β) ≥ Z − π+
s,s+1(Z).

To prove (3.1), define α ∈ S0
s by setting αu = π+

s,s+1(Z)ηu + βu for u ∈ {s, . . . , T − 1} and observe
that

Vs(α) = π+
s,s+1(Z) + Vs(β) = π+

s,s+1(Z), Vs+1(α) = π+
s,s+1(Z) + Vs+1(β) ≥ Z.

To show (i), we prove by backward induction that for every s ∈ {t, . . . , u− 1}

π+
s,u(X) = π+

s,s+1(π
+
s+1,u(X)) = Vs(α) for some superreplication strategy α ∈ S0

s for X.

For s = u − 1, the claim follows directly from (3.1). Assume the claim holds for some s ∈
{t + 1, . . . , u − 1}. Again by (3.1), there exists β ∈ S0

s−1 such that Vs(β) ≥ π+
s,u(X) = Vs(α) and

Vs−1(β) = π+
s−1,s(π

+
s,u(X)). Define the trading strategy γ ∈ S0

s−1 by

γs−1 = βs−1, γr = αr + (Vs(β)− Vs(α))ηr, r ∈ {s, . . . , T − 1}.

10



Since Vs(β) ≥ Vs(α), we have Vu(γ) ≥ Vu(α) ≥ X. In particular,

π+
s−1,u(X) ≤ Vs−1(γ) = Vs−1(β) = π+

s−1,s(π
+
s,u(X)).

Since the inequality π+
s−1,s(π

+
s,u(X)) ≤ π+

s−1,u(X) is clear, we obtain

Vs−1(γ) = π+
s−1,u(X) = π+

s−1,s(π
+
s,u(X)).

This concludes the induction argument.

Remark 3.6. What makes the proof of Proposition 3.5 work is the closedness result in [6, Lemma
1.68] which, not surprisingly, is also implicitly or explicitly the key ingredient in all proofs of the
Fundamental Theorem of Asset Pricing. There, it ensures that a separation of closed convex sets
can be performed. Here, we use it to ensure the attainability of sub- and superreplication prices.

A natural notion in the study of market-consistent prices is that of a replicable payoff, where a self-
financing strategy achieves both sub- and superreplication simultaneously, thus exactly matching
the payoff. When discussing replicability on an event, we must specify the starting date of the
replication strategy, since the event might also belong to the information set at earlier dates, yet
a replication strategy beginning at those earlier dates might not exist.

Definition 3.7. Let t ∈ {0, . . . , u} and E ∈ Ft. We say that X is replicable on E at date t if there
exists a self-financing trading strategy α ∈ S0

t that is both a sub- and a superreplication strategy
for X on E. In this case, X = Vu(α) on E and we say that α is a replication strategy for X on E.
If P(E) = 1 we omit the reference to E. The largest event on which X is replicable at date t is
called the maximum domain of replicability of X at date t.

The maximum domain of replicability of a payoff corresponds to the event where its sub- and
superreplication prices coincide. On this event, both these prices trivially coincide with the value
of any replication strategy and can be therefore interpreted as the cost that has to be paid to
replicate the payoff. This is the second key result to obtain a description of market-consistent
prices in terms of sub- and superreplication prices.

Proposition 3.8. For every t ∈ {0, . . . , u} the set {π−
t,u(X) = π+

t,u(X)} is the maximum domain
of replicability of X at date t.

Proof. Take a subreplication strategy α ∈ S0
t for X with Vt(α) = π−

t,u(X) and a superreplication
strategy β ∈ S0

t for X with Vt(β) = π+
t,u(X), which exist by Proposition 3.5. The absence of

arbitrage opportunities implies Vu(α) = Vu(β) = X on {π−
t,u(X) = π+

t,u(X)}, showing that X is
replicable on {π−

t,u(X) = π+
t,u(X)} at date t. To conclude, assume that X is replicable on E ∈ Ft

at date t and note that this implies that π+
t,u(X) = π−

t,u(X) on E.

Following our earlier results, we can now provide the announced characterization of market-
consistent prices showing that the set of market-consistent prices is interval-like and its bounds
are given by the sub- and superreplication prices. The theorem also precisely characterizes under
which conditions these bounds are attained. This result effectively summarizes all there is to say
about the structure of the set of market-consistent prices for European payoffs.

Theorem 3.9. For every t ∈ {0, . . . , u} the sets MCP b
t,u(X) and MCP s

t,u(X) are nonempty and
for every P ∈ Xt the following statements hold:
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(i) P ∈ Xt is a market-consistent buyer price for X at date t if and only if:

(1) P < π+
t,u(X) on {π−

t,u(X) < π+
t,u(X)};

(2) P ≤ π+
t,u(X) on {π−

t,u(X) = π+
t,u(X)}.

(ii) P ∈ Xt is a market-consistent seller price for X at date t if and only if:

(1) P > π−
t,u(X) on {π−

t,u(X) < π+
t,u(X)};

(2) P ≥ π−
t,u(X) on {π−

t,u(X) = π+
t,u(X)}.

(iii) P ∈ Xt is a market-consistent price for X at date t if and only if:

(1) π−
t,u(X) < P < π+

t,u(X) on {π−
t,u(X) < π+

t,u(X)};
(2) P = π−

t,u(X) = π+
t,u(X) on {π−

t,u(X) = π+
t,u(X)}.

(iv) π+
t,u(X) = ess supMCPt,u(X) = ess supMCP b

t,u(X).

(v) π−
t,u(X) = ess infMCPt,u(X) = ess infMCP s

t,u(X).

Proof. We only prove (i). The proof of (ii) is similar and omitted while statements (iii) to (v)
follow from (i) and (ii). If P is a market-consistent buyer price for X at date t, then it is clear that
(2) holds. Furthermore, take any superreplication strategy α ∈ S0

t for X with Vt(α) = π+
t,u(X),

which exists by Proposition 3.5. It follows from Proposition 3.8 that, on the event A = {P ≥
π+
t,u(X) > π−

t,u(X)}, we must have Vu(α) ⪈ X and, hence, π+
t,u(X) = Vt(α) ⪈ P ≥ π+

t,u(X) by
market consistency. This forces P(A) = 0 and yields (1). Conversely, assume that P satisfies (1)
and (2) and take any A ∈ Ft and any self-financing strategy α ∈ S0

t such that Vu(α) ⪈ X on
A. Note that Vt(α) ≥ π+

t,u(X) ≥ P on A by assumption. Now, take a subreplication strategy
β ∈ S0

t for X with Vt(β) = π−
t,u(X), which exists again by Proposition 3.5. If Vt(α) = P on

A, then A ⊂ {π−
t,u(X) = π+

t,u(X)} by (1) and we would have an arbitrage opportunity because
Vt(α) = π+

t,u(X) = π−
t,u(X) = Vt(β) on A whereas Vu(α) ⪈ X ≥ Vu(β) on A. As a result, Vt(α) ⪈ P

on A, showing that P is a market-consistent buyer price.

Remark 3.10. A corresponding result exists for arbitrage-free prices; see [6, Theorem 5.29].
The identical mathematical characterization of the sets of market-consistent prices and arbitrage-
free prices establishes their equivalence, at least at date t = 0 (for which the results in [6] are
established). However, the result for arbitrage-free prices requires the use of duality theory in the
form of equivalent martingale measures. In Section 6, we will revisit this equivalence from the
perspective of dual representations. By contrast, our characterization is established directly in our
“primal” setting, requiring no duality theory, which underscores the mathematical simplicity of
our approach.

3.2 European payoff streams

The problem of pricing a payoff stream in a market-consistent way can be reduced to pricing a
single payoff. Throughout this subsection we fix a payoff stream X ∈ X0:T with X0 = 0 and
Xt ≥ 0 for each t ∈ {1, . . . , T}. When we say “X is transacted at date t”, we specifically mean that
X t is transacted (rather than X t+1). We begin by defining sub- and superreplication strategies.
Since payoff streams involve intermediate payoffs, we must use trading strategies that are generally
not self-financing. For notational convenience, for a trading strategy α ∈ St we set V liq

t (α) := 0
and V acq

T (α) := 0.
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Definition 3.11. Let t ∈ {0, . . . , T −1} and E ∈ Ft. A trading strategy α ∈ St is a subreplication
strategy forX on E if V liq

s (α)−V acq
s (α) ≤ Xs on E for every s ∈ {t+1, . . . , T} and a superreplication

strategy for X on E if V liq
s (α)− V acq

s (α) ≥ Xs on E for every s ∈ {t + 1, . . . , T}. If P(E) = 1 we
omit the reference to E. The subreplication price, respectively superreplication price, of X at date
t are defined by

π−
t (X) := ess sup{V acq

t (α) ; α ∈ St is a subreplication strategy for X},
π+
t (X) := ess inf{V acq

t (α) ; α ∈ St is a superreplication strategy for X}.

For convenience, we also set π−
T (X) := π+

T (X) := XT .

The following definition formalizes, in the context of payoff streams, the intuition that when a
payoff stream is transacted at a rational price, neither the seller nor the buyer should be able to
do better by trading directly in the market.

Definition 3.12. Let t ∈ {0, . . . , T − 1} and E ∈ Ft. We say that P ∈ Xt is a market-consistent
price for X at date t on E if for every trading strategy α ∈ St and every A ∈ Ft such that A ⊂ E:

(1) If V liq
s (α) − V acq

s (α) ≥ Xs on A for every s ∈ {t + 1, . . . , T} and some inequality is not an
equality, then V acq

t (α) ⪈ P on A.

(2) If V liq
s (α) − V acq

s (α) ≤ Xs on A for every s ∈ {t + 1, . . . , T} and some inequality is not an
equality, then V acq

t (α) ⪇ P on A.

The set of market-consistent prices is denoted by MCPt(X). We say that P is a market-consistent
buyer price if (1) holds and a market-consistent seller price if (2) holds. The sets of market-
consistent buyer and seller prices are denoted by MCP b

t (X) and MCP s
t (X), respectively.

