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Abstract

Working constructively throughout, we prove that if K is an inhabited,
complete, uniformly rotund subset of a normed space X, L is a located convex
subset of X containing at least two distinct points, and d ≡ infx∈K ρ(x, L)
exists, then there exists a strongly unique point x∞ ∈ K such that ρ(x∞, L) =
d. To do so, we introduce the notion of sufficient convexity for real-valued
functions on a metric space, and discuss the attainment of the infimum of
such a function when that infimum exists.
Keywords: sufficiently convex functions, uniform rotundity, separation
theorem for convex sets

The framework of this paper is Bishop-style constructive mathematics (BISH),
which, for all practical purposes, can be viewed as mathematics developed using
intuitionistic logic and based on an appropriate foundation such as CZF [1],
Martin-Löf type theory [8, 9], or constructive Morse set theory [5]. Thus all our
proofs embody algorithms that can be extracted for computer implementation
(see, for example, [7, 10, 11]).

We call a mapping f of a metric space X into R sufficiently convex if for each
ε > 0 there exists δ > 0 such that for all x, x′ ∈ X with ρ(x, x′) > ε, there exists
z ∈ X such that f(z) + δ < max {f(x), f(x′)}. Here ρ denotes the metric on X.

Proposition 1 The following are equivalent conditions on a mapping f of a
metric space X into R, such that µ ≡ inf f exists.

(i) f is sufficiently convex.

(ii) for each ε > 0 there exists δ̃ > 0 such that if x, x′ ∈ X, f(x) < µ + δ̃, and
f(x′) < µ+ δ̃, then ρ(x, x′) < ε.

Proof. First suppose that f is sufficiently convex. Given ε > 0, pick δ > 0
such that if x, x′ ∈ X and ρ(x, x′) > ε/2, then f(z) + δ < max {f(x), f(x′)} for
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some z ∈ X. Let δ̃ := δ and consider x, x′ ∈ X such that f(x) < µ + δ, and
f(x′) < µ+ δ. If ρ(x, x′) > ε/2, then there exists z ∈ X such that

f(z) + δ < max {f(x), f(x′)} < µ+ δ

and therefore f(z) < µ, which is absurd. Hence ρ(x, x′) ≤ ε/2 < ε.
Conversely, suppose that f satisfies condition (ii). Given ε > 0, choose δ̃ as

in that condition. If x, x′ ∈ X and ρ(x, x′) > ε, then max{f(x), f(x′)} ≥ µ + δ̃.
By the definition of µ, there exists z ∈ X such that

f(z) < µ+
δ̃

2

and hence

f(z) +
δ̃

2
< µ+ δ̃ ≤ max{f(x), f(x′)}.

Therefore, we may set δ := δ̃
2

. �

The following result is was communicated to us by Peter Aczel many years
ago.

Proposition 2 Let X be a complete metric space, and let f be a sequentially
continuous sufficiently convex mapping of X into R such that µ ≡ inf f exists.
Then there exists ξ ∈ X such that f(ξ) = µ. Moreover, if x ∈ X and x 6= ξ, then
f(x) > µ.

Proof. In view of Proposition 1, we can construct a strictly decreasing sequence
(δn)n>1 of positive numbers such that for each n, if x, x′ ∈ X, f(x) < µ+δn, and

f(x′) < µ+ δn, then ρ(x, x′) < 2−n. For each n, pick xn ∈ X such that f(xn) <
µ+ δn. Then ρ(xm, xn) < 2

−n for all m > n, so (xn)n>1 is a Cauchy sequence
in X. Since X is complete, ξ ≡ limn→∞ xn exists in X. By the sequential
continuity of f, µ ≤ f(ξ) ≤ µ, so f(ξ) = µ. Moreover, if x ∈ X and ρ(x, ξ) > 0,
then, with ε := 1

2
ρ(x, ξ) and δ > 0 as in the definition of ‘sufficiently convex’,

there exists z ∈ X such that

µ < µ+ δ ≤ f(z) + δ < max{f(ξ), f(x)} = max{µ, f(x)} = f(x).

�

A subset L of a metric space is located if for all x ∈ X the distance

ρ(x, L) := inf{ρ(x, y) | y ∈ L}

exists.

