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Abstract

Working constructively throughout, we introduce the notion of sufficient
convexity for functions and sets and study its implications on the existence
of best approximations of points in sets and of sets mutually.
Keywords: sufficiently convex functions, uniform rotundity, separation
theorem for convex sets

The framework of this paper is Bishop-style constructive mathematics (BISH),
which, for all practical purposes, can be viewed as mathematics developed using
intuitionistic logic and based on an appropriate foundation such as CZF [1],
Martin-Löf type theory [9, 10], or constructive Morse set theory [5]. For more
on BISH see [6]. Thus all our proofs embody algorithms that can be extracted
for computer implementation (see, for example, [8, 11, 12]).

We call a mapping f of a metric space X into R sufficiently convex if for each
ε > 0 there exists δ > 0 such that for all x, x′ ∈ X with ρ(x, x′) > ε, there exists
z ∈ X such that f(z) + δ < max {f(x), f(x′)}. Here ρ denotes the metric on X.

Proposition 1 The following are equivalent conditions on a mapping f of a
metric space X into R, such that µ ≡ inf f exists.

(i) f is sufficiently convex.

(ii) for each ε > 0 there exists δ̃ > 0 such that if x, x′ ∈ X, f(x) < µ + δ̃, and
f(x′) < µ+ δ̃, then ρ(x, x′) < ε.

Proof. First suppose that f is sufficiently convex. Given ε > 0, pick δ > 0
such that if x, x′ ∈ X and ρ(x, x′) > ε/2, then f(z) + δ < max {f(x), f(x′)} for
some z ∈ X. Let δ̃ := δ and consider x, x′ ∈ X such that f(x) < µ + δ, and
f(x′) < µ+ δ. If ρ(x, x′) > ε/2, then there exists z ∈ X such that

f(z) + δ < max {f(x), f(x′)} < µ+ δ
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and therefore f(z) < µ, which is absurd. Hence ρ(x, x′) ≤ ε/2 < ε.
Conversely, suppose that f satisfies condition (ii). Given ε > 0, choose δ̃ as

in that condition. If x, x′ ∈ X and ρ(x, x′) > ε, then max{f(x), f(x′)} ≥ µ + δ̃.
By the definition of µ, there exists z ∈ X such that

f(z) < µ+
δ̃

2

and hence

f(z) +
δ̃

2
< µ+ δ̃ ≤ max{f(x), f(x′)}.

Therefore we may set δ := δ̃
2
. □

The following result is was communicated to us by Peter Aczel many years
ago.

Proposition 2 Let X be a complete metric space, and let f be a sequentially
continuous, sufficiently convex mapping of X into R such that µ ≡ inf f exists.
Then there exists ξ ∈ X such that f(ξ) = µ. Moreover, if x ∈ X and x ̸= ξ, then
f(x) > µ.

Proof. In view of Proposition 1, we can construct a strictly decreasing sequence
(δn)n⩾1 of positive numbers such that for each n, if x, x′ ∈ X, f(x) < µ+δn, and

f(x′) < µ+ δn, then ρ(x, x′) < 2−n. For each n, pick xn ∈ X such that f(xn) <
µ+ δn. Then ρ(xm, xn) < 2−n for all m ⩾ n, so (xn)n⩾1 is a Cauchy sequence
in X. Since X is complete, ξ ≡ limn→∞ xn exists in X. By the sequential
continuity of f, µ ≤ f(ξ) ≤ µ, so f(ξ) = µ. Moreover, if x ∈ X and ρ(x, ξ) > 0,
then, with ε := 1

2
ρ(x, ξ) and δ > 0 as in the definition of ‘sufficiently convex’,

there exists z ∈ X such that

µ < µ+ δ ≤ f(z) + δ < max{f(ξ), f(x)} = max{µ, f(x)} = f(x).

□

A subset K of a metric space X is sufficiently convex given x ∈ X if K is
inhabited, and if for each ε > 0 there exists δ > 0 such that for all y, y ′ ∈ K
with ρ(y, y ′) > ε, there exists z ∈ K such that

ρ(x, z) + δ < max{ρ(x, y), ρ(x, y ′)}.