As in the case of single payoffs, to ensure that the problem of determining market-consistent buyer
prices is not trivial we need to assume that X admits a superreplication strategy starting at
date 0. Together with the postulated absence of arbitrage opportunities, this assumption implies
that π−

t (X) and π+
t (X) both belong to Xt and satisfy 0 ≤ π−

t (X) ≤ π+
t (X) for every t ∈ {0, . . . , T}.

For t ∈ {0, . . . , T} we define the terminal payoff equivalent of X at date t by

Zt(X) :=
T∑

u=t

Xu

S1
u

S1
T =

T∑
u=t

Xu.

The terminal payoff equivalent is thus the terminal payoff of a trading strategy that, at each date
u ∈ {t, . . . , T}, invests the amount Xu in the numéraire security. This special payoff enables us to
translate results for single payoffs into results for payoff streams as recorded next.

Proposition 3.13. Let t ∈ {0, . . . , T − 1}. The following statements hold:

(i) MCP b
t (X) = MCP b

t,T (Zt(X)).

(ii) MCP s
t (X) = MCP s

t,T (Zt(X)).

(iii) MCPt(X) = MCPt,T (Zt(X)).
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Proof. We only sketch the proof of (i). If α ∈ St is a superreplication strategy for X, then there
exists a superreplication strategy β ∈ S0

t for Zt(X) such that Vt(β) = V acq
t (α) +Xt. Conversely,

if β ∈ S0
t is a superreplication strategy for Zt(X), then there exists a superreplication strategy

α ∈ St for X such that V acq
t (α) = Vt(β) − Xt. In both cases, if some inequality featuring in the

superreplication condition for the given trading strategy is not an equality, then this carries over
to the derived trading strategy. This delivers at once the desired statement.

Remark 3.14. Let t ∈ {0, . . . , T − 1}. Replicability of the payoff stream X is defined similarly to
replicability of a single payoff, i.e., X is replicable at date t if there exists a strategy α ∈ St that is
both a sub- and a superreplication strategy for X. It is easy to verify that X is replicable at date t
precisely when Zt(X) is. It is also clear that, if Xu is replicable at date t for every u ∈ {t, . . . , T},
then X is also replicable at date t. The converse is, however, not true. To see this, take any
Y ∈ Xu for some u ∈ {t + 1, . . . , T − 1} that is not replicable at date t and consider the payoff
stream X defined by setting Xs = 0 for s ∈ {0, . . . , u− 1} ∪ {u+ 1, . . . , T − 1} as well as Xu = Y
and XT = S1

T − Y . As Zt(X) = S1
T , the payoff stream X is replicable at date t.

4 Market-consistent prices for American options

An American option is specified by a stream of non-negative payoffs with the following special
contractual optionality feature: At any date during the life of the contract, the holder can either
exercise the option to receive the payment at that date, foregoing any future payment, or retain the
option for later exercise, foregoing the payment. Throughout this section, we fix an American
option X ∈ X0:T with X0 = 0 and Xt ≥ 0 for each t ∈ {1, . . . , T}. As is customary, exercise
strategies are modelled by stopping times.

Definition 4.1. Let t ∈ {0, . . . , T}. An exercise strategy for X (starting at date t) is a random
variable τ ∈ XT such that P(τ ∈ {t, . . . , T}) = 1 and {τ = u} ∈ Fu for every u ∈ {t, . . . , T}. The
set of exercise strategies starting at date t is denoted by Tt.

For any date t ∈ {0, . . . , T}, exercising X according to a strategy τ ∈ Tt entitles the holder of the
option to receive the (European) payoff stream given by

Xτ := (0, . . . , 0, 1{τ=t}Xt, . . . , 1{τ=T}XT ).

As we know from the previous section, from the perspective of market-consistent prices, this payoff
stream can be identified with its terminal payoff equivalent that we denote by Xτ , i.e.,

Xτ := Zt(X
τ ) =

T∑
u=t

1{τ=u}Xu.

From now on we then work with the payoff Xτ instead of with the payoff stream Xτ and loosely
refer to Xτ as the payoff obtained when exercising X according to τ , even though what the holder
obtains is in fact the payoff stream Xτ . The key observation for our analysis of American options is
that buying the American option at a given date is economically equivalent to acquiring the right to
select one, and only one, item from a basket containing the (European) payoffs Xτ with τ starting
at that date. As a result, the seller of the option needs to be prepared to deliver any of the payoffs
in the basket, ignoring which one it will be until the owner actually exercises. This interpretation
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leads to a natural definition of sub- and superreplication strategies as well as of market-consistent
prices for American options. As our previous discussion implies, in contrast to the European
case, sub- and superreplication strategies for American options exhibit a fundamental asymmetry.
Consequently, we examine each concept in its own dedicated section. We introduce two special
classes of exercise strategies that, to the best of our knowledge, have not been considered in the
literature and that at this point will play a crucial technical role in our analysis. Their financial
interpretation will be discussed in the next sections.

Definition 4.2. Let t ∈ {0, . . . , T}. We denote by T −
t , respectively T +

t , the set of pricing-
lowerbound exercise strategies, respectively pricing-upperbound exercise strategies, for X at date t,
i.e., σ ∈ Tt such that, respectively,

π−
t,T (Xσ) = ess sup

τ∈Tt
π−
t,T (Xτ ), π+

t,T (Xσ) = ess sup
τ∈Tt

π+
t,T (Xτ ).

In addition, we denote by T s
t , respectively T b

t , the set of seller, respectively buyer, pricing exercise
strategies for X at date t, i.e., σ ∈ Tt such that, respectively,

MCP s
t,T (Xσ) =

⋂
τ∈Tt

MCP s
t,T (Xτ ), MCP b

t,T (Xσ) =
⋃
τ∈Tt

MCP b
t,T (Xτ ).

Note that, by Theorem 3.9, we always have T s
t ⊂ T −

t and T b
t ⊂ T +

t .

4.1 Market-consistent seller prices

Since the seller of an American option is committed to delivering any of the European payoffs in
the basket, he or she would rationally prefer a less onerous commitment — specifically, one arising
from a short position in a self-financing strategy that subreplicates one of these payoffs. Indeed,
we can think of selling the American option as borrowing funds where repayment is effectively
driven by the exercise strategy the buyer decides to adopt. From this perspective, if possible, the
seller would rationally prefer to borrow the same amount by shorting a trading strategy that is
dominated by one of these potential repayment schedules. This leads to the following notion of a
subreplication strategy and later to that of market-consistent seller prices.

Definition 4.3. Let t ∈ {0, . . . , T} and E ∈ Ft. We say that α ∈ S0
t is a subreplication strategy

for X on E if it is a subreplication strategy for Xτ on E for some τ ∈ Tt. If P(E) = 1 we omit the
reference to E. The subreplication price for X at date t is

π−
t (X) := ess sup{Vt(α) ; α ∈ S0

t is a subreplication strategy for X}.

In particular, π−
T (X) = XT .

Being a stream of positive payments, X always admits a subreplication strategy. Along with the
no-arbitrage assumption, this readily implies that π−

t (X) belongs to Xt and satisfies π−
t (X) ≥ 0.

The following result provides a variety of equivalent formulations of and a recursion formula for
the subreplication price, showing in particular that pricing-lowerbound pricing strategies always
exist. The recursion formula formalizes the economic intuition that the subreplication price of an
American option equals the maximum between its immediate exercise value and the subreplication
price of the residual option should exercise be deferred.
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Proposition 4.4. For every t ∈ {0, . . . , T} the following statements hold:

(i) π−
t (X) = ess supτ∈Tt π

−
t,T (Xτ ).

(ii) π−
t (X) = π−

t,T (Xτ ) for some τ ∈ Tt.

(iii) π−
t (X) = max{Xt, π

−
t,t+1(π

−
t+1(X))} = max{Xt, π

−
t (X

t+1)} for t < T .

(iv) π−
t (X) = Vt(α) for some subreplication strategy α ∈ S0

t for X.

In particular, the set T −
t is nonempty.

Proof. Note that assertion (i) is immediate from the definition of subreplication strategies. Note
also that the second equality in assertion (iii) follows from the first equality in (iii) by applying
it to X t+1 because we easily see that X t+1

t = 0 and, hence, π−
t (X

t+1) = π−
t,t+1(π

−
t+1(X

t+1)). We
establish (ii) by a backward induction argument that also delivers the first equality in (iii). Start
by observing that (ii) is clearly true for t = T . Assume the assertion is satisfied by τ ∈ Tt+1 for
t + 1 for some t ∈ {0, . . . , T − 1}. Set E := {π−

t (X) = Xt} and σ := t1E + τ1Ec ∈ Tt. On E we
clearly have

Xt = π−
t (X) ≥ π−

t,T (Xσ) = Xt, π−
t (X) ≥ π−

t,T (Xτ ) = π−
t,t+1(π

−
t+1,T (Xτ )) = π−

t,t+1(π
−
t+1(X)).

Similarly, on the complement event Ec we have

π−
t,T (Xσ) = π−

t,t+1(π
−
t+1,T (Xσ)) = π−

t,t+1(π
−
t+1,T (Xτ )) = π−

t,t+1(π
−
t+1(X))

≥ ess sup
ρ∈Tt+1

π−
t,t+1(π

−
t+1,T (Xρ)) = ess sup

ρ∈Tt+1

π−
t,T (Xρ) = π−

t (X) ≥ π−
t,T (Xσ),

Combining the two shows (ii) and the first equality in (iii) for date t and concludes the induction
argument. Finally, (iv) follows by taking any τ ∈ T −

t , which exists by (ii), and any subreplication
strategy α ∈ S0

t for Xτ such that Vt(α) = π−
t,T (Xτ ), which exists by Proposition 3.5.

Thinking of an American option as a basket, it is clear that the seller will not contemplate selling
the option for any price that is not a market-consistent seller price for every item in the basket.
We formalize this in the following definition.

Definition 4.5. Let t ∈ {0, . . . , T} and E ∈ Ft. We say that P ∈ Xt is a market-consistent seller
price for X at date t on E if it is a market-consistent seller price for Xτ at date t on E for every
τ ∈ Tt. If P(E) = 1 we omit the reference to E. The set of market-consistent seller prices is
denoted by MCP s

t (X).