Lemma 3 Let L be an inhabited, located, and convex subset of a normed space
X. Then for all x, x′ in X and t ∈ [0, 1],

ρ(tx+ (1− t)x′, L) ≤ tρ(x, L) + (1− t)ρ(x′, L).
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Proof. Given x, x′ ∈ X, t ∈ [0, 1], and ε > 0, pick y, y′ ∈ L such that

‖x− y‖ < ρ(x, L) + ε and ‖x′ − y′‖ < ρ(x′, L) + ε.

Then

ρ(tx+ (1− t)x′, L) ≤ ‖tx+ (1− t)x′ − ty− (1− ty′)‖
≤ t ‖x− y‖+ (1− t) ‖x′ − y′‖
≤ tρ(x, L) + (1− t)ρ(x′, L) + tε+ (1− t)ε

≤ tρ(x, L) + (1− t)ρ(x′, L) + ε.

Since ε > 0 is arbitrary, the result follows. �

A normed space X is uniformly convex if for each ε > 0 there exists δ
with 0 < δ < 1 such that if x, y are elements of X with ‖x‖ = 1 = ‖y‖ and
‖x− y‖ ≥ ε, then

∥∥1
2
(x+ y)

∥∥ ≤ δ. Hilbert spaces, and Lp spaces with p > 1,
are uniformly convex [4, page 322, Corollary (3.22)].

Lemma 4 Let X be a uniformly convex normed space. Then for all ε̃ > 0 and
M > 0 there exists δ̃ > 0 such that if x, y are elements of X with ‖x‖ = ‖y‖ ≤M
and ‖x− y‖ ≥ ε̃, then ‖1

2
(x+ y)‖+ δ̃ ≤ ‖x‖.

Proof. Let ε̃ > 0 and consider any x, y ∈ X such that ‖x‖ = ‖y‖ ≤ M and
‖x−y‖ ≥ ε̃. As ε̃ ≤ ‖x−y‖ ≤ 2‖x‖, we infer ‖x‖ = ‖y‖ ≥ ε̃/2 > 0. Set ε := ε̃

M

and compute δ ∈ (0, 1) as in the definition of uniform convexity. As x/‖x‖ and
y/‖y‖ are unit vectors with∥∥∥∥ x

‖x‖
−

y

‖y‖

∥∥∥∥ =
1

‖x‖
‖x− y‖ ≥ ε̃

M
= ε,

we obtain
1

‖x‖

∥∥∥∥12 (x+ y)
∥∥∥∥ ≤ δ.

Hence, using that ‖x‖ ≥ ε̃/2,∥∥∥∥12 (x+ y)
∥∥∥∥ ≤ δ‖x‖ ≤ ‖x‖− (1− δ)‖x‖ ≤ ‖x‖− (1− δ)

ε̃

2
.

Set δ̃ := (1− δ) ε̃
2

. �

Lemma 5 Let X be a uniformly convex normed space, and let K ⊂ X be inhab-
ited, convex, and norm bounded. Then for any ε > 0 there exists δ > 0 such that
for all x, x′ ∈ K with ‖x − x′‖ ≥ ε we have

∥∥1
2
(x+ x ′)

∥∥ + δ ≤ max {‖x‖, ‖x ′‖}.
In particular f(x) = ‖x‖, x ∈ K, defines a sufficiently convex function.
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Proof. Let ε > 0 and let M > 0 be a norm bound for K. For ε̃ := ε/2 and
M compute δ̃ > 0 as in Lemma 4. Choose δ > 0 with δ < min{ε/4, δ̃/2} and
consider x, x ′ ∈ K with ‖x−x ′‖ ≥ ε. Either

∣∣‖x‖−‖x ′‖∣∣ > δ or
∣∣‖x‖−‖x ′‖∣∣ < 2δ.

In the first case note that min{‖x‖, ‖x ′‖} < max{‖x‖, ‖x ′‖}− δ and thus∥∥∥∥12 (x+ x ′)
∥∥∥∥ ≤ 12 (max{‖x‖, ‖x ′‖}+ min{‖x‖, ‖x ′‖}) < max{‖x‖, ‖x ′‖}− δ

2
.