In other words, K is sufficiently convex given x ∈ X if f(y) ≡ ρ(x, y) defines a
sufficiently convex function on K. We call K sufficiently convex if K is sufficiently
convex given any x ∈ X. The following theorem on best approximation of points
is an immediate consequence of Proposition 2.

Theorem 3 Let K be a complete subset of a metric space X that is sufficienctly
convex given x ∈ X. Further suppose that µ = inf{ρ(x, y) | y ∈ K} exists. Then
there exists ξ ∈ K such that ρ(x, ξ) = µ. Moreover, if y ∈ K and y ̸= ξ, then
ρ(x, y) > µ.
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A normed space X is uniformly convex if for each ε > 0 there exists δ
with 0 < δ < 1 such that if x, y are elements of X with ∥x∥ = 1 = ∥y∥ and
∥x− y∥ ≥ ε, then

∥∥1
2
(x+ y)

∥∥ ≤ δ. Hilbert spaces, and Lp spaces with p > 1,
are uniformly convex [4, page 322, Corollary (3.22)].

Lemma 4 Let X be a uniformly convex normed space. Then for all ε̃ > 0 and
M > 0 there exists δ̃ > 0 such that if x, y are elements of X with ∥x∥ = ∥y∥ ≤ M
and ∥x− y∥ ≥ ε̃, then ∥1

2
(x+ y)∥+ δ̃ ≤ ∥x∥.

Proof. Let ε̃ > 0 and consider any x, y ∈ X such that ∥x∥ = ∥y∥ ≤ M and
∥x − y∥ ≥ ε̃. As ε̃ ≤ ∥x − y∥ ≤ 2∥x∥, we deduce that ∥x∥ = ∥y∥ ≥ ε̃/2 > 0.
Set ε := ε̃

M
and compute δ ∈ (0, 1) as in the definition of uniform convexity. As

x/∥x∥ and y/∥y∥ are unit vectors with∥∥∥∥ x

∥x∥
−

y

∥y∥

∥∥∥∥ =
1

∥x∥
∥x− y∥ ≥ ε̃

M
= ε,

we obtain
1

∥x∥

∥∥∥∥12 (x+ y)

∥∥∥∥ ≤ δ.

Hence, since ∥x∥ ≥ ε̃/2,∥∥∥∥12 (x+ y)

∥∥∥∥ ≤ δ∥x∥ ≤ ∥x∥− (1− δ)∥x∥ ≤ ∥x∥− (1− δ)
ε̃

2
.

It remains to take δ̃ := (1− δ) ε̃
2
. □

Lemma 5 Let X be a uniformly convex normed space, and let K ⊂ X be inhab-
ited, convex, and norm bounded. Then for each x ∈ X and each ε > 0, there
exists δ > 0 such that

∥1
2
(y+ y ′) − x∥+ δ < max{∥y− x∥, ∥y ′ − x∥}

whenever y, y ′ ∈ K satisfy ∥y− y ′∥ > ε. In particular, K is sufficiently convex.

Proof. Let x ∈ X and f(y) = ∥y−x∥ (y ∈ X). In addition pick M > 0 such that
∥y − x∥ ≤ M for all y ∈ K (recall that K is bounded). Let ε > 0. For ε̃ := ε/2
and M compute δ̃ > 0 as in Lemma 4. Choose δ > 0 with δ < min{ε/4, δ̃/2}, and
consider y, y ′ ∈ K with ∥y−y ′∥ > ε. Either

∣∣f(y)−f(y ′)
∣∣ > δ or

∣∣f(y)−f(y ′)
∣∣ <

2δ. In the first case either f(y) < f(y ′) − δ or f(y ′) < f(y) − δ, and hence by
the triangle inequality,

f(
1

2
(y+ y ′)) = ∥1

2
(y+ y ′) − x∥

≤ 1

2
(∥y− x∥+ ∥y ′ − x∥)

