Uniform Rotundity and Best Approximation

Josef Berger ${ }^{\text {a }}$, Douglas S. Bridges ${ }^{\text {b }}$, and Gregor Svindland ${ }^{\text {c }}$
${ }^{\text {a }}$ Ludwig-Maximilians-Universität München, Germany
${ }^{\mathrm{b}}$ University of Canterbury, New Zealand
${ }^{c}$ Leibniz Universität Hannover

February 12, 2024

Abstract

Working constructively throughout, we prove that if K is an inhabited, complete, uniformly rotund subset of a normed space X, L is a located convex subset of X containing at least two distinct points, and $d \equiv \inf _{x \in K} \rho(x, L)$ exists, then there exists a strongly unique point $x_{\infty} \in K$ such that $\rho\left(x_{\infty}, L\right)=$ d. To do so, we introduce the notion of sufficient convexity for real-valued functions on a metric space, and discuss the attainment of the infimum of such a function when that infimum exists. Keywords: sufficiently convex functions, uniform rotundity, separation theorem for convex sets

The framework of this paper is Bishop-style constructive mathematics (BISH), which, for all practical purposes, can be viewed as mathematics developed using intuitionistic logic and based on an appropriate foundation such as CZF [1], Martin-Löf type theory [8, 9], or constructive Morse set theory [5]. Thus all our proofs embody algorithms that can be extracted for computer implementation (see, for example, [7, 10, 11]).

We call a mapping f of a metric space X into \mathbf{R} sufficiently convex if for each $\varepsilon>0$ there exists $\delta>0$ such that for all $x, x^{\prime} \in X$ with $\rho\left(x, x^{\prime}\right)>\varepsilon$, there exists $z \in X$ such that $f(z)+\delta<\max \left\{f(x), f\left(x^{\prime}\right)\right\}$. Here ρ denotes the metric on X.

Proposition 1 The following are equivalent conditions on a mapping f of a metric space X into \mathbf{R}, such that $\mu \equiv \inf \mathrm{f}$ exists.
(i) f is sufficiently convex.
(ii) for each $\varepsilon>0$ there exists $\tilde{\delta}>0$ such that if $x, x^{\prime} \in X, f(x)<\mu+\tilde{\delta}$, and $f\left(x^{\prime}\right)<\mu+\tilde{\delta}$, then $\rho\left(x, x^{\prime}\right)<\varepsilon$.

Proof. First suppose that f is sufficiently convex. Given $\varepsilon>0$, pick $\delta>0$ such that if $x, x^{\prime} \in X$ and $\rho\left(x, x^{\prime}\right)>\varepsilon / 2$, then $f(z)+\delta<\max \left\{f(x), f\left(x^{\prime}\right)\right\}$ for
some $z \in X$. Let $\tilde{\delta}:=\delta$ and consider $x, x^{\prime} \in X$ such that $f(x)<\mu+\delta$, and $f\left(x^{\prime}\right)<\mu+\delta$. If $\rho\left(x, x^{\prime}\right)>\varepsilon / 2$, then there exists $z \in X$ such that

$$
f(z)+\delta<\max \left\{f(x), f\left(x^{\prime}\right)\right\}<\mu+\delta
$$

and therefore $\mathrm{f}(z)<\mu$, which is absurd. Hence $\rho\left(x, x^{\prime}\right) \leq \varepsilon / 2<\varepsilon$.
Conversely, suppose that f satisfies condition (ii). Given $\varepsilon>0$, choose $\tilde{\delta}$ as in that condition. If $x, x^{\prime} \in X$ and $\rho\left(x, x^{\prime}\right)>\varepsilon$, then $\max \left\{f(x), f\left(x^{\prime}\right)\right\} \geq \mu+\tilde{\delta}$. By the definition of μ, there exists $z \in X$ such that

$$
f(z)<\mu+\frac{\tilde{\delta}}{2}
$$

and hence

$$
f(z)+\frac{\tilde{\delta}}{2}<\mu+\tilde{\delta} \leq \max \left\{f(x), f\left(x^{\prime}\right)\right\}
$$

Therefore, we may set $\delta:=\frac{\tilde{\delta}}{2}$.
The following result is was communicated to us by Peter Aczel many years ago.