Now assume the second case. Then by the triangle inequality,

ε ≤ ‖x− x ′‖ ≤ 2(‖x‖+ δ) and ε ≤ ‖x− x ′‖ ≤ 2(‖x ′‖+ δ)

implying that min{‖x‖, ‖x ′‖} > 0. Consider y := ‖x‖
‖x ′‖x

′, and note that

‖x ′ − y‖ =
∣∣‖x ′‖− ‖x‖∣∣ < 2δ, ‖y‖ = ‖x‖ ≤M,

and
‖x− y‖ ≥ ‖x− x ′‖− ‖x ′ − y‖ > ε− 2δ > ε

2
= ε̃.

By choice of δ̃ we have

‖x‖ ≥ 1

2
‖x+ y‖+ δ̃ ≥ 1

2
(‖x+ x ′‖− ‖x ′ − y‖) + δ̃

>
1

2
‖x+ x ′‖− δ+ δ̃ > 1

2
‖x+ x ′‖+ δ.

As ‖x‖ ≤ max{‖x‖, ‖x ′‖}, the lemma is proved. �

Theorem 6 Let X be a uniformly convex normed space, and let K ⊂ X be an
inhabited, complete, and convex set. Moreover, let y ∈ X and assume that

µ := inf{‖y− x‖ : x ∈ K}

exists. Then there exists x0 ∈ K such that ‖y − x0‖ = µ. If x ′ ∈ K such that
x ′ 6= x0, then ‖y− x ′‖ > µ.

Proof. As the algebraic difference K − {y} inherits all properties from K, we
may assume that y = 0. Pick z ∈ K. Then

µ = inf{‖x‖ : x ∈ K, ‖x‖ ≤M}

where M > 0 satisfies M > ‖z‖. The set K̃ := {x ∈ K : ‖x‖ ≤ M} is inhabited,
convex, bounded, and complete. Therefore, the mapping x 7→ ‖x‖ on K̃ is
sufficiently convex by Lemma 5 and has a unique minimum point x0 ∈ K̃ by
Proposition 2. �

An immediate consequence of Theorem 6 is the proof of [4, Problem 11, p.
391], namely:
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Corollary 7 Let B be a uniformly convex Banach space, and let K ⊂ B be a
closed, located, and convex set. Then each y ∈ B has a unique closest point
x0 ∈ K, i.e. ‖y − x0‖ = ρ(y, K), and if x ′ ∈ K is such that x ′ 6= x0, then
‖y− x ′‖ > ρ(y, K).

A subset C of a normed space X is uniformly rotund if it is convex and for
each ε > 0 there exists δ > 0 such that if x, x′ ∈ C and ‖x− x′‖ ≥ ε, then
1
2
(x+ x′) + z ∈ C for all z ∈ X with ‖z‖ ≤ δ.

Proposition 8 A normed linear space X is uniformly convex if and only if its
closed unit ball B is uniformly rotund.

Proof. Suppose that X is uniformly convex, and let ε > 0. Compute δ > 0 for
ε and K = B as in Lemma 5. Then for all x, x ′ ∈ B such that ‖x− x ′‖ ≥ ε and
any z ∈ X with ‖z‖ ≤ δ it follows that∥∥∥∥12 (x+ x′) + z

∥∥∥∥ ≤ ∥∥∥∥12 (x+ x′)
∥∥∥∥+ δ ≤ max {‖x‖, ‖x ′‖} ≤ 1.

Hence, 1
2
(x+ x′) + z ∈ B, so B is uniformly rotund.

Conversely, suppose that B is uniformly rotund, let ε > 0, and choose δ < 1 as in
the definition of uniformly rotund. If x, y are unit vectors of X with ‖x− y‖ ≥ ε,
then

∥∥1
2
δ(x+ y)

∥∥ ≤ δ, so

(1+ δ)
∥∥1
2
(x+ y)

∥∥ =
∥∥1
2
(x+ y) + 1

2
δ(x+ y)

∥∥ ≤ 1
and therefore

∥∥1
2
(x+ y)

∥∥ ≤ (1+ δ)−1 < 1. �

Proposition 9 Let K be an inhabited and uniformly rotund subset of a normed
space X, and L an inhabited, located, and convex subset of X that is disjoint from
K. Then f(x) ≡ ρ(x, L) defines a sufficiently convex function on K.

Proof. For ε > 0 let δ > 0 as in the definition of ‘uniform rotundity’ for K, and
let ξ := δ/2. Consider x, x′ ∈ K such that ‖x− x′‖ ≥ ε. Let u := 1

2
(x+ x ′) and

fix v ∈ L such that ‖v − u‖ < ρ(u, L) + ξ. Note that ‖v − u‖ ≥ δ, because by
choice of δ, if we had ‖v − u‖ < δ, then v = u + (v − u) ∈ K which is absurd
since K and L are disjoint. Let

z := u+
δ

‖v− u‖
(v− u).

