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Abstract

Working constructively throughout, we prove that if K is an inhabited,
complete, uniformly rotund subset of a normed space X, L is a located convex
subset of X containing at least two distinct points, and d ≡ infx∈K ρ(x, L)
exists, then there exists a strongly unique point x∞ ∈ K such that ρ(x∞, L) =
d. To do so, we introduce the notion of sufficient convexity for real-valued
functions on a metric space, and discuss the attainment of the infimum of
such a function when that infimum exists. Our main theorem leads to new
constructive versions of the separation theorem in a Hilbert space.
Keywords: sufficiently convex functions, uniform rotundity, separation
theorem for convex sets

The framework of this paper is Bishop-style constructive mathematics (BISH),
which, for all practical purposes, can be viewed as mathematics developed using
intuitionistic logic and based on an appropriate foundation such as CZF [1],
Martin-Löf type theory [9, 10], or constructive Morse set theory [6]. Thus all our
proofs embody algorithms that can be extracted for computer implementation
(see, for example, [8, 11, 12]).

We call a mapping f of a metric space X into R sufficiently convex if for each
ε > 0 there exists δ > 0 such that for all x, x′ ∈ X with ρ(x, x′) > ε, there exists
z ∈ X such that f(z) + δ < max {f(x), f(x′)}. Here ρ denotes the metric on X.

Proposition 1 The following are equivalent conditions on a mapping f of a
metric space X into R, such that µ ≡ inf f exists.

(i) f is sufficiently convex.

(ii) for each ε > 0 there exists δ̃ > 0 such that if x, x′ ∈ X, f(x) < µ + δ̃, and
f(x′) < µ+ δ̃, then ρ(x, x′) < ε.

Proof. First suppose that f is sufficiently convex. Given ε > 0, pick δ > 0
such that if x, x′ ∈ X and ρ(x, x′) > ε/2, then f(z) + δ < max {f(x), f(x′)} for
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some z ∈ X. Let δ̃ := δ and consider x, x′ ∈ X such that f(x) < µ + δ, and
f(x′) < µ+ δ. If ρ(x, x′) > ε/2, then there exists z ∈ X such that

f(z) + δ < max {f(x), f(x′)} < µ+ δ

and therefore f(z) < µ, which is absurd. Hence ρ(x, x′) ≤ ε/2 < ε.
Conversely, suppose that f satisfies condition (ii). Given ε > 0, choose δ̃ as

in that condition. If x, x′ ∈ X and ρ(x, x′) > ε, then max{f(x), f(x′)} ≥ µ + δ̃.
By the definition of µ, there exists z ∈ X such that

f(z) < µ+
δ̃

2

and hence

f(z) +
δ̃

2
< µ+ δ̃ ≤ max{f(x), f(x′)}.

Therefore, we may set δ := δ̃
2
. □

The following result is was communicated to us by Peter Aczel many years
ago.

Proposition 2 Let X be a complete metric space, and let f be a sequentially
continuous, sufficiently convex mapping of X into R such that µ ≡ inf f exists.
Then there exists ξ ∈ X such that f(ξ) = µ. Moreover, if x ∈ X and x ̸= ξ, then
f(x) > µ.

Proof. In view of Proposition 1, we can construct a strictly decreasing sequence
(δn)n⩾1 of positive numbers such that for each n, if x, x′ ∈ X, f(x) < µ+δn, and

f(x′) < µ+ δn, then ρ(x, x′) < 2−n. For each n, pick xn ∈ X such that f(xn) <
µ+ δn. Then ρ(xm, xn) < 2−n for all m ⩾ n, so (xn)n⩾1 is a Cauchy sequence
in X. Since X is complete, ξ ≡ limn→∞ xn exists in X. By the sequential
continuity of f, µ ⩽ f(ξ) ⩽ µ, so f(ξ) = µ. Moreover, if x ∈ X and ρ(x, ξ) > 0,
then, with ε := 1

2
ρ(x, ξ) and δ > 0 as in the definition of ‘sufficiently convex’,

there exists z ∈ X such that

µ < µ+ δ ≤ f(z) + δ < max{f(ξ), f(x)} = max{µ, f(x)} = f(x).

□

A subset L of a metric space is located if for all x ∈ X the distance

ρ(x, L) := inf{ρ(x, y) | y ∈ L}

exists.

Lemma 3 Let L be an inhabited, located, convex subset of a normed space X.
Then for all x, x′ in X and t ∈ [0, 1],

ρ(tx+ (1− t)x′, L) ≤ tρ(x, L) + (1− t)ρ(x′, L).

