Uniform Rotundity and Best Approximation

Josef Berger^a, Douglas S. Bridges^b, and Gregor Svindland^c

^aLudwig-Maximilians-Universität München, Germany ^bUniversity of Canterbury, New Zealand ^cLeibniz Universität Hannover

February 12, 2024

Abstract

Working constructively throughout, we prove that if K is an inhabited, complete, uniformly rotund subset of a normed space X, L is a located convex subset of X containing at least two distinct points, and $d \equiv \inf_{x \in K} \rho(x, L)$ exists, then there exists a strongly unique point $x_{\infty} \in K$ such that $\rho(x_{\infty}, L) = d$. To do so, we introduce the notion of sufficient convexity for real-valued functions on a metric space, and discuss the attainment of the infimum of such a function when that infimum exists.

Keywords: sufficiently convex functions, uniform rotundity, separation theorem for convex sets

The framework of this paper is Bishop-style constructive mathematics (**BISH**), which, for all practical purposes, can be viewed as mathematics developed using intuitionistic logic and based on an appropriate foundation such as CZF [1], Martin-Löf type theory [8, 9], or constructive Morse set theory [5]. Thus all our proofs embody algorithms that can be extracted for computer implementation (see, for example, [7, 10, 11]).

We call a mapping f of a metric space X into **R** sufficiently convex if for each $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x, x' \in X$ with $\rho(x, x') > \varepsilon$, there exists $z \in X$ such that $f(z) + \delta < \max\{f(x), f(x')\}$. Here ρ denotes the metric on X.

Proposition 1 The following are equivalent conditions on a mapping f of a metric space X into **R**, such that $\mu \equiv \inf f$ exists.

- (i) f is sufficiently convex.
- (ii) for each $\varepsilon > 0$ there exists $\tilde{\delta} > 0$ such that if $x, x' \in X$, $f(x) < \mu + \tilde{\delta}$, and $f(x') < \mu + \tilde{\delta}$, then $\rho(x, x') < \varepsilon$.

Proof. First suppose that f is sufficiently convex. Given $\varepsilon > 0$, pick $\delta > 0$ such that if $x, x' \in X$ and $\rho(x, x') > \varepsilon/2$, then $f(z) + \delta < \max\{f(x), f(x')\}$ for

some $z \in X$. Let $\tilde{\delta} := \delta$ and consider $x, x' \in X$ such that $f(x) < \mu + \delta$, and $f(x') < \mu + \delta$. If $\rho(x, x') > \varepsilon/2$, then there exists $z \in X$ such that

$$f(z) + \delta < \max\{f(x), f(x')\} < \mu + \delta$$

and therefore $f(z) < \mu$, which is absurd. Hence $\rho(x, x') \le \varepsilon/2 < \varepsilon$.

Conversely, suppose that f satisfies condition (ii). Given $\varepsilon > 0$, choose $\tilde{\delta}$ as in that condition. If $x, x' \in X$ and $\rho(x, x') > \varepsilon$, then $\max\{f(x), f(x')\} \ge \mu + \tilde{\delta}$. By the definition of μ , there exists $z \in X$ such that

$$\mathsf{f}(z) < \mu + \frac{\tilde{\delta}}{2}$$

and hence

$$\mathsf{f}(z) + \frac{\delta}{2} < \mu + \tilde{\delta} \leq \max\{\mathsf{f}(x),\mathsf{f}(x')\}$$

Therefore, we may set $\delta := \frac{\delta}{2}$.

The following result is was communicated to us by Peter Aczel many years ago.

Proposition 2 Let X be a complete metric space, and let f be a sequentially continuous sufficiently convex mapping of X into **R** such that $\mu \equiv \inf f$ exists. Then there exists $\xi \in X$ such that $f(\xi) = \mu$. Moreover, if $x \in X$ and $x \neq \xi$, then $f(x) > \mu$.