Market-consistent seller prices for American options can be determined by focusing only on payoffs
in the basket with the highest subreplication price, i.e., on payoffs Xτ corresponding to exercise
strategies τ ∈ T −

t . In fact, we prove that amongst these payoffs there always exists at least one
that is “most expensive” in the sense that it has the highest superreplication price. In other words
there exists an exercise strategy σ ∈ T −

t such that

π+
t,T (Xσ) = π̃t(X) := ess sup

τ∈T −
t

π+
t,T (Xτ ). (4.1)

Importantly, the market-consistent prices for Xσ coincide with the market-consistent prices of the
American option. Moreover, every such exercise strategy turns out to be a “seller pricing strategy”
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in the sense of Definition 4.2, providing an ex-post justification for the adopted terminology. Note
also that being the “most expensive” among the payoffs Xτ with τ ∈ T −

t implies that if Xσ is
replicable, then every Xτ with τ ∈ T −

t is also replicable. The next result formalizes the above
discussion by establishing a characterization of seller pricing strategies and by showing that a seller
pricing strategy always exists.

Proposition 4.6. For every t ∈ {0, . . . , T} there exists σ ∈ Tt such that

MCP s
t (X) =

⋂
τ∈Tt

MCP s
t,T (Xτ ) =

⋂
τ∈T −

t

MCP s
t,T (Xτ ) = MCP s

t,T (Xσ).

In particular, T s
t is nonempty and for every σ ∈ Tt the following statements are equivalent:

(a) σ ∈ T −
t and {π−

t,T (Xσ) = π+
t,T (Xσ)} =

⋂
τ∈T −

t
{π−

t,T (Xτ ) = π+
t,T (Xτ )}.

(b) σ ∈ T −
t and {π−

t,T (Xσ) = π+
t,T (Xσ)} = {π−

t (X) = π̃t(X)}.

(c) MCP s
t,T (Xσ) = MCP s

t (X).

(d) σ ∈ T s
t .

Proof. To establish the proposition it suffices to prove the equivalence between the four assertions
and the existence of an exercise strategy satisfying any of the equivalent assertions. The equivalence
between (a) and (b) is obvious and that between (c) and (d) is a direct consequence of the definition
of a market-consistent price. To conclude the proof of equivalence, we establish that (a) and (d)
are equivalent. First, assume that (d) holds and take any τ ∈ T −

t . Recall that T s
t ⊂ T −

t ,
which yields σ ∈ T −

t and the inclusion “⊃” in (a). As π−
t,T (Xσ) = π−

t,T (Xτ ), we must have

π−
t,T (Xτ ) = π+

t,T (Xτ ) on the event {π−
t,T (Xσ) = π+

t,T (Xσ)}, for otherwise π−
t,T (Xτ ) would belong to

MCP s
t,T (Xσ) but not to MCP s

t,T (Xτ ) by Theorem 3.9, which is impossible because MCP s
t,T (Xσ) ⊂

MCP s
t,T (Xτ ) by assumption on σ. This shows the inclusion “⊂” in (a). Conversely, assume (a)

holds and take any τ ∈ Tt. Note that π−
t,T (Xσ) ≥ π−

t,T (Xτ ). Set E := {π−
t,T (Xτ ) = π−

t,T (Xσ)} and

define ρ := 1Eτ + 1Ecσ ∈ T −
t . By assumption, π−

t,T (Xτ ) = π−
t,T (Xρ) = π+

t,T (Xρ) = π+
t,T (Xτ ) on

E ∩ {π−
t,T (Xσ) = π+

t,T (Xσ)}. This implies that MCP s
t,T (Xσ) ⊂ MCP s

t,T (Xτ ), delivering (d) and
concluding the proof of the equivalence.

We conclude by proving that there exists an exercise strategy satisfying (b). To this effect,
note that the collection {π+

t,T (Xτ ) ; τ ∈ T −
t } is upward directed. Indeed, for all τ1, τ2 ∈ T −

t

set E = {π+
t,T (Xτ1) ≥ π+

t,T (Xτ2)} and note that τ = 1Eτ1 + 1Ecτ2 ∈ T −
t satisfies π+

t,T (Xτ ) =

max{π+
t,T (Xτ1), π

+
t,T (Xτ2)}. Hence, we find a sequence (τn) ⊂ T −

t such that π+
t,T (Xτn) ↑ π̃t(X)

almost surely. For n ∈ N define recursively

A1 := {π+
t,T (Xτ1) = π̃t(X)}, An+1 := {π+

t,T (Xτn+1) > π+
t,T (Xτn)} \

n⋃
k=1

Ak ∈ Ft.

The events An’s are pairwise disjoint and
⋃

n∈N An = Ω. Now, define the exercise strategy

σ :=
∑
n∈N

τn1An ∈ T −
t .
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For every n ∈ N we have π−
t,T (Xσ) = π−

t,T (Xτn) ≤ π+
t,T (Xτn) < π+

t,T (Xτn+1) = π+
t,T (Xσ) on An+1. In

particular, {π−
t,T (Xσ) = π+

t,T (Xσ)} ⊂ A1, implying that on {π−
t,T (Xσ) = π+

t,T (Xσ)}

π−
t (X) = π−

t,T (Xσ) = π+
t,T (Xσ) = π+

t,T (Xτ1) = π̃t(X).

This implies that σ satisfies (b), concluding the proof.

The market-consistent seller prices of an American option were shown to coincide with the market-
consistent seller prices of the European contract that is obtained by exercising the option according
to a seller pricing strategy. As a direct consequence of the results for European contracts we
therefore derive a characterization of the market-consistent seller prices for an American option.

Theorem 4.7. For every t ∈ {0, . . . , T} the set MCP s
t (X) is nonempty and P ∈ Xt is a market-

consistent seller price for X at date t if and only if the following conditions hold:

(1) P > π−
t (X) on {π−

t (X) < π̃t(X)};

(2) P ≥ π−
t (X) on {π−

t (X) = π̃t(X)}.

In particular, the following statements are equivalent:

(a) π−
t (X) is a market-consistent seller price for X at date t.

(b) π−
t (X) = π̃t(X).

(c) Xτ is replicable at date t for every τ ∈ T s
t .

(d) Xτ is replicable at date t for some τ ∈ T s
t .

(e) Xτ is replicable at date t for every τ ∈ T −
t .

Remark 4.8 (The seller does not have to charge for optionality). At first glance, one
might expect that the optionality embedded in an American option must be valuable and that the
seller should therefore charge a “market premium” for it. However, as implied by Proposition 4.6,
this is not the case. Indeed, regardless of the optionality, the market-consistent seller prices for
the American option simply correspond to the market-consistent seller prices of a single European
payoff, which corresponds to an item in the basket that is “most expensive” in the eyes of the
seller.

4.2 Market-consistent buyer prices

Since the buyer of an American option has the right to choose any of the European payoffs in
the basket, he or she will always prefer a self-financing strategy dominating all of these payoffs
compared to holding the option itself.

Definition 4.9. Let t ∈ {0, . . . , T} and E ∈ Ft. We say that α ∈ S0
t is a superreplication strategy

for X on E if it is a superreplication strategy for Xτ on E for every τ ∈ Tt. If P(E) = 1 we omit
the reference to E. The superreplication price for X at date t is

π+
t (X) := ess inf{Vt(α) ; α ∈ S0

t is a superreplication strategy for X}.

In particular, π+
T (X) = XT .

18



As in the European case, we exclude the case that every price is a market-consistent buyer price by
assuming that X admits a superreplication strategy starting at date 0. This assumption
implies that π+

t (X) belongs to Xt and satisfies 0 ≤ π−
t (X) ≤ π+

t (X) for every t ∈ {0, . . . , T}.
The following result establishes a variety of equivalent formulations of the superreplication price in
terms of the superreplication prices of the European payoffs in the basket and of superreplication
strategies.

Proposition 4.10. For every t ∈ {0, . . . , T} the following statements hold:

(i) π+
t (X) = ess supτ∈Tt π

+
t,T (Xτ ).

(ii) π+
t (X) = π+

t,T (Xτ ) for some τ ∈ Tt.

(iii) π+
t (X) = max{Xt, π

+
t,t+1(π

+
t+1(X))} = max{Xt, π

+
t (X

t+1)} for t < T .

(iv) π+
t (X) = Vt(α) for some superreplication strategy α ∈ S0

t for X.

In particular, the set T +
t is nonempty.

Proof. The inequality “≥” in (i) follows directly from the definition of superreplication strategy and
the second equality in (iii) follows from the first equality in (iii) by applying it to X t+1 because
X t+1

t = 0 and, hence, π+
t (X

t+1) = π+
t,t+1(π

+
t+1(X

t+1)). We show (ii) and (iv) using a backward
recursion argument that will also deliver the first equality in (iii). The inequality “≤” in (i) will be
a consequence of (ii). Observe first that (ii) and (iv) are clear for t = T , so assume they hold for
t+1 for some t ∈ {0, . . . , T−1} so that we find an exercise strategy σ ∈ Tt+1 and a superreplication
strategy α ∈ S0

t+1 for X satisfying

π+
t+1(X) = π+

t+1,T (Xσ) = Vt+1(α).

By Proposition 3.5 there exists a superreplication strategy β ∈ S0
t for π+

t+1(X) such that

Vt(β) = π+
t,t+1(π

+
t+1(X)).

Let E = {Xt ≥ π+
t,t+1(π

+
t+1(X))} and consider the combined trading strategy γ ∈ S0

t given by

γu :=

{
1EXtηt + 1Ecβt if u = t,

[1EXt + Vt+1(β)− Vt+1(α)]ηu + αu if u > t.

As Vu(γ) ≥ Xu for every u ∈ {t, . . . , T}, we see that γ is a superreplication strategy for X. In
addition, define the exercise strategy ρ := t1E + σ1Ec ∈ Tt. We obtain

π+
t (X) ≤ Vt(γ) = max{Xt, π

+
t,t+1(π

+
t+1(X))} = max{Xt, π

+
t,t+1(π

+
t+1,T (Xσ))}

= max{Xt, π
+
t,T (Xσ)} = π+

t,T (Xρ) ≤ π+
t (X),

where we used time consistency in the third equality and the inequality “≥” in (i) to get the last
inequality. As a result, we must have equality throughout, concluding the induction argument.