=
1

2
(f(y) + f(y ′))

< max{f(y), f(y ′)}−
δ

2
.
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Now assume the second case. Then by the triangle inequality,

ε < ∥y− y ′∥ ≤ ∥y− x∥+ ∥y ′ − x∥ = f(y) + f(y ′) < 2(f(y) + δ),

so f(y) > ε/4. Likewise f(y ′) > ε/4; whence min{f(y), f(y ′)} > ε/4 > 0. Letting

z :=
∥y− x∥
∥y ′ − x∥

(y ′ − x),

note that

∥z− (y ′ − x)∥ =
∣∣∥y− x∥− ∥y ′ − x∥

∣∣ = ∣∣f(y) − f(y ′)
∣∣ < 2δ,

∥z∥ = ∥y− x∥ = f(y) ≤ M,

and
∥(y− x) − z∥ ≥ ∥y− y ′∥− ∥(y ′ − x) − z∥ > ε− 2δ >

ε

2
= ε̃.

By our choice of δ̃,

f(y) = ∥y− x∥ ≥ 1

2
∥(y− x) + z∥+ δ̃

=
1

2
∥(y− x) + (y ′ − x) − (y ′ − x) + z∥+ δ̃

≥ ∥1
2
(y+ y ′) − x∥− 1

2
∥z− (y ′ − x)∥+ δ̃

> f(
1

2
(y+ y ′)) − δ+ δ̃

> f(
1

2
(y+ y ′)) + δ.

As f(y) ≤ max{f(y), f(y ′)} and as 1
2
(y+ y ′) ∈ K, the lemma is proved.

□

Lemma 6 Let X be a uniformly convex normed space, and let K ⊂ X be inhab-
ited and convex. Then K is sufficiently convex.

Proof. Let x ∈ X and f(y) = ∥y − x∥ (y ∈ X). We have to prove that f is
sufficiently convex on K. To this end, let y0 ∈ K and M > 2(∥y0 − x∥ + 1) =
2(f(y0) + 1). Note that

K ′ = {y− x : y ∈ K, ∥y− x∥ ≤ M}

is convex, norm bounded, and inhabited (since y0 − x ∈ K ′). Therefore, by
Lemma 5, for ε > 0 there exists δ with 0 < δ < 1, such that if y, y ′ ∈ K,
∥y− y ′∥ > ε, and (y− x), (y ′ − x) ∈ K ′, then

f(
1

2
(y+ y ′)) + δ = ∥1

2
(y+ y ′) − x∥+ δ < max{∥y− x∥, ∥y ′ − x∥}.
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If y, y ′ ∈ K are such that f(y) = ∥y − x∥ > M/2 or f(y ′) = ∥y ′ − x∥ > M/2,
then

f(y0) + δ <
M

2
− 1+ 1 < max{f(y), f(y ′)}.

□

Lemma 6 and Theorem 3 lead to

Theorem 7 Let X be a uniformly convex normed space, and let K ⊂ X be an
inhabited, complete, and convex set. Moreover, let x ∈ X and assume that

µ := inf{∥y− x∥ : y ∈ K}

exists. Then there exists ξ ∈ K such that ∥ξ − x∥ = µ. If y ′ ∈ K such that
y ′ ̸= ξ, then ∥y ′ − x∥ > µ.

An immediate consequence of Theorem 7 is the proof of [4, Problem 11,
p. 391] which corresponds to Corollary 8 below. To this end, we recall that a
subset L of a metric space X is located if L is inhabited and for all x ∈ X the
distance

ρ(y, L) := inf{ρ(x, y) | x ∈ L}

exists.

Corollary 8 Let B be a uniformly convex Banach space, and let K ⊂ B be an
inhabited, closed, located, and convex set. Then each x ∈ B has a unique closest
point ξ ∈ K—that is, ∥x − ξ∥ = ρ(x, K)—and if y ∈ K is such that y ̸= ξ, then
∥x− y∥ > ρ(x, K).