Proposition 2 Let X be a complete metric space, and let f be a sequentially continuous sufficiently convex mapping of \mathbf{X} into \mathbf{R} such that $\mu \equiv \inf \mathrm{f}$ exists. Then there exists $\xi \in X$ such that $f(\xi)=\mu$. Moreover, if $x \in X$ and $x \neq \xi$, then $\mathrm{f}(\mathrm{x})>\mu$.

Proof. In view of Proposition 1. we can construct a strictly decreasing sequence $\left(\delta_{n}\right)_{n \geqslant 1}$ of positive numbers such that for each n, if $x, x^{\prime} \in X, f(x)<\mu+\delta_{n}$, and $f\left(x^{\prime}\right)<\mu+\delta_{n}$, then $\rho\left(x, x^{\prime}\right)<2^{-n}$. For each n, pick $x_{n} \in X$ such that $f\left(x_{n}\right)<$ $\mu+\delta_{n}$. Then $\rho\left(x_{m}, x_{n}\right)<2^{-n}$ for all $m \geqslant n$, so $\left(x_{n}\right)_{n \geqslant 1}$ is a Cauchy sequence in X. Since X is complete, $\xi \equiv \lim _{n \rightarrow \infty} x_{n}$ exists in X. By the sequential continuity of $f, \mu \leq f(\xi) \leq \mu$, so $f(\xi)=\mu$. Moreover, if $x \in X$ and $\rho(x, \xi)>0$, then, with $\varepsilon:=\frac{1}{2} \rho(x, \xi)$ and $\delta>0$ as in the definition of 'sufficiently convex', there exists $z \in X$ such that

$$
\mu<\mu+\delta \leq f(z)+\delta<\max \{f(\xi), f(x)\}=\max \{\mu, f(x)\}=f(x)
$$

A subset L of a metric space is located if for all $x \in X$ the distance

$$
\rho(x, L):=\inf \{\rho(x, y) \mid y \in L\}
$$

exists.
Lemma 3 Let L be an inhabited, located, and convex subset of a normed space X. Then for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{t} \in[0,1]$,

$$
\rho\left(t x+(1-t) x^{\prime}, L\right) \leq t \rho(x, L)+(1-t) \rho\left(x^{\prime}, L\right)
$$

Proof. Given $x, x^{\prime} \in X, t \in[0,1]$, and $\varepsilon>0$, pick $y, y^{\prime} \in L$ such that

$$
\|x-y\|<\rho(x, L)+\varepsilon \text { and }\left\|x^{\prime}-y^{\prime}\right\|<\rho\left(x^{\prime}, L\right)+\varepsilon .
$$

Then

$$
\begin{aligned}
\rho\left(\mathrm{t} x+(1-\mathrm{t}) \mathrm{x}^{\prime}, \mathrm{L}\right) & \leq\left\|\mathrm{t} x+(1-\mathrm{t}) x^{\prime}-\mathrm{t} y-\left(1-\mathrm{t} \mathrm{y}^{\prime}\right)\right\| \\
& \leq \mathrm{t}\|x-\mathrm{y}\|+(1-\mathrm{t})\left\|x^{\prime}-\mathrm{y}^{\prime}\right\| \\
& \leq \mathrm{t} \rho(x, \mathrm{~L})+(1-\mathrm{t}) \rho\left(x^{\prime}, \mathrm{L}\right)+\mathrm{t} \varepsilon+(1-\mathrm{t}) \varepsilon \\
& \leq \mathrm{t} \rho(x, \mathrm{~L})+(1-\mathrm{t}) \rho\left(\mathrm{x}^{\prime}, \mathrm{L}\right)+\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, the result follows.
A normed space X is uniformly convex if for each $\varepsilon>0$ there exists δ with $0<\delta<1$ such that if x, y are elements of X with $\|x\|=1=\|y\|$ and $\|x-y\| \geq \varepsilon$, then $\left\|\frac{1}{2}(x+y)\right\| \leq \delta$. Hilbert spaces, and L_{p} spaces with $p>1$, are uniformly convex [4, page 322, Corollary (3.22)].

