Uniform Rotundity and Separation

Josef Berger^a, Douglas S. Bridges^b, and Gregor Svindland^c

^aLudwig-Maximilians-Universität München, Germany ^bUniversity of Canterbury, New Zealand ^cLeibniz Universität Hannover

August 27, 2023

Abstract

Working constructively throughout, we prove that if K is an inhabited, complete, uniformly rotund subset of a normed space X, L is a located convex subset of X containing at least two distinct points, and $d \equiv \inf_{x \in K} \rho(x, L)$ exists, then there exists a strongly unique point $x_{\infty} \in K$ such that $\rho(x_{\infty}, L) = d$. To do so, we introduce the notion of sufficient convexity for real-valued functions on a metric space, and discuss the attainment of the infimum of such a function when that infimum exists. Our main theorem leads to new constructive versions of the separation theorem in a Hilbert space.

Keywords: sufficiently convex functions, uniform rotundity, separation theorem for convex sets

The framework of this paper is Bishop-style constructive mathematics (**BISH**), which, for all practical purposes, can be viewed as mathematics developed using intuitionistic logic and based on an appropriate foundation such as CZF [1], Martin-Löf type theory [9, 10], or constructive Morse set theory [6]. Thus all our proofs embody algorithms that can be extracted for computer implementation (see, for example, [8, 11, 12]).

We call a mapping f of a metric space X into **R** sufficiently convex if for each $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x, x' \in X$ with $\rho(x, x') > \varepsilon$, there exists $z \in X$ such that $f(z) + \delta < \max\{f(x), f(x')\}$. Here ρ denotes the metric on X.

Proposition 1 The following are equivalent conditions on a mapping f of a metric space X into R, such that $\mu \equiv \inf f$ exists.

- (i) f is sufficiently convex.
- (ii) for each $\varepsilon > 0$ there exists $\tilde{\delta} > 0$ such that if $x, x' \in X$, $f(x) < \mu + \tilde{\delta}$, and $f(x') < \mu + \tilde{\delta}$, then $\rho(x, x') < \varepsilon$.

Proof. First suppose that f is sufficiently convex. Given $\varepsilon > 0$, pick $\delta > 0$ such that if $x, x' \in X$ and $\rho(x, x') > \varepsilon/2$, then $f(z) + \delta < \max\{f(x), f(x')\}$ for

some $z \in X$. Let $\tilde{\delta} := \delta$ and consider $x, x' \in X$ such that $f(x) < \mu + \delta$, and $f(x') < \mu + \delta$. If $\rho(x, x') > \varepsilon/2$, then there exists $z \in X$ such that

$$f(z) + \delta < \max\{f(x), f(x')\} < \mu + \delta$$

and therefore $f(z) < \mu$, which is absurd. Hence $\rho(x, x') \le \varepsilon/2 < \varepsilon$.

Conversely, suppose that f satisfies condition (ii). Given $\varepsilon > 0$, choose $\tilde{\delta}$ as in that condition. If $x, x' \in X$ and $\rho(x, x') > \varepsilon$, then $\max\{f(x), f(x')\} \ge \mu + \tilde{\delta}$. By the definition of μ , there exists $z \in X$ such that

$$\mathsf{f}(z) < \mu + \frac{\tilde{\delta}}{2}$$

and hence

$$f(z) + \frac{\delta}{2} < \mu + \tilde{\delta} \leq \max\{f(x), f(x')\}$$

Therefore, we may set $\delta := \frac{\delta}{2}$.

The following result is was communicated to us by Peter Aczel many years ago.

Proposition 2 Let X be a complete metric space, and let f be a sequentially continuous, sufficiently convex mapping of X into **R** such that $\mu \equiv \inf f$ exists. Then there exists $\xi \in X$ such that $f(\xi) = \mu$. Moreover, if $x \in X$ and $x \neq \xi$, then $f(x) > \mu$.