Proof. In view of Proposition 1, we can construct a strictly decreasing sequence $(\delta_n)_{n \ge 1}$ of positive numbers such that for each n, if $x, x' \in X$, $f(x) < \mu + \delta_n$, and $f(x') < \mu + \delta_n$, then $\rho(x, x') < 2^{-n}$. For each n, pick $x_n \in X$ such that $f(x_n) < \mu + \delta_n$. Then $\rho(x_m, x_n) < 2^{-n}$ for all $m \ge n$, so $(x_n)_{n \ge 1}$ is a Cauchy sequence in X. Since X is complete, $\xi \equiv \lim_{n \to \infty} x_n$ exists in X. By the sequential continuity of f, $\mu \le f(\xi) \le \mu$, so $f(\xi) = \mu$. Moreover, if $x \in X$ and $\rho(x, \xi) > 0$, then, with $\varepsilon := \frac{1}{2}\rho(x,\xi)$ and $\delta > 0$ as in the definition of 'sufficiently convex', there exists $z \in X$ such that

$$\mu < \mu + \delta \le f(z) + \delta < \max\{f(\xi), f(x)\} = \max\{\mu, f(x)\} = f(x).$$

A subset L of a metric space is *located* if for all $x \in X$ the distance

$$\rho(\mathbf{x}, \mathbf{L}) := \inf\{\rho(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathbf{L}\}$$

exists.

Lemma 3 Let L be an inhabited, located, and convex subset of a normed space X. Then for all x, x' in X and $t \in [0, 1]$,

$$\rho(tx + (1 - t)x', L) \le t\rho(x, L) + (1 - t)\rho(x', L).$$

Proof. Given $x, x' \in X$, $t \in [0, 1]$, and $\varepsilon > 0$, pick $y, y' \in L$ such that

$$\|x-y\|<\rho(x,L)+\epsilon \ {\rm and} \ \|x'-y'\|<\rho(x',L)+\epsilon.$$

Then

$$\begin{split} \rho(tx + (1-t)x', L) &\leq \|tx + (1-t)x' - ty - (1-ty')\| \\ &\leq t \, \|x - y\| + (1-t) \, \|x' - y'\| \\ &\leq t\rho(x, L) + (1-t)\rho(x', L) + t\varepsilon + (1-t)\varepsilon \\ &\leq t\rho(x, L) + (1-t)\rho(x', L) + \varepsilon. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, the result follows.

A normed space X is *uniformly convex* if for each $\varepsilon > 0$ there exists δ with $0 < \delta < 1$ such that if x, y are elements of X with ||x|| = 1 = ||y|| and $||x - y|| \ge \varepsilon$, then $\left\|\frac{1}{2}(x + y)\right\| \le \delta$. Hilbert spaces, and L_p spaces with p > 1, are uniformly convex [4, page 322, Corollary (3.22)].

Lemma 4 Let X be a uniformly convex normed space. Then for all $\tilde{\epsilon} > 0$ and M > 0 there exists $\tilde{\delta} > 0$ such that if x, y are elements of X with $||x|| = ||y|| \le M$ and $||x - y|| \ge \tilde{\epsilon}$, then $||\frac{1}{2}(x + y)|| + \tilde{\delta} \le ||x||$.

Proof. Let $\tilde{\varepsilon} > 0$ and consider any $x, y \in X$ such that $||x|| = ||y|| \le M$ and $||x-y|| \ge \tilde{\varepsilon}$. As $\tilde{\varepsilon} \le ||x-y|| \le 2||x||$, we infer $||x|| = ||y|| \ge \tilde{\varepsilon}/2 > 0$. Set $\varepsilon := \frac{\tilde{\varepsilon}}{M}$ and compute $\delta \in (0, 1)$ as in the definition of uniform convexity. As x/||x|| and y/||y|| are unit vectors with

$$\left\|\frac{\mathbf{x}}{\|\mathbf{x}\|} - \frac{\mathbf{y}}{\|\mathbf{y}\|}\right\| = \frac{1}{\|\mathbf{x}\|}\|\mathbf{x} - \mathbf{y}\| \ge \frac{\tilde{\varepsilon}}{M} = \varepsilon,$$

we obtain

$$\frac{1}{\|\mathbf{x}\|} \left\| \frac{1}{2} (\mathbf{x} + \mathbf{y}) \right\| \le \delta.$$

