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1. Introduction
Modern societies and economies are increasingly dependent on systems that are characterized
by complex forms of interconnectedness and interactions between different actors and system
entities. Examples of such critical infrastructures are energy grids, transportation and commu-
nication systems, financial markets, and digital systems such as the internet.

However, the complexity of interaction channels also constitutes a major source of risk. The
term systemic risk refers to the risk arising from a spread and amplification of adverse effects in a
system due to contagion. Typically, the spread is triggered by some initial failure or disruption.
Then the interconnectedness of the system entities facilitates the propagation of this risk, and
amplifies the overall impact of the incident. Therefore, the study of systemic risk involves not
only understanding the individual components of a network but also examining its pattern of
interactions and feedback mechanisms.

Our main focus in this paper is management of systemic cyber risk which constitutes a
significant part of the general exposure to cyber risk.1 For illustration, let us recall two striking
incidents in recent years which may be categorized as systemic cyber risk:

1See [6] for a distinction between idiosyncratic, systematic, and systemic cyber risks.
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• WannaCry is a worm-type malware that emerged on a large scale in May 2017, primarily
infecting Windows operating systems. Approximately 230,000 computer devices across
more than 150 countries were infected. Being a ransomware, the worm encoded data on
the compromised systems and insisted on a payment of $300. The consequence of this
encryption was the loss of data and the rendering of IT systems in healthcare services
and industry completely unusable. The assessed damage caused varies from hundreds
of millions to four billion US dollars. The identification of “kill switch” significantly
contributed to the containment of the incident.

• The NotPetya malware appeared in June 2017 and was primarily directed at Ukraine.
Disguised as ransomware, this iteration of the Petya malware aimed not only to encrypt
data but also to inflict maximum damage by disrupting IT systems. The data encryption
led to an irreversible loss of accessibility, causing immediate repercussions for institu-
tions like the Ukrainian Central Bank and significant disruptions in the country’s major
stock markets. Furthermore, the malware managed to infiltrate organizations beyond the
Ukrainian financial sector that had offices in Ukraine, compromising machines in other
countries as well. For instance, the global shipping company Maersk faced extensive busi-
ness disruptions in various parts of the world.

One fundamental concept in understanding complex systems is the representation of their
components and interactions as networks—a term which we use synonymously with graphs.
The nodes of the network represent the individual entities, and edges depict the connections
or relationships between them. In cyber systems, these nodes could be computers, servers, or
even individual users, while financial systems might have nodes representing banks, markets, or
financial investors. Possible interpretations of nodes and edges in electrical systems or in the
case of a public transport system are also obvious.

We develop a conceptual framework for risk measures quantifying the resilience of networks
to contagion and pandemic outbreak. To this end, we follow a well-established approach to risk
assessment and base the risk measure on three main ingredients:

• a set A of acceptable networks which are deemed to have a sufficient degree of resilience
to contagion,

• a set I of topological interventions to transform non-acceptable configurations into ac-
ceptable ones by altering the network structure,

• a quantification of the cost C (not necessarily in monetary terms) of making some network
acceptable.

Naturally, there is an interplay between these three components, and they will account for the
trade-off between functionality of the system, on the one hand, and interconnectedness as a
major source for risk, on the other hand. Our findings may be relevant for different types of
supervisors, such as

a) a regulator or central planner who aims to manage risk and resilience of (digital) systems
and infrastructures from the perspective of a society. The need for a conceptual frame-
work to manage systemic cyber risks has been widely discussed by leading regulatory or
macroprudential institutions, see for example [24], [27], [28] and the discussion below.

b) an insurance company concerned with the limits of insurability of systemic accumulation risk
and the design of policy exclusions. Insurers can also act as private regulators by requiring or
incentivising security and system standards among their policyholders through contractual
obligations, see the discussion in [5].

c) a (local) risk manager who is concerned with the network protection of a single firm or
industry cluster.
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Even though we will mostly limit our discussion to systemic cyber risks, especially in the
axiomatization of acceptance sets A, we want to emphasize that this risk management approach
can also be applied to other forms of systemic risk, including those where the trade-off between
functionality and risk due interconnectedness may be different from the cyber risk case. In
electrical networks, for instance, an increase of interconnectedness may be desirable from the
risk perspective—possibly avoiding blackouts.

A central feature of the risk measures for systemic risk we study in this paper is that a network
is secured by allowing the risk manager to alter the network topology by means of topological
interventions collected in the control set I. There are a number of reasons for this approach:

First of all, it is well-known that the risk of a contagious spread is significantly determined
by the topology of a network, as illustrated, for instance, in the analysis in [5]. To the best
of our knowledge, existing works on systemic cyber risk typically model the risk control of
networked actors via (individual) security levels or monetary investments, see the review on
strategic interaction models for cyber risks in [6] and [53]. This security level or investment is
a rather abstract variable whose increase is intended to somehow reduce the vulnerability to
cyber attacks in an unspecified manner. In contrast, by allowing for topological interventions,
we achieve more operational clarity as compared to most previous attempts, because the controls
I come with a meaningful practical interpretation as outlined in Section 3.

Secondly, also in practice the discussion of security standards for interconnected systems
increasingly focuses on the network structure. For example, in case of cyber security, regulators
are increasingly pursuing a “Zero Trust” principle according to which no one is trusted by default
from inside or outside the network. In particular no parts of a network are deemed to be more
secure than other parts which implies that interactions with other entities of the network cannot
be based, for instance, on the security standards of the other—this excludes, by the way, the
aforementioned security levels and investments as controls. As a result, risk management is left
with creating secure and resilient network architectures. For further information we refer to the
discussion in [60] or in [55, Section 3.5.3].

Another example for the application of network models in practice is in the modelling of
layered risks. For illustration consider the potential threat of cyber risks to financial stability,
see [24], [27], [28]. Here network models are applied with a particular focus on the interplay
between the operational cyber network and the financial network. So-called “cyber mappings”
are used to identify systemically relevant network nodes in both the cyber network and the
financial network and to analyse transmission channels of cyber risk to the financial system. A
stylized illustration of a cyber map is given in Figure 1. These approaches are discussed, for
example, in [14] and [28].

Figure 1: A stylized cyber map consisting of a cyber and a financial network. Taken from [28]
and owned by Deutsche Bundesbank. Reproduced with permission.
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Finally, from a theoretical perspective well-known results from dynamic models for network
epidemics2 suggests topological interventions (besides others) as appropriate controls to secure
a network. Indeed, risk management strategies for systemic cyber risk which do not target the
structure of the network are—in the framework of network epidemics—naturally interpreted as a
change in the infection rate τ > 0 and recovery rate γ > 0 of the contagion process, for instance
due to an increased detection rate of system incidents, see [5]. A fundamental observation is
that many real-world networks are characterized by a certain degree of heterogeneity, consisting
of a small number of strongly connected entities, called hubs, and a vast majority of nodes
with rather few adjacent neighbors. The distribution of node degrees, here represented by the
random variable KG, in these networks G typically follows a power law P(KG = k) ∼ k−α,
at least approximately. These so-called scale-free networks are commonly found among a wide
range of social, technological, and information networks such as the internet, see Table 10.1
in [56].3 Networks of this type are known to be highly vulnerable to pandemic contagion
since infections of the hubs may immediately spread the risk to large parts of the system.
For example, the phase transition behavior of the classical SIR (Susceptible-Infected-Recovered)
network contagion model for undirected networks can be characterized in the limit of infinite
network size by the epidemic threshold

τ

τ + γ

E
[
K2

G − KG

]
E

[
KG

] > 1, (1)

see Chapter 6 in [50].4 If (1) is satisfied, then epidemic outbreaks are possible; otherwise they
are not. The crucial point is that in scale-free networks with 2 < α ≤ 3, epidemic outbreaks are
always possible, at least in the infinite size limit: For fixed values of the epidemic parameters
τ and γ, which, we recall, would correspond to any non-topological risk controls, the left-hand
side of (1) explodes with increasing network size due to the divergence of the second moment
E

[
K2

G

]
of the degree distribution while the first moment E

[
KG

]
remains finite. Thus, taking

the infinite size limit as an approximation of very large and expanding systems such as the
internet, if we are not willing to touch the network topology, their protection may require huge
and probably extremely expensive resources for a sufficient reduction of τ and increase of γ to
avoid epidemic outbreaks, if at all possible.

Of course, altering the network structure may come at the cost of loosing functionality. This is
where the cost function C comes into play. Apart from monetary costs of network interventions,
measures of network functionality constitute an important class of cost functions, see Section 5.
Together with the right choice of acceptance set A this allows to maintain a desired degree of
network functionality while improving the networks resilience by interventions in I.

Throughout the paper we will mention numerous open problems and questions which could
serve as basis for future research. Some major topics are collected in the outlook Section 8.
Even if some of the issues mentioned can be readily solved, we will have to leave them aside
for the moment, since the purpose of this paper is to establish a framework for measures of
resilience to cyber contagion, and we want to avoid escalating discussions of partial aspects.

Literature As regards the mathematical literature on cyber risk, we refer to the surveys
[6] and [26] for a comprehensive overview. A few recent studies focusing on cyber insurance

2These processes which originate from the study of biological epidemics are frequently applied to model the
systemic spread of cyber risk, see the discussion in the literature section below.

3A possible explanation for this phenomenon can be found in the random network models of [58], [59] and [8]
based on the interplay of network growth and cumulative advantage or preferential attachment, i.e., the tendency
of newly added network actors to connect with already highly interconnected nodes due to efficiency reasons.

4The threshold is exact for networks without additional correlation effects such as clustering or degree cor-
relations. For an arbitrary degree distribution, such networks can, e.g., be generated using the configuration
model from [54]. The influence of node degree correlations and clustering on epidemic dynamics is summarized in
Section VII, B of [57]. Numerical and analytical work shows that these are not able to restore a finite threshold
for scale-free networks, or at most in the case of very strong presence.
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are [7], [10], [13], [20], [21], [44], [66], [67], and [68]. There is an increasing line of literature
utilizing epidemic processes on networks known from theoretical biology (see, e.g. [50, 57])
to model the spread of contagious cyber risks in digital systems, see [2], [19], [31], [42], [43],
[49], and [65]. The latter articles are mostly concerned with the pricing of cyber insurance
policies. Further considerations on the significance of systemic cyber risks for the vulnerability
of digitally networked societies and economies can be found in [38] and [64].

Systemic risk has long been studied in the context of financial systems, see for instance [39],
[47], and [48] for an overview. In particular, models for contagion effects in financial networks
have been proposed and studied in [1], [22], [25], and [40], whereas, for example, [3], [11], [17],
[35], [34], [45], and [46] consider risk measures for systemic risk in financial markets. Applications
of this type of risk measures outside the financial market frame are in transmission systems
([16]), for infrastructures ([61]), or traffic networks ([32]). However, non of these approaches
directly targets the underlying network structure, see the discussion above.

An axiomatic approach to monetary risk measures goes back to [4], see also [36] and [37] for
an overview of the theory on monetary risk measures. It is from this theory that we adopt the
idea to base the risk assessment on a set of acceptable configurations A, a set of controls I, and
related costs C.

Outline After introducing the formalisation of networks and some related basic definitions in
Section 2, we will first discuss network manipulations I in Section 3, then introduce acceptance
sets A in Section 4, and finally consider the cost C of acceptability in Section 5. These com-
ponents are merged into what we call a measure of resilience to cyber contagion in Section 6.
Selected examples are given in Section 7. Section 8 provides an outlook on open problems for
future research. Finally, the appendix contains some further examples and considerations for
undirected graphs which are not discussed in the main part of the paper.

2. Networks - Basic Definitions
2.1. Graphs and Networks
A graph G is an ordered pair of sets G = (VG, EG) where VG is a set of elements, called nodes
(or vertices), and EG ⊆ VG × VG a set of pairs, called edges (or links). In the following, we will
always assume (v, v) /∈ EG, i.e, we do not allow for self-connections of nodes. Further, for the
rest of the paper, we assume that all graphs are defined over the same non-empty countably
infinite basis set of nodes V, i.e., that VG ⊆ V for all graphs G. We denote the set of such
graphs by

G := {G | G = (VG, EG), VG ⊂ V, EG ⊂ (VG × VG) ∩ E}

where E := {(v, w) ∈ V × V | v ̸= w}. |VG| is called the size of graph G. A graph G′ = (V ′, E ′)
with V ′ ⊆ VG, E ′ ⊆ EG is called a subgraph of G.

A network is any structure which admits an abstract representation as a graph: The nodes
represent the network’s agents or entities, while the connecting edges correspond to a relation
or interaction among those entities. In the following, we use the terms “graph” and “network”
interchangeably.

An important subclass of G are the so-called undirected graphs: A graph G ∈ G is called
undirected if for all v, w ∈ VG we have (v, w) ∈ EG ⇔ (w, v) ∈ EG. A graph which is not undi-
rected is often referred to as being directed. There is a vast literature on undirected graphs and
popular network models restrict themselves to this subclass. However, throughout this paper
we will work with the complete set of directed graphs G since the direction of a possible infor-
mation flow may be essential to understand the associated risk of a corresponding connection.
Nevertheless, our results, or appropriate versions of the results, also hold if we restrict ourselves
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to the undirected case, see Appendix B for the details. Moreover, in Appendices B.2.3 and
B.2.6 we provide examples which are peculiar to an undirected graph framework.

An extension of G is obtained through the incorporation of weights assigned to the edges,
symbolizing the extent of transmissibility of a shock across each respective edge. Nonetheless,
defining the precise nature and magnitude of these weights might pose a challenge. We briefly
discuss the enhancement of our framework to weighted graphs in the outlook Section 8.

2.2. Adjacency Matrix
For a network of size N , the nodes can be enumerated, say as v1, · · · , vN . Given an enumeration
of the vertex set VG, the network topology, i.e., the spatial pattern of interconnections, of a
network G is described by its adjacency matrix AG = (AG(i, j))i,j=1,··· ,N ∈ {0, 1}N×N , where

AG(i, j) =
{

1, if (vi, vj) ∈ EG

0, else.

Note that G is undirected if and only if AG is a symmetric matrix.

2.3. Neighborhoods of Nodes and Node Degrees
For a graph G = (VG, EG) and node v ∈ VG, we define N G,in

v := {w ∈ VG|(w, v) ∈ EG} and
N G,out

v := {w ∈ VG|(v, w) ∈ EG} as the in- and out-neighborhoods of node v. The neighborhood
is N G

v := N G,in
v ∪ N G,out

v . A network G is undirected if and only if N G,in
v = N G,out

v = N G
v for

all v ∈ VG. The set Ev
G := {(u, w) ∈ EG|u = v or w = v} contains all edges associated with node

v in graph G.
In order to characterize and quantify structural differences between network nodes, a possible

way is to measure the number of adjacent neighbors, i.e., with how many others a node is
connected. The incoming or in-degree, i.e., the number of edges arriving at node v, is defined
as kG,in

v = |N G,in
v |, and the outgoing or out-degree as kG,out

v = |N G,out
v |. For some enumeration

v1, . . . , vN of VG, these entities can be expressed in terms of the adjacency matrix AG by

kG,in
vi

=
N∑

j=1
AG(j, i), kG,out

vi
=

N∑
j=1

AG(i, j).

The (total) degree kG
v of node v in network G is defined as

kG
v = 1

2(kG,in
v + kG,out

v ).

Typically, total degrees are studied in the context of undirected networks G where we find that
kG

v = kG,in
v = kG,out

v due to the fact that N G,out
v = N G,in

v for all v ∈ VG.

2.4. Walks, Paths, and Connectivity of Graphs
Given a graph G, a walk of length n from node v to node w in G is an (n + 1)-tuple of nodes
(v1, v2, . . . , vn+1) such that (vi, vi+1) ∈ EG for all 1 ≤ i ≤ n and v1 = v and vn+1 = w. A path
from v to w is a walk where all nodes are distinct.

A graph G is called (weakly) connected if there exists a path from v to w or from w to v for
any two nodes v, w ∈ VG. A component G̃ of network G is a weakly connected subgraph, and
two components G1 = (V1, E1), G2 = (V1, E2) of G are called disconnected if there are no v ∈ V1
and w ∈ V2 such that there is a path from v to w or from w to v in G. A graph G is called
strongly connected if for each node pair v, w ∈ VG there exist paths from v to w and from w to
v.
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2.5. Equivalence Classes of Isomorphic Graphs
Two graphs G1 = (V1, E1), G2 = (V2, E2) ∈ G share the same topology if there is a bijection
π : V1 → V2 such that

(v, w) ∈ E1 ⇔ (π(v), π(w)) ∈ E2 for all v, w ∈ V1.

π is called a graph isomorphism of G1 and G2, and we write G1
iso∼ G2. Clearly, given a graph

G1 = (V1, E1) any bijection π : V1 → V2 where V2 ⊂ V defines a graph π(G) = (V2, E2) where
E2 = {(π(v), π(w)) | v, w ∈ V1} called an isomorphism of G or the isomorphism of G under π.
iso∼ is an equivalence relation on G.

3. Network Interventions
Definition 3.1. A network intervention is a map κ : G → G.

3.1. Basic Interventions
In this section we introduce some basic types of interventions on graphs G = (VG, EG) ∈
G. These manipulations have also previously been applied in the literature on network risk
management, see e.g. [5] and [18] for the case of cyber networks.

3.1.1. Elementary Interventions on Edges and Nodes

Ie del Edge Deletion: Consider a node tuple (v, w), v, w ∈ V. The operation

κ
(v,w)
e del : G 7→ (VG, EG \ {(v, w)})

is called the deletion of edge (v, w). Note that κ
(v,w)
e del (G) = G if and only if (v, w) /∈ EG.

We set
Ie del := {κ

(v,w)
e del | v, w ∈ V}.

Operational interpretations of edge deletion for controlling cyber risk are
– physical deletion of connections, such as access to servers, or, if not possible,
– edge hardening, i.e., a strong protection of network connections via firewalls, the

closing of open ports, or the monitoring of data flows using specific detection systems.

Ie add Edge Addition: The addition of edge (v, w) for v, w ∈ V with v ̸= w is given by

κ
(v,w)
e add : G 7→ (VG, EG ∪ ({(v, w)} ∩ VG × VG)),

where κ
(v,w)
e add(G) = G is satisfied if either we already have (v, w) ∈ EG or at least one of

the nodes v and w is not present in the network G. We set

Ie add := {κ
(v,w)
e add | v, w ∈ V}.

Edge addition is, of course, the reverse of edge deletion and comes with the opposite oper-
ational meaning. In the context of electrical networks, edge addition may be interpreted
as physical addition of power lines between nodes, thereby securing power supply.

In del Node Deletion: The deletion of a node v ∈ V is given by the intervention

κv
n del : G 7→ (VG \ {v}, EG ∩ (VG \ {v} × VG \ {v}))
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where κv
n del(G) = G if and only if v /∈ VG. We set

In del := {κv
n del | v ∈ V}.

Operationally node deletion corresponds, for instance, to removal of redundant servers or
other access points.