Proof. In view of Proposition 1, we can construct a strictly decreasing sequence $(\delta_n)_{n \ge 1}$ of positive numbers such that for each n, if $x, x' \in X$, $f(x) < \mu + \delta_n$, and $f(x') < \mu + \delta_n$, then $\rho(x, x') < 2^{-n}$. For each n, pick $x_n \in X$ such that $f(x_n) < \mu + \delta_n$. Then $\rho(x_m, x_n) < 2^{-n}$ for all $m \ge n$, so $(x_n)_{n \ge 1}$ is a Cauchy sequence in X. Since X is complete, $\xi \equiv \lim_{n \to \infty} x_n$ exists in X. By the sequential continuity of f, $\mu \le f(\xi) \le \mu$, so $f(\xi) = \mu$. Moreover, if $x \in X$ and $\rho(x, \xi) > 0$, then, with $\varepsilon := \frac{1}{2}\rho(x,\xi)$ and $\delta > 0$ as in the definition of 'sufficiently convex', there exists $z \in X$ such that

$$\mu < \mu + \delta \le f(z) + \delta < \max\{f(\xi), f(x)\} = \max\{\mu, f(x)\} = f(x).$$

A subset L of a metric space is *located* if for all $x \in X$ the distance

$$\rho(\mathbf{x}, \mathbf{L}) := \inf\{\rho(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathbf{L}\}$$

exists.

Lemma 3 Let L be an inhabited, located, convex subset of a normed space X. Then for all x, x' in X and $t \in [0, 1]$,

$$\rho(tx + (1 - t)x', L) \le t\rho(x, L) + (1 - t)\rho(x', L).$$

Proof. Given $x, x' \in X$, $t \in [0, 1]$, and $\varepsilon > 0$, pick $y, y' \in L$ such that

$$\|x-y\|<\rho(x,L)+\epsilon \ {\rm and} \ \|x'-y'\|<\rho(x',L)+\epsilon.$$

Then

$$\begin{split} \rho(tx + (1-t)x', L) &\leq \|tx + (1-t)x' - ty - (1-ty')\| \\ &\leq t \|x - y\| + (1-t) \|x' - y'\| \\ &\leq t\rho(x, L) + (1-t)\rho(x', L) + t\varepsilon + (1-t)\varepsilon \\ &\leq t\rho(x, L) + (1-t)\rho(x', L) + \varepsilon. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, the result follows.

A normed space X is *uniformly convex* if for each $\varepsilon > 0$ there exists δ with $0 < \delta < 1$ such that if x, y are elements of X with ||x|| = 1 = ||y|| and $||x - y|| \ge \varepsilon$, then $\left\|\frac{1}{2}(x + y)\right\| \le \delta$. Hilbert spaces, and L_p spaces with p > 1, are uniformly convex [4, page 322, Corollary (3.22)].

Lemma 4 Let X be a uniformly convex normed space. Then for all $\tilde{\epsilon} > 0$ and M > 0 there exists $\tilde{\delta} > 0$ such that if x, y are elements of X with $||x|| = ||y|| \le M$ and $||x - y|| \ge \tilde{\epsilon}$, then $||\frac{1}{2}(x + y)|| + \tilde{\delta} \le ||x||$.

Proof. Let $\tilde{\varepsilon} > 0$ and consider any $x, y \in X$ such that $||x|| = ||y|| \le M$ and $||x-y|| \ge \tilde{\varepsilon}$. As $\tilde{\varepsilon} \le ||x-y|| \le 2||x||$, we infer $||x|| = ||y|| \ge \tilde{\varepsilon}/2 > 0$. Set $\varepsilon := \frac{\tilde{\varepsilon}}{M}$ and compute $\delta \in (0, 1)$ as in the definition of uniform convexity. As x/||x|| and y/||y|| are unit vectors with

$$\left\|\frac{\mathbf{x}}{\|\mathbf{x}\|} - \frac{\mathbf{y}}{\|\mathbf{y}\|}\right\| = \frac{1}{\|\mathbf{x}\|}\|\mathbf{x} - \mathbf{y}\| \ge \frac{\tilde{\varepsilon}}{M} = \varepsilon,$$

we obtain

$$\frac{1}{\|\mathbf{x}\|} \left\| \frac{1}{2} (\mathbf{x} + \mathbf{y}) \right\| \le \delta.$$

Hence, using that $\|x\| \geq \tilde{\epsilon}/2$,

$$\begin{split} \left\|\frac{1}{2}(x+y)\right\| &\leq \delta \|x\| \leq \|x\| - (1-\delta)\|x\| \leq \|x\| - (1-\delta)\frac{\tilde{\epsilon}}{2}. \end{split}$$
 Set $\tilde{\delta} := (1-\delta)\frac{\tilde{\epsilon}}{2}.$

Lemma 5 Let X be a uniformly convex normed space, and let $K \subset X$ be an inhabited, convex, and norm bounded set. Then for any $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x, x' \in K$ with $||x - x'|| \ge \varepsilon$ we have $\left\|\frac{1}{2}(x + x')\right\| + \delta \le \max\{||x||, ||x'||\}$. In particular $f(x) = ||x||, x \in K$, defines a sufficiently convex function.