2



Proof. Given x, x′ ∈ X, t ∈ [0, 1], and ε > 0, pick y, y′ ∈ L such that

∥x− y∥ < ρ(x, L) + ε and ∥x′ − y′∥ < ρ(x′, L) + ε.

Then

ρ(tx+ (1− t)x′, L) ≤ ∥tx+ (1− t)x′ − ty− (1− ty′)∥
≤ t ∥x− y∥+ (1− t) ∥x′ − y′∥
≤ tρ(x, L) + (1− t)ρ(x′, L) + tε+ (1− t)ε

≤ tρ(x, L) + (1− t)ρ(x′, L) + ε.

Since ε > 0 is arbitrary, the result follows. □

A normed space X is uniformly convex if for each ε > 0 there exists δ
with 0 < δ < 1 such that if x, y are elements of X with ∥x∥ = 1 = ∥y∥ and
∥x− y∥ ≥ ε, then

∥∥1
2
(x+ y)

∥∥ ≤ δ. Hilbert spaces, and Lp spaces with p > 1,
are uniformly convex [4, page 322, Corollary (3.22)].

Lemma 4 Let X be a uniformly convex normed space. Then for all ε̃ > 0 and
M > 0 there exists δ̃ > 0 such that if x, y are elements of X with ∥x∥ = ∥y∥ ≤ M
and ∥x− y∥ ≥ ε̃, then ∥1

2
(x+ y)∥+ δ̃ ≤ ∥x∥.

Proof. Let ε̃ > 0 and consider any x, y ∈ X such that ∥x∥ = ∥y∥ ≤ M and
∥x−y∥ ≥ ε̃. As ε̃ ≤ ∥x−y∥ ≤ 2∥x∥, we infer ∥x∥ = ∥y∥ ≥ ε̃/2 > 0. Set ε := ε̃

M

and compute δ ∈ (0, 1) as in the definition of uniform convexity. As x/∥x∥ and
y/∥y∥ are unit vectors with∥∥∥∥ x

∥x∥
−

y

∥y∥

∥∥∥∥ =
1

∥x∥
∥x− y∥ ≥ ε̃

M
= ε,

we obtain
1

∥x∥

∥∥∥∥12 (x+ y)

∥∥∥∥ ≤ δ.

Hence, using that ∥x∥ ≥ ε̃/2,∥∥∥∥12 (x+ y)

∥∥∥∥ ≤ δ∥x∥ ≤ ∥x∥− (1− δ)∥x∥ ≤ ∥x∥− (1− δ)
ε̃

2
.

Set δ̃ := (1− δ) ε̃
2
. □

Lemma 5 Let X be a uniformly convex normed space, and let K ⊂ X be an
inhabited, convex, and norm bounded set. Then for any ε > 0 there exists
δ > 0 such that for all x, x′ ∈ K with ∥x − x′∥ ≥ ε we have

∥∥1
2
(x+ x ′)

∥∥ + δ ≤
max {∥x∥, ∥x ′∥}. In particular f(x) = ∥x∥, x ∈ K, defines a sufficiently convex
function.
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Proof. Let ε > 0 and let M > 0 be a norm bound for K. For ε̃ := ε/2 and
M compute δ̃ > 0 as in Lemma 4. Choose δ > 0 with δ < min{ε/4, δ̃/2} and
consider x, x ′ ∈ K with ∥x−x ′∥ ≥ ε. Either

∣∣∥x∥−∥x ′∥
∣∣ > δ or

∣∣∥x∥−∥x ′∥
∣∣ < 2δ.

In the first case note that min{∥x∥, ∥x ′∥} < max{∥x∥, ∥x ′∥}− δ and thus∥∥∥∥12 (x+ x ′)

∥∥∥∥ ≤ 1

2
(max{∥x∥, ∥x ′∥}+min{∥x∥, ∥x ′∥}) < max{∥x∥, ∥x ′∥}− δ

2
.

Now assume the second case. Then by the triangle inequality,

ε ≤ ∥x− x ′∥ ≤ 2(∥x∥+ δ) and ε ≤ ∥x− x ′∥ ≤ 2(∥x ′∥+ δ)

implying that min{∥x∥, ∥x ′∥} > 0. Consider y := ∥x∥
∥x ′∥x

′, and note that

∥x ′ − y∥ =
∣∣∥x ′∥− ∥x∥

∣∣ < 2δ, ∥y∥ = ∥x∥ ≤ M,

and
∥x− y∥ ≥ ∥x− x ′∥− ∥x ′ − y∥ > ε− 2δ >

ε

2
= ε̃.