In add Node Addition: An (isolated) node v ∈ V can be added to a network via

κv
n add : G 7→ (VG ∪ {v}, EG)

where κv
n add(G) = G if and only if we already have v ∈ VG. We set

In add := {κv
n add | v ∈ V}.

Node addition, e.g. additional servers serving as backups or taking over tasks from very
central servers, my improve network resilience towards a spread of infectious software if
combined with edge addition or edge shifts, see below.

More complex interventions such as discussed in the following can be obtained by a consecutive
application of the elementary interventions presented so far.

3.1.2. Isolation of Network Parts

Critical nodes or subgraphs can be isolated from the rest of the network by application of the
following edge deletion procedures:

Is iso Node/Subgraph Isolation: We isolate the subgraph (W ∩ VG, EG ∩ (W × W)) given by
a set W ⊂ V (or a node in case W = {v} for some v ∈ V) from the rest of the network by

κW
iso : G 7→ (VG, EG \ [W × (VG \ W) ∪ (VG \ W) × W]), Is iso := {κW

iso | W ⊂ V}.

3.1.3. Shifting, Diversification and Centralization of Network Connections

Network tasks or data flows can be redistributed among existing nodes by utilizing interventions
of the following type:

Ishift Edge Shift: If (v, w) ∈ EG and (q, r) ∈ E \ EG, q, r ∈ VG, then the edge (v, w) can be
shifted to (q, r) by

κ
(v,w),(q,r)
shift : G 7→

{
(VG, EG \ {(v, w)} ∪ {(q, r)}), if (v, w) ∈ EG, q, r ∈ VG, (q, r) ∈ E \ EG

G, else.

We set
Ishift := {κ

(v,w),(q,r)
shift | v, w, q, r ∈ V}.

Combining node adding and edge shift operations, we can create more complex interventions
which aim for risk diversification by separating critical contagion channels that pass through a
chosen node v:5

5Note that a reduction of paths by splitting of v is only possible if N G,out
v , N G,in

v ̸= ∅. Further, let G̃ =
κL,v,ṽ

split (G). An actual reduction of paths in G̃ is obtained in case that N G̃,in
v , N G̃,out

ṽ ̸= ∅, or N G̃,out
v , N G̃,in

ṽ ̸= ∅.
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Isplit Node Splitting: The split of a node v by rewiring edges contained in L ⊂ E from v to
a newly added node ṽ ∈ V is described by

κL,v,ṽ
split : G 7→

{
(VG ∪ {ṽ}, EG \ (L ∩ Ev

G) ∪ L̃G
ṽ ), if ṽ /∈ VG

G, else,

with L̃G
ṽ := {(ṽ, w)|(v, w) ∈ L ∩ EG} ∪ {(w, ṽ)|(w, v) ∈ L ∩ EG}. A true node splitting only

takes place when ṽ ̸∈ VG and L ∩ Ev
G ̸= ∅. Let

Isplit := {κL,v,ṽ
split | v, ṽ ∈ V, L ⊂ E}.

Conversely, node splits can be reversed by merging nodes v and ṽ. This operation corresponds
to a centralization of network connections:

a c

bg

f

e d

split

merge
a c

bg

f

e d

a~

Figure 2: Splitting (left to right) and merging (right to left) as mutually reverse operations.
Targeted nodes are coloured in red.

Imerge Node Merging: Any two nodes v, w with (v, w), (w, v) /∈ EG which are of disjoint in-
and out-neighborhood can properly be merged into node v. This corresponds to the
intervention

κv,w
merge : G 7→


(VG \ {w}, (EG \ Ew

G) ∪ MG), if v, w ∈ VG, {(v, w), (w, v)} ∩ EG = ∅,

N G,in
v ∩ N G,in

w = N G,out
v ∩ N G,out

w = ∅
G, else,

with MG := {(v, q)|q ∈ N G,out
w } ∪ {(q, v)|q ∈ N G,in

w }. Let

Imerge := {κv,w
merge | v, w ∈ V}.

3.2. Strategies, Reverse and Orthogonal Sets of Interventions
Definition 3.2. Given a set I of interventions defined on G, an (I-)strategy κ is a finite
composition of interventions in I, i.e. κ = κ1 ◦ . . . ◦ κn where κi ∈ I for all i = 1, . . . , n and
n ∈ N. We let [I] denote the set consisting of all I-strategies, and in addition, if not already
included in I, the intervention id : G 7→ G.

Definition 3.3. Let I, J be sets of network interventions on G.

1. We call J a reversion of I, written J ▷ I, if for every α ∈ I and network G ∈ G we find
a κ ∈ [J ] such that κ ◦ α(G) = G.

2. If J ▷ I and I ▷ J , then we write I△J and call I and J mutually reverse.

3. We call I self-reverse if I ▷ I (or, equivalently, I△I).
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4. J is a partial reversion of I if there is G ∈ G, a α ∈ [I] with α(G) ̸= G, and a κ ∈ [J ]
such that κ ◦ α(G) = G. In case I is a partial reversion of itself, we call I partially
self-reverse.

Note that the reversions κ ∈ J such that κ ◦ α(G) = G in the above definitions may depend
on G.

Lemma 3.4. 1. J ▷ I if and only if [J ] ▷ [I].

2. If I ▷ J , J ▷ K, and K ▷ L, then we also have I ▷ L.

3. If I ▷ J and H ▷ K, then (I ∪ H) ▷ (J ∪ K).

4. The relation △ is a symmetric. Moreover, 1.,2.,3. hold with ▷ replaced by △.

Proof. 1. Suppose that J ▷ I and let α = α1 ◦ · · · ◦ αn where αi ∈ I, i = 1, . . . , n. Further,
let κi ∈ [J ] such that κn ◦ αn(G) = G, and κi ◦ αi(αi+1 ◦ . . . ◦ αn(G)) = αi+1 ◦ . . . ◦ αn(G),
i = 1, . . . , n − 1. Then κ = κn ◦ · · · ◦ κ1 ∈ [J ] satisfies κ ◦ α(G) = G. If [J ] ▷ [I], then J ▷ I
since I ⊂ [I] and [[J ]] = [J ].
2. Let κL ∈ L and choose κI ∈ I, κJ ∈ J , and κK ∈ K such that κK ◦ κL(G) = G,
κJ ◦ κK ◦ κL(G) = κL(G), and κI ◦ κJ (G) = G. Then G = κI ◦ κJ ◦ κK ◦ κL(G) = κI ◦ κL(G).
3. is obvious.
4. The first assertion is clear. The others follow from symmetry and 1.,2.,3.

We introduce another concept that specifies whether consecutive interventions from I and J
can generate the same output when applied to an initial network G ∈ G:

Definition 3.5. Two sets I, J of network interventions are called orthogonal, I ⊥ J , if for
all G ∈ G and all κ ∈ [I] and κ̃ ∈ [J ] we have κ(G) = κ̃(G) if and only if κ(G) = G = κ̃(G).

Remark 3.6. A sufficient condition for I ⊥ J is that |Vκ(G)| ≠ |Vκ̃(G)| or |Eκ(G)| ≠ |Eκ̃(G)| for
all κ ∈ [I] and κ̃ ∈ [J ] whenever we have κ(G) ̸= G or κ̃(G) ̸= G. This is especially the case
when the two types of network interventions are opposite in terms of change of the number of
nodes or edges.

Example 3.7. The relations between the previously introduced types of basic interventions can
be characterized in terms of reversibility and orthogonality:

1. For reversibility, we find
• Ie del△Ie add and Isplit△Imerge, and these are the only two classes of basic interven-

tions that are mutually reverse.
• Ishift is the only self-reverse basic intervention class.
• Ie add ▷ Is iso and In del ▷ In add, but the converse results do not apply.

2. Recalling Remark 3.6 we observe that
• all elementary interventions are pairwise orthogonal, i.e., we have Ie del ⊥ Ie add,

Ie del ⊥ In del, Ie del ⊥ In add, Ie add ⊥ In del, Ie add ⊥ In add, and In del ⊥ In add,
• Ishift is the only basic intervention class where for a real network manipulation

κ(G) ̸= G the number of edges or nodes remains unaffected, and consequently, it is
orthogonal to all other classes of basic interventions,

• we further have Isplit ⊥ Imerge, Isplit ⊥ Ie del, Isplit ⊥ Ie add, Isplit ⊥ In del, Imerge ⊥
Ie del, Imerge ⊥ Ie add, and Imerge ⊥ In add.

• For each set I with I ⊥ Ie del, we also have I ⊥ Is iso.
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3. The relations in 1. and 2. remain valid whenever we restrict the network interventions
to subsets of nodes and edges. Of course, in case of ▷ and △ the restriction has to be
consistent on both sides. In practice, the interventions available to a supervisor may
indeed be constrained to such subsets, see also Remark 6.3 below.

Lemma 3.8. Let I and J be mutually reverse. Then the following statements are equivalent:

1. I and J are orthogonal.

2. Either I or J is not partially self-reverse.

3. Both I or J are not partially self-reverse.

Proof. Clearly, 3. ⇒ 2.

1. ⇒ 3.: Assume that I is a partially self-reverse. Then, there is G ∈ G and strategies κ, κ̃ ∈ [I]
such that κ̃ ◦ κ(G) = G with H := κ(G) ̸= G. Now, since J ▷ I, we find a J -strategy κ̂
with κ̂ ◦ κ̃(H) = H, according to Lemma 3.4. Therefore, we have κ̂(G) = κ(G) ̸= G, and
this implies that I and J are not orthogonal which contradicts 1. Hence, I cannot be
partially self-reverse. The assertion now follows from interchanging the roles of I and J .

2. ⇒ 1.: Suppose I and J are not orthogonal. Then we find a network G ∈ G and consecutive
interventions κ ∈ [I], κ̃ ∈ [J ] such that κ(G) = κ̃(G) ̸= G. Now, since I is a reversion of
J , we find a κ̂ ∈ [I] with G = κ̂ ◦ κ̃(G) = κ̂ ◦ κ(G), and therefore, I is a partial reversion
of itself. The same argument applies to J which contradicts 2. Hence, I and J must be
orthogonal.

3.3. Generation of Networks Using Interventions
Consider a given network G ∈ G and a set of interventions I on G. The set

σI(G) := {κ(G)|κ ∈ [I]}

contains all networks G̃ ∈ G that can be generated from G under consecutive interventions built
from I. Note that we always have G ∈ σI(G) due to id ∈ [I]. Using the concepts from the
previous subsection, we can characterize the relation between sets σI(G) and σJ (G) for two
sets of interventions I and J :

Proposition 3.9. Let I, J be sets of interventions on G.

1. For all G, H ∈ G, H ∈ σI(G) implies σI(H) ⊆ σI(G).

2. Suppose that I is not partially self-reverse. Then

G ≼I H :⇔ H ∈ σI(G)

defines a partial order on G.

3. J ▷ I holds if and only if we have that H ∈ σI(G) ⇒ G ∈ σJ (H) for all G, H ∈ G. In
particular, we have I△J if and only if H ∈ σI(G) ⇔ G ∈ σJ (H) for all G, H ∈ G.

4. I ⊥ J if and only if σI(G) ∩ σJ (G) = {G} for all G ∈ G.

5. Let K = Ie del ∪Ie add ∪In del ∪In add be the set that contains all elementary interventions
from Section 3.1.1. Then σK(G) = G for all G ∈ G.

11



Proof. 1. For H ∈ σI(G) and an arbitrary L ∈ σI(H), we find κ, κ̃ ∈ [I] with κ(G) = H,
and κ̃(H) = L, respectively. Then κ̃ ◦ κ ∈ [I] and κ̃ ◦ κ(G) = L, so that L ∈ σI(G).

2. id ∈ [I] implies reflexivity, and transitivity follows from 1. Finally suppose that G ≼I H
and H ≼I G, then there are I-strategies κ, κ̃ such that H = κ(G) and G = κ̃(H) =
κ̃ ◦ κ(G). Since I is not partially self-reverse, we must have H = κ(G) = G. This proves
antisymmetry of ≼I .

3. Let H ∈ σI(G) and κ ∈ [I] with H = κ(G). If J ▷ I, then by Lemma 3.4 we can find a
κ̃ ∈ [J ] with G = κ̃ ◦ κ(G) = κ̃(H) ∈ σJ (H). Conversely, suppose that H ∈ σI(G) ⇒
G ∈ σJ (H) for all G, H ∈ G. This means that for all G ∈ G and κ ∈ [I], we find a κ̃ ∈ [J ]
with G = κ̃ ◦ κ(G). This in particular holds for any κ ∈ I. Hence, J is a reversion of I.

4. Suppose that I and J are orthogonal and let H ∈ σI(G) ∩ σJ (G). Then we find κ ∈ [I],
κ̃ ∈ [J ] with κ(G) = κ̃(G) = H. By orthogonality this implies H = G. Conversely,
suppose σI(G) ∩ σJ (G) = {G}, and let κ(G) = κ̃(G) =: H for some κ ∈ [I] and κ̃ ∈ [J ].
Then H ∈ σI(G) ∩ σJ (G), so H = G. Thus I and J are orthogonal.

5. G ∈ G can be transformed into an arbitrary G̃ ∈ G by i) deleting the nodes in VG \ VG̃, ii)
deleting all remaining edges from the set EG \ EG̃, iii) adding the nodes from VG̃ \ VG to
G, iv) and adding the edges from EG̃ \ EG.

4. Network Acceptance Sets - An Axiomatic System
In this section we collect axioms which we believe are minimal requirements on any reasonable
acceptance set A ⊂ G managing risk and resilience of (cyber) networks. We also discuss further
properties of acceptance sets which may be desirable.

4.1. Acceptability and Means to Achieve Acceptability
First, we give introduce a universal axiom in the sense that it is not designed specifically
for managing cyber risks, but it takes care of the interplay between acceptability and means
to become acceptable. To this end we identify sets of basic network interventions from the
previous section which lead to an improvement of some current configuration.

Definition 4.1. Let A ⊂ G and further let I be a set of network interventions.

1. A is said to be closed under I if σI(G) ⊂ A for all G ∈ A. In that case I is called risk-
reducing for A. A network intervention κ is called risk-reducing for A if the intervention
set {κ} is risk-reducing for A.

2. I is risk-increasing for A if G \ A is closed under I, that is I is risk-reducing for G \ A.

We now state the fundamental axiom of our risk management approach:

Axiom 1 There is a set I↓ of interventions such that id ⫋ I↓ and I↓ is risk-reducing for A.

Remark 4.2. 1. The set I↓ of risk-reducing interventions for A is interpreted as a set of
means to potentially achieve acceptability for some unacceptable G ∈ G \ A. Therefore, a
minimal condition on I↓ is that I↓ \{id} should be non-empty. Moreover, for convenience
we assume that id is contained in I↓.
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2. Note that we do not require I↓ to contain all interventions which reduce the risk with
respect to A. For instance, drastic interventions like node splittings may reduce the risk but
are possibly not available or not legitimate, at least not for every node, see the discussion
on admissibility in Remark 6.3. Therefore, we also do not require conditions such as
σI↓(G) ∩ A ≠ ∅ for all networks G ∈ G since there might be networks for which we do not
have the means to transform them into an acceptable state.

3. Note that an implicit conclusion which could be drawn from Axiom 1, already mentioned
in 1., is that the risk manager only chooses I↓-strategies to secure some given network.
One may, however, think of situations where strategies which combine risk-increasing and
risk-reducing interventions also lead to acceptability. We do not explicitly exclude such
strategies, see the discussion in Remark 6.2.

4. Moreover, note that we may view Axiom 1 as a monotonicity property of A with respect
to the ordering ≼I↓ given in Proposition 3.9. Then G ∈ A and G ≼I↓ G̃ imply G̃ ∈ A.

Axiom 1 is essential to any risk management based on topological network interventions. This
principle should also apply to risk measures for other types of networks of critical infrastructure
mentioned in the introduction such as power or transportation networks.

Definition 4.3. A non-empty set A ⊆ G satisfying Axiom 1 is called a network acceptance
set.

4.2. Axioms for Resilience to Cyber Contagion
The following axioms are tailored to the management of pandemic (cyber) risks. First we
combine two basic principles, namely that acceptable network configurations should exist, i.e.
A ≠ ∅, and that the edgeless graphs (V, ∅), V ⊂ V, should be acceptable due to the absence of
contagion channels:6

Axiom 2 Every edgeless graph (V, ∅), V ⊂ V, of size |V| ≥ 2 is acceptable.

In view of the functionality of a system, interconnectedness should be acceptable up to a
certain degree. However, every network connection constitutes a possible channel of contagious
transmission. Hence, there is a trade-off between functionality and risk in the sense of system
vulnerability due to interconnectedness which is addressed in the following Axioms 3 and 4.
First, as regards functionality, we require acceptability of some strongly connected networks.
However, we add a size restriction to this requirement, since with increasing number of nodes,
maintaining functionality while controlling the risk, is more feasible, see also Remark 4.6.

Axiom 3 There is an N0 ∈ N such that for all N ≥ N0 the acceptance set A contains a strongly
connected network with N nodes.

Next we address system vulnerability by specifying worst-case arrangements of networks that
exceed any reasonable limit of risk.

6Note that if |V| = 1, the edgeless graph of size 1 is also a star graph and complete. In order to be consistent
with later axioms which in particular exclude complete graphs (Axiom 4 and 4’) we choose here not to include
graphs of size 1 in A. Indeed note that the infection of the single node v ∈ V = {v} means that the full system
is infected which is worst case from a pandemic point of view.
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Definition 4.4. Consider a network G ∈ G and a node v∗ ∈ VG.

1. We call v∗ a super-spreader if N G,out
v∗ = VG \ {v∗}.

2. If, moreover, N G,in
v∗ = N G,out

v∗ = VG \ {v∗}, then v∗ is called a star node.

A cyber attack on a super-spreader may easily spread to significant parts or even the entire
network. If, moreover, the network contains a star node v∗, which can be reached from any
other node, an attack on an arbitrary part of the network always harbors the risk of spreading
to the star and infecting large parts or the entire system from there. In our view, the presence
of a star node constitutes, in any case, an unacceptable level of risk. In particular, this excludes
any complete graph Gc = (VGc , (VGc × VGc) ∩ E), where each node is a star node.

Figure 3: A star graph (left), and a complete graph (right), consisting of N = 8 nodes. Both
configurations are not acceptable according to Axiom 4 and 4’.

The strongest version of the following axiom is obtained when indeed all networks with super-
spreaders (and thus in particular any network containing a star node) are excluded from the
acceptance set, which seems sensible, at least if a targeted attack on the super-spreader is
possible.

Axiom 4 A does not contain any network with a super-spreader.

However, this requirement may be too restrictive in the case of very large networks, if we
also take into consideration the distribution of an initial infection. Suppose, for simplicity,
that initially one uniformly chosen node is infected, and consider the directed star graph G∗ =
(VG∗ , EG∗) with star node v∗ where ∅ ≠ VG∗ ⊂ V and

EG∗ = {(v∗, w) | w ∈ VG∗ \ {v∗}}.