Hence, using that $\|x\| \ge \tilde{\epsilon}/2$,

$$\begin{split} \left\|\frac{1}{2}(x+y)\right\| &\leq \delta \|x\| \leq \|x\| - (1-\delta)\|x\| \leq \|x\| - (1-\delta)\frac{\tilde{\epsilon}}{2}. \end{split}$$

Set $\tilde{\delta} := (1-\delta)\frac{\tilde{\epsilon}}{2}.$

Lemma 5 Let X be a uniformly convex normed space, and let $K \subset X$ be inhabited, convex, and norm bounded. Then for any $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x, x' \in K$ with $||x - x'|| \ge \varepsilon$ we have $\left\|\frac{1}{2}(x + x')\right\| + \delta \le \max\{||x||, ||x'||\}$. In particular $f(x) = ||x||, x \in K$, defines a sufficiently convex function.

Proof. Let $\varepsilon > 0$ and let M > 0 be a norm bound for K. For $\tilde{\varepsilon} := \varepsilon/2$ and M compute $\tilde{\delta} > 0$ as in Lemma 4. Choose $\delta > 0$ with $\delta < \min\{\varepsilon/4, \tilde{\delta}/2\}$ and consider $x, x' \in K$ with $||x-x'|| \ge \varepsilon$. Either $|||x|| - ||x'||| > \delta$ or $|||x|| - ||x'||| < 2\delta$. In the first case note that $\min\{||x||, ||x'||\} < \max\{||x||, ||x'||\} - \delta$ and thus

$$\left\|\frac{1}{2}(\mathbf{x}+\mathbf{x}')\right\| \leq \frac{1}{2}(\max\{\|\mathbf{x}\|,\|\mathbf{x}'\|\} + \min\{\|\mathbf{x}\|,\|\mathbf{x}'\|\}) < \max\{\|\mathbf{x}\|,\|\mathbf{x}'\|\} - \frac{\delta}{2}.$$

Now assume the second case. Then by the triangle inequality,

$$\varepsilon \le \|\mathbf{x} - \mathbf{x}'\| \le 2(\|\mathbf{x}\| + \delta)$$
 and $\varepsilon \le \|\mathbf{x} - \mathbf{x}'\| \le 2(\|\mathbf{x}'\| + \delta)$

implying that $\min\{\|x\|, \|x'\|\} > 0$. Consider $y := \frac{\|x\|}{\|x'\|}x'$, and note that

$$|x' - y|| = ||x'|| - ||x||| < 2\delta, ||y|| = ||x|| \le M,$$

and

$$\|\mathbf{x} - \mathbf{y}\| \ge \|\mathbf{x} - \mathbf{x}'\| - \|\mathbf{x}' - \mathbf{y}\| > \varepsilon - 2\delta > \frac{\varepsilon}{2} = \tilde{\varepsilon}.$$

By choice of $\tilde{\delta}$ we have

$$\begin{split} \|x\| &\geq \frac{1}{2} \|x+y\| + \tilde{\delta} \geq \frac{1}{2} (\|x+x'\| - \|x'-y\|) + \tilde{\delta} \\ &> \frac{1}{2} \|x+x'\| - \delta + \tilde{\delta} > \frac{1}{2} \|x+x'\| + \delta. \end{split}$$

As $||\mathbf{x}|| \le \max\{||\mathbf{x}||, ||\mathbf{x}'||\}$, the lemma is proved.

Theorem 6 Let X be a uniformly convex normed space, and let $K \subset X$ be an inhabited, complete, and convex set. Moreover, let $y \in X$ and assume that

$$\mu := \inf\{\|y - x\| : x \in K\}$$

exists. Then there exists $x_0 \in K$ such that $\|y - x_0\| = \mu$. If $x' \in K$ such that $x' \neq x_0$, then $\|y - x'\| > \mu$.

Proof. As the algebraic difference $K - \{y\}$ inherits all properties from K, we may assume that y = 0. Pick $z \in K$. Then

$$\mu = \inf\{\|x\| : x \in K, \|x\| \le M\}$$

where M > 0 satisfies M > ||z||. The set $\tilde{K} := \{x \in K : ||x|| \le M\}$ is inhabited, convex, bounded, and complete. Therefore, the mapping $x \mapsto ||x||$ on \tilde{K} is sufficiently convex by Lemma 5 and has a unique minimum point $x_0 \in \tilde{K}$ by Proposition 2.