Thinking again of an American option as a basket of European payoffs from which the buyer can
choose his or her favorite item, the buyer should never buy the option for a price that is not a
market-consistent buyer price for at least one item in the basket. We formalize this in the following
definition.
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Definition 4.11. Let t ∈ {0, . . . , T} and E ∈ Ft. We say that P ∈ Xt is a market-consistent
buyer price for X at date t on E if it is a market-consistent buyer price for Xτ at date t on E
for some τ ∈ Tt. We omit the reference to E when P(E) = 1. The set of market-consistent buyer
prices is denoted by MCP b

t (X).

Similarly to the seller’s case, but requiring a different proof strategy, we can establish the existence
of exercise strategies whose associated payoff streams have precisely the same market-consistent
buyer prices as the American option. These exercise strategies turn out to be “buyer pricing strate-
gies” introduced in Definition 4.2, which validates the terminology. From the buyer’s perspective,
such payoff streams are the “most expensive” in the basket. A key characteristic of these exercise
strategies is that they have the largest possible domain of replicability, namely the event on which
the sub- and superreplication prices for the option coincide.

Proposition 4.12. For every t ∈ {0, . . . , T} there exists σ ∈ Tt such that

MCP b
t (X) =

⋃
τ∈Tt

MCP b
t,T (Xτ ) =

⋃
τ∈T +

t

MCP b
t,T (Xτ ) = MCP b

t,T (Xσ).

In particular, T b
t is nonempty and for every σ ∈ Tt the following statements are equivalent:

(a) σ ∈ T +
t and {π−

t,T (Xσ) = π+
t,T (Xσ)} =

⋃
τ∈T +

t
{π−

t,T (Xτ ) = π+
t,T (Xτ )}.

(b) σ ∈ T +
t and {π−

t,T (Xσ) = π+
t,T (Xσ)} = {π−

t (X) = π+
t (X)}.

(c) MCP b
t,T (Xσ) = MCP b

t (X).

(d) σ ∈ T b
t .

Proof. To establish the proposition it is enough to prove the equivalence between the four assertions
and show the existence of an exercise strategy satisfying (b). Clearly, (b) implies (a) and the
equivalence between (c) and (d) follows from the definition of a market-consistent buyer price. To
show that (d) implies (b), assume that σ ∈ T b

t . As T b
t ⊂ T +

t and the inclusion “⊂” is therefore
clear, it suffices to show that {π−

t (X) = π+
t (X)} ⊂ {π−

t,T (Xσ) = π+
t,T (Xσ)}. To this end, set

E := {π−
t (X) = π+

t (X)} and take any τ ∈ T −
t . Note that π−

t,T (Xτ ) = π−
t (X) = π+

t (X) ≥
π+
t,T (Xτ ) on E, implying that Xτ is replicable on E at date t. As MCP b

t,T (Xτ ) ⊂ MCP b
t,T (Xσ)

and π+
t,T (Xσ) = π+

t,T (Xτ ) on E by assumption on σ, we deduce that Xσ is also replicable on E at

date t. Finally, let σ ∈ Tt satisfy (a). Take an arbitrary τ ∈ Tt and note that π+
t,T (Xσ) ≥ π+

t,T (Xτ ).

Set E := {π−
t,T (Xτ ) = π+

t,T (Xτ ) = π+
t,T (Xσ)} and define ρ := 1Eτ + 1Ecσ ∈ T +

t . On the event

E we have π−
t,T (Xρ) = π+

t,T (Xρ) and thus π−
t,T (Xσ) = π+

t,T (Xσ) by assumption on σ. But then

MCP b
t,T (Xτ ) ⊂ MCP b

t,T (Xσ), delivering (d) and concluding the proof of equivalence.

It remains to prove that there exists an exercise strategy satisfying (b). To this effect, take any
σ1 ∈ T −

t and σ2 ∈ T +
t and define E := {π−

t (X) = π+
t (X)} and σ := 1Eσ1 + 1Ecσ2. On the event

E we have π+
t,T (Xσ1) ≤ π+

t (X) = π−
t (X) = π−

t,T (Xσ1), showing that π−
t,T (Xσ) = π+

t (X) = π+
t,T (Xσ).

This implies that σ ∈ T +
t and E = {π−

t,T (Xσ) = π+
t,T (Xσ)}. Hence, σ satisfies (b).

The previous proposition established that market-consistent buyer prices for American options
equal those of the payoff streams obtained when exercising according to a buyer pricing strategies.
Together with our characterization for market-consistent buyer prices for European payoffs, this
directly yields our desired result for market-consistent buyer prices for American options.

20



Theorem 4.13. For every t ∈ {0, . . . , T} the set MCP b
t (X) is nonempty and P ∈ Xt is a market-

consistent buyer price for X at date t if and only if the following conditions hold:

(1) P < π+
t (X) on {π−

t (X) < π+
t (X)};

(2) P ≤ π+
t (X) on {π−

t (X) = π+
t (X)}.

In particular, the following statements are equivalent:

(a) π+
t (X) is a market-consistent buyer price for X at date t.

(b) π−
t (X) = π+

t (X).

(c) Xτ is replicable at date t for every τ ∈ T b
t .

(d) Xτ is replicable at date t for some τ ∈ T b
t .

(e) Xτ is replicable at date t for some τ ∈ T +
t .

Remark 4.14 (The buyer does not need to pay for optionality). Similar to the seller’s
perspective, the optionality inherent in an American option does not justify that the buyer pays
a “market premium” . According to Proposition 4.12, the market-consistent buyer prices for the
entire American option are identical to the market-consistent buyer prices for a single European
payoff — specifically, the payoff that results from exercising the option according to a buyer
pricing strategy. Therefore, despite the flexibility provided by optionality, the market-consistent
buyer prices for an American option simply correspond to the market-consistent buyer prices of a
single payoff stream in the basket that the buyer considers “most expensive”.

4.3 Market-consistent prices

It is clear how to define market-consistent prices for an American option that admits a superrepli-
cation strategy at the initial date.

Definition 4.15. Let t ∈ {0, . . . , T} and E ∈ Ft. We say that P ∈ Xt is a market-consistent price
for X at date t on E if it is both a market-consistent seller and a market-consistent buyer price
for X at date t on E. If P(E) = 1 we omit the reference to E. The set of market-consistent prices
is denoted by MCPt(X).

From Theorem 4.7 and Theorem 4.13 we immediately obtain the following characterization of
market-consistent prices. Note that π−

t (X) ≤ π̃t(X) ≤ π+
t (X) for every t ∈ {0, . . . , T}. To the

best of our knowledge, a complete characterization of the price interval for an American option
and, notably, of its price bounds was still missing in the literature. In addition, the existing results
in this direction make heavy use of duality theory in the form of equivalent martingale measures;
see, e.g., [6, Chapter 7]. As in the European case, our approach is direct and requires no duality
theory.

Theorem 4.16. For every t ∈ {0, . . . , T} the set MCPt(X) is nonempty and P ∈ Xt is a market-
consistent price for X at date t if and only if the following three conditions hold:

(1) π−
t (X) < P < π+

t (X) on {π−
t (X) < π̃t(X)};
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(2) π−
t (X) ≤ P < π+

t (X) on {π−
t (X) = π̃t(X)} ∩ {π−

t (X) < π+
t (X)};

(3) P = π+
t (X) = π−

t (X) on {π−
t (X) = π+

t (X)}.

In particular, the following statements hold:

(i) π+
t (X) = ess supMCPt(X) = ess supMCP b

t (X).

(ii) π−
t (X) = ess infMCPt(X) = ess infMCP s

t (X).

4.4 Replicable American options

Replicability of an American option is defined similarly to replicablity for European payoffs.

Definition 4.17. Let t ∈ {0, . . . , T} and E ∈ Ft. We say that X is replicable on E at date t
if there exists a self-financing trading strategy α ∈ S0

t that is both a sub- and a superreplication
strategy for X on E. In this case, we say that α is a replication strategy for X on E. If P(E) = 1
we omit the reference to E. The largest event on which X is replicable at date t is called the
maximum domain of replicability of X at date t.

The maximum domain of replicability of an American option can be easily determined and, as in
European case, consists of the set where the sub- and superreplication prices coincide. Additional
equivalent conditions for replicability in terms of the replicability of European payoffs in the basket
follow from Theorem 4.13.

Proposition 4.18. For every t ∈ {0, . . . , T} the set {π−
t (X) = π+

t (X)} is the maximum domain
of replicability for X. In addition, the following statements are equivalent:

(a) X is replicable at date t.

(b) π−
t (X) = π+

t (X).

(c) π+
t (X) ∈ MCPt(X).

Proof. Take a subreplication strategy α ∈ S0
t for X with Vt(α) = π−

t (X) and a superreplication
strategy β ∈ S0

t for X with Vt(β) = π+
t (X), which exist by Propositions 4.4 and 4.10. Clearly,

VT (α) ≤ Xτ ≤ VT (β) for some τ ∈ Tt. Then, the absence of arbitrage opportunities implies
VT (α) = Xτ = VT (β) on {π−

t (X) = π+
t (X)}, showing that X is replicable on {π−

t,u(X) = π+
t,u(X)}

at date t. Now, assume that X is replicable on E ∈ Ft at date t and note that this implies that
π+
t (X) = π−

t (X) on E. This characterizes the maximum domain of replicability.

The equivalence between (a) and (b) follows from the characterization of the maximum domain of
replicability and that between (b) and (c) follows from Theorem 4.13.