By choice of δ̃ we have

∥x∥ ≥ 1

2
∥x+ y∥+ δ̃ ≥ 1

2
(∥x+ x ′∥− ∥x ′ − y∥) + δ̃

>
1

2
∥x+ x ′∥− δ+ δ̃ >

1

2
∥x+ x ′∥+ δ.

As ∥x∥ ≤ max{∥x∥, ∥x ′∥}, the lemma is proved. □

Proposition 6 Let X be a uniformly convex normed space, and let K ⊂ X be
an inhabited complete convex set. Moreover, let y ∈ X and assume that

µ := inf{∥y− x∥ : x ∈ K}

exists. Then there exists x0 ∈ K such that ∥y − x0∥ = µ. If x ′ ∈ K such that
x ′ ̸= x0, then ∥y− x ′∥ > µ.

Proof. As the set K − {y} inherits all properties from K, we may assume that
y = 0. Pick z ∈ K. Then

µ = inf{∥x∥ : x ∈ K, ∥x∥ ≤ M}

where M > 0 satisfies M > ∥z∥. The set K̃ := {x ∈ K : ∥x∥ ≤ M} is inhabited,
convex, bounded, and complete. Therefore, K̃ ∋ x 7→ ∥x∥ is sufficiently convex
by Lemma 5 and has a unique minimum point x0 ∈ K̃ by Proposition 2. □

An immediate consequence of Proposition 6 is the proof of [4, Problem 11,
p. 391], namely:
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Corollary 7 Let B be a uniformly convex Banach space, and let K ⊂ B be a
closed located convex set. Then each y ∈ B has a unique closest point x0 ∈ K, i.e.
∥y− x0∥ = ρ(y, K), and if x ′ ∈ K is such that x ′ ̸= x0, then ∥y− x ′∥ > ρ(y, K).

A subset C of a normed space X is uniformly rotund if it is convex and for
each ε > 0 there exists δ > 0 such that if x, x′ ∈ C and ∥x− x′∥ ≥ ε, then
1
2
(x+ x′) + z ∈ C for all z ∈ X with ∥z∥ ⩽ δ.

Proposition 8 A normed linear space X is uniformly convex if and only if its
closed unit ball B is uniformly rotund.

Proof. Suppose that X is uniformly convex, and let ε > 0. Compute δ > 0 for
ε and K = B as in Lemma 5. Then for all x, x ′ ∈ B such that ∥x− x ′∥ ≥ ε and
any z ∈ X with ∥z∥ ≤ δ it follows that∥∥∥∥12 (x+ x′) + z

∥∥∥∥ ≤
∥∥∥∥12 (x+ x′)

∥∥∥∥+ δ ≤ max {∥x∥, ∥x ′∥} ≤ 1.

Hence, 1
2
(x+ x′) + z ∈ B, so B is uniformly rotund.

Conversely, suppose that B is uniformly rotund, let ε > 0, and choose δ < 1 as in
the definition of uniformly rotund. If x, y are unit vectors of X with ∥x− y∥ ≥ ε,
then

∥∥1
2
δ(x+ y)

∥∥ ≤ δ, so

(1+ δ)
∥∥1
2
(x+ y)

∥∥ =
∥∥1
2
(x+ y) + 1

2
δ(x+ y)

∥∥ ≤ 1

and therefore
∥∥1
2
(x+ y)

∥∥ ≤ (1+ δ)−1 < 1. □

Let C be a convex subset of a normed space X. We say that a mapping
f : C → R is quasiuniformly convex if for each ε > 0 there exists δ > 0 such that
if x, x′ ∈ X and ∥x− x′∥ > ε, then there exists z ∈ X such that 1

2
(x+x′)+ z ∈ C

and
f(1

2
(x+ x′) + z) + δ < 1

2
(f(x) + f(x′)) .

Clearly, such a function is sufficiently convex on C.

Proposition 9 Let K be an inhabited, complete, uniformly rotund subset of a
normed space X, and L a located convex subset of X that is disjoint from K and
contains at least two distinct points. Then f(x) ≡ ρ(x, L) defines a quasiuni-
formly convex function on K.

Proof. With ε > 0 and δ < 1 as in the definition of ‘uniform rotundity’ for K,
let x, x′ ∈ K and ∥x− x′∥ > ε. Choose y, y′ ∈ L such that y ̸= y′ and∥∥1

2
(x+ x′) − y

∥∥ < ρ(1
2
(x+ x′), L) +

δ

8
.

Let

0 < t < min

{
1,

δ

8 ∥y− y′∥

}
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and let
η = (1− t)y+ ty′.