An immediate consequence of Theorem 6 is the proof of [4, Problem 11, p. 391], namely:

Corollary 7 Let B be a uniformly convex Banach space, and let $K \subset B$ be a closed, located, and convex set. Then each $y \in B$ has a unique closest point $x_0 \in K$, i.e. $\|y - x_0\| = \rho(y, K)$, and if $x' \in K$ is such that $x' \neq x_0$, then $\|y - x'\| > \rho(y, K)$.

A subset C of a normed space X is *uniformly rotund* if it is convex and for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $x, x' \in C$ and $||x - x'|| \ge \varepsilon$, then $\frac{1}{2}(x + x') + z \in C$ for all $z \in X$ with $||z|| \le \delta$.

Proposition 8 A normed linear space X is uniformly convex if and only if its closed unit ball B is uniformly rotund.

Proof. Suppose that X is uniformly convex, and let $\varepsilon > 0$. Compute $\delta > 0$ for ε and K = B as in Lemma 5. Then for all $x, x' \in B$ such that $||x - x'|| \ge \varepsilon$ and any $z \in X$ with $||z|| \le \delta$ it follows that

$$\left\|\frac{1}{2}(x+x')+z\right\| \le \left\|\frac{1}{2}(x+x')\right\| + \delta \le \max\{\|x\|, \|x'\|\} \le 1.$$

Hence, $\frac{1}{2}(x + x') + z \in B$, so B is uniformly rotund.

Conversely, suppose that B is uniformly rotund, let $\epsilon > 0$, and choose $\delta < 1$ as in the definition of uniformly rotund. If x, y are unit vectors of X with $\|x - y\| \ge \epsilon$, then $\left\|\frac{1}{2}\delta(x + y)\right\| \le \delta$, so

$$\begin{split} (1+\delta) \left\| \tfrac{1}{2} (x+y) \right\| &= \left\| \tfrac{1}{2} (x+y) + \tfrac{1}{2} \delta (x+y) \right\| \leq 1 \\ \text{and therefore } \left\| \tfrac{1}{2} (x+y) \right\| \leq (1+\delta)^{-1} < 1. \end{split}$$

Proposition 9 Let K be an inhabited and uniformly rotund subset of a normed space X, and L an inhabited, located, and convex subset of X that is disjoint from K. Then $f(x) \equiv \rho(x, L)$ defines a sufficiently convex function on K.

Proof. For $\varepsilon > 0$ let $\delta > 0$ as in the definition of 'uniform rotundity' for K, and let $\xi := \delta/2$. Consider $x, x' \in K$ such that $||x - x'|| \ge \varepsilon$. Let $u := \frac{1}{2}(x + x')$ and fix $\nu \in L$ such that $||\nu - u|| < \rho(u, L) + \xi$. Note that $||\nu - u|| \ge \delta$, because by choice of δ , if we had $||\nu - u|| < \delta$, then $\nu = u + (\nu - u) \in K$ which is absurd since K and L are disjoint. Let

$$z := \mathbf{u} + \frac{\delta}{\|\mathbf{v} - \mathbf{u}\|} (\mathbf{v} - \mathbf{u}).$$

Then $||z - u|| = \delta$, and therefore $z = u + (z - u) \in K$. Recalling Lemma 3, we have

$$\begin{split} f(z)+\xi &\leq \|\nu-z\|+\xi &= \left(1-\frac{\delta}{\|u-\nu\|}\right)\|\nu-u\|+\xi\\ &= \|\nu-u\|-\xi &< f(u) &\leq \max\{f(x),f(x')\}. \end{split}$$

To see that in Proposition 9 we cannot replace uniform rotundity by mere convexity, take X to be the Euclidean plane \mathbf{R}^2 , $K = \{(a, b) \in \mathbf{R}^2 : a \leq 0\}$, and $L = \{(a, b) \in \mathbf{R}^2 : a \geq 1\}$; we have

$$\inf_{x \in K} \rho(x, L) = 1 = \|(0, b) - (1, b)\|$$

for all $b \in \mathbf{R}$, so, in view of Proposition 2, $x \mapsto \rho(x, L)$ is not sufficiently convex on K.