For small network sizes, this is a highly vulnerable configuration. However, with increasing
network size, the probability of an initial attack on v∗ decreases. In the event that some node
different from v∗ is initially attacked, the infection cannot spread further in the network as in
this example v∗ is the only node with outgoing edges. Therefore, in the limit for large numbers
of nodes, the system behavior of the directed star graph approaches that of the edgeless graph
which is acceptable. Anyhow, if a network with super-spreader is indeed to be classified as
acceptable, then this should only be allowed above a network size for which there already exist
strongly connected configurations which are classified as acceptable. This line of reasoning leads
to the following relaxed version of Axiom 4:
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Axiom 4’ A does not contain any network with a star node. If there is an acceptable network
with a super-spreader, then A also contains a strongly connected network of smaller size.

Figure 4: A directed star graph (left), and a second graph that contains a super-spreader node
(right), both consisting of N = 8 nodes.

Definition 4.5. We call a non-empty set A ⊂ G a network acceptance set for pandemic
cyber contagion if it satisfies Axioms 1-3, and at least Axiom 4’.

Remark 4.6. Regarding the size restriction in Axiom 3, both Axioms 3 and 4 (or 4’) can only
be satisfied simultaneously if N0 > 2 since for smaller network sizes a strongly connected config-
uration already corresponds to the complete graph. Alternatively, to avoid the contradiction, we
could in principle have applied the size restriction to Axiom 4 instead of 3. However, the ap-
proach we have chosen is motivated by the fact that initial infections in a small network already
affect a significant proportion of the overall system per se, and the presence of a few network
edges are in principle sufficient for a shock to propagate through the entire system.7 In practical
applications, we should indeed expect to be confronted with networks of significantly larger sizes,
and with increasing number of nodes, observing strongly connected graphs which do not contain
super-spreaders or star nodes becomes more likely. Therefore, the requirement that A satisfies
the Axioms 3 and 4 simultaneously is consistent with a tendency to favor large networks with a
diversified connectivity structure.

Further properties of the acceptance set may be reasonable. For example, suppose that the
network G may be decomposed into k disconnected components G1, . . . , Gk. In that case, con-
tagious risks can only spread within the components Gi of G but not between them. Therefore,
the acceptability of all components may be seen as a sufficient condition for the acceptability
of the full network:

Axiom 5 A is closed under disjoint graph unions, i.e., if G, H ∈ A with VG ∩ VH = ∅, then
G ∪ H := (VG ∪ VH , EG ∪ EH) ∈ A.

If we do not endow the single nodes v ∈ VG of a network G with a particular meaning, one
might identify networks which are isomorphic and thus require that:

7Note also that this is consistent with our requirement in Axiom 1 to exclude all networks of size 1 from the
acceptance set.
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Axiom 6 Topological invariance: A is closed under graph isomorphisms, i.e., for any two
networks G, G̃ ∈ G which are isomorphic we have G ∈ A if and only if G̃ ∈ A.

This property resembles the concept of distribution-invariant risk measures common in fi-
nancial economics. Indeed, if graphs are isomorphic, then their degree distributions coincide.
However, note that in situations where the network components resemble particular entities,
some of which may need to be prioritized in terms of protection, f.e., entities that belong to
critical infrastructures, topological invariance is not appropriate.

5. Cost Functions
The final ingredient to our risk management framework is the cost function representing some
type of price we pay for altering a given network. The cost function measures the consequences of
the supervisors decisions and potentially quantifies the resources needed to achieve acceptability.

Definition 5.1. Given a network acceptance set A ⊂ G and a set of interventions I↓ which
together satisfy Axiom 1, a map C : G × G → R ∪ {∞} with

C1 C(G, G) = 0 for all G ∈ G

C2 C(G, H) ≥ 0 whenever H ∈ σI↓(G)

is called a cost function for (A, I↓).

The following two types of cost functions appear naturally:

1. A quantification of the monetary cost of transforming a graph G into H ∈ σI↓(G), see
Section 5.1.

2. A quantification of the cost of transforming a graph G into H ∈ σI↓(G) in terms of the
corresponding impact on network functionality, see Section 5.2.

Other potentially useful or desirable properties of a cost function are as follows:

C3 Every non-trivial network intervention comes at a real cost, i.e.,

C(G, H) = 0 ⇒ G = H for all H, G ∈ G.

C4 It might also be reasonable to require that the absolute cost of a direct transformation of G
to H should not be more expensive than first transforming to an intermediate configuration
M , i.e., for all G, H, M ∈ G such that M ∈ σI↓(G), and H ∈ σI↓(M) we have

C(G, H) ≤ C(G, M) + C(M, H).

Moreover, assume that there is also a fixed set I↑ of risk-increasing interventions for A (recall
Definition 4.1).

C5 In case I↓ ⊥ I↑, it may be plausible to assume that risk-increasing interventions come
with negative costs, i.e.,

C(G, H) ≤ 0 if H ∈ σI↑(G).
This property is particularly reasonable if costs are measured in terms of network function-
ality. However, it might not be suitable in case of a monetary cost function where every
network manipulation, also the bad ones, is associated with some (non-negative) expense.
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C6 If I↓ ⊥ I↑ and I↓△I↑, an even stronger tightening of the previous property is to assume
that C satisfies

C(G, H) = −C(H, G) for all H ∈ σI↓(G) ∪ σI↑(G) and G ∈ G.

5.1. Examples of Monetary Cost Functions
Consider any network acceptance set A ⊂ G and a set of interventions I↓ which together
satisfy Axiom 1. A way to construct a monetary cost function based on the cost of any basic
intervention κ ∈ I↓ is the following: Suppose we associate an initial cost p̃(κ) ∈ [0, ∞) with
each κ ∈ I↓ such that p̃(id) = 0, and for any I↓-strategy κ set

p(κ) := inf
{

n∑
i=1

p̃(κi) | κ = κn ◦ · · · ◦ κ1, κi ∈ I↓, i = 1, . . . , n, n ∈ N
}

. (2)

Then consider the minimal total cost for the transformation of G into H:

C(G, H) := inf{p(κ) | κ ∈ [I↓], κ(G) = H}, inf ∅ := ∞. (3)

Note that p conincides with p̃ on I↓ if and only if p̃ is consistent, that is if κ ∈ I↓ satisfies κ =
κn ◦· · ·◦κ1 for some interventions κi ∈ I↓, i = 1, . . . , n, n ∈ N, we must have p̃(κ) = ∑n

i=1 p̃(κi).
Of course, consistency of p̃ on I↓ is automatically satisfied in case that κ = κn ◦ · · · ◦ κ1 for
some κ, κ1, . . . , κn ∈ I↓ implies that κj = κ for some j ∈ {1, . . . , n} and κi = id for all i ̸= j.
The following lemma is easily verified.

Lemma 5.2. p is subadditive in the sense that for all κ, α ∈ [I↓] we have p(κ◦α) ≤ p(κ)+p(α).

Proposition 5.3. Suppose that C is given by (3). Then:

1. C(G, H) < ∞ if and only if H ∈ σI↓(G).

2. C is a cost function for (A, I↓) which satisfies C4.

3. Further suppose that inf{p̃(κ) | κ ∈ I↓ \ {id}} > 0, then C3 is satisfied.

4. Moreover, if I↓ is finite and p̃(κ) > 0 for all κ ∈ I↓ such that κ ̸= id, then the infimum
in (3) is attained whenever H ∈ σI↓(G). In other words, if H ∈ σI↓(G), then there
are optimal I↓-strategies κ for transforming G into H in the sense that κ(G) = H and
p(κ) = C(G, H).

Proof. 1. is obvious.
2. C is a cost function for (A, I↓) which satisfies C4 : C1 follows from p(id) = 0, whereas C2 is
implied by p̃(κ) ≥ 0 for each κ ∈ I↓. As for C4 consider G, M, H ∈ G and suppose that there
is κ, α ∈ [I↓] with α(G) = M and κ(M) = H. Then κ ◦ α(G) = H, and by Lemma 5.2 above
we have that C(G, H) ≤ C(G, M) + C(M, H).
3. Clearly, if ν := inf{p(κ) | κ ∈ I↓ \ {id}} > 0, then p(κ) > ν for all κ ∈ [I↓] such that κ ̸= id.
Hence, C(G, H) = 0 is only possible if H = G.
4. In order to show that there are optimal I↓-strategies in case H ∈ σI↓(G), pick any κ ∈ [I↓]
such that κ(G) = H. Note that ν = min{p̃(κ) | κ ∈ I↓ \ {id}} > 0, and let m ∈ N be such
that mν > p(κ). Denote by [I↓]m the set of all I↓-strategies which allow for a decomposition
α = αk ◦ . . . α1 where α1, . . . , αk ∈ I↓ and k ≤ m. Note that p(α) ≥ mν > p(κ) for all
α ∈ [I↓] \ [I↓]m. Therefore, it follows that

C(G, H) = inf{p(α) | α ∈ [I↓]m, α(G) = H}.

Now the assertion follows from [I↓] \ [I↓]m being a finite set.
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Note that the properties C5 and C6 do not apply for monetary costs given by (3). Suppose
that there is also a set I↑ of risk-increasing interventions for A. I↑ may not be desirable from
a risk perspective, but may, for instance, increase the functionality of the network. Therefore,
one could associate any κ ∈ I↑ with a revenue which is represented by a negative price. Basing
costs on the price of interventions in I↓ we obtain the following cost function

C(G, H) :=


inf{p(κ) | κ ∈ [I↓], κ(G) = H} if H ∈ σI↓(G)
−C(H, G) if H ∈ σI↑(G)
∞ else.

(4)

Proposition 5.4. Suppose that p is consistent on I↓. Further suppose that I↓ ⊥ I↑ and I↓△I↑,
and that C is given by (4). Then:

1. C is well-defined.

2. C(G, H) < ∞ if and only if H ∈ σI↓(G) ∪ σI↑(G).

3. C is a cost function for (A, I↓) which satisfies C4–C6.

4. Further suppose that inf{p̃(κ) | κ ∈ I↓ \ {id}} > 0, then C3 is satisfied.

5. If I↓ is finite and p̃(κ) > 0 for all κ ∈ I↓ such that κ ̸= id, then for every H ∈ σI↓(G)
there are optimal I↓-strategies κ for transforming G into H in the sense that κ(G) = H
and p(κ) = C(G, H).

Proof. By Proposition 3.9 we have σI↓(G) ∩ σI↑(G) = {G}, and H ∈ σI↑(G) if and only if
G ∈ σI↓(H). It follows that C is well-defined. By definition C satisfies C(G, H) < ∞ if and only
if H ∈ σI↓(G) ∪ σI↑(G), and we also have C5 and C6. The other properties follow as in the
proof of Proposition 5.3.

Another way to include revenues for applying interventions from I↑ is to define p̃ not only on
I↓ as above but also on I↑, where p̃(κ) ∈ (−∞, 0] for all κ ∈ I↑ \ {id}. Then let p be given as
in (2) on [I↓] and by

p(κ) := sup
{

n∑
i=1

p̃(κi) | κ = κn ◦ · · · ◦ κ1, κi ∈ I↑, i = 1, . . . , n, n ∈ N
}

. (5)

for κ ∈ [I↑]. Note that taking the supremum in (5) means that we require that the I↑-strategy
κ yields a revenue no matter from which perspective we look at κ. Again, one easily verifies
that

Lemma 5.5. p is subadditive on I↓ and superadditive on I↑ in the sense that for all κ, α ∈ [I↑]
we have p(κ ◦ α) ≥ p(κ) + p(α).

Now consider the following monetary cost function

C(G, H) :=


inf{p(κ) | κ ∈ [I↓], κ(G) = H} if H ∈ σI↓(G)
sup{p(κ) | κ ∈ [I↑], κ(G) = H} if H ∈ σI↑(G)
∞ else.

(6)

Proposition 5.6. Suppose that I↓ ⊥ I↑, and that C is given by (6). Then:

1. C is well-defined.

2. C(G, H) < ∞ if and only if H ∈ σI↓(G) ∪ σI↑(G).
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3. C is a cost function for (A, I↓) which satisfies C4–C5.

4. Further suppose that inf{|p̃(κ)| | κ ∈ (I↓ ∪ I↑) \ {id}} > 0, then C3 is satisfied.

5. If I↓ is finite and p̃(κ) > 0 for all κ ∈ I↓ such that κ ̸= id, then for every H ∈ σI↓(G)
there are optimal I↓-strategies κ or transforming G into H in the sense that such that
κ(G) = H and p(κ) = C(G, H).

6. If I↑ is finite and p̃(κ) < 0 for all κ ∈ I↑ such that κ ̸= id, then for every H ∈ σI↑(G)
there is κ ∈ [I↑] such that κ(G) = H and p(κ) = C(G, H).

Proof. The proof follows by similar arguments as in the proof of Proposition 5.4.

Note that in the situation of Proposition 5.6, C6 is only satisfied under strong (trivializing)
assumptions on I↓, I↑, and p. In that case the cost functions (4) and (6) coincide. Also
note another issue with the cost functions given in (4) or (6): Suppose that H ∈ σI↑(G) and
M ∈ σI↓(H), then it may for instance be that M ̸∈ σI↓(G) ∪ σI↑(G) and hence C(G, M) = ∞
even though C(G, H) < ∞ and C(H, M) < ∞. As C(G, H) + C(H, M) < ∞, which could
be seen as the cost of first transforming G into H and then into M , it may seem awkward
that C(G, M) = ∞. Such issues may be overcome, and one could think of conditions ensuring
subadditivity in the sense that always C(G, M) ≤ C(G, H) + C(H, M) which would constitute
a strengthening of C4. This is, however, not in the scope of this paper, and left for future
research.

5.2. Examples of Cost Functions based on Loss of Network Functionality
Let A satisfy Axiom 1 with I↓. A natural choice for the cost C is a function that quantifies the
difference in functionality F : G → R between two networks such as

C(G, H) = h(F(G) − F(H)) (7)

with some suitable h : R → R. Note that the Properties C1, C4, and C6 solely depend on the
choice of h, and one easily verifies the follow result:
Lemma 5.7. Consider a cost function of type (7). Then

1. Property C1 is satisfied if and only if h(0) = 0.

2. If h is sub-additive, then C4 holds.

3. C6 holds if h may be chosen to be anti-symmetric, i.e., h(x) = −h(−x) for all x ∈ R.
Network functionality is typically measured by considering the average node distance within

the network: A smaller average value corresponds to a faster or more efficient data flow. There
are two common concepts to define the distance between nodes:

• Shortest path length: Given two nodes v and w in a network G, we denote by lGvw the
length of a path from node v to w that passes through a minimum number of edges. If
there is no path from v to w, then we set lGvw = min ∅ := ∞.

• Communicability: An alternative concept8 is given by the communicability cG
vivj

between
nodes vi and vj in a graph G of size N with enumerated vertices v1, . . . , vN , defined as
the (i, j)th entry of the matrix exponential eAG of the adjacency matrix AG, i.e.

cG
vivj

:=
∞∑

k=0

(Ak
G)(i, j)
k! = eAG(i, j), where eAG := IN + AG + A2

G

2! + A3
G

3! + · · · =
∞∑

k=0

Ak
G

k!
8By some authors, it has been emphasized that the analysis of shortest paths only provides an incomplete

picture of the full system since the flow of information, data, or goods in a network may take place through many
different routes, see the discussion in [29] for example.
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and IN is the identity matrix in RN×N . Note that Ak
G(i, j) gives the number of walks of

length k from node vi to vj , and therefore cG
vivj

is a weighted sum of all walks from vi to
vj , where walks of length k are penalized by a factor of 1/k!.

5.2.1. Functionality Based on Shortest Paths

A canonical choice for a global measure of network functionality based on shortest paths is given
by the graph efficiency as defined in [52], which takes the average over all the reverse distances
in a graph:

F(G) = 1
|VG|(|VG| − 1)

∑
v,w,v ̸=w

1
lGvw

( 1
∞

:= 0
)
. (8)

Lemma 5.8. Suppose that A satisfies Axiom 1 with I↓ ⊂ Ie del ∪ Is iso. Then C given by (7)
and (8) and a strictly increasing function h with h(0) = 0 is a cost function for (A, I↓) which
satisfies the following constrained version of C3:

∀G ∈ G ∀H ∈ σI↓(G) : C(G, H) = 0 ⇒ G = H. (9)

Moreover, C5 holds for any choice of I↑ ⊂ Ie add.

Proof. C1 follows from h(0) = 0. In order to prove C2 and (9) we show that F(G) is non-
increasing whenever we apply a intervention in Ie del ∪Is iso to G and even strictly decreasing if
the intervention alters G. As a consequence, for all κ ∈ [Ie del ∪ Is iso] and thus for all κ ∈ [I↓]
we obtain that F(κ(G)) ≤ F(G) which implies h(F(G) − F(κ(G))) ≥ h(0) = 0 showing C2,
and F(κ(G)) < F(G) in case κ(G) ̸= G implying h(F(G) − F(κ(G))) > h(0) = 0 which is (9).

Let us first consider edge deletions: Fix G ∈ G and delete an edge (q, r) ∈ E. Let G̃ :=
κ

(q,r)
e del(G). The deletion of the edge (q, r) does not create any new paths and therefore lGvw ≤ lG̃vw

for all nodes v, w ∈ VG. Moreover, if (q, r) ∈ EG, then we necessarily have lGqr < lG̃qr, i.e., there
is at least one node pair where the inequality is strict. We thus obtain F(G̃) ≤ F(G) for all
networks G ∈ G and (q, r) ∈ E, and “=” holds exactly when we have (q, r) ̸∈ EG, i.e., if and
only if G̃ = G.

Note that the isolation of a subgraph, that is G̃ := κW
iso(G) where W ⊂ V, is a sequence of

edge deletions, namely deleting all edges connecting nodes in VG \ W with some node in W.
Hence, also in this case we obtain F(G̃) ≤ F(G), and “=” holds exactly when v ̸∈ VG for all
v ∈ W or when the subgraph given by the nodes W ∩ VG is already in G, i.e., if and only if
G̃ = G.

Recalling Proposition 3.9, C5 now follows from Ie add ⊥ (Ie del ∪ Is iso), Ie add△Ie add, and
the first part of the proof which then shows that F(H) ≥ F(G) whenever H ∈ σIe add(G), since
the latter is equivalent to G ∈ σIe del(H).

However, measuring network functionality in terms of shortest paths may come with some
difficulties when allowing for In split ⊆ I↓ as is illustrated by the following example.

Example 5.9. Let H be obtained from a network G of size N after the conduction of a node
split. For F to be monotonically decreasing under this intervention, the shortest path lengths in
H must satisfy

N − 1
N + 1

∑
v,w∈VH ,v ̸=w

1
lHvw

≤
∑

v,w∈VG,v ̸=w

1
lGvw

. (10)

Consider a graph G = G1 ∪ G2 consisting of two isolated components G1, G2 where

• G1 is depicted in Figure 5,

• G2 be a graph of N − 3 isolated nodes (edgeless graph) such that VG1 ∩ VG2 = ∅.
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Now assume that node b ∈ VG1 is split as depicted in Figure 5. Let the resulting transformation
of component G1 be denoted by H1.

a b

c

G1

a b

c b
~

H1

Figure 5: Node b is splitted by adding node b̃ /∈ VG to the network and replacing the edges in
{(b, c), (c, b)} by those from {(b̃, c), (c, b̃)}.