Proof. Let $\varepsilon > 0$ and let M > 0 be a norm bound for K. For $\tilde{\varepsilon} := \varepsilon/2$ and M compute $\tilde{\delta} > 0$ as in Lemma 4. Choose $\delta > 0$ with $\delta < \min\{\varepsilon/4, \tilde{\delta}/2\}$ and consider $x, x' \in K$ with $||x-x'|| \ge \varepsilon$. Either $|||x|| - ||x'||| > \delta$ or $|||x|| - ||x'||| < 2\delta$. In the first case note that $\min\{||x||, ||x'||\} < \max\{||x||, ||x'||\} - \delta$ and thus

$$\left\|\frac{1}{2}(\mathbf{x}+\mathbf{x}')\right\| \leq \frac{1}{2}(\max\{\|\mathbf{x}\|,\|\mathbf{x}'\|\} + \min\{\|\mathbf{x}\|,\|\mathbf{x}'\|\}) < \max\{\|\mathbf{x}\|,\|\mathbf{x}'\|\} - \frac{\delta}{2}.$$

Now assume the second case. Then by the triangle inequality,

$$\varepsilon \le \|\mathbf{x} - \mathbf{x}'\| \le 2(\|\mathbf{x}\| + \delta)$$
 and $\varepsilon \le \|\mathbf{x} - \mathbf{x}'\| \le 2(\|\mathbf{x}'\| + \delta)$

implying that $\min\{\|\mathbf{x}\|, \|\mathbf{x}'\|\} > 0$. Consider $\mathbf{y} := \frac{\|\mathbf{x}\|}{\|\mathbf{x}'\|}\mathbf{x}'$, and note that

$$\|x' - y\| = \left| \|x'\| - \|x\| \right| < 2\delta, \quad \|y\| = \|x\| \le M,$$

and

$$\|x-y\| \geq \|x-x'\| - \|x'-y\| > \epsilon - 2\delta > \frac{\epsilon}{2} = \tilde{\epsilon}.$$

By choice of $\tilde{\delta}$ we have

$$\begin{split} \|\mathbf{x}\| &\geq \ \frac{1}{2} \|\mathbf{x} + \mathbf{y}\| + \tilde{\delta} \geq \ \frac{1}{2} (\|\mathbf{x} + \mathbf{x}'\| - \|\mathbf{x}' - \mathbf{y}\|) + \tilde{\delta} \\ &> \ \frac{1}{2} \|\mathbf{x} + \mathbf{x}'\| - \delta + \tilde{\delta} > \ \frac{1}{2} \|\mathbf{x} + \mathbf{x}'\| + \delta. \end{split}$$

As $||\mathbf{x}|| \le \max\{||\mathbf{x}||, ||\mathbf{x}'||\}$, the lemma is proved.

Proposition 6 Let X be a uniformly convex normed space, and let $K \subset X$ be an inhabited complete convex set. Moreover, let $y \in X$ and assume that

$$\mu := \inf\{\|y - x\| : x \in K\}$$

exists. Then there exists $x_0 \in K$ such that $\|y - x_0\| = \mu$. If $x' \in K$ such that $x' \neq x_0$, then $\|y - x'\| > \mu$.

Proof. As the set $K - \{y\}$ inherits all properties from K, we may assume that y = 0. Pick $z \in K$. Then

$$\mu = \inf\{\|x\| : x \in K, \|x\| \le M\}$$

where M > 0 satisfies M > ||z||. The set $\tilde{K} := \{x \in K : ||x|| \le M\}$ is inhabited, convex, bounded, and complete. Therefore, $\tilde{K} \ni x \mapsto ||x||$ is sufficiently convex by Lemma 5 and has a unique minimum point $x_0 \in \tilde{K}$ by Proposition 2.