Recall here *Bishop's Lemma* [6, Proposition 3.1.1]:

Let Y be an inhabited, complete, located subset of a metric space X. Then for each $x \in X$ there exists $y \in Y$ such that if $x \neq y$, then $\rho(x, Y) > 0$.

Theorem 10 Let K be an inhabited, complete, and uniformly rotund subset of a normed space X, and L an inhabited, located, and convex subset of X that is disjoint from K. Suppose also that $d \equiv \inf_{x \in K} \rho(x, L)$ exists. Then there exists $\xi \in K$ such that (i) $\rho(\xi, L) = d$ and (ii) $\rho(x, L) > d$ for all $x \in K$ with $x \neq \xi$. If, in addition, L is complete, then there exists $y \in L$ such that if $\xi \neq y$, then d > 0.

Proof. By Proposition 9, $f(x) \equiv \rho(x, L)$ defines a sufficiently convex, function on K. Since K is complete and d exists, Proposition 2 produces $\xi \in K$ with properties (i) and (ii). If also L is complete, then we complete the proof by invoking Bishop's Lemma.

Lemma 11 Let Y be an inhabited and convex subset of a Hilbert space H, and a *a* point of H such that $d = \rho(a, Y)$ exists. Then there exists $b \in \overline{Y}$ such that ||a - b|| = d. Moreover,

- (i) $\|\mathbf{a} \mathbf{y}\| > \mathbf{d}$ whenever $\mathbf{y} \in \overline{\mathbf{Y}}$ and $\mathbf{y} \neq \mathbf{b}$;
- (ii) $\langle a-b, b-y \rangle \ge 0$, and therefore $\langle a-b, a-y \rangle \ge d^2$, for all $y \in Y$.

Proof. This is a well-known result on Hilbert space. For instance Lemma 1 in [2] proves the existence of $b \in \overline{Y}$ such that ||a - b|| = d and (ii) holds. Conclusion (i) follows from (ii) since for all $y \in Y$

$$\|a-y\|^{2} = \|a-b+b-y\|^{2} = \|a-b\|^{2} + \|b-y\|^{2} + 2\langle a-b, b-y \rangle \ge d^{2} + \|b-y\|^{2}.$$

Theorem 12 Let K be an inhabited, closed, and uniformly rotund subset of a Hilbert space H, and L an inhabited, closed, located, and convex subset of H that is disjoint from K. Suppose also that $d \equiv \inf_{x \in K} \rho(x, L)$ exists. Then there exist $x_{\infty} \in K$ and $y_{\infty} \in L$ such that $||x_{\infty} - y_{\infty}|| = d$. Moreover,

- (i) $\|x y\| > d$ whenever $x \in K$ and $y \in L$ and either $x \neq x_{\infty}$ or $y \neq y_{\infty}$;
- (ii) $\langle x_{\infty} y_{\infty}, y_{\infty} y \rangle \ge 0$, and therefore $\langle x_{\infty} y_{\infty}, x_{\infty} y \rangle \ge d^2$, for all $y \in L$.

Proof. By Theorem 10, there exists $x_{\infty} \in K$ such that $d = \rho(x_{\infty}, L)$. By Lemma 11 there exists $y_{\infty} \in L$ such that $||x_{\infty} - y_{\infty}|| = \rho(x_{\infty}, L)$ and properties (i) and (ii) hold.

Note that also in Theorem 12 we cannot replace uniformly rotundity by mere convexity: Consider $H = \mathbf{R}^2$ and $K = \{(a, b) \in \mathbf{R}^2 : b \ge e^a + 1\}$ and $L = \{(a, b) \in \mathbf{R}^2 : b \le -e^a - 1\}$. Then d = 2, but there is no $x \in K$ and $y \in L$ such that ||x - y|| = 2.

Theorem 12 leads us to a new constructive separation theorem where the separating linear functional is constructed as the difference of the points of closest distance.