Then η ∈ L by convexity, and since y ̸= η, either 1
2
(x+x′) ̸= y or 1

2
(x+x′) ̸= η.

In the latter case,∥∥1
2
(x+ x′) − η

∥∥ ≤
∥∥1
2
(x+ x′) − y

∥∥+ ∥y− η∥

< ρ(1
2
(x+ x′), L) +

δ

8
+ t ∥y− y′∥

< ρ(1
2
(x+ x′), L) +

δ

4
.

Thus in either case there exists p ∈ L such that p ̸= 1
2
(x+ x′) and

0 <
∥∥1
2
(x+ x′) − p

∥∥ < ρ(1
2
(x+ x′), L) +

δ

2
.

Then
0 ̸= v := 1

2
(x+ x′) − p.

Either ∥v∥ > 3δ
4

or ∥v∥ < δ. In the latter case p = 1
2
(x + x′) − v ∈ K which is

absurd since K and L are disjoint. Hence, ∥v∥ > 3δ
4
. Now, with

z :=
3δ

4 ∥v∥
v,

we have ∥z∥ < δ, so
1
2
(x+ x′) − z ∈ K.

Hence, ∥∥1
2
(x+ x′) − p− z

∥∥ =
∥∥∥v− 3δ

4∥v∥v
∥∥∥

=
(
1− 3δ

4∥v∥

)
∥v∥

= ∥v∥− 3δ

4

< ρ(1
2
(x+ x′), L) +

δ

2
−

3δ

4

= ρ(1
2
(x+ x′), L) −

δ

4

⩽ 1
2
(ρ(x, L) + ρ(x′, L)) −

δ

4
,

the last step using Lemma 3. Thus

f
(
1
2
(x+ x′) − z

)
+

δ

4
= ρ

(
1
2
(x+ x′) − z, L

)
+

δ

4

⩽
∥∥1
2
(x+ x′) − z− p

∥∥+
δ

4

< 1
2
(ρ(x, L) + ρ(x′, L)) −

δ

4
+

δ

4

= 1
2
(f(x) + f(x′)).
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□

To see that in Proposition 9 we cannot replace uniform rotundity by mere
convexity, take X to be the Euclidean plane R2, K = {(x, y) ∈ R2 : x ≤ 0}, and
L = {(x, y) ∈ R2 : x ≥ 1}; we have

inf
x∈K

ρ(x, L) = 1 = ∥(0, y) − (1, y)∥

for all y ∈ R, so, in view of Proposition 2, x 7→ ρ(x, L) is not sufficiently convex
on K.

Recall here Bishop’s Lemma [7, Proposition 3.1.1]:

Let Y be an inhabited, complete, located subset of a metric space
X. Then for each x ∈ X there exists y ∈ Y such that if x ̸= y, then
ρ(x, Y) > 0.

From Proposition 9, Proposition 2, and Bishop’s Lemma we obtain:

Theorem 10 Let K be an inhabited, complete, uniformly rotund subset of a
normed space X, and L a located convex subset of X that is disjoint from K and
contains at least two distinct points. Suppose also that d ≡ infx∈K ρ(x, L) exists.
Then there exists ξ ∈ K such that (i) ρ(ξ, L) = d and (ii) ρ(x, L) > d for all
x ∈ K with x ̸= ξ. If, in addition, L is complete, then there exists y ∈ L such
that if ξ ̸= y, then d > 0.

Proof. By Proposition 9, f(x) ≡ ρ(x, L) defines a quasiuniformly convex, and
hence sufficiently convex, function on K. Since K is complete and d exists,
Proposition 2 produces ξ ∈ K with properties (i) and (ii). If also L is complete,
then we complete the proof by invoking Bishop’s Lemma. □

Lemma 11 Let Y be an inhabited convex subset of a Hilbert space H, and a
a point of H such that d = ρ(a, Y) exists. Then there exists b ∈ Y such that
∥a− b∥ = d. Moreover,

(i) ∥a− y∥ > d whenever y ∈ Y and y ̸= b;

(ii) ⟨a− b, b− y⟩ ≥ 0, and therefore ⟨a− b, a− y⟩ ≥ d2, for all y ∈ Y.

Proof. This is a well-known result on Hilbert space. For instance Lemma
1 in [2] proves the existence of b ∈ Y such that ∥a− b∥ = d and (ii) holds.
Conclusion (i) follows from (ii) since for all y ∈ Y

∥a−y∥2 = ∥a−b+b−y∥2 = ∥a−b∥2+∥b−y∥2+2 ⟨a− b, b− y⟩ ≥ d2+∥b−y∥2.