An immediate consequence of Proposition 6 is the proof of [4, Problem 11, p. 391], namely:

Corollary 7 Let B be a uniformly convex Banach space, and let $K \subset B$ be a closed located convex set. Then each $y \in B$ has a unique closest point $x_0 \in K$, i.e. $\|y - x_0\| = \rho(y, K)$, and if $x' \in K$ is such that $x' \neq x_0$, then $\|y - x'\| > \rho(y, K)$.

A subset C of a normed space X is *uniformly rotund* if it is convex and for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $x, x' \in C$ and $||x - x'|| \ge \varepsilon$, then $\frac{1}{2}(x + x') + z \in C$ for all $z \in X$ with $||z|| \le \delta$.

Proposition 8 A normed linear space X is uniformly convex if and only if its closed unit ball B is uniformly rotund.

Proof. Suppose that X is uniformly convex, and let $\varepsilon > 0$. Compute $\delta > 0$ for ε and K = B as in Lemma 5. Then for all $x, x' \in B$ such that $||x - x'|| \ge \varepsilon$ and any $z \in X$ with $||z|| \le \delta$ it follows that

$$\left\|\frac{1}{2}(x+x')+z\right\| \le \left\|\frac{1}{2}(x+x')\right\| + \delta \le \max\{\|x\|, \|x'\|\} \le 1.$$

Hence, $\frac{1}{2}(x + x') + z \in B$, so B is uniformly rotund.

Conversely, suppose that B is uniformly rotund, let $\varepsilon > 0$, and choose $\delta < 1$ as in the definition of uniformly rotund. If x, y are unit vectors of X with $||x - y|| \ge \varepsilon$, then $\left\|\frac{1}{2}\delta(x + y)\right\| \le \delta$, so

$$(1+\delta) \left\| \frac{1}{2}(x+y) \right\| = \left\| \frac{1}{2}(x+y) + \frac{1}{2}\delta(x+y) \right\| \le 1$$

and therefore $\|\frac{1}{2}(x+y)\| \le (1+\delta)^{-1} < 1$.

Let C be a convex subset of a normed space X. We say that a mapping $f: C \to \mathbf{R}$ is *quasiuniformly convex* if for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $x, x' \in X$ and $||x - x'|| > \varepsilon$, then there exists $z \in X$ such that $\frac{1}{2}(x + x') + z \in C$ and

$$f(\frac{1}{2}(x+x')+z)+\delta < \frac{1}{2}(f(x)+f(x')).$$

Clearly, such a function is sufficiently convex on C.

Proposition 9 Let K be an inhabited, complete, uniformly rotund subset of a normed space X, and L a located convex subset of X that is disjoint from K and contains at least two distinct points. Then $f(x) \equiv \rho(x, L)$ defines a quasiuniformly convex function on K.

Proof. With $\varepsilon > 0$ and $\delta < 1$ as in the definition of 'uniform rotundity' for K, let $x, x' \in K$ and $||x - x'|| > \varepsilon$. Choose $y, y' \in L$ such that $y \neq y'$ and

$$\left\| \frac{1}{2}(x+x') - y \right\| < \rho(\frac{1}{2}(x+x'),L) + \frac{\delta}{8}.$$

Let

$$0 < t \ < \min\left\{1, \frac{\delta}{8 \left\|y - y'\right\|}\right\}$$

and let

$$\eta = (1-t)y + ty'.$$

Then $\eta \in L$ by convexity, and since $y \neq \eta$, either $\frac{1}{2}(x+x') \neq y$ or $\frac{1}{2}(x+x') \neq \eta$. In the latter case,

$$\begin{split} \left\| \frac{1}{2} (x + x') - \eta \right\| &\leq \left\| \frac{1}{2} (x + x') - y \right\| + \|y - \eta\| \\ &< \rho(\frac{1}{2} (x + x'), L) + \frac{\delta}{8} + t \, \|y - y'\| \\ &< \rho(\frac{1}{2} (x + x'), L) + \frac{\delta}{4}. \end{split}$$

Thus in either case there exists $p\in L$ such that $p\neq \frac{1}{2}(x+x')$ and

$$0 < \left\| \frac{1}{2}(x + x') - p \right\| < \rho(\frac{1}{2}(x + x'), L) + \frac{\delta}{2}.$$