As we have just shown, the superreplication price of the option is a market-consistent price for the
option if and only if the option is replicable. The next example, the simplest that comes to mind,
illustrates that this is not true for the subreplication price, which can be a market-consistent price
even when the option is not replicable; see also [6, Example 6.32].
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Example 4.19. Let Ω = {ω1, ω2, ω3, ω4} and assume each scenario has a strictly positive probabil-
ity. Consider a two-period market with F1 = {∅, {ω1, ω2}, {ω3, ω4},Ω} and F2 = 2Ω. The market
consists of a single basic security defined by S0 = S1 = S2 = 1. Finally, consider an American
option X given by

X0 = 0, X1 = 1, X2(ω1) = X2(ω3) = 2, X2(ω2) = X2(ω4) = 0.

By the recursion formula we have

π+
0 (X) = π+

0,1(max{X1, π
+
1,2(X2)︸ ︷︷ ︸

=2

}) = π+
0,1(2) = 2,

π−
0 (X) = π−

0,1(max{X1, π
−
1,2(X2)︸ ︷︷ ︸

=0

}) = π+
0,1(1) = 1.

Clearly, T −
0 = {1}, which implies that π̃0(X) = π+

0,2(X1) = 1. It then follows from Theorem 4.7
that π−

0 (X) is a market-consistent price for X at date 0 and from Proposition 4.18 that X is not
replicable at date 0.

Remark 4.20 (Never buy a replicable American option). If an American option is replicable,
it possesses a unique market-consistent price at which it can be rationally transacted. While this
price is fully in line with market prices, we claim that it is not reasonable to buy the option at this
price. Indeed, according to Proposition 4.10, this price exactly matches the acquisition value of a
replication strategy for the option. Consequently, a potential buyer would clearly benefit more by
directly acquiring this replication strategy from the market at the same price. The strategy offers
superior flexibility because it is, in particular, a superreplication strategy — liquidating it according
to any given exercise strategy yields results at least as favorable as exercising the option under the
identical strategy. This shows that replicable American options provide no additional advantages
beyond those attainable through direct implementation of self-financing trading strategies in the
market. In particular, this shows that American options do not enrich a complete market, because
in such a market every American option is replicable.

5 Market-consistent exercise strategies

In this section, we address when the holder of an American option might rationally consider
exercising, based on the market-consistent pricing theory developed above. To this effect, we
introduce market-consistent exercise strategies, which, to our knowledge, have not been previously
studied in the literature. The analysis is based on two key insights:

1. Exercise as a sale: Exercising the option is equivalent to selling the residual option (the right
to exercise later) in exchange for the immediate exercise value. Therefore, the holder should
never exercise when the exercise value is not a market-consistent seller price for the residual
option.

2. Deferred exercise as a purchase: Deferring exercise is equivalent to buying the residual option
at a price equal to the current exercise value. Therefore, the holder should always exercise
when the exercise value is not a market-consistent buyer price for the residual option. It
follows that, if exercise is deferred, then the exercise value must be a market-consistent
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buyer price for the residual option. Moreover, when analyzing a specific exercise strategy,
we must ensure that the exercise value is a market-consistent buyer price specifically for the
payoff stream associated with that particular strategy — not just any potential strategy.
This ensures that deferral is justified based on a rational future exercise plan rather than an
arbitrary one.

These complementary conditions lead us to define a “market-consistent exercise strategy” as a
strategy according to which it is not foolish for the holder to exercise.

Definition 5.1. Let t ∈ {0, . . . , T −1}. We say that τ ∈ Tt is a market-consistent exercise strategy
for X at date t if it satisfies for every u ∈ {t, . . . , T − 1}:

(1) Xu is a market-consistent seller price for Xu+1 at date u on {τ = u};

(2) Xu is a market-consistent buyer price for Xτ at date u on {τ > u}.

The set of market-consistent exercise strategies at date t is denoted by T MC
t .

5.1 First exercise time

The first property in the definition of a market-consistent exercise strategy leads to considering
the exercise strategy that prescribes exercising as soon as the exercise price is a market-consistent
seller price for the residual option, which can be described using Theorem 4.7.

Definition 5.2. Let t ∈ {0, . . . , T}. The first exercise time from date t is the exercise strategy
τ−t ∈ Tt defined by τ−t := T if t = T and otherwise

τ−t := min{u ∈ {t, . . . , T − 1} ; Xu > π−
u (X

u+1) or Xu = π−
u (X

u+1) = π̃u(X
u+1)} ∧ T.

The next result collects the main properties of the first exercise time and shows, among other
things, that the first exercise time is the earliest market-consistent exercise strategy.

Theorem 5.3. For every t ∈ {0, . . . , T − 1} the following statements hold:

(i) τ−t ∈ T MC
t and τ−t = ess inf T MC

t .

(ii) τ−t ∈ T s
t .

Proof. We start by establishing (ii). To this effect, we first prove by backward recursion that
τ−t ∈ T −

t for every t ∈ {0, . . . , T}. The statement is clearly true if t = T . Now, assume it holds
for t + 1 for some t ∈ {0, . . . , T − 1} so that π−

t+1(X) = π−
t+1,T (Xτ−t+1

). Using Proposition 4.4, we

see that on {τ−t = t}

π−
t,T (Xτ−t

) = Xt = max{Xt, π
−
t (X

t+1)} = π−
t (X),

and similarly on the complement event {τ−t > t}

π−
t,T (Xτ−t

)) = π−
t,t+1(π

−
t+1,T (Xτ−t

)) = π−
t,t+1(π

−
t+1,T (Xτ−t+1

))

= π−
t,t+1(π

−
t+1(X

t+1)) = π−
t (X

t+1) = max{Xt, π
−
t (X

t+1)} = π−
t (X),
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which concludes the recursion argument. By Proposition 4.6, to conclude the proof of (ii) it then
suffices to show that, for every τ ∈ T −

t ,

π−
t,T (Xτ ) = π+

t,T (Xτ ) on {π−
t,T (Xτ−t

) = π+
t,T (Xτ−t

)}. (5.1)

We proceed by backward recursion. The statement is clearly true for t = T . Now, assume it holds
for t+1 for some t ∈ {0, . . . , T − 1} and fix τ ∈ T −

t . Set E := {π−
t,T (Xτ−t

) = π+
t,T (Xτ−t

)} and define

A := {τ = t} ∩ E, B := {τ > t} ∩ {τ−t = t} ∩ E, C := {τ > t} ∩ {τ−t > t} ∩ E.

On A assertion (5.1) clearly holds. On B we have

Xt = π−
t,T (Xτ−t

) = π−
t,T (Xτ ) ≤ π−

t (X
t+1).

By definition of τ−t , we must thus have π−
t (X

t+1) = π̃t(X
t+1) = Xt, which implies that the

inequality above is, in fact, an equality and yields

π−
t,T (Xτ ) = π−

t (X
t+1) = π̃t(X

t+1) ≥ π+
t,T (Xτ ).

As a result, (5.1) holds on B. Finally, on C, note first that τ−t = τ−t+1 and π−
t+1,T (Xτ ) ≤ π−

t+1,T (Xτ−t
).

As the right-hand side is replicable at date t,

π−
t (X) = π−

t,t+1(π
−
t+1,T (Xτ )) ≤ π+

t,t+1(π
−
t+1,T (Xτ ))

≤ π+
t,t+1(π

−
t+1,T (Xτ−t

)) = π−
t,t+1(π

−
t+1,T (Xτ−t

)) = π−
t (X).

It follows that π−
t+1,T (Xτ ) is also replicable at date t and has the same subreplication price of

π−
t+1,T (Xτ−t

) at date t. To avoid arbitrage opportunities, π−
t+1,T (Xτ ) = π−

t+1,T (Xτ−t
) = π−

t+1(X)
must hold. Using the induction hypothesis we find

π+
t,T (Xτ ) = π+

t,t+1(π
+
t+1,T (Xτ )) ≤ π+

t,t+1(π
−
t+1,T (Xτ−t+1

))

= π+
t,t+1(π

+
t+1,T (Xτ−t

)) = π+
t,T (Xτ−t

) = π−
t,T (Xτ−t

) = π−
t,T (Xτ ),

which delivers π−
t,T (Xτ ) = π+

t,T (Xτ ). This proves (5.1) on C and ends the recursion argument.

As a final step, we establish (i). It follows directly from Theorem 4.7 that τ−t ≤ τ for every
τ ∈ T MC

t . Fix u ∈ {0, . . . , T − 1}. The same result implies that Xu is a market-consistent seller
price for Xu+1 at date u on {τ−t = u}. On {τ−t > u} we have two cases. First, if Xu < π−

u (X
u+1),

then we deduce from Proposition 4.4 and from (ii) that

Xu < π−
u (X) = π−

u (Xτ−u
) = π−

u (Xτ−t
).

Second, if Xu = π−
u (X

u+1) < π̃u(X
u+1), then π−

u (X) = Xu < π̃u(X) again by Proposition 4.4 and
we deduce from (ii) that

Xu = π−
u (X) = π−

u (Xτ−u
) < π+

u (Xτ−u
) = π+

u (Xτ−t
).

In either case we see that Xu is a market-consistent buyer price for Xτ−t
at date u on {τ−t > u} by

virtue of Theorem 4.7. This concludes the proof.
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Remark 5.4. A key exercise strategy in the treatment of [6] is defined for t ∈ {0, . . . , T} by

τ−−
t := min{u ∈ {t, . . . , T} ; Xu = π−

u (X)};

see [6, Theorem 6.47]. This exercise strategy is used in the context of lower Snell envelopes in
connection with the problem of analyzing the lower bound of the set of arbitrage-free prices of an
American option. It is immediate to verify that τ−−

t always prescribes exercising not later than
the first exercise time, i.e., τ−−

t ≤ τ−t , but it turns out that the two exercise strategies do not
generally coincide. As a result, τ−−

t fails to be a market-consistent exercise strategy in general,
which explains why it cannot help yield a characterization of when the subreplication price is
market consistent or, equivalently, arbitrage free. To see this, consider the setting of Example 4.19
and the American option X defined by

X0 = 0, X1 = 1, X2(ω1) = X2(ω3) = 2, X2(ω2) = X2(ω4) = 1.

As π−
1 (X) = max{X1, π

−
1,2(X2)} = 1 = X1, we infer that τ−−

0 = 1. However, τ−0 = 2 because

π̃1(X
2) = π+

1,2(Xτ ) = 2 > 1 = X1 = π−
1,2(X2) = π−

1 (X
2).