We obtain ∑
v,w∈VH1 ,v ̸=w

1
lH1
vw

= 2 ·
(
1 + 1 + 1

2 + 1
2 + 1

3 + 1
)

=
∑

v,w∈VG1 ,v ̸=w

1
lG1
vw

+ 8
3 ,

and since the components G1 and G2 are not connected by any path in the network G, we have∑
v,w∈VH ,v ̸=w

1
lHvw

=
∑

v,w∈VH1 ,v ̸=w

1
lH1
vw

and
∑

v,w∈VG,v ̸=w

1
lGvw

=
∑

v,w∈VG1 ,v ̸=w

1
lG1
vw

.

Hence, (10) becomes

N − 1
N + 1

 ∑
v,w∈VG,v ̸=w

1
lGvw

+ 8
3

 ≤
∑

v,w∈VG,v ̸=w

1
lGvw

.

This latter inequality is violated whenever N is large enough, which can be achieved by blowing
up the network component G2. Therefore, in this case, if h : R → R is strictly increasing with
h(0) = 0, we do not satisfy C2.

5.2.2. Functionality Based on Network Communicability

Taking the average over all the local communicabilities yields the global measure

F(G) = 1
|VG|2

∑
v,w

cG
vw (11)

for a network G. In contrast to shortest paths, it may be useful to include self-communicabilities,
that are entities cvv, into the consideration since walks of from a node to itself correspond to
closed communication loops. Basing the cost function on communicability we do not only
satisfy C2 in case of edge deletions, but—in contrast to shortest path based costs—also when
risk-reduction is achieved by node splitting.

Lemma 5.10. Suppose that A satisfies Axiom 1 with I↓ ⊂ Ie del ∪ Isplit. Then C given by (7)
and (11) and a strictly increasing function h with h(0) = 0 is a cost function for (A, I↓) which
satisfies (9). Moreover, C5 holds for any choice of I↑ ⊂ Ie add ∪ Imerge.

Proof. C1 follows from h(0) = 0. As in the proof of Lemma 5.8 we prove C2 and (9) by showing
that F(G) is non-increasing whenever we apply a intervention in Ie del ∪ Isplit to G and even
strictly decreasing if the intervention alters G.
Let G ∈ G with adjacency matrix AG, given some enumeration of the nodes VG. Let us first
consider edge deletions. To this end, let G̃ = κ

(vi,vj)
e del (G) where vi, vj ∈ VG. If (vi, vj) ∈ EG, then
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AG̃(i, j) < AG(i, j), and indeed Ak
G̃

(l, m) < Ak
G(l, m) for every k ≥ 1 and l, m such that (vi, vj)

is element of a walk of length k from vl to vm.9 Hence, cG̃
vw < cG

vw for all v, w ∈ VG where (vi, vj)
lies on a walk from v to w, yielding F(G̃) < F(G). Therefore, we conclude that F(G̃) ≤ F(G)
and F(G̃) = F(G) if and only if G = G̃. Conversely, if G̃ is obtained by adding an edge to the
network G, and thus G is obtained by an edge deletion in G̃, the previous arguments show that
cG̃
vw > cG

vw, and thus F(G̃) > F(G) unless G = G̃.
Next let us consider node splittings. If G̃ results from a node splitting intervention in G,

then, conversely, G can be obtained by a node merging intervention in G̃. Therefore, it suffices
to prove that F is increasing under node merging. So let G = κ

vi,vj
merge(G̃) be the graph obtained

after merging two nodes vi, vj ∈ VG̃ in a network G̃ of size N . In case this merge operation
is non-trivial, that is G ̸= G̃, assuming i < j, this intervention can be described by a matrix
operation on the adjacency matrix AG̃, i.e., AG = M̂ ·AG̃ ·M̂T with M̂ ∈ {0, 1}(N−1)×N defined
as

M̂(l, m) =


1, for l = m < j

1, for l = i, m = j

1, for j ≤ l ≤ N − 1, m = l + 1
0, else.

One verifies that the product M̂T M̂ equals 1 on the diagonal. Let IN ∈ RN×N denote the
identity matrix. Then it follows that M̂T M̂ ≥ IN in the sense that componentwise we have
(M̂T M̂)(l, m) ≥ IN (l, m) for all l, m = 1, . . . , N . Since all entries in AG̃ are non-negative we
estimate (

AG

)k =
(
M̂ · AG̃ · M̂T )k

= M̂ · AG̃ · M̂T · M̂ · AG̃ · M̂T · M̂ · AG̃ · · · AG̃M̂T

≥ M̂ · AG̃ · IN · AG̃ · IN · AG̃ · · · AG̃M̂T

= M̂ · (AG̃)k · M̂T .

Thus we obtain
N−1∑
l=1

N−1∑
m=1

(AG)k(l, m) ≥
N−1∑
l=1

N−1∑
m=1

(M̂ · (AG̃)k · M̂T )(l, m) =
N∑

l=1

N∑
m=1

(AG̃)k(l, m)

for all l, m = 1, · · · , N , and therefore10

∑
vi,vj∈VG

cG
vivj

≥
∑

vi,vj∈VG̃

cG̃
vivj

for the sum of all communicabilities. Further, since G̃ is larger than G, this yields strict
inequality when taking the average value, i.e., F(G̃) < F(G). Therefore, we conclude that
F(G̃) ≤ F(G) for all G̃ obtained by performing a node splitting on G, and F(G̃) = F(G) if and
only if G = G̃

9Note that the full argument can also be extended to the case of weighted networks for the reduction of edge
weight w(i, j) of the corresponding edge.

10Note that we find “>” if and only if there is a matrix entry (l, m) with AG̃M̂T M̂AG̃(l, m) > AG̃IN AG̃(l, m),
which means that

AG̃M̂T M̂AG̃(l, m) =
N∑

p=1

N∑
o=1

AG̃(l, o)M̂T M̂(o, p)AG̃(p, m) >

N∑
o=1

AG̃(l, o)AG̃(o, m).

This is the case if and only if AG̃(l, i) > 0 and AG̃(j, m) > 0, or AG̃(l, j) > 0 and AG̃(i, m) > 0, which means
that N G̃,in

vi
, N G̃,out

vj
̸= ∅, or N G̃,out

vi
, N G̃,in

vj
̸= ∅. In other words, a node split reduces some communicabilities in a

network if and only if the split corresponds to an actual separation of contagion channels.
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As regards C5, note that (Ie del ∪Isplit) ⊥ (Ie add ∪Imerge). Moreover, we have already shown
F(κ(G)) ≥ F(G) for any κ ∈ Ie add ∪ Imerge.

5.3. Costs under Partial Information
In order to determine the functionality of networks, information about a large part or even the
entire network topology is usually required. For example, the network communicabilities cG

vw in
(11) generally have to be calculated from all the entries of the adjacency matrix AG. In practice,
however, this information is often only available to a very limited extent, especially for large
networks such as the internet. There are different ways to deal with this issue. Suppose we have a
network G where only information on a subgraph G̃ = (VG̃, EG̃), VG̃ ⊆ VG, EG̃ ⊆ EG is available.
If the network interventions are constrained to those targeting parts of this subgraph, then also
the costs could be computed as above only for the subgraph instead of the complete graph. This
approach might be too rough in case of costs based on network functionality though. Another
approach would be to estimate the costs by means of the available information on G̃. Suppose
to this end that G̃ is representative of G to a certain extend, e.g. because the organisation of
G follows some known geometric rules, or that G approximately admits a self-similar structure
and G̃ contains information on the connectivity pattern of network clusters in G. Indeed,
self-similar properties of networks have been studied and found in the existing literature, see
f.e. [62]. Then the desired properties such as graph efficiency or average communicability can
possibly be reconstructed from those of G̃:

1. By estimating statistical network properties such as the distributions of node degrees in
the network G from the information about G̃, the functionality of G could be approximated
using data on similarly structured networks of the same size or by application of some
known scaling rules.

2. The missing pieces of network information could otherwise be artificially generated using
random graph models with suitable properties. Then the functionality could be deter-
mined in an appropriate set of samples.

3. Alternatively, more sophisticated estimation techniques such as network embeddings in
hyperbolic surfaces have been applied to networks with substantially incomplete infor-
mation, see [51] for a recent example. Good results were obtained for the estimation of
shortest path lengths between nodes in a range of relevant technology networks, including
the internet.

6. Measures of Resilience to Cyber Contagion
Definition 6.1. A measure of system resilience is a triplet (A, I↓, C) where

• A is a network acceptance set,

• I↓ is a set of interventions such that A and I↓ satisfy Axiom 1,

• and C is a cost function for (A, I↓) as in Definition 5.1.

If A is an acceptance set for pandemic cyber contagion, then (A, I↓, C) is called a measure of
resilience to cyber contagion.

Note that a measure of system resilience does a priori

Q1 not answer the question of minimal costs to achieve acceptability (if possible),
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Q2 nor does it necessarily allow to compare the risk of two or more networks.

The reason for that is—as is well-known from multivariate risk measure theory in mathematical
finance—that a satisfactory answer to Q1 and Q2 might be hard to achieve:

• Answering Q1 requires complete knowledge of all possible ways to transform any network
into an acceptable state and the related costs to achieve acceptability. For larger networks,
this presents a computability and complexity problem that might be difficult or impossible
to solve.

• Dealing with Q2 may require to know the answer to Q1. Eventually it is questionable
whether Q2 is really of interest, since in most applications in mind the supervisor is
managing a given network, and is not free to choose an initial configuration to start with.
This given network has to be secured somehow in an admissible and ideally efficient way.

However, below we will briefly discuss ways to use a measure of system resilience (A, I↓, C) to
construct univariate and set-valued risk measures, thereby also addressing Q1 and Q2.

Remark 6.2. I↓ is, of course, essential to construct any successful risk reducing strategy to
achieve acceptability. But as already mentioned in the discussion of Axiom 1, it is conceivable
that efficient strategies may combine risk-reducing and risk-increasing interventions. A regulator
who’s solely task is to secure a network will probably only consider I↓-strategies. However, a
central planner who is concerned with developing a network under security constraints may also
consider risk-increasing interventions which enhance network functionality. In particular, this
may be the case if a network is acceptable to start with and would allow for some enhancement
without loosing acceptability. In that case a set of risk-increasing interventions I↑ comes into
play. That is the reason why we for instance discussed properties of the cost function with respect
to such a set I↑. Nevertheless, measures of system resilience do not require I↑, for instance when
we are only interested in achieving acceptability in a not necessarily optimal or minimal sense.
Therefore, I↑ does not directly appear in Definition 6.1, but potentially only implicitly through,
e.g., the cost function. Also note that allowing for I↓ ∪ I↑-strategies significantly increases the
complexity.

Remark 6.3. In reality the supervisor may be limited in her ability to intervene. It is common
practice in the regulation of cyber security to only target certain industry sectors, and only
the most essential network entities within them, but not small companies or private users.
For instance, the European Union’s NIS2 Directive [23] on the regulation of digital critical
infrastructure systems follows a size-cap rule that limits the scope of the directive to entities of
medium or large size operating in the targeted sectors.

Hence, the risk management is typically constrained to a set of admissible interventions.
Of course, only such measures of resilience to cyber contagion are reasonable where there are
admissible non-trivial interventions in I↓. In order to implement restrictions like the mentioned
size-cap rule admissible interventions may be conditional. Conditional means that, for instance,
an elementary intervention κv

· on a node v from Section 3.1.1 now takes the form

κ̃v
· (G) :=

{
κv

· (G) if v ∈ Z(G)
G else

where Z(G) ⊂ VG depends on parameters such as a node’s size, often measured in terms of
its centrality, see Section 6.3. Whether an intervention is admissible may also depend on a
particular graph G which the supervisor has to secure. In that case the measure of resilience to
cyber contagion may be tailored to handle G, for instance by a specific choice of intervention set
I↓, and might not make sense for other graphs, recall Q2 above. For the sake of convenience we
keep our discussion of interventions simple, not further mentioning these kind of restrictions in
our examples.
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6.1. Univariate Risk Measures
Consider a measure of system resilience (A, I↓, C). A natural way to obtain a univariate risk
measure of the form ρ : G → R ∪ {∞} is to let ρ(G) denote the infimal cost of achieving
acceptability (if possible) for a network G:

ρ(G) := inf{C(G, G̃)|G̃ ∈ σI↓(G) ∩ A}, where inf ∅ := ∞. (12)

In case there is also a set of risk-increasing interventions I↑ with respect to which C satisfies C5
one could also consider

ρ̃(G) := inf{C(G, G̃)|G̃ ∈ (σI↓(G) ∪ σI↑(G)) ∩ A}, where inf ∅ := ∞. (13)

(13) allows to potentially increase the risk, for instance to enhance functionality, provided
the network G is and remains acceptable. (Replacing σI↓(G) ∪ σI↑(G) by σI↓∪I↑(G) is also
conceivable, recall Remark 6.2, but would require further properties of C to make statements
such as in Lemma 6.4 below.)

This approach is in line with the construction of monetary risk measures in financial risk
management as in [4], see also [36] for a comprehensive discussion of monetary risk measures.
These measures have also been applied to the measurement of systemic financial risks, see for
example [11].

Lemma 6.4. The univariate measure ρ given in (12) satisfies

1. ρ(G) ≥ 0 and ρ̃(G) ≥ 0 for G /∈ A,

2. ρ(G) = 0 and ρ̃(G) ≤ 0 whenever G ∈ A.

3. Suppose, moreover, that

inf{C(G, G̃) | G ∈ G, G̃ ∈ σI↓(G) \ {G}} > 0. (14)

Then ρ(G) > 0 and ρ̃(G) > 0 for all G /∈ A and in particular A = {G ∈ G | ρ(G) = 0} =
{G ∈ G | ρ̃(G) ≤ 0}.

Proof. 1. immediately follows from property C2 of the cost function, and from the fact that
σI↑(G) ∩ A = ∅ whenever G ̸∈ A. As for 2., this follows from id ∈ I↓ and thus G ∈ σI↓(G),
and from C(G, G) = 0 by property C1. 3. is easily verified.

Note that (14) is, for instance, satisfied in the situation of Section 5.1 provided that inf{p̃(κ) |
κ ∈ I↓ \ {id}} > 0.

However, as mentioned, while such a construction (12) is possible in theory, it may be difficult
or impossible to solve the optimization problem (12) in practice due to the high dimensionality
of larger network systems. Furthermore, it is not clear a priori whether the infimum in (12)
is a minimum whenever ρ(G) < ∞, that is whether there is a ”best” acceptable version of the
network G.

6.2. Set-Valued Risk Measures
Set-valued measures have been considered in the assessment of systemic risk in financial net-
works, see, e.g., [33]. A set-valued risk measure comprising the information provided by
(A, I↓, C) is

ρ : G → P(R), G 7→ {C(G, G̃)|G̃ ∈ σI↓(G) ∩ A, C(G, G̃) ∈ R}. (15)
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Note that ρ(G) = ∅ is possible. In a next step one typically searches for efficient strategies to
achieve acceptability in terms of lowest possible costs. In the context of financial risk measures,
a grid-search approach has been applied for this purpose in [33].

If costs are measured in monetary terms and if these are eventually to be allocated amongst
the agents (nodes) of the network, then one could further modify (15) by considering a set of
allocations of costs that are necessary for network transformations towards acceptability:

ρ : G →
∞⋃

d=2
P(Rd),

G 7→
{

(C1, · · · , Cd) ∈ Rd||VG| = d, ∃G̃ ∈ σI↓(G) ∩ A :
d∑

i=1
Ci = C(G, G̃) ∈ R

}
This would be closer to the initial construction of systemic risk measures in [33] where risk is
measured in terms of capital requirements of the single financial firms.

6.3. Working with the Triplet (A, I↓, C)
As previously mentioned, in many situations the supervisor is faced with the task of securing
a particular existing network G in an admissible manner, see Remark 6.3. Ideally, this should
be done as efficiently as possible in terms of low costs, without necessarily having to be (cost)
optimal in a strict sense. In this section we discuss some approaches to construct efficient
I↓-strategies for G based on the available information about G. We will not consider any
optimality properties of those strategies, and in particular not involve risk-increasing strategies.
Considerations of this type are left for future research.

A natural approach is to target the most central nodes of the network G, because a significant
factor triggering the spread of contagious cyber risks is the often observed heterogeneity of the
network topology, and in particular the existence of hubs. The findings in [5] suggest that
only a small number of highly centralized nodes need to be targeted for an effective protection
of the full network, and therefore, the negative impact on the system functionality is quite
limited. Note that this strategy in fact corresponds to a common regulatory approach such as
the aforementioned size-cap-rule of the NIS2 Directive [23], see Remark 6.3, and should therefore
be admissible in practical applications.

In order to target the most central nodes, we need to clarify what we actually mean by the
term central. In the literature a large variety of different centrality measures has been proposed,
see Chapter 7.1 in [56] for a comprehensive overview. We briefly discuss some selected version
of centrality in the following:

6.3.1. Node Centralities

A node centrality measure is a map

Cn : V × G → R+ ∪ {∅} such that C(v, G) = ∅ ⇔ v /∈ G.

The most prominent examples fall in either one of the following two categories:

Degree-Based Centrality Measures The simplest way to measure the centrality of a node is
by its in-, out- or total degree:

Cdeg
in (v, G) = kG,in

v , Cdeg
out(v, G) = kG,out

v , Cdeg(v, G) = kG
v .

Determining degree centralities in a network only requires local information on the single nodes.
Thus, one advantage of this simple construction is that the centrality for the important parts
of the network can also be assessed under incomplete information as long as the nodes with the
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highest degrees are known, which seems reasonable. Moreover, the simulation studies carried
out in [5] indicate that this simple procedure already performs reasonably well.

There are a number of extensions of the concept of degree centrality where connections to
high-degree nodes are more important than those to nodes with a low degree level. Usually, this
leads to a definition of centrality that is based on the entries of the normalized (left or right)
eigenvector associated with the largest eigenvalue of the adjacency matrix, see Section 7.1 in
[56] for details. However, determining this kind of centralities poses a problem in presence of
incomplete information as they are calculated from the full adjacency matrix of the graph.

Path-Based Centrality Measures This latter issue also arises when other types of node cen-
trality measures, where centrality is not defined by node degrees but via shortest paths, are
applied. A simple construction is given by in- or out-closeness centrality, which calculates the
average distance from a node to others, either in terms of incoming or outgoing paths:

Cclose
in (v, G) = 1

|VG| − 1
∑
w ̸=v

1
lGwv

, Cclose
out (v, G) = 1

|VG| − 1
∑
w ̸=v

1
lGvw

(16)

in case |VG| ≥ 2 and Cclose
in (v, G) = Cclose

out (v, G) = 0 whenever G = ({v}, ∅).
The most prominent example of a path-based centrality measure in the literature is given by

the betweenness centrality
Cbet(v, G) =

∑
u,w

u,w ̸=v

σuw(v)
σuw

, (17)

where σuw denotes the total number of shortest paths from node u to w, and σuw(v) is the
number of these paths that go through node v, and where we set 0/0 := 0.11 Although in
[5] strategies based on betweenness centrality slightly outperformed those based on degree cen-
trality, the aforementioned information problem may pose a significant drawback in practical
applications. Moreover, the sets of the most central nodes under betweenness or degree central-
ity are likely to coincide to a large extent, so that the resulting intervention strategies would
look fairly similar.