A subset K of a normed space X is uniformly rotund if it is inhabited, convex,
and for each ε > 0 there exists δ > 0 such that if x, x′ ∈ K and ∥x− x′∥ ≥ ε,
then 1

2
(x+ x′) + z ∈ K for all z ∈ X with ∥z∥ ≤ δ.

Proposition 9 A normed linear space X is uniformly convex if and only if its
closed unit ball B is uniformly rotund.

Proof. Suppose that X is uniformly convex, and let ε > 0. Compute δ > 0
for ε, x = 0, and K = B as in Lemma 5. Then for all y, y ′ ∈ B such that
∥y− y ′∥ ≥ ε, and any z ∈ X with ∥z∥ ≤ δ, it follows that∥∥∥∥12 (y+ y′) + z

∥∥∥∥ ≤
∥∥∥∥12 (y+ y′)

∥∥∥∥+ δ ≤ max {∥y∥, ∥y ′∥} ≤ 1.

Hence, 1
2
(y+ y′) + z ∈ B, so B is uniformly rotund.

Conversely, suppose that B is uniformly rotund, let ε > 0, and choose δ < 1 as in
the definition of uniformly rotund. If x, y are unit vectors of X with ∥x− y∥ ≥ ε,
then

∥∥1
2
δ(x+ y)

∥∥ ≤ δ, so

(1+ δ)
∥∥1
2
(x+ y)

∥∥ =
∥∥1
2
(x+ y) + 1

2
δ(x+ y)

∥∥ ≤ 1

and therefore
∥∥1
2
(x+ y)

∥∥ ≤ (1+ δ)−1 < 1. □
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Lemma 10 A uniformly rotund subset of a normed space is sufficiently convex.

Proof. Let K be a uniformly rotund subset of a normed space X and let x ∈ X.
In addition let ε > 0 and y, y ′ ∈ K be such that ∥y− y ′∥ > ε. Pick δ > 0 as in
the definition of uniformly rotund and note that we may assume that δ < ε/2.
Let v := 1

2
(y+ y ′) − x. Either ∥v∥ > 0 or ∥v∥ < δ/2. In the first case

∥δ v

∥v∥
∥ ≤ δ

and therefore z := 1
2
(y+ y ′) − δ v

∥v∥ ∈ K. We have

∥z− x∥ = ∥v∥− δ ≤ 1

2
(∥y− x∥+ ∥y ′ − x∥) − δ

≤ max{∥y− x∥, ∥y ′ − x∥}− δ,

and thus ∥z− x∥+ δ/2 < max{∥y− x∥, ∥y ′ − x∥}. Next suppose that ∥v∥ < δ/2.
As ∥y−x∥+∥y ′−x∥ ≥ ∥y−y ′∥ > ε, we must have max{∥y−x∥, ∥y ′−x∥} ≥ ε/2.
Hence, in this case, letting z := 1

2
(y+ y ′) ∈ K we have

∥z− x∥+ δ/2 = ∥v∥+ δ/2 < δ < ε/2 ≤ max{∥y− x∥, ∥y ′ − x∥}.

□

Now Lemma 10 and Theorem 3 imply:

Theorem 11 Let K be a complete, uniformly rotund subset of a normed space
X. Moreover, let x ∈ X and assume that

µ := inf{∥y− x∥ : y ∈ K}

exists. Then there exists ξ ∈ K such that ∥ξ − x∥ = µ. If y ′ ∈ K such that
y ′ ̸= ξ, then ∥y ′ − x∥ > µ.

So far we have considered the best approximation of a point in a set. Now
we move on to mutual best approximations of sets. Let K and L be subsets of
a metric space X such that L is inhabited. We call K sufficiently convex relative
to L if K is inhabited, and for each ε > 0 there exists δ > 0 such that for all
y, y ′ ∈ K with ρ(y, y ′) > ε, there exists z ∈ K such that for all x, x ′ ∈ L there
is u ∈ L with

ρ(u, z) + δ < max{ρ(x, y), ρ(x ′, y ′)}.