Then

$$0 \neq \nu := \frac{1}{2}(x + x') - p.$$

Either $\|\nu\| > \frac{3\delta}{4}$ or $\|\nu\| < \delta$. In the latter case $p = \frac{1}{2}(x + x') - \nu \in K$ which is absurd since K and L are disjoint. Hence, $\|\nu\| > \frac{3\delta}{4}$. Now, with

$$z:=\frac{3\delta}{4\|\nu\|}\nu,$$

we have $||z|| < \delta$, so

$$\tfrac{1}{2}(\mathbf{x} + \mathbf{x}') - z \in \mathsf{K}.$$

Hence,

$$\begin{split} \left\| \frac{1}{2} (\mathbf{x} + \mathbf{x}') - \mathbf{p} - \mathbf{z} \right\| &= \left\| \mathbf{v} - \frac{3\delta}{4 \|\mathbf{v}\|} \mathbf{v} \right\| \\ &= \left(1 - \frac{3\delta}{4 \|\mathbf{v}\|} \right) \|\mathbf{v}\| \\ &= \|\mathbf{v}\| - \frac{3\delta}{4} \\ &< \rho(\frac{1}{2} (\mathbf{x} + \mathbf{x}'), \mathbf{L}) + \frac{\delta}{2} - \frac{3\delta}{4} \\ &= \rho(\frac{1}{2} (\mathbf{x} + \mathbf{x}'), \mathbf{L}) - \frac{\delta}{4} \\ &\leqslant \frac{1}{2} (\rho(\mathbf{x}, \mathbf{L}) + \rho(\mathbf{x}', \mathbf{L})) - \frac{\delta}{4}, \end{split}$$

the last step using Lemma 3. Thus

$$f\left(\frac{1}{2}(x+x')-z\right) + \frac{\delta}{4} = \rho\left(\frac{1}{2}(x+x')-z,L\right) + \frac{\delta}{4}$$

$$\leqslant \left\|\frac{1}{2}(x+x')-z-p\right\| + \frac{\delta}{4}$$

$$< \frac{1}{2}(\rho(x,L) + \rho(x',L)) - \frac{\delta}{4} + \frac{\delta}{4}$$

$$= \frac{1}{2}(f(x) + f(x')).$$

To see that in Proposition 9 we cannot replace uniform rotundity by mere convexity, take X to be the Euclidean plane \mathbf{R}^2 , $K = \{(x, y) \in \mathbf{R}^2 : x \leq 0\}$, and $L = \{(x, y) \in \mathbf{R}^2 : x \geq 1\}$; we have

$$\inf_{x\in K}\rho(x,L)=1=\|(0,y)-(1,y)\|$$

for all $y \in \mathbf{R}$, so, in view of Proposition 2, $x \mapsto \rho(x, L)$ is not sufficiently convex on K.

Recall here *Bishop's Lemma* [7, Proposition 3.1.1]:

Let Y be an inhabited, complete, located subset of a metric space X. Then for each $x \in X$ there exists $y \in Y$ such that if $x \neq y$, then $\rho(x, Y) > 0$.

From Proposition 9, Proposition 2, and Bishop's Lemma we obtain:

Theorem 10 Let K be an inhabited, complete, uniformly rotund subset of a normed space X, and L a located convex subset of X that is disjoint from K and contains at least two distinct points. Suppose also that $d \equiv \inf_{x \in K} \rho(x, L)$ exists. Then there exists $\xi \in K$ such that (i) $\rho(\xi, L) = d$ and (ii) $\rho(x, L) > d$ for all $x \in K$ with $x \neq \xi$. If, in addition, L is complete, then there exists $y \in L$ such that if $\xi \neq y$, then d > 0.

Proof. By Proposition 9, $f(x) \equiv \rho(x, L)$ defines a quasiuniformly convex, and hence sufficiently convex, function on K. Since K is complete and d exists, Proposition 2 produces $\xi \in K$ with properties (i) and (ii). If also L is complete, then we complete the proof by invoking Bishop's Lemma.

Lemma 11 Let Y be an inhabited convex subset of a Hilbert space H, and a a point of H such that $d = \rho(a, Y)$ exists. Then there exists $b \in \overline{Y}$ such that ||a - b|| = d. Moreover,

- (i) $\|\mathbf{a} \mathbf{y}\| > \mathbf{d}$ whenever $\mathbf{y} \in \overline{Y}$ and $\mathbf{y} \neq \mathbf{b}$;
- (ii) $\langle a-b, b-y \rangle \ge 0$, and therefore $\langle a-b, a-y \rangle \ge d^2$, for all $y \in Y$.