□
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Corollary 12 Let K be an inhabited, closed, uniformly rotund subset of a Hilbert
space H, and L a closed, located, convex subset of H that is disjoint from K and
contains at least two distinct points. Suppose also that d ≡ infx∈K ρ(x, L) exists.
Then there exist x∞ ∈ K and y∞ ∈ L such that ∥x∞ − y∞∥ = d. Moreover,

(i) ∥x− y∥ > d whenever x ∈ K and y ∈ L and either x ̸= x∞ or y ̸= y∞;

(ii) ⟨x∞ − y∞, y∞ − y⟩ ≥ 0, and therefore ⟨x∞ − y∞, x∞ − y⟩ ≥ d2, for all
y ∈ L.

Proof. By Theorem 10, there exists x∞ ∈ K such that d = ρ(x∞, L). By
Lemma 11 there exists y∞ ∈ Y such that ∥x∞ − y∞∥ = ρ(x∞, L) and properties
(i) and (ii) hold. □

This leads us to a new constructive separation theorem.

Theorem 13 Let K be an inhabited, closed, located, uniformly rotund subset of
a Hilbert space H, and L a closed, located, convex subset of H containing at least
two distinct points. Suppose that d ≡ infx∈K ρ(x, L) exists and is positive, let
x∞, y∞ be as in Corollary 12, and let p = x∞ − y∞. Then

⟨p, x− y⟩ ≥ d2 for all x ∈ K and y ∈ L.

Proof. Construct x∞ ∈ K and y∞ ∈ L as in Corollary 12, and let

p = x∞ − y∞.

Then, by Corollary 12, for all y ∈ Y we have

⟨p, x∞ − y⟩ = ⟨x∞ − y∞, x∞ − y⟩ ≥ d2.

On the other hand, since K is located Lemma 11 provides the existence of a
unique b ∈ K such that ρ(y∞, K) = ∥y∞ − b∥. As ρ(y∞, K) = d = ∥y∞ − x∞∥
it follows that indeed b = x∞ and thus by Lemma 11 that

⟨y∞ − x∞, x∞ − x⟩ ≥ 0

for all x ∈ K. Hence, for x ∈ K and y ∈ L,

⟨p, x− y⟩ = ⟨p, x∞ − y⟩+ ⟨p, x− x∞⟩
≥ d2 + ⟨x∞ − y∞, x− x∞⟩
= d2 + ⟨y∞ − x∞, x∞ − x⟩ ≥ d2.

□

Corollary 14 Let K be an inhabited, closed, located, uniformly rotund subset
of a Hilbert space H, and L a closed, located, convex subset of H containing at
least two distinct points. Suppose that d ≡ infx∈K ρ(x, L) exists and is positive.
Then there exists a normed linear functional u on H with ∥u∥ = 1, such that
u(x) ≥ u(y) + d for all x ∈ X and y ∈ Y.
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Proof. In the notation of Theorem 13, let

u(x) =
〈
x, d−1p

〉
(x ∈ H).

Then u is a bounded linear functional with norm 1. Also, for x ∈ X and y ∈ Y,

u(x− y) = d−1 ⟨p, x− y⟩ ≥ d

and therefore u(x) ≥ u(y) + d. □

In trying to apply the foregoing theorems, it is natural to think of the case
where the uniformly rotund set K is compact. In that case, if K is nontrivial, x
is finite-dimensional.

Proposition 15 A normed space that has a totally bounded and uniformly ro-
tund subset which contains two distinct points is finite-dimensional.

Proof. Let S be a totally bounded, uniformly rotund subset of a normed space
X. Assume that S contains two distinct points a, b. There exists δ > 0 such
that

∥∥1
2
(x+ y) + z

∥∥ ∈ S whenever x, y ∈ S, ∥x− y∥ > 1
2
∥a− b∥, z ∈ X, and

∥z∥ ≤ δ. Since S is totally bounded, there exists r such that 0 < r ≤ δ and the
set S∩B(1

2
(a+ b), r), which contains 1

2
(a+ b), is totally bounded [7, Theorem

2.2.13]. If z ∈ B(1
2
(a+ b), r), then

∥∥z− 1
2
(a+ b)

∥∥ ≤ δ, so

z = 1
2
(a+ b) +

(
z− 1

2
(a+ b)

)
∈ S.

Thus B(1
2
(a+b), r) = S∩B(1

2
(a+b), r) and so is a totally bounded ball of positive

radius. It follows from [7, Proposition 4.1.13] that X is finite-dimensional. □
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