5.2 Last exercise time

The second property in the definition of a market-consistent exercise strategy suggests considering
the strategy that prescribes exercising as soon as the exercise price is no longer a market-consistent
buyer price for the residual option. This exercise strategy can be described formally using Theo-
rem 4.13.

Definition 5.5. Let t ∈ {0, . . . , T}. The last exercise time from date t is the exercise strategy
τ+t ∈ Tt defined by τ+t := T if t = T and otherwise

τ+t := min{u ∈ {t, . . . , T − 1} ; Xu > π+
u (X

u+1) or Xu = π+
u (X

u+1) > π−
u (X

u+1)} ∧ T.

As we show next, the last exercise time is the latest market-consistent exercise strategy.

Theorem 5.6. For every t ∈ {0, . . . , T − 1} the following statements hold:

(i) τ+t ∈ T MC
t and τ+t = ess sup T MC

t .

(ii) τ+t ∈ T b
t .

Proof. We start by (ii). As a first step, we establish that τ+t ∈ T +
t . The statement is clear for

t = T . We proceed by backward induction assuming the statement is true for t + 1 for some
t ∈ {0, . . . , T − 1}. Set E := {τ+t = t}. Note that on E

π+
t (X) = max{Xt, π

+
t (X

t+1)} = Xt = π+
t,T (Xτ+t

).

Moreover, using the induction hypothesis, we have on Ec

π+
t (X) = max{Xt, π

+
t (X

t+1)} = π+
t (X

t+1) = π+
t,t+1(π

+
t+1(X

t+1))

= π+
t,t+1(π

+
t+1,T (Xτ+t+1

)) = π+
t,t+1(π

+
t+1,T (Xτ+t

)) = π+
t,T (Xτ+t

).

26



This concludes the recursion argument. By Proposition 4.12, to establish (ii) it suffices to show

{π−
t,T (Xτ+t

) = π+
t,T (Xτ+t

)} = {π−
t (X) = π+

t (X)}.

The assertion clearly holds for t = T . We proceed by backward induction and assume it holds for
t+1 for some t ∈ {0, . . . , T−1}. For convenience, set E := {τ+t = t} and define F := {π−

t,T (Xτ+t
) =

π+
t,T (Xτ+t

)} and G := {π−
t (X) = π+

t (X)}. Note that we always have E ⊂ F ⊂ G. Hence, it is
enough to show that G ∩ Ec ⊂ F . On G ∩ Ec

π+
t (X

t+1) = max{Xt, π
+
t (X

t+1)} = π+
t (X) = π−

t (X) = max{Xt, π
−
t (X

t+1)} = π−
t (X

t+1).

Hence, π−
t,t+1(π

−
t+1(X)) = π+

t,t+1(π
+
t+1(X)). Since π−

t+1(X) ≤ π+
t+1(X), the absence of arbitrage

opportunities implies that π−
t+1(X) = π+

t+1(X). By the induction hypothesis we find

π−
t,T (Xτ+t

) = π−
t,t+1(π

−
t+1(Xτ+t+1

)) = π−
t,t+1(π

+
t+1(Xτ+t+1

)) = π−
t,t+1(π

+
t+1(X))

= π−
t,t+1(π

−
t+1(X)) = π−

t (X) = π+
t (X) = π+

t,T (Xτ+t
).

This yields G ∩ Ec ⊂ F and concludes the recursion argument.

As a final step, we establish (i). It follows directly from Theorem 4.13 that τ+t ≥ τ for every
τ ∈ T MC

t . Fix u ∈ {0, . . . , T − 1}. The same result implies that Xu is a market-consistent seller
price for Xu+1 at date u on {τ+t = u}. On {τ+t > u} we have two cases. First, if Xu < π+

u (X
u+1),

then we deduce from Proposition 4.10 and from (ii) that

Xu < π+
u (X) = π+

u (Xτ+u
) = π+

u (Xτ+t
).

Second, if Xu = π+
u (X

u+1) = π−
u (X

u+1), then Xu = π+
u (X) = π−

u (X) again by Proposition 4.10
and we deduce from (ii) that

π+
u (Xτ+t

) = π+
u (Xτ+u

) = Xu = π−
u (Xτ+u

) = π−
u (Xτ+t

).

In either case we see that Xu is a market-consistent buyer price for Xτ+t
at date u on {τ−t > u}

due to Theorem 4.13. This concludes the proof.

5.3 A more optimal last time to exercise

Even though it is not irrational to exercise according to the last exercise time τ+t , there is a different
exercise strategy that could lay a claim on being a more rational last time to exercise. Indeed, by
Remark 4.20, holding a replicable American option is suboptimal — it is more advantageous to
sell it at its unique market-consistent price and instead purchase a superreplication strategy which
provides greater flexibility in terms of exercise timing. Therefore, it is arguably more rational
to exercise as soon as the option becomes replicable, which may very well occur earlier than the
technically correct last exercise time τ+t .

Definition 5.7. Let t ∈ {0, . . . , T}. The earliest replication time from date t is the exercise
strategy τ rept ∈ Tt defined by

τ rept := min{u ∈ {t, . . . , T} ; Xu = π+
u (X)}.

The earliest replication time is a market-consistent exercise strategy as well as a buyer pricing
strategy. The proof follows the same lines of that of Theorem 5.6 and is therefore omitted.
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Proposition 5.8. For every t ∈ {0, . . . , T − 1} we have τ rept ∈ T MC
t ∩ T b

t .

As illustrated by the following example, the earliest replication time does not coincide with the
last exercise time in general. This happens when the option remains replicable through time, in
which case waiting longer than the earliest replication time does not violate market consistency.

Example 5.9. In the simple market model of Example 4.19 consider the American option X given
by X0 = 0 and X1 = X2 = 1. It is immediate to see that π+

1 (X) = π+
1 (X

2) = π−
1 (X

2) = 1 so that
τ rep0 = 1 but τ+0 = 2.

6 Representation theorems

In this final section, we show that market-consistent prices can be described in terms of expectations
with respect to equivalent martingale measures. While we employ the terminology of martingales,
we do not rely on advanced martingale theory.

For each t ∈ {0, . . . , T − 1} we denote by Mt the set of probability measures Q on (Ω,Ft+1)
satisfying the following properties:

(EMM1) Si
t and Si

t+1 are integrable with respect to Q for every i ∈ {1, . . . , N};

(EMM2) EQ[S
i
t+1|Ft] = Si

t for every i ∈ {1, . . . , N};

(EMM3) Q is equivalent to P on Ft+1.

A probability measure Q on (Ω,A) is called an equivalent martingale measure if it belongs to Mt

for every t ∈ {0, . . . , T −1}. The set of equivalent martingale measures is denoted by M. It is well
known that, under an equivalent martingale measure, the martingale property (EMM2) holds not
only for the price process of the basic securities but more generally for the value process of any
self-financing strategy with non-negative terminal value. Moreover, the Fundamental Theorem of
Asset Pricing establishes the equivalence of the absence of arbitrage opportunities and the existence
of equivalent martingale measures.

The next result collects some simple and useful facts about equivalent martingale measures.

Lemma 6.1. Let t ∈ {0, . . . , T − 1}. The following statements hold:

(i) For all Q1 ∈ Mt and Q2 ∈ M there exists Q ∈ M such that

EQ[X|Ft] = EQ1 [EQ2 [X|Ft+1]|Ft]

for every non-negative X ∈ XT admitting a superreplication strategy at date t.

(ii) For all Q1,Q2 ∈ M and λ ∈ Xt satisfying 0 ≤ λ ≤ 1 there exists Q ∈ M such that

EQ[X|Ft] = λEQ1 [X|Ft] + (1− λ)EQ2 [X|Ft]

for every non-negative X ∈ XT admitting a superreplication strategy at date t.

(iii) For all sequences (Qn) ⊂ M and (An) ⊂ Ft such that the events An are pairwise disjoint
and their union is Ω there exists Q ∈ M such that

EQ[X|Ft] =
∑
n∈N

1AnEQn [X|Ft]

for every non-negative X ∈ XT admitting a superreplication strategy at date t.
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Proof. A simple verification shows that the desired equivalent martingale measures can be respec-
tively defined through the densities

dQ
dP

:= EP

[
dQ1

dP

∣∣∣∣Ft

]−1
dQ1

dP
EP

[
dQ2

dP

∣∣∣∣Ft

]
EP

[
dQ2

dP

∣∣∣∣Ft+1

]−1
dQ2

dP
,

dQ
dP

:= λ
dQ1

dP
+ (1− λ)EP

[
dQ1

dP

∣∣∣∣Ft

]
EP

[
dQ2

dP

∣∣∣∣Ft

]−1
dQ2

dP
,

dQ
dP

:=
∑
n∈N

1AnEP

[
dQ1

dP

∣∣∣∣Ft

]
EP

[
dQn

dP
|Ft

]−1
dQn

dP
.

6.1 European payoffs

As in Section 3, we fix a nonnegative European payoff X with maturity u ∈ {1, . . . , T} that admits
a superreplication strategy at date 0. The following result shows that the set of market-consistent
prices for X coincides with the set of conditional expectations of X taken with respect to all
possible equivalent martingale measures.

Theorem 6.2. For every t ∈ {0, . . . , u− 1} the following statements hold:

(i) MCPt,u(X) = {EQ[X|Ft] ; Q ∈ M}.

(ii) π−
t,u(X) = ess infQ∈M EQ[X|Ft].

(iii) π+
t,u(X) = ess supQ∈M EQ[X|Ft].

Proof. Note that (ii) and (iii) follow immediately from (i). To prove (i), note that for every Q ∈ M
and for all α ∈ S0

t and A ∈ Ft such that Vu(α) ⪈ X on A,

Vt(α) = EQ[Vu(α)|Ft] ⪈ EQ[X|Ft] on A.

This shows that EQ[X|Ft] is a market-consistent buyer price for X at date t. In the same way one
shows that EQ[X|Ft] is a market-consistent seller price for X at date t, establishing the inclusion
“⊃” in (i).