Proof. This is a well-known result on Hilbert space. For instance Lemma 1 in [2] proves the existence of $b \in \overline{Y}$ such that ||a - b|| = d and (ii) holds. Conclusion (i) follows from (ii) since for all $y \in Y$

$$\|a-y\|^{2} = \|a-b+b-y\|^{2} = \|a-b\|^{2} + \|b-y\|^{2} + 2\langle a-b, b-y\rangle \ge d^{2} + \|b-y\|^{2}.$$

Corollary 12 Let K be an inhabited, closed, uniformly rotund subset of a Hilbert space H, and L a closed, located, convex subset of H that is disjoint from K and contains at least two distinct points. Suppose also that $d \equiv \inf_{x \in K} \rho(x, L)$ exists. Then there exist $x_{\infty} \in K$ and $y_{\infty} \in L$ such that $\|x_{\infty} - y_{\infty}\| = d$. Moreover,

- (i) ||x y|| > d whenever $x \in K$ and $y \in L$ and either $x \neq x_{\infty}$ or $y \neq y_{\infty}$;
- (ii) $\langle x_{\infty} y_{\infty}, y_{\infty} y \rangle \ge 0$, and therefore $\langle x_{\infty} y_{\infty}, x_{\infty} y \rangle \ge d^2$, for all $y \in L$.

Proof. By Theorem 10, there exists $x_{\infty} \in K$ such that $d = \rho(x_{\infty}, L)$. By Lemma 11 there exists $y_{\infty} \in Y$ such that $||x_{\infty} - y_{\infty}|| = \rho(x_{\infty}, L)$ and properties (i) and (ii) hold.

This leads us to a new constructive separation theorem.

Theorem 13 Let K be an inhabited, closed, located, uniformly rotund subset of a Hilbert space H, and L a closed, located, convex subset of H containing at least two distinct points. Suppose that $d \equiv \inf_{x \in K} \rho(x, L)$ exists and is positive, let x_{∞}, y_{∞} be as in Corollary 12, and let $p = x_{\infty} - y_{\infty}$. Then

$$\langle \mathbf{p}, \mathbf{x} - \mathbf{y} \rangle \ge d^2$$
 for all $\mathbf{x} \in K$ and $\mathbf{y} \in L$.

Proof. Construct $x_{\infty} \in K$ and $y_{\infty} \in L$ as in Corollary 12, and let

$$p=x_{\infty}-y_{\infty}.$$

Then, by Corollary 12, for all $y \in Y$ we have

$$\langle \mathbf{p}, \mathbf{x}_{\infty} - \mathbf{y} \rangle = \langle \mathbf{x}_{\infty} - \mathbf{y}_{\infty}, \mathbf{x}_{\infty} - \mathbf{y} \rangle \ge d^2.$$

On the other hand, since K is located Lemma 11 provides the existence of a unique $b \in K$ such that $\rho(y_{\infty}, K) = ||y_{\infty} - b||$. As $\rho(y_{\infty}, K) = d = ||y_{\infty} - x_{\infty}||$ it follows that indeed $b = x_{\infty}$ and thus by Lemma 11 that

$$\langle {\mathrm{y}}_\infty - {\mathrm{x}}_\infty, {\mathrm{x}}_\infty - {\mathrm{x}}
angle \geq 0$$

for all $x \in K$. Hence, for $x \in K$ and $y \in L$,

$$egin{aligned} &\langle \mathbf{p}, \mathbf{x} - \mathbf{y}
angle &= \langle \mathbf{p}, \mathbf{x}_\infty - \mathbf{y}
angle + \langle \mathbf{p}, \mathbf{x} - \mathbf{x}_\infty
angle \ &\geq \mathbf{d}^2 + \langle \mathbf{x}_\infty - \mathbf{y}_\infty, \mathbf{x} - \mathbf{x}_\infty
angle \ &= \mathbf{d}^2 + \langle \mathbf{y}_\infty - \mathbf{x}_\infty, \mathbf{x}_\infty - \mathbf{x}
angle \geq \mathbf{d}^2. \end{aligned}$$