Lemma 4 Let X be a uniformly convex normed space. Then for all $\tilde{\varepsilon}>0$ and $M>0$ there exists $\tilde{\delta}>0$ such that if x, y are elements of X with $\|x\|=\|y\| \leq M$ and $\|x-y\| \geq \tilde{\varepsilon}$, then $\left\|\frac{1}{2}(x+y)\right\|+\tilde{\delta} \leq\|x\|$.

Proof. Let $\tilde{\varepsilon}>0$ and consider any $x, y \in X$ such that $\|x\|=\|y\| \leq M$ and $\|x-y\| \geq \tilde{\varepsilon}$. As $\tilde{\varepsilon} \leq\|x-y\| \leq 2\|x\|$, we infer $\|x\|=\|y\| \geq \tilde{\varepsilon} / 2>0$. Set $\varepsilon:=\frac{\tilde{\varepsilon}}{M}$ and compute $\delta \in(0,1)$ as in the definition of uniform convexity. As $x /\|x\|$ and $y /\|y\|$ are unit vectors with

$$
\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|=\frac{1}{\|x\|}\|x-y\| \geq \frac{\tilde{\varepsilon}}{M}=\varepsilon
$$

we obtain

$$
\frac{1}{\|x\|}\left\|\frac{1}{2}(x+y)\right\| \leq \delta
$$

Hence, using that $\|x\| \geq \tilde{\varepsilon} / 2$,

$$
\left\|\frac{1}{2}(x+y)\right\| \leq \delta\|x\| \leq\|x\|-(1-\delta)\|x\| \leq\|x\|-(1-\delta) \frac{\tilde{\varepsilon}}{2} .
$$

Set $\tilde{\delta}:=(1-\delta) \frac{\tilde{\varepsilon}}{2}$.

Lemma 5 Let X be a uniformly convex normed space, and let $\mathrm{K} \subset \mathrm{X}$ be inhabited, convex, and norm bounded. Then for any $\varepsilon>0$ there exists $\delta>0$ such that for all $x, x^{\prime} \in K$ with $\left\|x-x^{\prime}\right\| \geq \varepsilon$ we have $\left\|\frac{1}{2}\left(x+x^{\prime}\right)\right\|+\delta \leq \max \left\{\|x\|,\left\|x^{\prime}\right\|\right\}$. In particular $\mathrm{f}(\mathrm{x})=\|\mathrm{x}\|, \mathrm{x} \in \mathrm{K}$, defines a sufficiently convex function.

Proof. Let $\varepsilon>0$ and let $M>0$ be a norm bound for K. For $\tilde{\varepsilon}:=\varepsilon / 2$ and M compute $\tilde{\delta}>0$ as in Lemma 4. Choose $\delta>0$ with $\delta<\min \{\varepsilon / 4, \tilde{\delta} / 2\}$ and consider $x, x^{\prime} \in K$ with $\left\|x-x^{\prime}\right\| \geq \varepsilon$. Either $\left|\|x\|-\left\|x^{\prime}\right\|\right|>\delta$ or $\left|\|x\|-\left\|x^{\prime}\right\|\right|<2 \delta$. In the first case note that $\min \left\{\|x\|,\left\|x^{\prime}\right\|\right\}<\max \left\{\|x\|,\left\|x^{\prime}\right\|\right\}-\delta$ and thus

$$
\left\|\frac{1}{2}\left(x+x^{\prime}\right)\right\| \leq \frac{1}{2}\left(\max \left\{\|x\|,\left\|x^{\prime}\right\|\right\}+\min \left\{\|x\|,\left\|x^{\prime}\right\|\right\}\right)<\max \left\{\|x\|,\left\|x^{\prime}\right\|\right\}-\frac{\delta}{2}
$$

Now assume the second case. Then by the triangle inequality,

$$
\varepsilon \leq\left\|x-x^{\prime}\right\| \leq 2(\|x\|+\delta) \quad \text { and } \quad \varepsilon \leq\left\|x-x^{\prime}\right\| \leq 2\left(\left\|x^{\prime}\right\|+\delta\right)
$$

implying that $\min \left\{\|x\|,\left\|x^{\prime}\right\|\right\}>0$. Consider $y:=\frac{\|x\|}{\left\|x^{\prime}\right\|} x^{\prime}$, and note that

$$
\left\|x^{\prime}-y\right\|=\left|\left\|x^{\prime}\right\|-\|x\|\right|<2 \delta, \quad\|y\|=\|x\| \leq M
$$

and

$$
\|x-y\| \geq\left\|x-x^{\prime}\right\|-\left\|x^{\prime}-y\right\|>\varepsilon-2 \delta>\frac{\varepsilon}{2}=\tilde{\varepsilon}
$$