Theorem 13 Let K be an inhabited, closed, located, and uniformly rotund subset of a Hilbert space H, and L an inhabited, closed, located, and convex subset of H. Suppose that $d \equiv \inf_{x \in K} \rho(x, L)$ exists and is positive, let $x_{\infty} \in K$ and $y_{\infty} \in L$ be as in Theorem 12, and let $p = x_{\infty} - y_{\infty}$. Then

$$\langle \mathbf{p}, \mathbf{x} - \mathbf{y} \rangle \geq d^2$$
 for all $\mathbf{x} \in K$ and $\mathbf{y} \in L$.

The normed linear functional $u(x) = \langle d^{-1}p, x \rangle$, $x \in H$, satisfies ||u|| = 1 and $u(x) \ge u(y) + d$ for all $x \in K$ and $y \in L$. In particular $u(x_{\infty}) \le u(x)$ for all $x \in K$, where $u(x_{\infty}) < u(x)$ if $x \neq x_{\infty}$, and $u(y_{\infty}) \ge u(y)$ for all $y \in L$.

Proof. Construct $x_{\infty} \in K$ and $y_{\infty} \in L$ as in Theorem 12, and let

$$p = x_{\infty} - y_{\infty}$$
.

Then, by Theorem 12, for all $y \in Y$ we have

$$\langle \mathbf{p}, \mathbf{x}_{\infty} - \mathbf{y} \rangle = \langle \mathbf{x}_{\infty} - \mathbf{y}_{\infty}, \mathbf{x}_{\infty} - \mathbf{y} \rangle \ge d^2.$$

On the other hand, since K is located Lemma 11 provides the existence of a unique $b \in K$ such that $\rho(y_{\infty}, K) = \|y_{\infty} - b\|$. As $\rho(y_{\infty}, K) = d = \|y_{\infty} - x_{\infty}\|$ it follows that indeed $b = x_{\infty}$ and thus by Lemma 11 that

$$\langle \mathbf{y}_{\infty} - \mathbf{x}_{\infty}, \mathbf{x}_{\infty} - \mathbf{x} \rangle \ge \mathbf{0} \tag{1}$$

for all $x \in K$. Hence, for $x \in K$ and $y \in L$,

$$\begin{split} \langle \mathfrak{p}, \mathfrak{x} - \mathfrak{y} \rangle &= \langle \mathfrak{p}, \mathfrak{x}_{\infty} - \mathfrak{y} \rangle + \langle \mathfrak{p}, \mathfrak{x} - \mathfrak{x}_{\infty} \rangle \\ &\geq d^{2} + \langle \mathfrak{x}_{\infty} - \mathfrak{y}_{\infty}, \mathfrak{x} - \mathfrak{x}_{\infty} \rangle \\ &= d^{2} + \langle \mathfrak{y}_{\infty} - \mathfrak{x}_{\infty}, \mathfrak{x}_{\infty} - \mathfrak{x} \rangle \geq d^{2}. \end{split}$$

As regards the properties of \mathfrak{u} , note that $\mathfrak{u}(\mathfrak{x}_{\infty}) \leq \mathfrak{u}(\mathfrak{x})$ for all $\mathfrak{x} \in \mathsf{K}$ follows from (1) and $\mathfrak{u}(\mathfrak{y}_{\infty}) \geq \mathfrak{u}(\mathfrak{y})$ for all $\mathfrak{y} \in \mathsf{L}$ is shown in Theorem 12 (ii). Let $\mathfrak{x} \in \mathsf{K}$ such that $\mathfrak{x} \neq \mathfrak{x}_{\infty}$. Then by uniform rotundity of K there is $\delta > \mathfrak{0}$ such that $\frac{1}{2}(\mathfrak{x}_{\infty} + \mathfrak{x}) + \mathfrak{z} \in \mathsf{K}$ for all $\mathfrak{z} \in \mathsf{H}$ with $\|\mathfrak{z}\| \leq \delta$. Let $\mathfrak{z} := -\frac{\delta}{d}\mathfrak{p}$. Then $\|\mathfrak{z}\| = \delta$ and therefore $\frac{1}{2}(\mathfrak{x}_{\infty} + \mathfrak{x}) + \mathfrak{z} \in \mathsf{K}$. It follows that $\mathfrak{u}(\frac{1}{2}(\mathfrak{x}_{\infty} + \mathfrak{x}) + \mathfrak{z}) \geq \mathfrak{u}(\mathfrak{x}_{\infty})$, and thus $\mathfrak{u}(\mathfrak{x}) + 2\mathfrak{u}(\mathfrak{z}) \geq \mathfrak{u}(\mathfrak{x}_{\infty})$. As $\mathfrak{u}(\mathfrak{z}) = -\frac{\delta}{d^2}\langle \mathfrak{p}, \mathfrak{p} \rangle = -\delta < \mathfrak{0}$, we conclude that $\mathfrak{u}(\mathfrak{x}) > \mathfrak{u}(\mathfrak{x}_{\infty})$.