Г		

Corollary 14 Let K be an inhabited, closed, located, uniformly rotund subset of a Hilbert space H, and L a closed, located, convex subset of H containing at least two distinct points. Suppose that $d \equiv \inf_{x \in K} \rho(x, L)$ exists and is positive. Then there exists a normed linear functional u on H with ||u|| = 1, such that $u(x) \ge u(y) + d$ for all $x \in X$ and $y \in Y$. **Proof.** In the notation of Theorem 13, let

$$\mathfrak{u}(\mathbf{x}) = \langle \mathbf{x}, \mathbf{d}^{-1}\mathbf{p} \rangle \quad (\mathbf{x} \in \mathbf{H}).$$

Then u is a bounded linear functional with norm 1. Also, for $x \in X$ and $y \in Y$,

$$\mathfrak{u}(\mathbf{x}-\mathbf{y}) = \mathbf{d}^{-1} \langle \mathbf{p}, \mathbf{x}-\mathbf{y} \rangle \ge \mathbf{d}$$

and therefore $u(x) \ge u(y) + d$.

In trying to apply the foregoing theorems, it is natural to think of the case where the uniformly rotund set K is compact. In that case, if K is nontrivial, x is finite-dimensional.

Proposition 15 A normed space that has a totally bounded and uniformly rotund subset which contains two distinct points is finite-dimensional.

Proof. Let S be a totally bounded, uniformly rotund subset of a normed space X. Assume that S contains two distinct points a, b. There exists $\delta > 0$ such that $\left\|\frac{1}{2}(x+y)+z\right\| \in S$ whenever $x, y \in S$, $\|x-y\| > \frac{1}{2} \|a-b\|$, $z \in X$, and $\|z\| \le \delta$. Since S is totally bounded, there exists r such that $0 < r \le \delta$ and the set $S \cap \overline{B}(\frac{1}{2}(a+b), r)$, which contains $\frac{1}{2}(a+b)$, is totally bounded [7, Theorem 2.2.13]. If $z \in \overline{B}(\frac{1}{2}(a+b), r)$, then $\left\|z - \frac{1}{2}(a+b)\right\| \le \delta$, so

$$z = \frac{1}{2}(a+b) + (z - \frac{1}{2}(a+b)) \in S.$$

Thus $\overline{B}(\frac{1}{2}(a+b), r) = S \cap \overline{B}(\frac{1}{2}(a+b), r)$ and so is a totally bounded ball of positive radius. It follows from [7, Proposition 4.1.13] that X is finite-dimensional. \Box

References

- P. Aczel and M. Rathjen, Notes on Constructive Set Theory, http://www1. maths.leeds.ac.uk/~rathjen/book.pdf.
- [2] J. Berger and G. Svindland, A separating hyperplane theorem, the fundamental theorem of asset pricing, and Markov's principle, Ann. Pure and Applied Logic 167, 1161–1171, 2016.
- [3] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
- [4] E. Bishop and D.S. Bridges, *Constructive Analysis*, Grundlehren der math. Wiss. 279, Springer-Verlag, Heidelberg, 1985.
- [5] D.S. Bridges, The construction of a continuous demand function for uniformly rotund preferences, J. Math. Economics 21, 217–227, 1992.

- [6] D.S. Bridges, Morse set theory as a foundation for constructive mathematics, Theoretical Comp. Sci. 928, 115–135, 2022.
- [7] D.S. Bridges and L.S. Vîţă, *Techniques of Constructive Analysis*, Springer New York, 2006.
- [8] R.L. Constable et al., Implementing Mathematics with the Nuprl Proof Development System, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.
- [9] P. Martin-Löf, *Intuitionistic type theory* (Notes by Giovanni Sambin of a series of lectures given in Padua, June 1980), Bibliopolis, Napoli, 1984.
- [10] G. Sambin and J. Smith (eds), Twenty-five Years of Constructive Type Theory, Oxford Logic Guides 36, The Clarendon Press, Oxford, 1998.
- [11] H. Schwichtenberg, Computational Aspects of Bishop's Constructive Mathematics, in: D. Bridges, H. Ishihara, M. Rathjen, and H. Schwichtenberg (Eds.), *Handbook of Constructive Mathematics* (Encyclopedia of Mathematics and its Applications), 715–748, Cambridge University Press., 2023. doi:10.1017/9781009039888.027
- [12] H. Schwichtenberg and S.S. Wainer, Proofs and Computations. Perspectives in Logic. Association for Symbolic Logic and Cambridge University Press, 2012