6.3.2. Edge Centralities

Instead of focussing on the nodes, we can also consider edge centrality measures

Ce : E × G → R+ ∪ {∅} where C((v, w), G) = ∅ ⇔ (v, w) /∈ EG.

The most prominent example is the edge betweenness centrality, first proposed in [41], where, in
analogy to the corresponding node centrality measure, centrality of an edge (q, r) is measured
by the number of shortest paths σvw((q, r)) between any two nodes v and w that pass through
(q, r), in relation to the total number of paths σvw between these two nodes:

Cedge((q, r), G) =
∑

v,w∈VG

σvw((q, r))
σvw

where we set 0/0 := 0. As in the case of node betweenness centrality, edge betweenness centrality
requires full information about the network topology, which might not be accessible. Also
note that centrality measures for edges are not as widely represented in the literature as node
centralities.

11Note that slightly different definitions can be found in the literature, f.e., in [56], where also paths with u = v
or w = v are considered. However, we follow the definition from [9] here which is commonly used in algorithmic
implementations like the NetworkX package for Python or in MATLAB.
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6.3.3. Targeted Strategies for a Given Network

A reasonable procedure now is as follows: Pick a node centrality measure Cn and assume that
at least the most central nodes of the given network G according to Cn are known.

1. Rank the nodes of G according to Cn.

2. Pick the most central node v and choose some network intervention from κ ∈ I↓ changing
the node v or its incoming and outgoing edges. The choice of κ may depend on the cost
C(G, κ(G)).

3. If κ also requires a choice of edges which are affected, as in the case of node splitting,
pick the edges according to an edge centrality measure Ce if possible, or use some other
information if available, or simply choose randomly.

4. Check whether κ(G) ∈ A. If this is the case, then stop, otherwise go back to step 1 (or
discard the strategy if we have not stopped after a specified number of iterations).

5. If in the previous step we stop, compute the cost of transforming the initial network into
the now acceptable configuration.

6. Repeat the previous procedure 1.–5. for different choices of κ ∈ I↓ in step 2. Compare
the costs of the resulting I↓-strategies for achieving acceptability, and choose the cheapest
strategy.

An implementation of the described procedure to achieve acceptability based on artificial
learning algorithms is part of future research.

7. Examples
The examples presented in this section will all be based on network acceptance sets A of the
form

A = {G ∈ G|Q(G) ≤ l|VG|}, (18)

where a specific network quantity Q : G → R∪ {−∞, ∞} needs to be bounded for acceptability
of a network G, and the bounds lN ∈ R, N ∈ N, depend on the network size N .

Definition 7.1. Let I be a non-empty set of network interventions and let Q : G → R ∪
{−∞, ∞}. We call Q I-monotone if Q(κ(G)) ≤ Q(G) for all G ∈ G and κ ∈ I.

The following lemma is easily verified.

Lemma 7.2. Suppose that Q is I-monotone. Then

1. Q(κ(G)) ≤ Q(G) for all G ∈ G and κ ∈ [I],

2. I is risk-reducing for A.

If, moreover, I is not partially self-revers, then I-monotonicity is the same as Q being decreasing
with respect to the partial order ≼I given in Proposition 3.9.

In case A satisfies Axiom 1 with I↓ one should expect that Q is indeed I↓-monotone. In
the following examples the function Q depends on moments of the degree distribution. This
is motivated by the well-known fact that those moments have a significant influence on the
epidemic vulnerability of networks, see the discussion in Section 1.
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7.1. Controlling Moments of Degree Distributions
Given a network G ∈ G, we let P out

G (k) denote the fraction of nodes v with out-degree k, or,
equivalently, the probability that a node v which is chosen uniformly at random comes with
kG,out

v = k. The corresponding distribution P out
G over all possible degrees is called the out-degree

distribution of the network G. Analogously, we can define the in-degree distribution P in
G . Let

Kout
G denote a random variable which represents the out-degree of a randomly chosen node given

the probability distribution P out
G , i.e. P(Kout

G = k) = P out
G (k) for all k = 0, 1, . . . , |VG| − 1. We

define Kin
G analogously. The n-th moment of the in- and out-degree distributions are given by

E
[
(Kin

G )n]
:=

∑
k∈N0

knP in
G (k), E

[
(Kout

G )n]
:=

∑
k∈N0

knP out
G (k), n ∈ N.

Clearly any network acceptance set such that Q only depends on the degree-distribution is
topological invariant:

Lemma 7.3. If A is given by (18) where Q only depends on the in-, out-degree distribution,
then A satisfies Axiom 6. Moreover, if Q(G) = E

[
(Kout

G )n
]
, or Q(G) = E

[
(Kin

G )n
]
, G ∈ G,

for some n ∈ N and the sequence of bounds (lN )N∈N is non-decreasing in N , then A satisfies
Axiom 5.

Proof. The first statement is trivial. Moreover, regarding Axiom 5 consider two networks G of
size N and H of size M with disjoint vertex sets and a non-decreasing sequence (lN )N∈N. Then
the disjoint graph union G ∪ H satisfies

E[(Kin
G∪H)n] = 1

N + M
(NE[(Kin

G )n] + ME[(Kin
H )n]) ≤ 1

N + M
(N · lN + M · lM ) ≤ lN+M ,

and similarly for the out-degree.

Remark 7.4. As will be verified by the following examples, for the management of cyber pan-
demic risk, the distribution of outgoing, not incoming, node degrees is the relevant entity. This
is in line with our formulation of Axiom 4 and motivated by the fact that an infection of a node
with high out-degree can easily spread to a substantial fraction of the network, which in contrast
is not the case for nodes which solely come with a high number of incoming edges.

7.1.1. Variance of Degree Distributions

In the following we show that the variance of either in- or out-degree distributions is not a
satisfactory control.

Proposition 7.5. Suppose that the network acceptance set A satisfies (18) where Q equals
the variance of either the in- or out-degree distribution, and that lN ≥ 0 for all N ∈ N. In
both cases, A satisfies Axioms 2, but violates Axiom 4’. If Q equals the variance of the out-
degree distribution, then A violates Axiom 4. Moreover, Q is not I-monotone for any choice of
I ⊂ Ie del ∪ Ie add ∪ In del ∪ In add such that I ̸= ∅, that is for no non-trivial set of elementary
network interventions.

Proof. The in- and out-degree distributions of all edgeless and all complete graphs have zero
variance. Thus, Axiom 2 is always satisfied while Axiom 4’ is violated. The out-degree distribu-
tion of all graphs such that any node has an out-going edge to any other node has zero variance.
Hence, if Q equals the variance of the out-degree distribution, then Axiom 4 is violated.

As regard the monotonicity of Q, variance, of either the in- our out-degree distribution,
increases by adding edges to the edgeless graph, or by deleting edges in the complete graph.
Moreover, the variance of a complete graph increases when adding an isolated node to the
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network. As regards, note that also any network G◦ = (VG◦ , EG◦) with a bidirectional ring
topology, that is a circular graph with VG◦ = {v1, · · · , vN } and

EG◦ = {(v1, v2), (v2, v1), · · · , (vN−1, vN ), (vN , vN−1), (vN , v1), (v1, vN )},

see Figure 6, comes with a zero variance for both in- and out-degree distributions since each
node has the in- and out-degree 2. However, when deleting node vN , the network equals the
line network, see Figure 6, with vertex set {v1, · · · , vN−1} and edges

{(v1, v2), (v2, v1), · · · , (vN−2, vN−1), (vN−1, vN−2)}.

If N ≥ 4, in contrast to all the other nodes, v1 and vN−1 only have one incoming and one
outgoing edge. Therefore, the variance of both the in- and out-degree distribution now is
positive.

Figure 6: A directed (left) and a bidirectional (middle) ring graph, and a bidirectional line
network (right), all consisting of N = 7 nodes.

7.1.2. Average Degrees

Next we consider the average in- and -out degree of a network G. Note that these first moments
are equal since every edge that emanates from a node v needs to arrive at another one, that is
we have

E
[
Kin

G

]
= 1

N

N∑
i=1

kG,in
vi

= |EG|
|VG|

= 1
N

N∑
i=1

kG,out
vi

= E
[
Kout

G

]
. (19)

Proposition 7.6. Consider A as in (18) with Q(G) = E
[
Kout

G

]
(= E

[
Kin

G

]
). Then Q is I-

monotone for any I that is composed of edge deletions and node splittings, i.e. I ⊂ Ie del ∪
In split. Hence, A satisfies Axiom 1 with I↓ whenever {id} ⫋ I↓ ⊂ Ie del ∪ In split ∪ {id}.

Proof. The result follows directly from Equation (19): For any κ ∈ Ie del and network G we
have that |Vκ(G)| = |VG| and |Eκ(G)| ≤ |EG|. In case of node splittings κ ∈ In split we have
|Eκ(G)| = |EG| and |Vκ(G)| ≥ |VG|.

Corollary 7.7. Suppose that I↓ satisfies {id} ⫋ I↓ ⊂ Ie del ∪ In split ∪ {id}, and suppose that
lN0 ≥ 0 for some N0 ∈ N. Then, A is a topology invariant network acceptance set which also
satisfies Axiom 5 whenever N ∋ N 7→ lN is non-decreasing. (A, I↓, C) is a measure of system
resilience for any cost function C for (A, I↓).

Proof. Combine Proposition 7.6 with Lemma 7.3. Note that lN0 ≥ 0 for some N0 ∈ N ensures
that A is non-empty.
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Lemmas 5.8 and 5.10 show that apart from monetary costs, the cost function C in Proposi-
tion 7.6 can be based on a loss of network functionality such as in Section 5.2. Communicability-
based costs work for any choice of I↓ as in Proposition 7.6 , whereas costs based on shortest
paths require a further restriction of I↓ to be a subset of Ie del.

The average node degree only provides a measure of overall graph connectivity in the mean,
considering the number of edges in comparison to the number of nodes. However, it does not
evaluate characteristics which relate closer to the topological arrangement of edges within the
network, that is for example the presence hubs which may act as risk amplifiers. Networks can
have a very different risk profile, even if they contain the same number of edges and nodes,
see for example the analysis in [5]. Hence, one may doubt whether acceptance sets given by
Q(G) = E

[
Kout

G

]
(= E

[
Kin

G

]
) are reasonable choices. And indeed, the following Proposition 7.8

shows that if Q(G) = E
[
Kout

G

]
, A cannot satisfy Axioms 3 and 4 simultaneously.

Proposition 7.8. An acceptance set as in (18) with Q(G) = E
[
Kout

G

]
(= E

[
Kin

G

]
) cannot satisfy

the Axioms 3 and 4 simultaneously. More precisely, if Axiom 3 is satisfied, then Axiom 4 is
violated, and vice versa.
Proof. Consider a strongly connected network G of size N . Then for every node pair v, w ∈ VG

we find a path from v to w and vice versa. Hence, in particular kG,out
v , kG,in

v ≥ 1 for all
v ∈ VG. As ∑N

i=1 kG,in
vi

= ∑N
i=1 kG,out

vi
= |EG|, this implies that G contains at least N edges

so that Q(G) ≥ 1, recall (19). However, a directed star graph G∗ of size N only contains
|VG∗ \ {v∗}| = N − 1 edges, and therefore, its first moment is Q(G∗) = (N − 1)/N < 1.
Therefore, if a strongly connected network is acceptable, then the directed star graph of the
same size is also acceptable. The latter constitutes a violation of Axiom 4. Conversely, if Axiom
4 is satisfied, so in particular no directed star graph is acceptable, then we cannot have any
acceptable strongly connected graph.

Hence, the average degree is not suited for constructing a measure of resilience to cyber
contagion.
Remark 7.9. Proposition 7.8 also implies that a simple control such as limiting the total number
of edges Q(G) = |EG| by a fixed constraint l ∈ N, irrespective of the network size N , does not
define an acceptance set for cyber pandemics: indeed, this is simply a special case of controlling
the first moment of degree distributions with constraints lN = l/N , see (19).

7.1.3. Second Moments

Proposition 7.10. Consider A as in (18) with Q(G) = E
[
(Kout

G )2]
or Q(G) = E

[
(Kin

G )2]
.

Then Q is I↓-monotone for any I↓ ⊂ Ie del ∪ In split ∪ {id}. Hence A satisfies Axiom 1 with
any such I↓ such that {id} ⫋ I↓.
Proof. Clearly, the second moments are reduced when deleting edges in a network. Further,
the second moment of the in- or out-degree distribution is also decreasing under node splitting:
Let v be the node in a network G of size N which is split into v and ṽ, and G̃ the resulting
network. Due to kG,in

v = kG̃,in
v + kG̃,in

ṽ and kG,out
v = kG̃,out

v + kG̃,out
ṽ , we have

(kG̃,in
v )2 + (kG̃,in

ṽ )2 ≤ (kG̃,in
v )2 + (kG̃,in

ṽ )2 + 2kG̃,in
v kG̃,in

ṽ = (kG̃,in
v + kG̃,in

ṽ )2 = (kG,in
v )2, (20)

and thus

E[(Kin
G̃

)2] = 1
N + 1

( ∑
w ̸=v,ṽ

(kG̃,in
w )2 + (kG̃,in

v )2 + (kG̃,in
ṽ )2

)

≤ 1
N

 ∑
w ̸=v,ṽ

(kG̃,in
w )2 + (kG,in

v )2

 = 1
N

 ∑
w ̸=v,ṽ

(kG,in
w )2 + (kG,in

v )2

 = E[(Kin
G )2].
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Proposition 7.11. Consider a network acceptance set A as in (18) with Q(G) = E
[
(Kout

G )2]
or Q(G) = E

[
(Kin

G )2]
.

1. A satisfies Axiom 2 if and only if lN ≥ 0 for all N ≥ 2,

2. A satisfies Axiom 3 if and only if there is a N0 ∈ N such that lN ≥ 1 for all N ≥ N0,

3. If Q(G) = E
[
(Kout

G )2]
, then A satisfies Axiom 4 if and only if lN < (N − 1)2/N for all

N ≥ 1.

4. If Q(G) = E
[
(Kin

G )2]
, then A cannot satisfy the Axioms 3 and 4 simultaneously. More

precisely, Axiom 3 implies that Axiom 4 is violated and vice versa.

Proof. 1. The second moment of the (out- or ingoing) node degrees of any edgeless graph equals
zero by definition.
2. We only prove the assertion for the out-degree distribution, The same proof holds true in
case of the in-degree distribution. Since k ≤ k2 for all k ∈ N, we find that

E
[
(Kout

G )2]
≥ 1

N

∑
v∈VG

kG,out
v = |EG|

N
= E

[
Kout

G

]
for any network G of size N . Recall that a strongly connected network G of size N contains at
least N edges, see the proof of Proposition 7.8. Therefore, any strongly connected network G
satisfies

E
[
(Kout

G )2]
≥ 1. (21)

Equality in (21) is realized by every directed ring network G◦ with VG◦ = {v1, · · · , vN } and
EG◦ = {(v1, v2), · · · , (vN−1, vN ), (vN , v1)}, where each node is associated with exactly one outgo-
ing edge as in Figure 6. Indeed, E

[
(Kout

G◦ )2]
= 1, irrespective of the network size N . Therefore,

A contains a strongly connected graph if and only if A contains a (and thus every) directed
ring network of the same size, and the latter is equivalent to the existence of N0 ∈ N such that
lN ≥ 1 for all N ≥ N0.
3. According to Proposition 7.10, Q is Ie del-monotone. Therefore, it suffices to consider the
networks which contain a super-spreader but otherwise have minimal amount of edges, that is
the directed star graphs. The second moment of the out-degree distribution of a directed star
graph G∗ of size N is given by

E
[
(Kout

G∗ )2]
= 1

N

(
1 · (N − 1)2 + (N − 1) · 0

)
= (N − 1)2

N
.

4. As above we obtain that
E[(Kin

G )2] ≥ |EG|
N

for any network G of size N . Consider any strongly connected network G with N nodes for
some N ∈ N. Then G contains at least N edges (again see proof of Proposition 7.8). Hence,
E[(Kin

G )2] ≥ 1. A directed star graph G∗ of size N only contains N − 1 edges and thus satisfies

E[(Kin
G∗)2] = 1

N
((N − 1) · 1 + 1 · 0) < 1,

because the super-spreader has in-degree 0, and all the other nodes come with a in-degree of 1.
Hence, acceptability of a strongly connected graph of size N implies lN ≥ 1 and thus that the
directed star graph of the same size is acceptable, which violates Axiom 4. Conversely, if we
exclude any directed star graph, then necessarily lN < 1 for all N ∈ N, so there cannot be an
acceptable strongly connected graph. Hence, Axiom 3 is violated.
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Corollary 7.12. Suppose that the sequence (lN )N∈N satisfies l1 < 0, 0 ≤ lN < (N−1)2

N for
all N ≥ 2, and there is N0 ≥ 3 such that lN ≥ 1 whenever N ≥ N0. Further suppose I↓ ⊂
Ie del ∪ In split ∪ {id} such that {id} ⫋ I↓. Then

A = {G ∈ G|E
[
(Kout

G )2]
≤ l|VG|}

is a topologically invariant network acceptance set for pandemic cyber contagion where A satis-
fies Axiom 1 with I↓. Moreover, if N ∋ N 7→ lN is non-decreasing, then A also satisfies Axiom
5. Letting C be any cost function for (A, I↓), then (A, I↓, C) is a measure of resilience to cyber
contagion.

Proof. Combine Propositions 7.10 and 7.11 with Lemma 7.3.

As in the case of average degrees, Lemmas 5.8 and 5.10 show that, apart from monetary
costs, the cost function C in Corollary 7.12 can be based on a loss of network functionality as
in Section 5.2. Communicability-based costs work for any choice of I↓, whereas costs measured
by means of shortest paths require that I↓ ⊂ Ie del. While the second moment of the in-degree
distribution is not suited for the construction of measures of resilience to cyber contagion, similar
to the case of average degrees, it yields a measure of system resilience by Proposition 7.10.

Next we consider the total degree distribution KG := 1
2(Kin

G + Kout
G ).

Proposition 7.13. Consider a network acceptance set A ⊂ G as in (18) with Q(G) = E
[
(KG)2]

.
Then

1. Q is I↓-monotone for any I↓ ⊂ Ie del ∪ In split ∪ {id}. Hence A satisfies Axiom 1 with
any such I↓ such that {id} ⫋ I↓.

2. A satisfies Axiom 2 if and only if lN ≥ 0 for all N ≥ 2,

3. A satisfies Axiom 3 if and only if there is a N0 such that lN ≥ 1 for all N ≥ N0.

4. A satisfies Axiom 4 if and only if lN < (1/4)(N − 1) for all N ≥ 1,

5. A satisfies Axiom 4’ if and only if lN < N − 1 for all N ≥ 1, and in case that there is a
N ∈ N with lN ≥ (1/4)(N − 1), then we must have a N0 < N with lN0 ≥ 1.