Then ‖z − u‖ = δ, and therefore z = u + (z − u) ∈ K. Recalling Lemma 3, we
have

f(z) + ξ ≤ ‖v− z‖+ ξ =

(
1−

δ

‖u− v‖

)
‖v− u‖+ ξ

= ‖v− u‖− ξ < f(u) ≤ max{f(x), f(x ′)}.
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�

To see that in Proposition 9 we cannot replace uniform rotundity by mere
convexity, take X to be the Euclidean plane R2, K = {(a, b) ∈ R2 : a ≤ 0}, and
L = {(a, b) ∈ R2 : a ≥ 1}; we have

inf
x∈K

ρ(x, L) = 1 = ‖(0, b) − (1, b)‖

for all b ∈ R, so, in view of Proposition 2, x 7→ ρ(x, L) is not sufficiently convex
on K.

Recall here Bishop’s Lemma [6, Proposition 3.1.1]:

Let Y be an inhabited, complete, located subset of a metric space
X. Then for each x ∈ X there exists y ∈ Y such that if x 6= y, then
ρ(x, Y) > 0.

Theorem 10 Let K be an inhabited, complete, and uniformly rotund subset of
a normed space X, and L an inhabited, located, and convex subset of X that is
disjoint from K. Suppose also that d ≡ infx∈K ρ(x, L) exists. Then there exists
ξ ∈ K such that (i) ρ(ξ, L) = d and (ii) ρ(x, L) > d for all x ∈ K with x 6= ξ.
If, in addition, L is complete, then there exists y ∈ L such that if ξ 6= y, then
d > 0.

Proof. By Proposition 9, f(x) ≡ ρ(x, L) defines a sufficiently convex, function
on K. Since K is complete and d exists, Proposition 2 produces ξ ∈ K with
properties (i) and (ii). If also L is complete, then we complete the proof by
invoking Bishop’s Lemma. �

Lemma 11 Let Y be an inhabited and convex subset of a Hilbert space H, and
a a point of H such that d = ρ(a, Y) exists. Then there exists b ∈ Y such that
‖a− b‖ = d. Moreover,

(i) ‖a− y‖ > d whenever y ∈ Y and y 6= b;

(ii) 〈a− b, b− y〉 ≥ 0, and therefore 〈a− b, a− y〉 ≥ d2, for all y ∈ Y.

Proof. This is a well-known result on Hilbert space. For instance Lemma
1 in [2] proves the existence of b ∈ Y such that ‖a− b‖ = d and (ii) holds.
Conclusion (i) follows from (ii) since for all y ∈ Y

‖a−y‖2 = ‖a−b+b−y‖2 = ‖a−b‖2+‖b−y‖2+2 〈a− b, b− y〉 ≥ d2+‖b−y‖2.

�

Theorem 12 Let K be an inhabited, closed, and uniformly rotund subset of a
Hilbert space H, and L an inhabited, closed, located, and convex subset of H that
is disjoint from K. Suppose also that d ≡ infx∈K ρ(x, L) exists. Then there exist
x∞ ∈ K and y∞ ∈ L such that ‖x∞ − y∞‖ = d. Moreover,
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(i) ‖x− y‖ > d whenever x ∈ K and y ∈ L and either x 6= x∞ or y 6= y∞;

(ii) 〈x∞ − y∞, y∞ − y〉 ≥ 0, and therefore 〈x∞ − y∞, x∞ − y〉 ≥ d2, for all
y ∈ L.

Proof. By Theorem 10, there exists x∞ ∈ K such that d = ρ(x∞, L). By
Lemma 11 there exists y∞ ∈ L such that ‖x∞ − y∞‖ = ρ(x∞, L) and properties
(i) and (ii) hold. �

Note that also in Theorem 12 we cannot replace uniformly rotundity by
mere convexity: Consider H = R2 and K = {(a, b) ∈ R2 : b ≥ ea + 1} and
L = {(a, b) ∈ R2 : b ≤ −ea − 1}. Then d = 2, but there is no x ∈ K and y ∈ L
such that ‖x− y‖ = 2.