By choice of $\tilde{\delta}$ we have

$$
\begin{aligned}
\|x\| & \geq \frac{1}{2}\|x+y\|+\tilde{\delta} \geq \frac{1}{2}\left(\left\|x+x^{\prime}\right\|-\left\|x^{\prime}-y\right\|\right)+\tilde{\delta} \\
& >\frac{1}{2}\left\|x+x^{\prime}\right\|-\delta+\tilde{\delta}>\frac{1}{2}\left\|x+x^{\prime}\right\|+\delta .
\end{aligned}
$$

As $\|x\| \leq \max \left\{\|x\|,\left\|x^{\prime}\right\|\right\}$, the lemma is proved.

Theorem 6 Let X be a uniformly convex normed space, and let $\mathrm{K} \subset \mathrm{X}$ be an inhabited, complete, and convex set. Moreover, let $\mathrm{y} \in \mathrm{X}$ and assume that

$$
\mu:=\inf \{\|y-x\|: x \in K\}
$$

exists. Then there exists $\mathrm{x}_{0} \in \mathrm{~K}$ such that $\left\|\mathrm{y}-\mathrm{x}_{0}\right\|=\mu$. If $\mathrm{x}^{\prime} \in \mathrm{K}$ such that $x^{\prime} \neq x_{0}$, then $\left\|y-x^{\prime}\right\|>\mu$.

Proof. As the algebraic difference $K-\{y\}$ inherits all properties from K, we may assume that $y=0$. Pick $z \in K$. Then

$$
\mu=\inf \{\|x\|: x \in K,\|x\| \leq M\}
$$

where $M>0$ satisfies $M>\|z\|$. The set $\tilde{K}:=\{x \in K:\|x\| \leq M\}$ is inhabited, convex, bounded, and complete. Therefore, the mapping $x \mapsto\|x\|$ on \tilde{K} is sufficiently convex by Lemma 5 and has a unique minimum point $x_{0} \in \tilde{K}$ by Proposition 2

An immediate consequence of Theorem 6 is the proof of 4, Problem 11, p. 391], namely:

Corollary 7 Let B be a uniformly convex Banach space, and let $\mathrm{K} \subset \mathrm{B}$ be a closed, located, and convex set. Then each $\mathrm{y} \in \mathrm{B}$ has a unique closest point $x_{0} \in K$, i.e. $\left\|y-x_{0}\right\|=\rho(y, K)$, and if $x^{\prime} \in K$ is such that $x^{\prime} \neq x_{0}$, then $\left\|y-x^{\prime}\right\|>\rho(y, K)$.

A subset C of a normed space X is uniformly rotund if it is convex and for each $\varepsilon>0$ there exists $\delta>0$ such that if $x, x^{\prime} \in C$ and $\left\|x-x^{\prime}\right\| \geq \varepsilon$, then $\frac{1}{2}\left(x+x^{\prime}\right)+z \in C$ for all $z \in X$ with $\|z\| \leq \delta$.
Proposition 8 A normed linear space X is uniformly convex if and only if its closed unit ball B is uniformly rotund.

Proof. Suppose that X is uniformly convex, and let $\varepsilon>0$. Compute $\delta>0$ for ε and $K=B$ as in Lemma 5. Then for all $x, x^{\prime} \in B$ such that $\left\|x-x^{\prime}\right\| \geq \varepsilon$ and any $z \in X$ with $\|z\| \leq \delta$ it follows that

$$
\left\|\frac{1}{2}\left(x+x^{\prime}\right)+z\right\| \leq\left\|\frac{1}{2}\left(x+x^{\prime}\right)\right\|+\delta \leq \max \left\{\|x\|,\left\|x^{\prime}\right\|\right\} \leq 1 .
$$