Proof. 1.–3. are straightforward modifications of the proof of the corresponding results in
Propositions 7.10 and 7.11.
4. and 5.: The second moment of total degrees in a directed star graph G∗ of size N equals

E
[
(KG∗)2]

= 1
N

(
1 ·

(1
2(N − 1)

)2 + (N − 1) ·
(1
2

)2)
= 1

4N

(
(N − 1)2 + (N − 1)

)
= N − 1

4 .

For the bidirectional star graph of size N we obtain

E
[
(KG∗)2]

= 1
N

(
1 · (N − 1)2 + (N − 1) · 12

)
= 1

N

(
(N − 1)2 + (N − 1)

)
= N − 1.

Similar to Corollary 7.12 we obtain:

Corollary 7.14. Suppose that the sequence (lN )N∈N satisfies the constraints given by 2.–4. or
by 2.,3., and 5. of Proposition 7.13. Further suppose I↓ ⊂ Ie del ∪ In split ∪ {id} such that
{id} ⫋ I↓. Then

A = {G ∈ G|E
[
(KG)2]

≤ l|VG|}
is a topologically invariant network acceptance set for pandemic cyber contagion where A satis-
fies Axiom 1 with I↓. Moreover, if N ∋ N 7→ lN is non-decreasing, then A also satisfies Axiom
5. Letting C be any cost function for (A, I↓), then (A, I↓, C) is a measure of resilience to cyber
contagion.
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Recall the epidemic threshold from (1) which would suggest not only to control the second
moment of the degree distribution, but indeed a ratio of the second and the first moments.
However, note that the epidemic threshold holds for undirected networks. Therefore, we post-
pone this example to Appendix B.2.3 where we discuss the case of undirected networks in more
detail.

7.2. Further Examples
Further examples of measures of resilience to cyber contagion based on a control of the centrality
of nodes are collected in Appendix A. Some examples specific to undirected network are provided
in Appendix B.

8. Outlook
In the following we collect a number of open questions and challenges for future research:

• Calibration to Real World Networks: While this study provides the theoretical foundation
and also presents fist stylized examples of measures of resilience to cyber contagion, the
next step is to apply such risk measures to managing real world networks. In this context
particularly suitable measures of resilience to cyber contagion will be identified together
with important parameters such as a desired minimal levels of network functionality, the
border between acceptability and non-acceptability in practise (apart from the obvious
cases mentioned in the Axioms), etc.

• Computational Challenges: Computational problems stem primarily from the high-
dimensionality of the networks. Determining suitable or even optimal network manipula-
tions may therefore be challenging. A possible solution may be to develop new machine
learning-based algorithms to identify good, not necessarily strictly optimal, ways to secure
some given network.

• Model Uncertainty: Throughout this paper we frequently addressed the problem that the
supervisor might only possess incomplete information about the network she has to secure.
Even if we have discussed some basic ideas to overcome this issue, it remains desirable to
find a more uniform conceptual handling of model uncertainty in this risk management
framework. Such approaches already exist in the area of financial risk measurement, see
e.g. [30].

• Risk Measures based on Infection Models: An interesting class of risk measures is obtained
by choosing an infection model such as the SIR (or SIS) model mentioned in the intro-
duction, see [50], and controlling the scale of an infection in the network determined by
the fixed infection model.

• Weighted Networks: A weighted network is a network as discussed throughout this paper
where in addition weights on the edges describe the degree of transmissibility of some
shock through the respective edges. Clearly, a network model may benefit from adding
edge weights. However, it might be difficult to determine what actually constitutes these
weights and eventually the size of these weights. In order to extend the previously de-
veloped framework to weighted graphs, larger modifications are necessary: First of all,
network interventions may now also target the edge weights, such as an increase or de-
crease of a particular edge weight. As regards the axioms for the acceptance set, Axioms 1,
2, 5 and 6 apply also to weighted networks. However, it is less clear how the acceptability
of strongly connected graphs in Axiom 3 and non-acceptability of super-spreaders in Ax-
iom 4 are meaningfully generalised to weighted graphs. For instance, the non-acceptability
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of networks with super-spreaders should also depend on the edge weights associated with
the super-spreader node(s). One could specify thresholds for that purpose. However, a
rigorous extension of the risk management approach presented in this paper to the case
of weighted graphs remains subject of future research.

• Conditional and Spatial Risk Measures: It could be reasonable to consider spatial restric-
tions or conditioning. In particular, restrictions to certain subgraphs of large systems may
be of interest for risk managers of individual firms or single network clusters. Conditional
risk measures can be considered, for example, in relation to the admissibility of inter-
ventions or when making assumptions about the network topology in presence of model
uncertainty.

• Cyber Risk and Financial Stability: The impact of cyber risk on financial stability can
be analyzed using cyber mappings between the cyber and the financial network as illus-
trated in Figure 1. The risk measures discussed in this paper can be applied to manage
the risk in the operational cyber network, or in both networks together, if they can be
interpreted as a joint network system. For a profound mathematical analysis, however, it
is necessary to create a precise mathematical model description of cyber mappings, and
this may require more complex models such as multi-layer networks. An extension of the
framework presented here to such structures is likely to be significant for macroprudential
risk management.

• Area of Application: On the most basic level this paper introduces risk measures for com-
plex interconnected systems targeting the underlying network structure. Then we apply
this idea to specifically considering risk measures for systemic cyber risk. In the future,
it would be interesting to explore applications to a variety of other examples of criti-
cal infrastructure networks such as power grids, transportation systems, and production
networks.
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Appendix A Hub Control via Maximal Centralities
In this section we consider as control Q in (18) the maximal centrality of nodes, thereby limiting
the size of hub nodes within the network. To this end, we choose a node centrality measure C
as discussed in Section 6.3.1, and let

Q(G) = max
v∈VG

C(v, G). (22)

A.1 In-, Out-, and Total Degree Centrality
Proposition A.1. Consider an acceptance set A as in (18) with Q(G) = maxv∈VG

Cdeg
out(v, G)

or Q(G) = maxv∈VG
Cdeg

in (v, G). Then Q is I↓-monotone for any I↓ ⊂ Ie del ∪ In split ∪ {id}.
Hence A satisfies Axiom 1 with any such I↓ such that {id} ⫋ I↓.

Proof. Clearly, deleting an edge does not increase the in- or out-degree of any node in a graph
G. The same holds when an arbitrary node split is applied.

Proposition A.2. Consider A ⊂ G as in (18) with Q(G) = maxv∈VG
Cdeg

out(v, G) or Q(G) =
maxv∈VG

Cdeg
in (v, G). Then

1. A satisfies Axiom 2 if and only if lN ≥ 0 for all N ≥ 2,

2. A satisfies Axiom 3 if and only if there is a N0 such that lN ≥ 1 for all N ≥ N0.

3. If Q(G) = maxv∈VG
Cdeg

out(v, G), then A satisfies Axiom 4 and 4’ if and only if lN < N − 1
for all N ≥ 1.

4. If Q(G) = maxv∈VG
Cdeg

in (v, G), then A cannot satisfy Axioms 3 and 4 simultaneously.
More precisely, Axiom 3 implies that Axiom 4 is violated and vice versa.

Proof. 1. The in- and out-degree of every node in an edgeless graph equals zero.

2. If a network G ∈ G with |VG| ≥ 2 is strongly connected, then |N G,out
v |, |N G,in

v | ≥ 1 for
all v ∈ VG by definition. Otherwise there would be no path in G via which the node
v can be reached, or no other node could be reached from v, respectively. This proves
necessity. Sufficiency follow from the bidirectional ring graph of size N (see Figure 6)
being an element of A for any N ≥ N0.

3. The out-degree of both a super-spreader and a star node equals N − 1 by definition. In
particular, this implies that Axiom 4 and 4’ are equivalent for the given choice of Q.

4. Q is Ie del-monotone according to Proposition A.1. For the violation of Axiom 4’, it
thus suffices to consider the edge-minimal networks with a super-spreader. These are
the directed star graphs. For a directed star graph G∗ of size |VG∗ | ≥ 2 with super-
spreader v∗ we find Cdeg

in (v, G) = 1 for all v ∈ VG \ {v∗}, and Cdeg
in (v∗, G) = 0, thus

Q(G∗) = 1. However, for any strongly connected network G with |VG| ≥ 2 we have
Q(G) = maxv∈VG

Cdeg
in (v, G) ≥ 1, see 2. Hence, 4. follows.

Corollary A.3. Suppose that the sequence (lN )N∈N satisfies l1 < 0, 0 ≤ lN < N − 1 for all
N ≥ 2, and there is N0 ≥ 3 such that lN ≥ 1 whenever N ≥ N0. Further suppose I↓ ⊂
Ie del ∪ In split ∪ {id} such that {id} ⫋ I↓. Then

A = {G ∈ G| max
v∈VG

Cdeg
out(v, G) ≤ l|VG|}
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is a topologically invariant network acceptance set for pandemic cyber contagion where A satis-
fies Axiom 1 with I↓. Moreover, if N ∋ N 7→ lN is non-decreasing, then A also satisfies Axiom
5. Letting C be any cost function for (A, I↓), then (A, I↓, C) is a measure of resilience to cyber
contagion.

Proof. Combine Propositions A.1 and A.2. Clearly, A is topologically invariant. As for Axiom
5, note that for any disjoint graph union G ∪ H we have

Q(G ∪ H) = max{max
v∈VG

Cdeg
out(v, G), max

v∈VH

Cdeg
out(v, H)} = max{Q(G), Q(H)}.

Moreover, we can also consider the control of the maximal total degree:

Proposition A.4. Consider a set A ⊂ G as in (18) with Q(G) = maxv∈VG
Cdeg(v, G). Then

1. Q is I↓-monotone for any I↓ ⊂ Ie del ∪ In split ∪ {id}. Hence A satisfies Axiom 1 with
any such I↓ such that {id} ⫋ I↓.

2. A satisfies Axiom 2 if and only if lN ≥ 0 for all N ≥ 2,

3. A satisfies Axiom 3 if and only if there is a N0 such that lN ≥ 1 for all N ≥ N0.

4. A satisfies Axiom 4 if and only if lN < (N − 1)/2 for all N ≥ 1,

5. A satisfies Axiom 4’ if and only if lN < N − 1 for all N ≥ 1, and in case that there is a
N ∈ N with lN ≥ (N − 1)/2, then we must have a N0 < N with lN0 ≥ 1.

Proof. 1.-3. are straightforward modifications of the corresponding results in Propositions A.1
and A.2.
4. and 5.: The total degree of a super-spreader v∗ in a directed star graph G∗ equals

kG∗
v∗ = 1

2
(
kG∗,in

v∗ + kG∗,out
v∗

)
= 1

2(0 + |VG| − 1) = |VG| − 1
2 .

For a star node v∗ in a bidirectional star graph G∗ we obtain

kG∗
v∗ = 1

2
(
kG∗,in

v∗ + kG∗,out
v∗

)
= 1

2(|VG| − 1 + |VG| − 1) = |VG| − 1.

Consequently, we obtain the following result in analogy to Corollary A.3:

Corollary A.5. Suppose that the sequence (lN )N∈N satisfies the constraints given by 2.-4. or
by 2., 3., and 5. of Proposition A.4. Further suppose I↓ ⊂ Ie del ∪ In split ∪ {id} such that
{id} ⫋ I↓. Then

A = {G ∈ G| max
v∈VG

Cdeg(v, G) ≤ l|VG|}

is a topologically invariant network acceptance set for pandemic cyber contagion where A satis-
fies Axiom 1 with I↓. Moreover, if N ∋ N 7→ lN is non-decreasing, then A also satisfies Axiom
5. Letting C be any cost function for (A, I↓), then (A, I↓, C) is a measure of resilience to cyber
contagion.
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A.2 In- and Out-Closeness Centrality
We first note that for path-based centrality meaasures node splits may indeed worsen the situ-
ation.

Example A.6. Consider again the setting from Example 5.9. For all nodes v = a, b, c from the
initial network component G1, we have

Cclose
in (v, G) = Cclose

out (v, G) = 1
N − 1

(1
1 + 1

1
)

= 2
N − 1 .

Now, after the node split, the nodes a and c come with in- and out-closeness centralities of

Cclose
in (v, H) = Cclose

out (v, H) = 1
N

(1
1 + 1

1 + 1
2

)
= 5

2N
, v = a, c,

and we find that

max
v∈VG

Cclose
∗ (v, G) < max

v∈VH

Cclose
∗ (v, H) ⇔ 2

N − 1 <
5

2N
⇔ 5 < N, v = a, c,

for ∗ = in, out. Thus, the maximal in- and out-closeness centrality is increased under the node
split if the component G2 consists of at least three isolated nodes.

Similarly, the betweenness centrality as defined in (17) of all nodes v ∈ VG1 equals zero.
However, after the split of node b, we have that the shortest paths from node b to b̃ and vice
versa both pass through nodes a and c, thus

Q(H) = Cbet(a, H1) = Cbet(c, H1) = 2 > 0 = Q(G).

Proposition A.7. Consider a set A ⊂ G as in (18) with Q(G) = maxv∈VG
Cclose

out (v, G) or
Q(G) = maxv∈VG

Cclose
in (v, G). Then

1. Q is I↓-monotone for any I↓ ⊂ Ie del ∪ Is iso ∪ {id}. Hence A satisfies Axiom 1 with any
such I↓ such that {id} ⫋ I↓.

2. A satisfies Axiom 2 if and only if lN ≥ 0 for all N ≥ 2,

3. A satisfies Axiom 3 if and only if there is a N0 such that lN ≥ (1/(N − 1)) ∑N−1
j=1 (1/j)

for all N ≥ N0.

4. If Q(G) = maxv∈VG
Cclose

out (v, G), then A satisfies Axiom 4 (and 4’) if and only if l1 < 0
and lN < 1 for all N ≥ 2.

5. If Q(G) = maxv∈VG
Cclose

in (v, G), then A cannot satisfy Axioms 3 and 4 simultaneously.
More precisely, Axiom 3 implies that Axiom 4 is violated and vice versa.

Proof. 1. The same arguments apply as in the proof of Property C2 in Lemma 5.8.

2. By definition, we have Cclose
out (v, G),Cclose

in (v, G) ≥ 0, and for every node v in an edgeless
graph Cclose

out (v, G) = Cclose
in (v, G) = 0.

3. For a directed ring graph G◦ of size N , we have Cclose
out (v, G◦) = Cclose

in (v, G◦) = (1/(N −
1)) ∑N−1

j=1 (1/j), and therefore Q(G◦) = (1/(N − 1)) ∑N−1
j=1 (1/j) in both cases. We show

that this is a lower bound for the maximal in-/out-closedness centrality of a strongly
connected graph which implies 3.
To this end, note that if lGvw = d for some d ∈ {1, · · · , |VG|−1}, and if s = (v, v1, · · · , vd−1, w)
is a shortest path from v to w, then we have lGvvi

= i for all 1 ≤ i ≤ d − 1 since lGvvi
≤ i by
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definition and, moreover, if we had “<”, then we could find a path from v to w shorter
than s.
Now consider any strongly connected graph G of size N and some node v ∈ VG. Let
w ∈ VG \ {v} be a node with lGvw ≥ lGvu for all u ∈ VG \ {v}. Then 1 ≤ lGvw ≤ N − 1.
Let s = (v, v1, . . . , vd1 , vd) with vd = w be a shortest path from v to w in G. Then∑d

j=1 1/lGvvj
= ∑d

j=1(1/j), because lGvvi
= i for all 1 ≤ i ≤ d, see above. Moreover, since

d is the maximal distance from v to any other node in the graph G, we have 1/lGvu ≥ 1/d
for all u ∈ VG \ s, thus

∑
u∈VG\{v}

1/lGvu ≥
d∑

j=1

1
j

+ (N − 1 − d)1
d

≥
N−1∑
j=1

1
j

.

Hence, in case of the out-closeness centrality, we indeed have

Q(G◦) = max
v∈VG◦

Cclose
out (v, G◦) ≤ max

v∈VG

Cclose
out (v, G) = Q(G).

The proof for the in-closeness centrality is analogous.

4. The super-spreader v∗ of a directed star graph G∗ of size |VG∗ | ≥ 2 satisfies Cclose
out (v∗, G∗) =

1. The same applies to a star node in a bidirectional star graph. Therefore, Axioms 4 and
4’ are equivalent when choosing Q(G) = maxv∈VG

Cclose
out (v, G) and we obtain 4.

5. The super-spreader v∗ of a directed star graph G∗ of size N ≥ 2 satisfies Cclose
in (v∗, G∗) = 0

whereas Cclose
in (v, G∗) = 1/(N − 1) for v ∈ VG∗ \ {v∗}. Therefore,

max
v∈VG∗

Cclose
in (v, G∗) = 1/(N − 1) ≤ (1/(N − 1))

N−1∑
j=1

(1/j) = max
v∈VG◦

Cclose
in (v, G◦)

for all directed ring graphs G◦ of the same size N . Thus, recalling the proof of 3., 5.
follows.

Corollary A.8. Suppose that the sequence (lN )N∈N satisfies l1 < 0, 0 ≤ lN < 1 for all N ≥ 2,
and there is N0 ≥ 3 such that lN ≥ (1/(N − 1)) ∑N−1

j=1 (1/j) whenever N ≥ N0. Further suppose
I↓ ⊂ Ie del ∪ Is iso ∪ {id} such that {id} ⫋ I↓. Then

A = {G ∈ G| max
v∈VG

Cclose
out (v, G) ≤ l|VG|}

is a topologically invariant network acceptance set for pandemic cyber contagion where A satis-
fies Axiom 1 with I↓. Moreover, if N ∋ N 7→ lN is non-decreasing, then A also satisfies Axiom
5. Letting C be any cost function for (A, I↓), then (A, I↓, C) is a measure of resilience to cyber
contagion.

Proof. Clearly, A satisfies Axiom 6. For Axiom 5, consider a network G composed of two
disjoint components G1 of size N1 > 0 and G2 of size N2 > 0 with N = N1 + N2. Then, for any
v ∈ Gi, i = 1, 2, we find

Cclose
out (v, G) = 1

N − 1(Ni − 1)Cclose
out (v, Gi) < Cclose

out (v, Gi).

Therefore, Axiom 5 is satisfied if the sequence (lN )N is non-decreasing. The rest follows from
Proposition A.7.

Remark A.9. Similar to the previous discussions, out-closeness and in-closeness can also be
combined to form an “overall” closeness measure Cclose(v, G) := 1

2
(
Cclose

in (v, G) + Cclose
out (v, G)

)
.

As above Cclose may be used to define a network acceptance set for pandemic cyber contagion.
We leave the details to the reader.
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A.3 Betweenness Centrality
Note that centrality measures which define centrality of a node not in absolute terms but relative
to the centrality of other nodes may not be suitable for this type of control. A prominent example
of this is betweenness centrality Cbet:

Proposition A.10. Consider a network acceptance set A as in (18) with Q(G) = maxv∈VG
Cbet(v, G).