Note that K is sufficiently convex given x ∈ X if and only if K is sufficiently
convex relative to {x}.

Lemma 12 Let K and L be subsets of a metric space X such that L is located.
Then K is sufficiently convex relative to L if and only if f(y) ≡ ρ(y, L) defines
a sufficiently convex function on K.
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Proof. Suppose that K is sufficiently convex relative to L. For ε > 0 let δ > 0
be as in the definition of sufficiently convex relative to L. Consider y, y ′ ∈ K
such that ρ(y, y ′) > ε. Then there is z ∈ K such that for all x, x ′ ∈ L there is
u ∈ L with

ρ(u, z) + δ < max{ρ(x, y), ρ(x ′, y ′)}.

Let x, x ′ ∈ L be such that ρ(y, L) > ρ(x, y)− δ/2 and ρ(y ′, L) > ρ(x ′, y ′)− δ/2.
Then with u ∈ L as above, we have

ρ(z, L) + δ ≤ ρ(u, z) + δ

< max{ρ(x, y), ρ(x ′, y ′)}

< max{ρ(y, L), ρ(y ′, L)}+ δ/2.

Hence,
ρ(z, L) + δ/2 < max{ρ(y, L), ρ(y ′, L)}.

Conversely, if f(y) ≡ ρ(y, L) defines a sufficiently convex function on K, then
for every ε > 0 there is δ > 0 such that if y, y ′ ∈ K satisfy ρ(y, y ′) > ε there is
z ∈ K such that

ρ(z, L) + δ < max{ρ(y, L), ρ(y ′, L)}.

Let u ∈ L be such that ρ(z, L) > ρ(u, z) − δ/2. Then for all x, x ′ ∈ L we have

ρ(u, z) + δ/2 < ρ(z, L) + δ < max{ρ(y, L), ρ(y ′, L)} ≤ max{ρ(x, y), ρ(x ′, y ′)}.

□

Lemma 13 Let L be a located, convex subset of a normed space X. Then for
all x, x′ in X and t ∈ [0, 1],

ρ(tx+ (1− t)x′, L) ≤ tρ(x, L) + (1− t)ρ(x′, L).

Proof. Given x, x′ ∈ X, t ∈ [0, 1], and ε > 0, pick y, y′ ∈ L such that

∥x− y∥ < ρ(x, L) + ε and ∥x′ − y′∥ < ρ(x′, L) + ε.

Then

ρ(tx+ (1− t)x′, L) ≤ ∥tx+ (1− t)x′ − ty− (1− ty′)∥
≤ t ∥x− y∥+ (1− t) ∥x′ − y′∥
≤ tρ(x, L) + (1− t)ρ(x′, L) + tε+ (1− t)ε

≤ tρ(x, L) + (1− t)ρ(x′, L) + ε.

Since ε > 0 is arbitrary, the result follows. □

Proposition 14 Let K be an inhabited, uniformly rotund subset of a normed
space X, and L a located, convex subset of X that is disjoint from K. Then K is
sufficiently convex relative to L.
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Proof. By Lemma 12 it will suffice to show that f(x) ≡ ρ(x, L) defines a
sufficiently convex function on K. For ε > 0 let δ > 0 be as in the definition
of uniform rotundity for K. Consider x, x′ ∈ K such that ∥x− x′∥ > ε. Let
u := 1

2
(x + x ′) and fix v ∈ L such that ∥v − u∥ < ρ(u, L) + δ/2. Note that

∥v−u∥ ≥ δ, because by choice of δ, if we had ∥v−u∥ < δ, then v = u+(v−u) ∈ K
which is absurd since K and L are disjoint. Let

z := u+
δ

∥v− u∥
(v− u).

Then ∥z−u∥ = δ, and therefore z = u+ (z−u) ∈ K. Recalling both our choice
of v and Lemma 13, we have

f(z) + δ/2 ≤ ∥v− z∥+ δ/2

=

(
1−

δ

∥v− u∥

)
∥v− u∥+ δ/2

= ∥v− u∥− δ/2

< f(u)

≤ max{f(x), f(x ′)}.