Hence, $\frac{1}{2}\left(x+x^{\prime}\right)+z \in B$, so B is uniformly rotund.
Conversely, suppose that B is uniformly rotund, let $\varepsilon>0$, and choose $\delta<1$ as in the definition of uniformly rotund. If x, y are unit vectors of X with $\|x-y\| \geq \varepsilon$, then $\left\|\frac{1}{2} \delta(x+y)\right\| \leq \delta$, so

$$
(1+\delta)\left\|\frac{1}{2}(x+y)\right\|=\left\|\frac{1}{2}(x+y)+\frac{1}{2} \delta(x+y)\right\| \leq 1
$$

and therefore $\left\|\frac{1}{2}(x+y)\right\| \leq(1+\delta)^{-1}<1$.

Proposition 9 Let K be an inhabited and uniformly rotund subset of a normed space X , and L an inhabited, located, and convex subset of X that is disjoint from K . Then $\mathrm{f}(\mathrm{x}) \equiv \rho(\mathrm{x}, \mathrm{L})$ defines a sufficiently convex function on K .

Proof. For $\varepsilon>0$ let $\delta>0$ as in the definition of 'uniform rotundity' for K, and let $\xi:=\delta / 2$. Consider $x, x^{\prime} \in K$ such that $\left\|x-x^{\prime}\right\| \geq \varepsilon$. Let $u:=\frac{1}{2}\left(x+x^{\prime}\right)$ and fix $v \in \mathrm{~L}$ such that $\|v-\mathfrak{u}\|<\rho(\mathfrak{u}, \mathrm{L})+\xi$. Note that $\|v-u\| \geq \delta$, because by choice of δ, if we had $\|v-u\|<\delta$, then $v=\mathfrak{u}+(v-u) \in \mathrm{K}$ which is absurd since K and L are disjoint. Let

$$
z:=\mathfrak{u}+\frac{\delta}{\|v-\mathfrak{u}\|}(v-\mathfrak{u}) .
$$

Then $\|z-\mathfrak{u}\|=\delta$, and therefore $z=\mathfrak{u}+(z-\mathfrak{u}) \in$ K. Recalling Lemma 3. we have

$$
\begin{aligned}
\mathrm{f}(z)+\xi & \leq\|v-z\|+\xi=\left(1-\frac{\delta}{\|\mathfrak{u}-v\|}\right)\|v-u\|+\xi \\
& =\|v-u\|-\xi<\mathrm{f}(\mathrm{u}) \leq \max \left\{f(x), \mathrm{f}\left(\mathrm{x}^{\prime}\right)\right\} .
\end{aligned}
$$

To see that in Proposition 9 we cannot replace uniform rotundity by mere convexity, take X to be the Euclidean plane $\mathbf{R}^{2}, K=\left\{(a, b) \in \mathbf{R}^{2}: a \leq 0\right\}$, and $L=\left\{(a, b) \in \mathbf{R}^{2}: a \geq 1\right\} ;$ we have

$$
\inf _{x \in K} \rho(x, L)=1=\|(0, b)-(1, b)\|
$$

for all $b \in \mathbf{R}$, so, in view of Proposition $2, x \mapsto \rho(x, L)$ is not sufficiently convex on K.

Recall here Bishop's Lemma [6, Proposition 3.1.1]:
Let Y be an inhabited, complete, located subset of a metric space X. Then for each $x \in X$ there exists $y \in Y$ such that if $x \neq y$, then $\rho(x, Y)>0$.

Theorem 10 Let K be an inhabited, complete, and uniformly rotund subset of a normed space X , and L an inhabited, located, and convex subset of X that is disjoint from K. Suppose also that $\mathrm{d} \equiv \inf _{x \in \mathrm{~K}} \rho(\mathrm{x}, \mathrm{L})$ exists. Then there exists $\xi \in \mathrm{K}$ such that (i) $\rho(\xi, \mathrm{L})=\mathrm{d}$ and (ii) $\rho(\mathrm{x}, \mathrm{L})>\mathrm{d}$ for all $x \in \mathrm{~K}$ with $\mathrm{x} \neq \xi$. If, in addition, L is complete, then there exists $\mathrm{y} \in \mathrm{L}$ such that if $\xi \neq \mathrm{y}$, then $\mathrm{d}>0$.