1. Let Cbet be given as in (17). If A satisfies Axiom 2, then Axioms 4’ and Axiom 4 are
violated. Conversely, if A satisfies Axiom 4’ or Axiom 4, then Axiom 2 is violated.

2. Let us modify the definition in (17) by setting

Cbet(v, G) =
∑

u,w∈VG

σuw(v)
σuw

.

Then, if A satisfies Axiom 3, Axioms 4’ and Axiom 4 are violated. Conversely, if A
satisfies Axiom 4’ or Axiom 4, then Axiom 3 is violated.

Proof. 1. If Gc is a complete graph, then there is only one shortest path between two distinct
nodes u, w ∈ V, namely the edge between them. Therefore, in complete graphs we have
σuw(v) = 0 if v /∈ {u, w}, and we thus find Cbet(v, Gc) = 0 for all v ∈ VGc . Hence,
Q(Gc) = 0. Clearly, any edge-less graph G∅ = (V, ∅) also satisfies Q(G∅) = 0. Hence, 1.
follows.

2. In this case, Cbet(v, Gc) = 2(N − 1) for each node v in a complete graph Gc of size N ,
that is Q(Gc) = 2(N − 1). However, for any strongly connected network G of size N we
have that for each pair of nodes v, w ∈ VG shortest paths from v to w exist and vice versa.
Thus, we always have σvw(v)/σvw = σwv(v)/σwv = 1, and hence, for any node v ∈ VG we
find

Q(G) ≥ Cbet(v, G) ≥
∑

w∈VG

(σvw(v)
σvw

+ σwv(v)
σwv

)
= 2 · (N − 1) = Q(Gc).

Now 2. follows.

Appendix B Undirected Networks
We denote the set of undirected networks by

Gud := {G = (VG, EG) ∈ G|(v, w) ∈ EG ⇔ (w, v) ∈ EG} ⊂ G.

In the following, we discuss how the presented theory in the main part of this paper would
change if we restrict the domain to Gud instead of G. Indeed, most of the definitions and results
can easily be adapted to this class of networks and we leave this to the reader apart from a few
comments and additional examples which are collected in this section. Regarding the Axioms
3 and 4 presented in Section 4, note that an undirected graph is strongly connected if and only
if it is weakly connected which in this case is only referred to as being connected, and that for
an arbitrary graph G ∈ Gud, any super-spreader v∗ ∈ VG is a star node. We thus obtain the
following versions of axioms 3 and 4 for undirected graphs:

• Axiom 3ud: There exists N0 ∈ N such that there is a connected graph in A of size N for
all N ≥ N0.

• Axiom 4ud: Any network with a star node is not acceptable.
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B.1 Interventions for Undirected Networks
If we restrict the discussion to the class Gud, then any undirected graph should always be
transformed into a new undirected graph. For convenience, as we view the undirected networks
Gud as a subset of the potentially directed networks G, the following elementary interventions
on undirected graphs are defined on G, that is κ : G → G, but satisfy κ(Gud) ⊂ Gud. Note that
only those basic interventions from Section 3.1 that come with a manipulation of network edges
need to be adjusted.

Iud
e del Edge Deletion: Consider a node tuple (v, w), v, w ∈ V. We let

κv,w
e del := κ

(w,v)
e del ◦ κ

(v,w)
e del : G 7→ (VG, EG \ {(v, w), (w, v)})

denote the deletion of the full edge between nodes v and w. Clearly, κv,w
e del = κw,v

e del. We
set

Iud
e del := {κv,w

e del | v, w ∈ V}.

Iud
e add Edge Addition: The addition of an edge between nodes v, w ∈ V with v ̸= w is given by

κv,w
e add := κ

(w,v)
e add ◦ κ

(v,w)
e add : G 7→ (VG, EG ∪ ({(v, w), (w, v)} ∩ VG × VG)),

and we let
Iud

e add := {κv,w
e add | v, w ∈ V}.

Iud
shift Edge Shift: An existing full edge between v and w can be shifted to a full edge between

q and r by
κ

{v,w},{q,r}
shift := κ

(w.v),(r,q)
shift ◦ κ

(v,w),(q,r)
shift .

Note that unlike the undirected case G ∈ Gud, the order of the nodes v, w and q, r is
generally relevant when the intervention is applied to networks G ∈ G. We set

Iud
shift := {κ

{v,w},{q,r}
shift | v, w, q, r ∈ V}.

Iud
split Node Splitting: For node splitting in undirected networks, we need to restrict to inter-

ventions from the set

Iud
split := {κL,v,ṽ

split |v, ṽ ∈ V, L ⊂ E, (q, r) ∈ L ⇔ (r, q) ∈ L} ⊂ Isplit.

B.2 Examples
As in the main part of this paper we consider examples based on acceptance sets A ⊂ Gud of
the form

A = {G ∈ Gud|Q(G) ≤ lNG
} (23)

where Q : Gud → R ∪ {−∞, ∞}. In principle, any Q from the previous discussion on directed
networks can also be applied here and the results from the directed case essentially also apply
to the undirected case. Only some proof or limits lN need to be adjusted as we will see in the
following.
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Figure 7: A undirected tree (left), and line (right) graph, consisting of N = 7 nodes. Note that
the line graph is a special case of a tree since it does not contain any cycles.

B.2.1 Control of the Average Total Degree

As before choosing Q(G) = E
[
KG

]
in (23) does not yield a network acceptance set for cyber

pandemic risk. Indeed recall Proposition 7.8 and compare to Proposition B.1 below. In this
case the proof is based on tree graphs: a connected undirected acyclic graph Gt ∈ Gud is called
an undirected tree.

Proposition B.1. Suppose that A is given by (23) with Q(G) = E
[
KG

]
. If Axiom 3ud is

satisfied, then Axiom 4ud is violated, and vice versa.

Proof. An undirected connected graph G of size N has a minimal number of edges if and only
if G is an undirected tree, see Theorem 6 in [12]. One easily verifies that this minimal number
equals the number of edges of an undirected line graph of size N , see Figure 7. Therefore G
contains at least 2(N − 1) directed edges. However, this also applies to the bidirectional star
graph, which is a special case of a tree graph. This proves the assertion.

B.2.2 Control of the Second Moment of the Total Degree Distribution

As in the directed case, we find that choosing Q(G) = E
[
K2

G

]
in (23) is a suitable way to define

network acceptance sets for cyber pandemic risk. For the proof, we need the following lemma:

Lemma B.2. Fix N ∈ N. The minimal second moment Q(Gt) = E
[
K2

Gt

]
among all undirected

tree graphs Gt ∈ Gud of size N is attained by the undirected line graphs L = (VL, EL), where for
VL = {v1, · · · , vN } ⊂ V we have EL = {(v1, v2), (v2, v1), · · · (vN−1, vN ), (vN , vN−1)}.

Proof. We prove the result by induction. First, note that for N = 2 and some arbitrary
v1, v2 ∈ V the only undirected tree Gt is given by Gt = ({v1, v2}, {(v1, v2), (v2, v1)}) which is
a line graph. Now, suppose that the statement holds for some N ≥ 2, and consider a tree Gt

of size N + 1. Then Gt contains at least two nodes with a total degree of 1, called leaves, see
Corollary 9 in [12]. Consider an enumeration of the nodes VGt such that vN+1 is a leaf of Gt

with (only) neighbor vN . Delete node vN+1 such that we obtain the network H = κ
vN+1
n del (Gt).

Note that H is a tree graph of size N . Now consider the line graph L of the same size defined
on the vertex set VGt \ {vN+1} with leaf vN . By induction hypothesis, we have

E
[
K2

L

]
≤ E

[
K2

H

]
, and thus

N∑
i=1

(
kL

vi

)2 ≤
N∑

i=1

(
kH

vi

)2
.

Now, let L̃ = (VGt , EL∪{(vN , vN+1), (vN+1, vN )}), which is a line graph of size N +1. Since node
vN is a leave in L, we find 1 = kL

vN
≤ kH

vN
. Moreover, kL̃

vi
= kL

vi
, kG

vi
= kH

vi
for i = 1, · · · , N − 1,
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and we have kL̃
vN

= kL
vN

+ 1 = 2, kGt

vN
= kH

vN
+ 1 ≥ 2 (H is connected so kH

vN
≥ 1), and

kGt

vN+1 = kL̃
vN+1 = 1. In total, this yields

E
[
K2

L̃

]
= 1

N + 1

N+1∑
i=1

(
kL̃

vi

)2 = 1
N + 1

( N−1∑
i=1

(
kL

vi

)2 +
(
kL

vN
+ 1

)2 + 12
)

= 1
N + 1

( N∑
i=1

(
kL

vi

)2 + 4 + 1
)

≤ 1
N + 1

( N∑
i=1

(
kH

vi

)2 + (kGt

vN
)2 + 1

)
= E

[
K2

Gt

]
.

Proposition B.3. Suppose that A is given by (23) with Q(G) = E
[
(K2

G

]
.

1. Q is I↓-monotone for any I↓ ⊂ Iud
e del ∪ Iud

n split ∪ {id}. Hence A satisfies Axiom 1 with
any such I↓ such that {id} ⫋ I↓.

2. A satisfies Axiom 2 if and only if lN ≥ 0 for all N ≥ 2,

3. A satisfies Axiom 3ud if and only if there is a N0 such that lN ≥ 4 − 6/N for all N ≥ N0.

4. A satisfies Axiom 4ud if and only if lN < N − 1 for all N ≥ 1.

Proof. See the proof of Proposition7.13 for 1.-2 and 4. As for 3., note that we only need to
consider connected networks that come with a minimal number of edges since Q(G) = E

[
K2

G

]
is Ie del-monotone according to 1, and these are the undirected tree graphs, see the proof of
Proposition B.1. The second moment of total degrees is minimized among all undirected tree
graphs of a fixed size N by the undirected line graphs, see Lemma B.2, and can be calculated
as

E
[
K2

L

]
= 1

N

(
2 · 1 + (N − 2) · 4

)
= 4N − 6

N
= 4 − 6

N
.

Corollary B.4. Suppose that the sequence (lN )N∈N satisfies the constraints given by 2.–4. of
Proposition B.3. Further suppose I↓ ⊂ Iud

e del ∪ Iud
n split ∪ {id} such that {id} ⫋ I↓. Then

A = {G ∈ Gud|E
[
(KG)2]

≤ l|VG|}

is a topologically invariant network acceptance set for pandemic cyber contagion where A satis-
fies Axiom 1 with I↓. Moreover, if N ∋ N 7→ lN is non-decreasing, then A also satisfies Axiom
5. Letting C be any cost function for (A, I↓), then (A, I↓, C) is a measure of resilience to cyber
contagion.

B.2.3 Control of Epidemic Threshold

Recall the epidemic threshold of the SIR model for undirected networks given in (1). Rear-
ranging the inequality shows that the ratio of second and first moment may be a promising
candidate for the control of network contagion

Q(G) =


E
[
K2

G

]
E
[
KG

] if E
[
KG

]
> 0

0 if E
[
KG

]
= 0.

(24)

Note, however, that risk management with respect to this quantity is not completely compatible
with edge deletions:

Proposition B.5. Q as given in (24) is not Iud
e del-monotone.
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Proof. Suppose we delete the edges {(v, w), (w, v)} between two adjacent nodes v, w ∈ VG in a
network G of size N ≥ 3, and let G̃ = κv,w

e del(G). Further suppose that G̃ does contain edges, so
that E

[
KG̃

]
,E

[
K2

G̃

]
> 0 and thus Q(G̃) = E

[
K2

G̃

]
/E

[
KG̃

]
. If Q were Iud

e del-monotone, then

E
[
K2

G

]
E

[
KG

] −
E

[
K2

G̃

]
E

[
KG̃

] ≥ 0, i.e. E
[
KG̃

]
E

[
K2

G

]
− E

[
KG

]
E

[
K2

G̃

]
≥ 0. (25)

We can express the moments of G̃ in terms of the moments of G by

E
[
KG̃

]
= E

[
KG

]
− 2

N
, E

[
K2

G̃

]
= E

[
K2

G

]
+ 2

N
(1 − (kG

v + kG
w )).

Therefore,

E
[
KG̃

]
E

[
K2

G

]
− E

[
KG

]
E

[
K2

G̃

]
=

(
E

[
KG

]
− 2

N

)
E

[
K2

G

]
− E

[
KG

](
E

[
K2

G

]
+ 2

N

(
1 − (kG

v + kG
w )

))
= 2

N

(
− E

[
K2

G

]
− E

[
KG

]
+ E

[
KG

](
kG

v + kG
w

))
.

Hence, (25) is satisfied if and only if E
[
KG

](
kG

v + kG
w

)
−

(
E

[
K2

G

]
+ E

[
KG

])
≥ 0, i.e., when

(
kG

v + kG
w

)
≥

E
[
K2

G

]
E

[
KG

] + 1. (26)

One easily constructs examples where (26) is not satisfied.

For the management of risk under edge deletions in a given network G, we thus need to
restrict ourselves to those edge deletions that satisfy (26), i.e., that target edges between nodes
with sufficiently large degrees.

Proposition B.6. Let A be given by (23) and Q in (24). Then

1. Q is I↓-monotone for any I↓ ⊂ Iud
n split ∪ {id}. Hence A satisfies Axiom 1 with any such

I↓ such that {id} ⫋ I↓.

2. A satisfies Axiom 2 if and only if lN ≥ 0 for all N ≥ 2.

3. A satisfies Axiom 3ud if and only if there is a N0 such that lN ≥ 2 − 1
N−1 for all N ≥ N0.

4. Suppose that l1 < 0, lN < N/2 for all 2 ≤ N ≤ 6 and that lN < 4N−1
N+1 for all N ≥ 7.

Then A satisfies Axiom 4ud.

Proof. 1. Let v ∈ VG be a node of the network G which is split into v and ṽ with a resulting
network G̃. Again, utilizing (20) and (N + 1)E

[
KG̃

]
= NE

[
KG

]
, we see that

E
[
K2

G̃

]
E

[
KG̃

] =
1

N+1

( ∑
w ̸=v,ṽ(kG̃

w )2 + (kG̃
v )2 + (kG̃

ṽ )2
)

1
N+1

( ∑
w ̸=v,ṽ kG̃

w + kG̃
v + kG̃

ṽ

) ≤
∑

w∈VG

(
kG

w

)2∑
w∈VG

kG
w

=
E

[
K2

G

]
E

[
KG

] .

2. is obvious.

3. For a line graph G of size N ≥ 2, we obtain

Q(G) =
E

[
K2

G

]
E

[
KG

] =
4 − 6

N

2 − 2
N

= 2N − 3
N − 1 .
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We show that for any connected graph H ∈ Gud of size n ≥ 2 we have

Q(H) ≥ 2N − 3
N − 1 = 2 − 1

N − 1 . (27)

To this end, consider the following three cases: If kH
v ≥ 2 for all v ∈ VH it follows that

(kH
v )2 ≥ 2kH

v for all v ∈ VH and thus

E
[
K2

H

]
≥ 2E

[
KH

]
≥

(
2 − 1

N − 1

)
E

[
KH

]
,

so (27) holds. Suppose that kH
v ≤ 2 for all v ∈ VH . Then H is either a undirected ring

graph (i.e. kH
v = 2 for all v ∈ VH) or an undirected line graph. In case of the undirected

ring graph choose arbitrary v, w ∈ VH such that (v, w) ∈ EH (and thus also (w, v) ∈ EH).
Note that v, w satisfy condition (26) in the proof of Proposition B.5, so that deleting the
edges (v, w) and (w, v) decreases Q. Notice that after the deletion of those edges we are
left with an undirected line graph. As a last case, suppose that there exists v, w ∈ VH

such that kH
v ≥ 3 and kH

w = 1. Choose a neighbor s ∈ VH of v such that
• s ̸= w,
• s is not a neighbor of w,
• there is a path from v to w not passing through the edge (v, s).

This is possible because kH
v ≥ 3. Indeed, if w happens to be a neighbor of v, then choose

as s any of the other neighbors of v. If w is not a neighbor of v and there is a neighbor u
of v such that any path from u to w passes through the node v, then let s = u. Finally,
if w is not a neighbor of v and all neighbors u of v allow for a path from u to w which
does not pass through v, then at most one of those neighbors can be a neighbor of w
(kH

w = 1), so let s be one of the other neighbors. Now let H̃ denote the graph obtained
from H by removing the edges (s, v) and (v, s) and adding the edges (s, w) and (w, s).
Note that H̃ is connected, because any path through (v, s) or (s, v) can be redirected to a
path passing through w. Then E

[
KH

]
= E

[
KH̃

]
since we did not alter the total number

of edges. However,

E
[
K2

H̃

]
= 1

N

 ∑
u∈VH
u̸=v,w

(kH
u )2 + (kH

v − 1)2 + (kH
w + 1)2



≤ 1
N

 ∑
u∈VH
u̸=v,w

(kH
u )2 + (kH

v )2 + (kH
w )2

 = E
[
K2

H

]

since x2 + y2 ≥ (x − 1)2 + (y + 1)2 whenever x − y ≥ 1. Consequently, Q(H̃) ≤ Q(H). If
H̃ falls under one of the first two cases, the assertion is proved. Otherwise, H̃ itself falls
under the third case and can again be altered accordingly, with decreasing Q, until we
finally satisfy the conditions of one of the first two cases.

4. Suppose that G ∈ Gud has N ≥ 2 nodes and contains a star node v∗ ∈ VG. Let G̃ =
κv∗

n del(G). We estimate

Q(G) = E
[
K2

G

]
E [KG] =

N + 2E
[
KG̃

]
+ E

[
K2

G̃

]
2 + E

[
KG̃

] ≥
N + 3E

[
KG̃

]
2 + E

[
KG̃

]
where we used that E

[
K2

H

]
≥ E [KH ] for any H ∈ Gud since KH is non-negative integer

valued. Note that the function f(x) = N+3x
2+x , x > −2, non-decreasing for N ≤ 6 and
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decreasing for N ≥ 7. Also note that E
[
KG̃

]
ranges between 0 and N−1. Hence, for N ≤ 6

we obtain that Q(G) ≥ N/2 and for N ≥ 7 we deduce that Q(G) ≥ (4N − 1)/(N + 1).

Note that (4N − 1)/(N + 1) is increasing in N and larger than 3 for N ≥ 7, so there are
sequences (lN )N∈N simultaneously satisfying the constraints given in 3. and 4. of Proposition B.8,
and, of course, also 2.

Corollary B.7. Suppose that the sequence (lN )N∈N satisfies the constraints given in 2.–4. of
Proposition B.6. Further suppose I↓ ⊂ Iud

n split ∪ {id} such that {id} ⫋ I↓. Then

A = {G ∈ Gud| Q(G) ≤ l|VG|}

where Q is given in (24) is a topologically invariant network acceptance set for pandemic cyber
contagion where A satisfies Axiom 1 with I↓. Moreover, if N ∋ N 7→ lN is non-decreasing,
then A also satisfies Axiom 5. Letting C be any cost function for (A, I↓), then (A, I↓, C) is a
measure of resilience to cyber contagion.