By Theorem 13 we may construct supporting hyperplanes $P_K := \{x \in H : u(x) = u(x_{\infty})\}$ of K and $P_L := \{x \in H : u(x) = u(y_{\infty})\}$ of L, respectively, where P_K intersects with K in the unique point x_{∞} , and P_L instersects with L in y_{∞} . The uniqueness of the intersection point x_{∞} of P_K and K is strong, in the sense that any point $x \in K$ distinct from x_{∞} is bounded away from P_K since $u(x) > u(x_{\infty})$.

In trying to apply the foregoing theorems, it is natural to think of the case where the uniformly rotund set K is compact. In that case, if K is nontrivial, Corollary 15 below shows that H is finite-dimensional.

Proposition 14 Let X be a normed space, and S be a uniformly rotund subset of X that contains two distinct points. Then S contains an open ball of positive radius.

Proof. Let a, b be two distinct points of S. There exists $\delta > 0$ such that if $x, y \in S$ and $||x-y|| \ge ||a-b||$, then $\frac{1}{2}(x+y) + z \in S$ for all $z \in X$ with $||z|| \le \delta$. Consider the open ball $B(\frac{1}{2}(a+b), \delta)$ of radius δ with center $\frac{1}{2}(a+b)$. If $z \in B(\frac{1}{2}(a+b), \delta)$, then $||z-\frac{1}{2}(a+b)|| < \delta$ and thus

$$z = \frac{1}{2}(a+b) + \left(z - \frac{1}{2}(a+b)\right) \in S,$$

so $B(\frac{1}{2}(a+b), \delta)$ is the required ball.

Corollary 15 A normed space that has a totally bounded and uniformly rotund subset which contains two distinct points is finite-dimensional.

Proof. This follows from the preceding proposition and [6, Proposition 4.1.13]. \Box

References

- P. Aczel and M. Rathjen, Notes on Constructive Set Theory, http://www1. maths.leeds.ac.uk/~rathjen/book.pdf.
- [2] J. Berger and G. Svindland, A separating hyperplane theorem, the fundamental theorem of asset pricing, and Markov's principle, Ann. Pure and Applied Logic 167, 1161–1171, 2016.

- [3] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
- [4] E. Bishop and D.S. Bridges, *Constructive Analysis*, Grundlehren der math. Wiss. 279, Springer-Verlag, Heidelberg, 1985.
- [5] D.S. Bridges, Morse set theory as a foundation for constructive mathematics, Theoretical Comp. Sci. 928, 115–135, 2022.
- [6] D.S. Bridges and L.S. Vîţă, *Techniques of Constructive Analysis*, Springer New York, 2006.
- [7] R.L. Constable et al., Implementing Mathematics with the Nuprl Proof Development System, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.
- [8] P. Martin-Löf, *Intuitionistic type theory* (Notes by Giovanni Sambin of a series of lectures given in Padua, June 1980), Bibliopolis, Napoli, 1984.
- [9] G. Sambin and J. Smith (eds), Twenty-five Years of Constructive Type Theory, Oxford Logic Guides 36, The Clarendon Press, Oxford, 1998.
- [10] H. Schwichtenberg, Computational Aspects of Bishop's Constructive Mathematics, in: D. Bridges, H. Ishihara, M. Rathjen, and H. Schwichtenberg (Eds.), *Handbook of Constructive Mathematics* (Encyclopedia of Mathematics and its Applications), 715–748, Cambridge University Press., 2023. doi:10.1017/9781009039888.027
- [11] H. Schwichtenberg and S.S. Wainer, Proofs and Computations. Perspectives in Logic. Association for Symbolic Logic and Cambridge University Press, 2012