Proof. By Proposition 9, $f(x) \equiv \rho(x, L)$ defines a sufficiently convex, function on K. Since K is complete and d exists, Proposition 2 produces $\xi \in K$ with properties (i) and (ii). If also L is complete, then we complete the proof by invoking Bishop's Lemma.

Lemma 11 Let Y be an inhabited and convex subset of a Hilbert space H , and a a point of H such that $\mathrm{d}=\rho(\mathrm{a}, \mathrm{Y})$ exists. Then there exists $\mathrm{b} \in \overline{\mathrm{Y}}$ such that $\|\mathrm{a}-\mathrm{b}\|=\mathrm{d}$. Moreover,
(i) $\|\mathrm{a}-\mathrm{y}\|>\mathrm{d}$ whenever $\mathrm{y} \in \overline{\mathrm{Y}}$ and $\mathrm{y} \neq \mathrm{b}$;
(ii) $\langle\mathrm{a}-\mathrm{b}, \mathrm{b}-\mathrm{y}\rangle \geq 0$, and therefore $\langle\mathrm{a}-\mathrm{b}, \mathrm{a}-\mathrm{y}\rangle \geq \mathrm{d}^{2}$, for all $\mathrm{y} \in \mathrm{Y}$.

Proof. This is a well-known result on Hilbert space. For instance Lemma 1 in [2] proves the existence of $\mathrm{b} \in \overline{\mathrm{Y}}$ such that $\|\mathrm{a}-\mathrm{b}\|=\mathrm{d}$ and (ii) holds. Conclusion (i) follows from (ii) since for all $y \in Y$
$\|a-y\|^{2}=\|a-b+b-y\|^{2}=\|a-b\|^{2}+\|b-y\|^{2}+2\langle a-b, b-y\rangle \geq d^{2}+\|b-y\|^{2}$.

Theorem 12 Let K be an inhabited, closed, and uniformly rotund subset of a Hilbert space H , and L an inhabited, closed, located, and convex subset of H that is disjoint from K. Suppose also that $\mathrm{d} \equiv \inf _{\mathrm{x} \in \mathrm{K}} \rho(\mathrm{x}, \mathrm{L})$ exists. Then there exist $\mathrm{x}_{\infty} \in \mathrm{K}$ and $\mathrm{y}_{\infty} \in \mathrm{L}$ such that $\left\|\mathrm{x}_{\infty}-\mathrm{y}_{\infty}\right\|=\mathrm{d}$. Moreover,
(i) $\|\mathrm{x}-\mathrm{y}\|>\mathrm{d}$ whenever $\mathrm{x} \in \mathrm{K}$ and $\mathrm{y} \in \mathrm{L}$ and either $\mathrm{x} \neq \mathrm{x}_{\infty}$ or $\mathrm{y} \neq \mathrm{y}_{\infty}$;
(ii) $\left\langle x_{\infty}-y_{\infty}, y_{\infty}-y\right\rangle \geq 0$, and therefore $\left\langle x_{\infty}-y_{\infty}, x_{\infty}-y\right\rangle \geq d^{2}$, for all $y \in L$.

Proof. By Theorem 10 there exists $x_{\infty} \in K$ such that $d=\rho\left(x_{\infty}, L\right)$. By Lemma 11 there exists $y_{\infty} \in L$ such that $\left\|x_{\infty}-y_{\infty}\right\|=\rho\left(x_{\infty}, L\right)$ and properties (i) and (ii) hold.

Note that also in Theorem 12 we cannot replace uniformly rotundity by mere convexity: Consider $H=\mathbf{R}^{2}$ and $K=\left\{(a, b) \in \mathbf{R}^{2}: b \geq e^{a}+1\right\}$ and $L=\left\{(a, b) \in R^{2}: b \leq-e^{a}-1\right\}$. Then $d=2$, but there is no $x \in K$ and $y \in L$ such that $\|x-y\|=2$.

Theorem 12 leads us to a new constructive separation theorem where the separating linear functional is constructed as the difference of the points of closest distance.