To prove the converse inclusion, we proceed by backward recursion. we first show that, for any
s ∈ {0, . . . , T − 1} and any P ∈ MCPs,s+1(Z) such that Z ∈ Xs+1 satisfies Z ≥ 0 and admits a
superreplication strategy at date s, there exists Q ∈ Ms such that

P = EQ[Z|Fs]. (6.1)

Note that P ≥ 0 and take any process SN+1 ∈ X0:T such that SN+1
t ≥ 0 for each t ∈ {0, . . . , T}

as well as SN+1
s = P and SN+1

s+1 = Z. We claim that the market for the N + 1 basic securities
S1, . . . , SN+1 is arbitrage free between s and s + 1. To show this, take a self-financing strategy α
in the larger market and assume that

V s =
N+1∑
i=1

αi
sS

i
s ≤ 0, V s+1 =

N+1∑
i=1

αi
sS

i
s+1 ⪈ 0. (6.2)
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Define A = {αN+1
s ̸= 0} and note that P(A) > 0 and V s+1 = 0 on Ac for otherwise there would be

arbitrage opportunities between s and s+ 1 in the market for the basic securities S1, . . . , SN . As
a result, V s+1 ̸= 0 on A. Define β ∈ S0

s by

βr =

(
− α1

s

αN+1
s

1A, . . . ,−
αN
s

αN+1
s

1A

)
, r ∈ {s, . . . , T − 1}.

Set B = {αN+1
s > 0} and suppose that P(B) > 0. By rearranging the terms in (6.2) we obtain that

Vs(β) ≥ P on B and Vs+1(β) ⪇ Z on B, which is not possible because P is a market-consistent
seller price for Z. If P(B) = 0, then P(A\B) > 0 and it follows from (6.2) that Vs(β) ≤ P on A\B
and Vs+1(β) ⪈ Z on A \B, which is not possible because P is a market-consistent buyer price for
Z. It follows that the market for the N+1 basic securities S1, . . . , SN+1 is arbitrage free between s
and s+1. By [6, Theorem 1.55], we find Q ∈ Ms such that P = SN+1

s = EQ[S
N+1
s+1 |Fs] = EQ[Z|Fs],

concluding the proof.

We now establish the inclusion “⊂” in (i). The inclusion is clearly true for t = u. Assume it is
true for t+ 1 for some t ∈ {0, . . . , u− 1}. Note that, by virtue of point (ii) in Lemma 6.1, the set
{EQ[X|Ft+1] ; Q ∈ M} is upward directed, i.e., is closed with respect to pointwise maxima. Then,
there exists a sequence (Qn) ⊂ M such that

EQn [X|Ft+1] ↑ ess sup
Q∈M

EQ[X|Ft+1] = π+
t+1,u(X) (6.3)

in the almost-sure sense. Let P ∈ MCPt,u(X) and set E = {π−
t,u(X) < π+

t,u(X)}. On E we have
P < π+

t,u(X) = π+
t,t+1(π

+
t+1,u(X)). It follows that P is a market-consistent buyer for π+

t+1,u(X) on

E at date t. As a result of (6.1), we find Q̃ ∈ Mt such that P < EQ̃[π
+
t+1,u(X)|Ft] on E. By

monotone convergence and (6.3) we find L ∈ Xt such that

P < L ↑ EQ̃[EQn [X|Ft+1]|Ft] on E.

By point (i) in Lemma 6.1 there exists (Q̃n) ⊂ M such that EQ̃n
[X|Ft] ↑ L on E. Set A1 =

{EQ̃1
[X|Ft] > P}∩E and for every n ∈ N define An+1 = ({EQ̃n+1

[X|Ft] > P}∩E)\An. It follows

from point (iii) in Lemma 6.1 that we find Q ∈ M such that EQ[X|Ft] = EQ̃n
[X|Ft] on An for

every n ∈ N, whence P ≤ EQ[X|Ft] on E. By a similar argument, we find Q ∈ M such that
P ≥ EQ[X|Ft] on E. We can now again apply point (ii) in Lemma 6.1 to obtain Q ∈ M such that
P = EQ[X|Ft] on E. We conclude the recursion argument by observing that P = EQ[X|Ft] on Ec

for any Q ∈ M due to the inclusion “⊃” in (i).

Remark 6.3. It is worth noting that in the proof of Theorem 6.2 we extended the market by
introducing a new security at a market-consistent price, leaving the prices of the original securities
unchanged, and then demonstrated that this extended market remains arbitrage-free. While this
approach might initially appear circular — given our claim that such extended markets are not
economically meaningful — it serves only as a technical device to build on established results
about equivalent martingale measures in single-period arbitrage-free markets. The representa-
tion is established directly from market consistency, without invoking the disputed multi-period
characterization of arbitrage-free prices. Thus, there is no circularity in the argument.

6.2 American options

We now fix an American option X with X0 = 0 and Xt ≥ 0 for each t ∈ {1, . . . , T}. As in
Section 4, we assume that X admits a superreplication strategy at date 0.
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Market-consistent prices

To streamline the proof of the dual characterization of market-consistent prices and, later, of
market-consistent exercise strategies, it is useful to start by recalling a classical notion from the
theory of optimal stopping.

Definition 6.4. Let t ∈ {0, . . . , T − 1} and Q ∈ M. We say that σ ∈ Tt is Q-optimal if

EQ[Xσ|Ft] = ess sup
τ∈Tt

EQ[Xτ |Ft].

The set of such exercise strategies is denoted by T Q
t .

It is well known, e.g., [6, Theorem 6.18, Proposition 6.20, Theorem 6.21], or can be immediately
derived by mirroring the proof that τ−t and τ+t are lower/upperbound pricing strategies in Theorem
5.3 and Theorem 5.6, that there exist optimal exercise strategies under any equivalent martingale
measure.

Proposition 6.5. Let t ∈ {0, . . . , T − 1} and Q ∈ M. Then, τQ,−
t , τQ,+

t ∈ T Q
t where

τQ,−
t := min

{
u ∈ {t, . . . , T} ; Xu = ess sup

τ∈Tu
EQ[Xτ |Fu]

}
,

τQ,+
t := min

{
u ∈ {t, . . . , T − 1} ; Xu > ess sup

τ∈Tu+1

EQ[Xτ |Fu]

}
∧ T.

In addition, τQ,−
t = ess inf T Q

t and τQ,+
t = ess sup T Q

t .

The next result records the desired characterization of market-consistent prices in terms of equiv-
alent martingale measures.

Theorem 6.6. For every t ∈ {0, . . . , T − 1} the following statements hold:

(i) MCPt(X) = {ess supτ∈Tt EQ[Xτ |Ft] ; Q ∈ M}.

(ii) π+
t (X) = ess supQ∈M ess supτ∈Tt EQ[Xτ |Ft].

(iii) π−
t (X) = ess infQ∈M ess supτ∈Tt EQ[Xτ |Ft].

Proof. Clearly, (ii) and (iii) follow from (i). To show the inclusion “⊃” in (i), take any Q ∈ M
and set P = ess supτ∈Tt EQ[Xτ |Ft]. Take α ∈ S0

t and A ∈ Ft such that VT (α) ⪇ Xσ on A for some
σ ∈ Tt and observe that

Vt(α) = EQ[VT (α)|Ft] ⪇ EQ[Xσ|Ft] ≤ P on A,

showing that P is a market-consistent seller price for X at date t. Assume now that VT (α) ⪈ XτQt
on A. In the same vein we obtain

Vt(α) = EQ[VT (α)|Ft] ⪈ EQ[XτQt
|Ft] = P on A,

showing that P is a market-consistent buyer price for X at date t.
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We turn to establishing the inclusion “⊂” in (i). Take an arbitrary P ∈ MCPt(X). Since P ∈
MCP b

t,T (Xσ) for some σ ∈ Tt, it follows from Theorem 6.2 that there is Q ∈ M such that

P ≤ EQ[Xσ|Ft] ≤ ess sup
τ∈Tt

EQ[Xτ |Ft]. (6.4)

Since P ∈ MCP s
t,T (Xτ−t

), it follows again from Theorem 6.2 that there is Q̃ ∈ M such that

P ≥ EQ̃[Xτ−t
|Ft]. (6.5)

To show that the right-hand side in (6.5) can be bounded from below by an essential supremum
as in (6.4), we show by backward recursion that for each u ∈ {t, . . . , T} and for each Q ∈ M there
exists Q∗ ∈ M such that

EQ[Xτ−u
|Fu] ≥ ess sup

τ∈Tu
EQ∗ [Xτ |Fu]. (6.6)

The statement clearly holds if u = T . So assume it holds for u + 1 for some u ∈ {t, . . . , T − 1}
and set A = {τ−u = u}. By definition of τ−u , we see that Xu is a market-consistent seller price for
Xu+1, hence for Xτ−u+1

, on A at date u. It then follows from Theorem 6.2 that there is Q1 ∈ M
such that

EQ[Xτ−u
|Fu] = Xu ≥ EQ1 [Xτ−u+1

|Fu] = EQ1 [EQ1 [Xτ−u+1
|Fu+1]|Fu] on A.

Combining the induction hypothesis and point (i) in Lemma 6.1 yields Q2,QA ∈ M such that

EQ[Xτ−u
|Fu] ≥ ess sup

τ∈Tu+1

EQ1 [EQ2 [Xτ |Fu+1]|Fu] = ess sup
τ∈Tu+1

EQA
[Xτ |Fu] on A.

Bearing in mind that Xτ−u
= Xu on A, we conclude that

EQ[Xτ−u
|Fu] ≥ ess sup

τ∈Tu
EQA

[Xτ |Fu] on A. (6.7)

Note that τ−u = τ−u+1 on Ac. Then,

EQ[Xτ−u
|Fu] = EQ[Xτ−u+1

|Fu] = EQ[EQ[Xτ−u+1
|Fu+1]|Fu] on Ac.

Combining the induction hypothesis and point (i) in Lemma 6.1 yields Q3,QAc ∈ M such that

EQ[Xτ−u
|Fu] ≥ ess sup

τ∈Tu+1

EQ[EQ3 [Xτ |Fu+1]|Fu] = ess sup
τ∈Tu+1

EQAc [Xτ |Fu] on Ac.