Theorem 12 leads us to a new constructive separation theorem where the
separating linear functional is constructed as the difference of the points of
closest distance.

Theorem 13 Let K be an inhabited, closed, located, and uniformly rotund sub-
set of a Hilbert space H, and L an inhabited, closed, located, and convex subset
of H. Suppose that d ≡ infx∈K ρ(x, L) exists and is positive, let x∞ ∈ K and
y∞ ∈ L be as in Theorem 12, and let p = x∞ − y∞. Then

〈p, x− y〉 ≥ d2 for all x ∈ K and y ∈ L.

The normed linear functional u(x) = 〈d−1p, x〉, x ∈ H, satisfies ‖u‖ = 1 and
u(x) ≥ u(y) + d for all x ∈ K and y ∈ L. In particular u(x∞) ≤ u(x) for all
x ∈ K, where u(x∞) < u(x) if x 6= x∞, and u(y∞) ≥ u(y) for all y ∈ L.

Proof. Construct x∞ ∈ K and y∞ ∈ L as in Theorem 12, and let

p = x∞ − y∞.
Then, by Theorem 12, for all y ∈ Y we have

〈p, x∞ − y〉 = 〈x∞ − y∞, x∞ − y〉 ≥ d2.

On the other hand, since K is located Lemma 11 provides the existence of a
unique b ∈ K such that ρ(y∞, K) = ‖y∞ − b‖. As ρ(y∞, K) = d = ‖y∞ − x∞‖
it follows that indeed b = x∞ and thus by Lemma 11 that

〈y∞ − x∞, x∞ − x〉 ≥ 0 (1)

for all x ∈ K. Hence, for x ∈ K and y ∈ L,

〈p, x− y〉 = 〈p, x∞ − y〉+ 〈p, x− x∞〉
≥ d2 + 〈x∞ − y∞, x− x∞〉
= d2 + 〈y∞ − x∞, x∞ − x〉 ≥ d2.
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As regards the properties of u, note that u(x∞) ≤ u(x) for all x ∈ K follows
from (1) and u(y∞) ≥ u(y) for all y ∈ L is shown in Theorem 12 (ii). Let x ∈ K
such that x 6= x∞. Then by uniform rotundity of K there is δ > 0 such that
1
2
(x∞ + x)+ z ∈ K for all z ∈ H with ‖z‖ ≤ δ. Let z := − δ

d
p. Then ‖z‖ = δ and

therefore 1
2
(x∞ + x) + z ∈ K. It follows that u(1

2
(x∞ + x) + z) ≥ u(x∞), and

thus u(x) + 2u(z) ≥ u(x∞). As u(z) = − δ
d2 〈p, p〉 = −δ < 0, we conclude that

u(x) > u(x∞). �

By Theorem 13 we may construct supporting hyperplanes PK := {x ∈ H :
u(x) = u(x∞)} of K and PL := {x ∈ H : u(x) = u(y∞)} of L, respectively,
where PK intersects with K in the unique point x∞, and PL instersects with L
in y∞. The uniqueness of the intersection point x∞ of PK and K is strong, in
the sense that any point x ∈ K distinct from x∞ is bounded away from PK since
u(x) > u(x∞).

In trying to apply the foregoing theorems, it is natural to think of the case
where the uniformly rotund set K is compact. In that case, if K is nontrivial,
Corollary 15 below shows that H is finite-dimensional.

Proposition 14 Let X be a normed space, and S be a uniformly rotund subset
of X that contains two distinct points. Then S contains an open ball of positive
radius.

Proof. Let a, b be two distinct points of S. There exists δ > 0 such that if
x, y ∈ S and ‖x− y‖ ≥ ‖a− b‖, then 1

2
(x + y) + z ∈ S for all z ∈ X with

‖z‖ ≤ δ. Consider the open ball B(1
2
(a+b), δ) of radius δ with center 1

2
(a+b).

If z ∈ B(1
2
(a+ b), δ), then ‖z− 1

2
(a+ b)‖ < δ and thus

z = 1
2
(a+ b) +

(
z− 1

2
(a+ b)

)
∈ S,

so B(1
2
(a+ b), δ) is the required ball. �

Corollary 15 A normed space that has a totally bounded and uniformly rotund
subset which contains two distinct points is finite-dimensional.

Proof. This follows from the preceding proposition and [6, Proposition 4.1.13].
�
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