Theorem 13 Let K be an inhabited, closed, located, and uniformly rotund subset of a Hilbert space H , and L an inhabited, closed, located, and convex subset of H . Suppose that $\mathrm{d} \equiv \inf _{\mathrm{x} \in \mathrm{K}} \rho(\mathrm{x}, \mathrm{L})$ exists and is positive, let $\mathrm{x}_{\infty} \in \mathrm{K}$ and $\mathrm{y}_{\infty} \in \mathrm{L}$ be as in Theorem 12, and let $\mathrm{p}=\mathrm{x}_{\infty}-\mathrm{y}_{\infty}$. Then

$$
\langle\mathrm{p}, \mathrm{x}-\mathrm{y}\rangle \geq \mathrm{d}^{2} \quad \text { for all } \mathrm{x} \in \mathrm{~K} \text { and } \mathrm{y} \in \mathrm{~L} .
$$

The normed linear functional $u(x)=\left\langle\mathrm{d}^{-1} \mathrm{p}, \mathrm{x}\right\rangle, \mathrm{x} \in \mathrm{H}$, satisfies $\|\mathrm{u}\|=1$ and $\mathfrak{u}(\mathrm{x}) \geq \mathfrak{u}(\mathrm{y})+\mathrm{d}$ for all $\mathrm{x} \in \mathrm{K}$ and $\mathrm{y} \in \mathrm{L}$. In particular $\mathfrak{u}\left(\mathrm{x}_{\infty}\right) \leq \mathfrak{u}(\mathrm{x})$ for all $x \in K$, where $u\left(x_{\infty}\right)<u(x)$ if $x \neq x_{\infty}$, and $u\left(y_{\infty}\right) \geq u(y)$ for all $y \in L$.

Proof. Construct $x_{\infty} \in K$ and $y_{\infty} \in L$ as in Theorem 12, and let

$$
p=x_{\infty}-y_{\infty} .
$$

Then, by Theorem 12 , for all $y \in Y$ we have

$$
\left\langle p, x_{\infty}-y\right\rangle=\left\langle x_{\infty}-y_{\infty}, x_{\infty}-y\right\rangle \geq d^{2}
$$

On the other hand, since K is located Lemma 11 provides the existence of a unique $b \in K$ such that $\rho\left(y_{\infty}, K\right)=\left\|y_{\infty}-b\right\|$. As $\rho\left(y_{\infty}, K\right)=d=\left\|y_{\infty}-x_{\infty}\right\|$ it follows that indeed $\mathrm{b}=\mathrm{x}_{\infty}$ and thus by Lemma 11 that

$$
\begin{equation*}
\left\langle y_{\infty}-x_{\infty}, x_{\infty}-x\right\rangle \geq 0 \tag{1}
\end{equation*}
$$

for all $x \in K$. Hence, for $x \in K$ and $y \in L$,

$$
\begin{aligned}
\langle p, x-y\rangle & =\left\langle p, x_{\infty}-y\right\rangle+\left\langle p, x-x_{\infty}\right\rangle \\
& \geq d^{2}+\left\langle x_{\infty}-y_{\infty}, x-x_{\infty}\right\rangle \\
& =d^{2}+\left\langle y_{\infty}-x_{\infty}, x_{\infty}-x\right\rangle \geq d^{2}
\end{aligned}
$$

As regards the properties of u, note that $u\left(x_{\infty}\right) \leq u(x)$ for all $x \in K$ follows from (1) and $u\left(y_{\infty}\right) \geq u(y)$ for all $y \in L$ is shown in Theorem 12 (ii). Let $x \in K$ such that $x \neq x_{\infty}$. Then by uniform rotundity of K there is $\delta>0$ such that $\frac{1}{2}\left(x_{\infty}+x\right)+z \in K$ for all $z \in \mathrm{H}$ with $\|z\| \leq \delta$. Let $z:=-\frac{\delta}{\mathrm{d}} p$. Then $\|z\|=\delta$ and therefore $\frac{1}{2}\left(x_{\infty}+x\right)+z \in K$. It follows that $u\left(\frac{1}{2}\left(x_{\infty}+x\right)+z\right) \geq u\left(x_{\infty}\right)$, and thus $u(x)+2 u(z) \geq u\left(x_{\infty}\right)$. As $u(z)=-\frac{\delta}{d^{2}}\langle p, p\rangle=-\delta<0$, we conclude that $u(x)>u\left(x_{\infty}\right)$.