In particular, using that τ−u ∈ T −
u , it follows from Theorem 6.2 that

EQ[Xτ−u
|Fu] ≥ EQAc [Xτ−u+1

|Fu] = EQAc [Xτ−u
|Fu] ≥ π−

u,T (Xτ−u
) = π−

u (X) ≥ Xu on Ac.

As a consequence, we conclude that

EQ[Xτ−u
|Fu] ≥ ess sup

τ∈Tu
EQAc [Xτ |Fu] on Ac. (6.8)

Combining (6.7) and (6.8) with point (ii) in Lemma 6.1 yields (6.6) and concludes the recursion
argument. We can now derive from (6.5) and (6.6) that there is Q ∈ M such that

P ≥ ess sup
τ∈Tt

EQ[Xτ |Ft]. (6.9)
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Set Λt = {λ ∈ Xt ; 0 ≤ λ ≤ 1} and define a map F : Λt → Xt by

F (λ) := ess sup
τ∈Tt

{(1− λ)EQ[Xτ |Ft] + λEQ[Xτ |Ft]}.

Note that F (0) ≤ P ≤ F (1) by (6.4) and (6.9). In view of point (ii) in Lemma 6.1, to conclude
the proof of (i) we verify that F satisfies the conditions of the Intermediate Value Theorem 6.9.
Conditionality is immediate. To show sequential monotone continuity, take a sequence (λn) ⊂ Λt

converging to some λ ∈ Λt almost surely from above or below. There is a sequence (µn) ⊂ Λt that
converges to 0 almost surely such that λn = µnλ1 + (1− µn)λ for every n ∈ N. Then,

lim inf
n→∞

F (λn) ≥ ess sup
τ∈Tt

lim inf
n→∞

(
(1− λn)EQ[Xτ |Ft] + λnEQ[Xτ |Ft]

)
= ess sup

τ∈Tt

(
(1− λ)EQ[Xτ |Ft] + λEQ[Xτ |Ft]

)
= F (λ)

= lim sup
n→∞

(
µnF (λn) + (1− µn)F (λ)

)
≥ lim sup

n→∞
F (λn).

It follows that F (λn) → F (λ) almost surely as desired.

Market-consistent exercise strategies

We conclude the paper with a representation result for market-consistent exercise strategies show-
ing that such stopping strategies correspond precisely to optimal stopping times under equivalent
martingale measures. This also yields a dual representation of the first and last exercise times.

Theorem 6.7. Let t ∈ {0, . . . , T − 1}. For every τ ∈ Tt the following statements are equivalent:

(a) τ ∈ T MC
t .

(b) τ ∈ T Q
t for some Q ∈ M.

In addition, the following statements hold:

(i) τ−t = ess infQ∈M τQ,−
t .

(ii) τ+t = ess supQ∈M τQ,+
t .

Proof. Assertions (i) and (ii) follow by combining Theorem 5.3 with the equivalence between (a)
and (b). To show that (a) implies (b), take σ ∈ T MC

t . It follows from market consistency that, for
every u ∈ {t, . . . , T − 1}, there exist Q1

u,Q2
u ∈ M such that

Xu = ess sup
τ∈Tu

EQ1
u
[Xτ |Fu] on {σ = u}, Xu ≤ EQ2

u
[Xσ|Fu] on {σ ≥ u+ 1}.

For every u ∈ {t, . . . , T − 1} we can apply point (ii) in Lemma 6.1 to obtain Qu ∈ M such that

Xu = ess sup
τ∈Tu

EQu [Xτ |Fu] on {σ = u}, Xu ≤ EQu [Xσ|Fu] on {σ ≥ u+ 1}.

By point (i) in Lemma 6.1, we find Q ∈ M such that, for every τ ∈ Tt,

EQ[Xτ |Ft] = EQt [EQt+1 [· · ·EQT−1
[Xτ |FT−1] · · · |Ft+1|Ft].
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As a result, for every u ∈ {t, . . . , T − 1} we get

Xu = ess sup
τ∈Tu

EQ[Xτ |Fu] on {σ = u}, Xu ≤ EQ[Xσ|Fu] on {σ ≥ u+ 1}. (6.10)

We show by backward induction that for every u ∈ {t, . . . , T}

EQ[Xσ|Fu] = ess sup
τ∈Tu

EQ[Xτ |Fu] on {σ ≥ u}. (6.11)

The statement holds if u = T . If it holds for u+ 1 for some u ∈ {t, . . . , T − 1}, then on {σ ≥ u}

EQ[Xσ|Fu] = 1{σ=u}Xu + 1{σ≥u+1}EQ[EQ[Xσ|Fu+1]|Fu]

≥ 1{σ=u}Xu + 1{σ≥u+1} ess sup
τ∈Tu+1

EQ[Xτ |Fu] = ess sup
τ∈Tu

EQ[Xτ |Fu].

The inequality follows from the induction hypothesis and the last equality from (6.10). This
concludes the induction argument and establishes (6.11) and, hence, σ ∈ T Q

t .

To show that (b) yields (a), take σ ∈ T Q
t for someQ ∈ M. We claim that for each u ∈ {t, . . . , T−1}

EQ[Xσ|Fu] = ess sup
τ∈Tu

EQ[Xτ |Fu] on {σ ≥ u}. (6.12)

To the contrary, let u ∈ {t, . . . , T − 1} and τ ∈ Tu be such that the event A = {EQ[Xτ |Fu] >
EQ[Xσ|Fu]}∩{σ ≥ u} has strictly positive probability. Define ρ = 1Aτ+1Acσ ∈ Tt and observe that
EQ[Xρ|Fu] ⪈ EQ[Xσ|Fu]. As a consequence, EQ[Xρ|Ft] ⪈ EQ[Xσ|Ft] as well, which contradicts the
Q-optimality of σ. It then follows from (6.12) that, for every u ∈ {t, . . . , T − 1},

Xu = EQ[Xσ|Fu] = ess sup
τ∈Tu

EQ[Xτ |Fu] ≥ ess sup
τ∈Tu+1

EQ[Xτ |Fu] on {σ = u},

implying that Xu is a market-consistent seller price for Xu+1 on {σ = u}, as well as

Xu = EQ[Xu|Fu] ≤ ess sup
τ∈Tu

EQ[Xτ |Fu] = EQ[Xσ|Fu] on {σ > u},

implying that Xu is a market-consistent buyer price for Xσ on {σ > u}. This gives τ ∈ T MC
t .

Remark 6.8. The key to characterize when the subreplication price of an American option is an
arbitrage-free price in [1] was to work with the stopping time defined for t ∈ {0, . . . , T − 1} by

τ̂t := ess inf
Q∈M

τQ,−
t = ess inf

Q∈M
T Q
t .

By Theorem 6.7, this exercise strategy is always market consistent and coincides with the first
exercise time τ−t . In line with our approach, starting from τ−t highlights the economic rationale
and the identity τ−t = τ̂t establishes a dual representation of the first exercise time in the absence
of which τ̂t would not carry any compelling economic interpretation.

34



A final remark about representation theorems

We conclude by emphasizing a natural way to think about the above representation theorems that
highlights the similarities between representation theorems for market-consistent strategies and
market consistent prices. If P is a market-consistent price for the American option X at date t,
our representation theorem for market-consistent prices tells us that

ess sup
τ∈Tt

EQ[Xτ |Ft]

for some equivalent martingale measure Q. This allows us to interpret P as the unique price that
X would have in a hypothetical “complete market”, let us call it the Q-market, where every payoff
is priced as an expectation with respect to Q, i.e., P is the most expensive payoff stream in the
basket when priced with respect to Q. We use quotation marks because, unless the state space was
finite, this market would not qualify as one of the markets studied here because it would feature
infinitely many basic securities. Similarly, if τ is a market-consistent exercise strategy starting at
t, then there would be an equivalent martingale measure Q such that τ is Q-optimal, meaning

EQ[Xσ|Ft] = ess sup
τ∈Tt

EQ[Xτ |Ft].

This allows us to interpret market-consistent exercise strategies as strategies that are optimal in
the hypothetical Q-market described above.

Appendix: A conditional Intermediate Value Theorem

In this appendix we prove a simple conditional version of the Intermediate Value Theorem needed
for the representation of market-consistent prices of American options. Other conditional versions
of the same result can be found in [5] and [7]. For each t ∈ {0, . . . , T − 1} we set Λt := {λ ∈
Xt ; 0 ≤ λ ≤ 1}.

Theorem 6.9 (Conditional Intermediate Value Theorem). Let t ∈ {0, . . . , T − 1} and assume a
map F : Λt → Xt satisfies the following conditions:

(1) Sequential monotone continuity: F (λn) → F (λ) almost surely for every sequence (λn) ⊂ Λt

that converges from above or below to λ ∈ Λt almost surely.

(2) Conditionality: F (λ11A + λ21Ac) = F (λ1)1A + F (λ2)1Ac for all A ∈ Ft and λ1, λ2 ∈ Λt.

Then, for every P ∈ Xt such that F (0) ≤ P ≤ F (1) there exists λ ∈ Λt such that F (λ) = P .

Proof. Set a1 := 0, b1 := 1 and µ1 :=
a1+b1

2
= 1

2
. We recursively define for n ∈ N

An := {F (µn) > P}, an+1 := an1An + µn1Ac
n
, bn+1 := µn1An + bn1Ac

n
, µn+1 :=

an+1 + bn+1

2
.

The sequences (an) and (bn) are contained in Λt and are increasing, respectively decreasing. It
follows that there exists a, b ∈ Λt such that an ↑ a and bn ↓ b almost surely. Since bn+1 − an+1 =
bn−an

2
= 1

2n
for every n ∈ N, we conclude that a = b. Note also that F (an) ≤ P ≤ F (bn) for every

n ∈ N by conditionality. As a result of sequential monotone continuity,

F (a) = lim
n→∞

F (an) ≤ P ≤ lim
n→∞

F (bn) = F (b) = F (a),

which yields P = F (a) and concludes the proof.
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