□

To see that in Proposition 14 we cannot replace uniform rotundity by mere
convexity (in a uniformly convex space), take X to be the Euclidean plane R2,

K = {(a, b) ∈ R2 : a ≤ 0},

and
L = {(a, b) ∈ R2 : a ≥ 1}.

We have
inf
x∈K

ρ(x, L) = 1 = ∥(0, b) − (1, b)∥

for all b ∈ R, so, in view of Proposition 2, x 7→ ρ(x, L) is not sufficiently convex
on K.

Recall here Bishop’s Lemma [7, Proposition 3.1.1]:

Let Y be a complete, located subset of a metric space X. Then for
each x ∈ X there exists y ∈ Y such that if x ̸= y, then ρ(x, Y) > 0.

Theorem 15 Let K and L be subsets of a metric space X such that K is com-
plete, L is located, and K is sufficiently convex relative to L. Suppose also that
d ≡ infy∈K ρ(y, L) exists. Then there exists ξ ∈ K such that (i) ρ(ξ, L) = d and
(ii) ρ(y, L) > d for all y ∈ K with y ̸= ξ. If, in addition, L is complete, then
there exists x ∈ L such that if ξ ̸= x, then d > 0.
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Proof. Since f(y) ≡ ρ(y, L) defines a sufficiently convex function on K, and
since K is complete and d exists, Proposition 2 produces ξ ∈ K with properties
(i) and (ii). If also L is complete, then we complete the proof by invoking
Bishop’s Lemma. □

Lemma 16 Let Y be an inhabited, convex subset of a Hilbert space H, and a
a point of H such that d = ρ(a, Y) exists. Then there exists b ∈ Y such that
∥a− b∥ = d. Moreover,

(i) ∥a− y∥ > d whenever y ∈ Y and y ̸= b;

(ii) ⟨a− b, b− y⟩ ≥ 0, and therefore ⟨a− b, a− y⟩ ≥ d2, for all y ∈ Y.

Proof. This is a well-known result on Hilbert space. For instance Lemma
1 in [2] proves the existence of b ∈ Y such that ∥a− b∥ = d and (ii) holds.
Conclusion (i) follows from (ii) since for all y ∈ Y

∥a− y∥2 = ∥a− b+ b− y∥2

= ∥a− b∥2 + ∥b− y∥2 + 2 ⟨a− b, b− y⟩
≥ d2 + ∥b− y∥2.

□

Theorem 17 Let K and L be closed subsets of a Hilbert space H such that L
is convex and located, and K is sufficiently convex relative to L. Suppose also
that d ≡ infx∈K ρ(x, L) exists. Then there exist x∞ ∈ K and y∞ ∈ L such that
∥x∞ − y∞∥ = d. Moreover,

(i) ∥x− y∥ > d whenever x ∈ K and y ∈ L and either x ̸= x∞ or y ̸= y∞;

(ii) ⟨x∞ − y∞, y∞ − y⟩ ≥ 0, and therefore ⟨x∞ − y∞, x∞ − y⟩ ≥ d2, for all
y ∈ L.

Proof. By Theorem 15, there exists x∞ ∈ K such that d = ρ(x∞, L). By
Lemma 16 there exists y∞ ∈ L such that ∥x∞ − y∞∥ = ρ(x∞, L) and properties
(i) and (ii) hold. □

Note that also in Theorem 17 we cannot replace sufficient convexity by mere
convexity: Let H = R2,

K = {(a, b) ∈ R2 : b ≥ ea + 1},

and
L = {(a, b) ∈ R2 : b ≤ −ea − 1}.

Then d = 2, but there are no x ∈ K and y ∈ L such that ∥x− y∥ = 2.
Theorem 17 leads us to a new constructive separation theorem where the

separating linear functional is constructed as the difference of the points of
closest distance.
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Theorem 18 Let K and L be closed, convex, and located subsets of a Hilbert
space H, such that K is sufficiently convex relative to L. Suppose that d ≡
infx∈K ρ(x, L) exists and is positive, let x∞ ∈ K and y∞ ∈ L be as in Theorem 17,
and let p = x∞ − y∞. Then

⟨p, x− y⟩ ≥ d2 (x ∈ K, y ∈ L).