By Theorem 13 we may construct supporting hyperplanes $P_{K}:=\{x \in H$: $\left.\mathfrak{u}(\mathrm{x})=\boldsymbol{u}\left(\mathrm{x}_{\infty}\right)\right\}$ of K and $\mathrm{P}_{\mathrm{L}}:=\left\{\mathrm{x} \in \mathrm{H}: \mathbf{u}(\mathrm{x})=\boldsymbol{u}\left(\mathrm{y}_{\infty}\right)\right\}$ of L , respectively, where P_{K} intersects with K in the unique point x_{∞}, and P_{L} instersects with L in y_{∞}. The uniqueness of the intersection point x_{∞} of P_{K} and K is strong, in the sense that any point $x \in K$ distinct from x_{∞} is bounded away from P_{K} since $u(x)>u\left(x_{\infty}\right)$.

In trying to apply the foregoing theorems, it is natural to think of the case where the uniformly rotund set K is compact. In that case, if K is nontrivial, Corollary 15 below shows that H is finite-dimensional.

Proposition 14 Let X be a normed space, and S be a uniformly rotund subset of X that contains two distinct points. Then S contains an open ball of positive radius.

Proof. Let a, b be two distinct points of S. There exists $\delta>0$ such that if $x, y \in S$ and $\|x-y\| \geq\|a-b\|$, then $\frac{1}{2}(x+y)+z \in S$ for all $z \in X$ with $\|z\| \leq \delta$. Consider the open ball $\mathrm{B}\left(\frac{1}{2}(a+b), \delta\right)$ of radius δ with center $\frac{1}{2}(a+b)$. If $z \in B\left(\frac{1}{2}(a+b), \delta\right)$, then $\left\|z-\frac{1}{2}(a+b)\right\|<\delta$ and thus

$$
z=\frac{1}{2}(a+b)+\left(z-\frac{1}{2}(a+b)\right) \in S
$$

so $B\left(\frac{1}{2}(a+b), \delta\right)$ is the required ball.

Corollary 15 A normed space that has a totally bounded and uniformly rotund subset which contains two distinct points is finite-dimensional.

Proof. This follows from the preceding proposition and [6, Proposition 4.1.13].

References

[1] P. Aczel and M. Rathjen, Notes on Constructive Set Theory, http://www1. maths.leeds.ac.uk/~rathjen/book.pdf.
[2] J. Berger and G. Svindland, A separating hyperplane theorem, the fundamental theorem of asset pricing, and Markov's principle, Ann. Pure and Applied Logic 167, 1161-1171, 2016.
[3] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
[4] E. Bishop and D.S. Bridges, Constructive Analysis, Grundlehren der math. Wiss. 279, Springer-Verlag, Heidelberg, 1985.
[5] D.S. Bridges, Morse set theory as a foundation for constructive mathematics, Theoretical Comp. Sci. 928, 115-135, 2022.
[6] D.S. Bridges and L.S. Vîţă, Techniques of Constructive Analysis, Springer New York, 2006.
[7] R.L. Constable et al., Implementing Mathematics with the Nuprl Proof Development System, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.
[8] P. Martin-Löf, Intuitionistic type theory (Notes by Giovanni Sambin of a series of lectures given in Padua, June 1980), Bibliopolis, Napoli, 1984.
[9] G. Sambin and J. Smith (eds), Twenty-five Years of Constructive Type Theory, Oxford Logic Guides 36, The Clarendon Press, Oxford, 1998.
[10] H. Schwichtenberg, Computational Aspects of Bishop's Constructive Mathematics, in: D. Bridges, H. Ishihara, M. Rathjen, and H. Schwichtenberg (Eds.), Handbook of Constructive Mathematics (Encyclopedia of Mathematics and its Applications), 715-748, Cambridge University Press., 2023. doi:10.1017/9781009039888.027
[11] H. Schwichtenberg and S.S. Wainer, Proofs and Computations. Perspectives in Logic. Association for Symbolic Logic and Cambridge University Press, 2012