Proof. Clearly, A satisfies Axiom 6. For Axiom 5, suppose that we have two disjoint acceptable
graphs G, H with size N and M , respectively, and let l := max{lN , lM }. Further suppose that
E

[
KG

]
> 0 or E

[
KH

]
> 0, the other case being trivial. By disjointness, we have

E
[
K2

G∪H

]
= 1

N + M
(NE

[
K2

G

]
+ ME

[
K2

H

]
), E

[
KG∪H

]
= 1

N + M
(NE

[
KG

]
+ ME

[
KH

]
).

Moreover, note that G, H ∈ A implies E
[
K2

G

]
≤ lNE

[
KG

]
and E

[
K2

H

]
≤ lME

[
KH

]
. Hence, we

obtain

E
[
K2

G∪H

]
E

[
KG∪H

] =
NE

[
K2

G

]
+ ME

[
K2

H

]
NE

[
KG

]
+ ME

[
KH

] ≤
N · l · E

[
KG

]
+ M · l · E

[
KH

]
N · E

[
KG

]
+ M · E

[
KH

] = l
NE

[
KG

]
+ ME

[
KH

]
NE

[
KG

]
+ ME

[
KH

] = l.

The rest follows from Proposition B.6.

B.2.4 Control of Maximal Total Node Degrees

In analogy to Proposition A.4, we obtain:

Proposition B.8. Consider a set A ⊂ Gud as in (23) with Q(G) = maxv∈VG
Cdeg(v, G). Then

1. Q is I↓-monotone for any I↓ ⊂ Iud
e del ∪ Iud

n split ∪ {id}. Hence A satisfies Axiom 1 with
any such I↓ such that {id} ⫋ I↓.

2. A satisfies Axiom 2 if and only if lN ≥ 0 for all N ≥ 2,

3. A satisfies Axiom 3ud if and only if there is a N0 such that lN ≥ 2 for all N ≥ N0.

4. A satisfies Axiom 4ud if and only if lN < N − 1 for all N ≥ 1.

Proof. See the proof of Proposition A.4 for 1., 2., and 4. As for 3., note that any undirected tree
graph of size N ≥ 3 contains at least one node with a total degree of at least 2, and as before
the tree graphs represent the connected graphs with minimal Q in Gud for a given network size
N since Q(G) is Ie del-monotone. This shows the ’only if’-part, and for the ’if’-part consider
undirected line graphs.
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Corollary B.9. Suppose that the sequence (lN )N∈N satisfies the constraints given by 2.-4. of
Proposition B.8. Further suppose I↓ ⊂ Iud

e del ∪ Iud
n split ∪ {id} such that {id} ⫋ I↓. Then

A = {G ∈ Gud| max
v∈VG

Cdeg(v, G) ≤ l|VG|}

is a topologically invariant network acceptance set for pandemic cyber contagion where A satis-
fies Axiom 1 with I↓. Moreover, if N ∋ N 7→ lN is non-decreasing, then A also satisfies Axiom
5. Letting C be any cost function for (A, I↓), then (A, I↓, C) is a measure of resilience to cyber
contagion.

B.2.5 Control of the Total Closeness Centrality

Consider the quantity Q(G) = maxv∈VG
Cclose(v, G) with

Cclose(v, G) := 1
2

(
Cclose

in (v, G) + Cclose
out (v, G)

)
.

Proposition B.10. Consider a set A ⊂ G as in (23) with Q(G) = maxv∈VG
Cclose(v, G). Then

1. Q is I↓-monotone for any I↓ ⊂ Iud
e del ∪ Iud

s iso ∪ {id}. Hence A satisfies Axiom 1 with any
such I↓ such that {id} ⫋ I↓.

2. A satisfies Axiom 2 if and only if lN ≥ 0 for all N ≥ 2,

3. A satisfies Axiom 3ud if and only if there is a N0 such that lN ≥ (1/(N −1)) ∑(N−1)/2
j=1 (2/j)

for all N ≥ N0 which are odd, and lN ≥ (1/(N −1))
( ∑(N−2)/2

j=1 (2/j)+2/N
)

for all N ≥ N0
which are even.

4. A satisfies Axiom 4ud if and only if l1 < 0 and lN < 1 for all N ≥ 2.

Proof. See the proof of Proposition A.7 for 1. and 2. For 4., note that the star node v∗ in a
bidirectional star graph G∗ of size |VG∗ | ≥ 2 comes with Cclose

in (v∗, G∗) = Cclose
out (v∗, G∗) = 1, and

thus Q(G∗) = 1.
Regarding 3., it suffices again to restrict the discussion to tree graphs since Q is Ie del-

monotone. Consider a tree graph Gt of size N , and let v, w ∈ VGt be two nodes (not necessarily
unique) that come with a maximal distance lG

t

vw(= lG
t

wv) ≤ N −1 among all node pairs. Moreover,
note that the path pGt

vw := (v, v2, · · · , w) connecting v and w in Gt is unique since a tree graph
contains no cycles. Now we distinguish between two cases:

1. Suppose lG
t

vw is even. Then the number of nodes on the path pGt

vw is odd. Thus we find
a node u ∈ pGt

vw that lies in the center of the path connecting v and w, coming with
lG

t

vu (= lG
t

uv ) = lG
t

wu(= lG
t

uw) = lG
t

vw/2. Moreover, since v and w come with the maximal
distance among all node pairs, we have lG

t

uq ≤ lG
t

vw/2 for all nodes q ∈ VGt :
a) The statement is clear for each node q that lies on the path connecting v and w.
b) Suppose the path pGt

vq between q and v or pGt

wq between q and w does not intersect
with the path pGt

vw connecting v and w (apart from the node v). W.l.o.g. assume
pGt

vq \ {v} ∩ pGt

vw = ∅. Since all node pairs in Gt are connected by exactly one path
due to the absence of cycles in Gt, we thus have lG

t

wq = lG
t

vw + lG
t

vq > lG
t

vw. But this
contradicts the assumption that v and w come with the maximal distance among all
node pairs.

c) For the last case, consider the possibility that the paths connecting node q to v and
to w depart from a node r ∈ pGt

vw. Then lG
t

vq = lG
t

vr + lG
t

rq and lG
t

wq = lG
t

wr + lG
t

rq . We can
now either have r = u, or if not, then for either v or w, namely the node with a larger
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distance to q, u must lie on the path connecting v and q, or w and q, respectively. If
we had the case that lG

t

uq > lG
t

vw/2, then again, since Gt contains no cycles, the path
between v and q or between w and q now must be larger than lG

t

vw, contradicting our
initial assumption.

Now, since u lies in the centre of the path between v and w, for any distance j ≤ lG
t

vw/2,
we find two different nodes x, y on the path pGt

vw with lG
t

ux , lG
t

uy = j. Moreover, due to
lG

t

uq ≤ lG
t

vw/2 for all q ∈ VGt we obtain

∑
q∈VGt \{u}

1
lGt

uq

≥
lG

t
vw/2∑
j=1

2 · 1
j

+
∑

q /∈pGt
vw

1
lGt

vw/2
=

lG
t

vw/2∑
j=1

2 · 1
j

+ (N − lG
t

vw − 1) · 1
lGt

vw/2

If N is odd, then N − lG
t

vw − 1 is even, and because of lG
t

vw ≤ N − 1 we then we find

∑
q∈VGt \{u}

1
lGt

uq

≥
(N−1)/2∑

j=1
2 · 1

j
.

In the case that N is even, we find that N − lG
t

vw − 1 is odd, thus

∑
q∈VGt \{u}

1
lGt

uq

≥
(N−2)/2∑

j=1
2 · 1

j
+ 1

lGt

vw/2
≥

(N−2)/2∑
j=1

2 · 1
j

+ 2
N − 1 ≥

(N−2)/2∑
j=1

2 · 1
j

+ 2
N

.

2. Suppose that lG
t

vw is odd. Then we find two nodes uv and uw in the center of the path
between v and w, where lG

t

vuv
, lG

t

wuw
= (lvw − 1)/2, and lG

t

wuv
, lG

t

vuw
= (lvw + 1)/2. Moreover,

analogously to the considerations from 1., we then find that lG
t

uvq, lG
t

uwq ≤ (lGt

vw +1)/2 ≤ N/2
for all nodes q ∈ VGt . Thus, for u ∈ {uv, uw} we have

∑
q∈VGt \{u}

1
lGt

uq

=
(lGt

vw−1)/2∑
j=1

2· 1
j

+ 1
(lGt

vw + 1)/2
+

∑
q /∈pGt

vw

1
lGt

uq

≥
(lGt

vw−1)/2∑
j=1

2
j

+(N −lG
t

vw)· 1
(lGt

vw + 1)/2
.

Now, if N is odd, then we must have lG
t

uvq, lG
t

uwq ≤ (lGt

vw + 1)/2 ≤ (N − 1)/2, and N − lG
t

vw is
even, which together yields ∑

q∈VGt \{u}

1
lGt

uq

≥
(N−1)/2∑

j=1

2
j

.

If N is even, then N − lG
t

vw is odd, and therefore, we can estimate

∑
q∈VGt \{u}

1
lGt

uq

≥
(N−1)/2∑

j=1

2
j

+ 1
N/2 =

(N−1)/2∑
j=1

2
j

+ 2
N

.

Finally, for the line graph of size N we indeed have

∑
q∈VL\{u}

1
lLuq

=
(N−1)/2∑

j=1

2
j

if N is odd (which then is equivalent to lLvw being even). In the case that N is even (and thus
lLvw is odd), then ∑

q∈VL\{u}

1
lLuq

=
(N−1)/2∑

j=1

2
j

+ 2
N

.
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Corollary B.11. Suppose that the sequence (lN )N∈N satisfies l1 < 0, 0 ≤ lN < 1 for all N ≥ 2,
and there is N0 ≥ 3 such that lN ≥ (1/(N − 1)) ∑N−1

j=1 (1/j) whenever N ≥ N0. Further suppose
I↓ ⊂ Iud

e del ∪ Iud
s iso ∪ {id} such that {id} ⫋ I↓. Then

A = {G ∈ G| max
v∈VG

Cclose(v, G) ≤ l|VG|}

is a topologically invariant network acceptance set for pandemic cyber contagion where A satis-
fies Axiom 1 with I↓. Moreover, if N ∋ N 7→ lN is non-decreasing, then A also satisfies Axiom
5. Letting C be any cost function for (A, I↓), then (A, I↓, C) is a measure of resilience to cyber
contagion.

B.2.6 Control of the Spectral Radius of Undirected Graphs

Dynamic systems on networks are usually described by operators that depend on the adjacency
matrix AG of the graph G. The linear analysis of steady states and stability properties of
these states typically leads to an analysis of the spectral properties of the adjacency matrix. Of
particular importance here is the largest eigenvalue λG

1 of AG, called the spectral radius of G.
For details, we refer to Section 17.4 in [56].

Example B.12. A commonly applied model for the propagation of contagious threats in cyber
networks is the SIS (Susceptible-Infected-Susceptible) Markov process, see Section 3.2 in [6].
The single node infection dynamics of the system can be described by a set of ordinary differential
equations, according to Kolmogorov’s forward equation. A major problem as regards the solv-
ability of this system of ordinary differential equations is the fact that this system is not closed
as higher order moments appear, cascading up to the network size. A simplified model can be
obtained when assuming that all infection probabilities in the network are pairwise uncorrelated.
Given a network G of size N with enumerated nodes, this so-called NIMFA approximation or
individual-based model is governed by the set of equations

dE[Ii(t)]
dt

= τ
( N∑

j=1
AG(i, j)

(
1 − E[Ii(t)]

)
E[Ij(t)]

)
− γE[Ii(t)], i = 1, . . . , N, (28)

where τ, γ > 0 are the infection and recovery rates, and Ii(t) = 1 if node vi is infected at time t,
and Ii(t) = 0 if node vi is susceptible at time t. The infection probabilities of this model provide
upper bounds for the actual infection probabilities and can therefore be used for a conservative
estimation, see Theorem 3.3 in [50]. The stability of steady states of system (28), in particular of
the disease-free state (I1, · · · , IN ) = (0, · · · , 0), is now relevant in the analysis of the epidemic
vulnerability of the network G. Linearizing the individual-based model from (28) around the
disease-free state induces the eigenvalue problem

det(τAG − γIN − λIN ) = 0

where IN is the N -dimensional identity matrix and the largest eigenvalue of τAG −γIN is given
by τλG

1 − γ. If G is undirected and connected, it can be shown that if τ/γ < 1/λG
1 , then the

disease free state is stable and no endemic state exists; if τ/γ > 1/λG
1 , then the disease-free

state is unstable and there exists a unique endemic state, which is stable. For details, we refer
to Section 3.4.4 in [50].

In the setting of directed graphs, however, the information of the graph spectrum may have
little or no relevance in terms of graph vulnerability. For example, the only element in the
spectrum of both the edgeless and the directed star graph is zero. Consequently, Axiom 2 and
4’ cannot jointly be satisfied in a directed graph setting when choosing Q(G) = λG

1 . Moreover,
the spectrum of directed graphs can be complex due to the lack of the adjacency matrix’
symmetry.

The following definition is needed for the proof of the next proposition:
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Definition B.13. Given a graph G ∈ Gud and two nodes v, u ∈ VG, a Kelmans operation in G is
a Ishift-strategy where each bidirectional edge {(v, w), (w, v)} ∈ EG is replaced by {(u, w), (w, u)}
if w ̸= u and {(u, w), (w, u)} ∩ EG = ∅.
Proposition B.14. Consider a network acceptance set A as in (23) with Q(G) = λG

1 . Then
1. Q is I↓-monotone for any I↓ ⊂ Iud

e del ∪ Iud
n split ∪ {id}. Hence A satisfies Axiom 1 with

any such I↓ such that {id} ⫋ I↓.

2. A satisfies Axiom 2 if and only if lN ≥ 0 for all N ≥ 2,

3. A satisfies Axiom 3 if and only if there is a N0 such that lN ≥ maxj∈{1,··· ,N} cos(πj/(N +
1)) for all N ≥ N0. In particular, this is the case if there is a N0 such that lN ≥ 2 for all
N ≥ N0.

4. A satisfies Axiom 4 if and only if lN <
√

(N − 1) for all N ≥ 1.
Proof. 1. The spectral radius is non-increasing under edge deletions, see [15, Proposition

3.1.1]. Standard results also imply that Q is non-increasing under node splits: Let G ∈
Gud, and H = κJ ,v,ṽ

split (G) a network resulting from a split of node v by adding a new
node ṽ and rewiring edges contained in J , where (v, w) ∈ J ⇔ (w, v) ∈ J . Then
we can construct a new graph H ′ from H by a consecutive edge shift where all edges
(ṽ, w) are replaced by (v, w) and all (w, ṽ) by (w, v). This is a particular example of
a Kelmans operation, see Section 3.1.3 in [15] for details, since N H

v ∩ N H
ṽ = ∅. Note

that H ′ = G∪̇({ṽ}, ∅) is a disjoint union of G and the isolated node ṽ. Therefore, we
have λH′

1 = λG
1 , and the spectral radius of a graph is non-decreasing under a Kelmans

operation, see [15, Proposition 3.1.5]. This gives λH
1 ≤ λH′

1 = λG
1 .

2. trivial

3. Note that undirected line graphs of size N have a minimal spectral radius among all
connected graphs of this size in Gud, cf. [63, Theorem 1]. Their spectrum consists of the
eigenvalues λj = 2 cos(πj/(N + 1)), j = 1, · · · , N , see [15, Section 1.4.4].

4. For an undirected star graph of size N , simple calculations show that the spectrum con-
sists of the eigenvalues

√
N − 1 and −

√
N − 1, both with a multiplicity of one, and the

eigenvalue 0 with multiplicity of N − 2.

Corollary B.15. Suppose that the sequence (lN )N∈N satisfies l1 < 0, 0 ≤ lN <
√

N − 1
for all N ≥ 2, and there is N0 ≥ 4 such that lN ≥ 2 whenever N ≥ N0. Further suppose
I↓ ⊂ Iud

e del ∪ Iud
n split ∪ {id} such that {id} ⫋ I↓. Then

A = {G ∈ Gud|λG
1 ≤ l|VG|}

is a topologically invariant network acceptance set for pandemic cyber contagion where A satis-
fies Axiom 1 with I↓. Moreover, if N ∋ N 7→ lN is non-decreasing, then A also satisfies Axiom
6. Letting C be any cost function for (A, I↓), then (A, I↓, C) is a measure of resilience to cyber
contagion.
Proof. This follows from the results in Proposition B.14 noting that maxj∈{1,··· ,N} 2 cos(πj/(N +
1)) ≤ 2. Hence, Axiom 3 is satisfied whenever there is N0 such that lN ≥ 2 for N ≥ N0.
Recalling 4. of Proposition B.14 we observe that we must have N0 ≥ 4, and indeed note that
every undirected line graph of size N ≤ 3 is also an undirected star graph. Regarding Axiom
5, the spectrum of a disjoint union graph G ∪ H equals the union of the spectra of G and H,
which yields λG∪H

1 = max{λG
1 , λH

1 }. Hence, if G and H are acceptable, then the same applies to
G∪H whenever the sequence (lN )N∈N is non-decreasing. Moreover, A is topologically invariant
since, clearly, any two isomorphic graphs share the same graph spectrum.

50



References
[1] Amini, H., Cont, R., & Minca, A. (2016). Resilience to contagion in financial networks.

Mathematical Finance, 26 (2), 329–365.
[2] Antonio, Y., Indratno, S. W., & Simanjuntak, R. (2021). Cyber insurance ratemaking: A

graph mining approach. Risks, 9 (12).
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[35] Föllmer, H., & Klüppelberg, C. (2014). Spatial risk measures: Local specification and

boundary risk. In D. Crisan, B. Hambly, & T. Zariphopoulou (Eds.), Stochastic analysis
and applications 2014 (pp. 307–326). Springer International Publishing.
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[37] Föllmer, H., & Weber, S. (2015). The axiomatic approach to risk measures for capital
determination. Annual Review of Financial Economics, 7 (1), 301–337.

[38] Forscey, D., Bateman, J., Beecroft, N., & Woods, B. (2022). Systemic cyber risk: A primer.
Carnegie Endowment for International Peace and the Aspen Institute.

[39] Fouque, J.-P., & Langsam, J. A. (Eds.). (2013). Handbook on systemic risk. Cambridge
University Press.

[40] Gandy, A., & Veraart, L. A. M. (2017). A bayesian methodology for systemic risk assess-
ment in financial networks. Management Science, 63 (12), 4428–4446.

[41] Girvan, M., & Newman, M. (2002). Community structure in social and biological networks.
Proceedings of the National Academy of Sciences of the United States of America, 99 (12),
7821–7826.

[42] Hillairet, C., & Lopez, O. (2021). Propagation of cyber incidents in an insurance portfolio:
Counting processes combined with compartmental epidemiological models. Scandinavian
Actuarial Journal, 1–24.

[43] Hillairet, C., Lopez, O., d’Oultremont, L., & Spoorenberg, B. (2022). Cyber-contagion
model with network structure applied to insurance. Insurance: Mathematics and Eco-
nomics, 107, 88–101.
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