Moreover, if u(x) = ⟨d−1p, x⟩ (x ∈ H), then

(a) u is a normed real linear functional, ∥u∥ = 1, and u(x) ≥ u(y)+d for all
x ∈ K and y ∈ L.

(b) u(x∞) ≤ u(x) for all x ∈ K, and u(y∞) ≥ u(y) for all y ∈ L.

(c) If also K is uniformly rotund, then u(x∞) < u(x) whenever x ̸= x∞.

Proof. By Theorem 17, for all y ∈ L we have

⟨p, x∞ − y⟩ = ⟨x∞ − y∞, x∞ − y⟩ ≥ d2.

On the other hand, since K is located, convex, and closed, Lemma 16 provides a
unique b ∈ K such that ρ(y∞, K) = ∥y∞ − b∥. As ρ(y∞, K) = d = ∥y∞ − x∞∥,
it follows that b = x∞ and thus, by Lemma 16, that

⟨y∞ − x∞, x∞ − x⟩ ≥ 0 (1)

for all x ∈ K. Hence, for x ∈ K and y ∈ L,

⟨p, x− y⟩ = ⟨p, x∞ − y⟩+ ⟨p, x− x∞⟩
≥ d2 + ⟨x∞ − y∞, x− x∞⟩
= d2 + ⟨y∞ − x∞, x∞ − x⟩ ≥ d2.

It is straightforward to prove (a) and, using (1) and noting Theorem 17 (ii),
to prove (b). To prove (c), suppose also that K is also uniformly rotund, and
let x ∈ K be such that x ̸= x∞. Choose δ > 0 such that 1

2
(x∞ + x) + z ∈ K

for all z ∈ H with ∥z∥ ≤ δ. Let z := − δ
d
p. Then ∥z∥ = δ and therefore

1
2
(x∞ + x) + z ∈ K. It follows that u(1

2
(x∞ + x) + z) ≥ u(x∞), and thus

u(x) + 2u(z) ≥ u(x∞). As u(z) = − δ
d2 ⟨p, p⟩ = −δ < 0, we conclude that

u(x) > u(x∞). □

By Theorem 18 we may construct supporting hyperplanes PK := {x ∈ H :
u(x) = u(x∞)} of K and PL := {x ∈ H : u(x) = u(y∞)} of L, respectively, where
PK intersects with K in the point x∞, and PL intersects with L in y∞. If K is
uniformly rotund, then the intersection point x∞ of PK and K is strongly unique
in the sense that any point x ∈ K distinct from x∞ is bounded away from PK

since u(x) > u(x∞).
In trying to apply the foregoing theorems, it is natural to think of a uniformly

rotund set K which is compact. In that case, if K is nontrivial, Corollary 20 below
shows that H is finite-dimensional.
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Proposition 19 Let X be a normed space, and S be a uniformly rotund subset
of X that contains two distinct points. Then S contains an open ball of positive
radius.

Proof. Let a, b be two distinct points of S. There exists δ > 0 such that if
x, y ∈ S and ∥x− y∥ ≥ ∥a− b∥, then 1

2
(x + y) + z ∈ S for all z ∈ X with

∥z∥ ≤ δ. Consider the open ball B(1
2
(a+b), δ) of radius δ with centre 1

2
(a+b).

If z ∈ B(1
2
(a+ b), δ), then ∥z− 1

2
(a+ b)∥ < δ, so

z = 1
2
(a+ b) +

(
z− 1

2
(a+ b)

)
∈ S,

and therefore B(1
2
(a+ b), δ) is the required ball. □

Corollary 20 A normed space that has a totally bounded, uniformly rotund
subset which contains two distinct points is finite-dimensional.

Proof. This follows from the Proposition 19 and [7, Proposition 4.1.13]. □
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