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Abstract

We introduce a rigorous framework for stochastic cell transmission models for general traf-

�c networks. The performance of tra�c systems is evaluated based on preference functionals

and acceptable designs. The numerical implementation combines simulation, Gaussian pro-

cess regression, and a stochastic exploration procedure. The approach is illustrated in two

case studies.

1 Introduction

Cell transmission models enable the quanti�cation of the motion of tra�c participants on a

high level of aggregation. This provides computational advantages in comparison to micro-

scopic tra�c models that capture the motion of tra�c participants in great detail. This gain

in computational e�ciency is sometimes disadvantageously associated with lower granularity,

which complicates the representation of complex tra�c modules and interactions of tra�c par-

ticipants. In this paper, we propose a rigorous framework for cell transmission models that

incorporates three important features: a) The cells are identi�ed with the nodes of a graph. We

introduce a precise notation for the directions of the tra�c participants within each cell. This

allows the construction of cell transmission models for general tra�c networks. b) Within each

cell, road users traveling in one direction interact with road users traveling in other directions.

Sending and receiving functions can capture these interactions of tra�c �ow and density with

oncoming tra�c �ows and densities. c) Tra�c volumes and conditions may vary randomly. Our

general framework allows the inclusion of probabilistic phenomena.

The proposed models enable the evaluation of tra�c systems under a wide range of conditions.

They can also be used for tra�c planning by testing the e�ects of changes in design parameters.

Comparisons can be made not only for deterministic systems, but also in the face of randomness
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and risk. We use preference functionals and their level sets for the normative classi�cation and

categorization of transportation systems. This approach is also closely related to the construction

of measures of systemic risk. In concrete applications, we specify random benchmark �ows and

compute the collection of parameters associated with tra�c systems that are weakly preferred.

We call these sets acceptable designs. They accurately combine the descriptive, possibly random

cell transmission model and the normative evaluation framework.

Although less granular than microscopic tra�c models, the extended �exibility compared to

classical cell transmission models and the inclusion of randomness increase the computational

complexity. In particular, stochastic simulation of the system under di�erent conditions for

multiple design parameters is costly. To address this problem, we employ a powerful machine

learning technique, Gaussian Process Regression (GPR). GPR allows an interpolation of system

performance between simulated points while providing at the same time measures of uncertainty.

Our innovation is the adaptive selection of points to re�ne the estimation of the acceptable

designs. For this purpose, we use the GPR estimation of the boundary of this level set and

GPR variance estimates at candidate points from the previous iteration. We also provide error

bounds.

The capabilities of our algorithms in the context of generalized cell transmission models are

illustrated in two case studies. We study two tra�c networks, one with two signalized intersec-

tions and another one with variable capacities of highways and speed limits. Acceptable designs

are identi�ed and interpreted. From an algorithmic point of view, we compare the squared

exponential kernel to Matérn kernels.

Our main contributions are the following:

(i) We provide a rigorous framework for cell transmission models in general tra�c networks.

Tra�c participants traveling in di�erent directions interact with each other locally. Tra�c

volumes and conditions can vary stochastically.

(ii) To classify and categorize tra�c systems, we propose the notion of acceptable design

inspired by preference functionals and systemic risk measures.

(iii) The numerical estimation of acceptable designs combines Monte Carlo simulation, Gaus-

sian process regression, and a stochastic exploration procedure in the parameter space.

The performance of this algorithm is demonstrated through case studies.

1.1 Structure of the Paper

The paper is organized as follows: Section 1.2 reviews the related literature on cell transmission

models, systemic risk measures, and Gaussian process regression. Section 2 presents our general

framework for cell transmission models of tra�c networks. Section 3 describes the objective of

the machine learning estimation problem: sets of acceptable designs. Our algorithm is discussed

in Section 4. It is applied in numerical case studies in Section 5. Questions for further research

are presented in Section 6. The appendix contains proofs and auxiliary material.
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1.2 Literature

We develop a general and rigorous formulation of cell transmission models in a network environ-

ment. Considering general transmission and receiving functions and general directions of travel,

we can consider many related contributions in the literature as special cases. Inspired by the

theory of systemic risk measurements, we introduce as a diagnostic instrument the notion of ac-

ceptable designs of a tra�c system. This constitutes a normative instrument of tra�c planning,

which enables the evaluation and control of tra�c systems. To identify the acceptable designs

of tra�c systems, we develop an active learning method based on Gaussian process regression,

a powerful machine learning technique. In the following, we review the relevant literature and

compare it with our innovations.

Cell Transmission Models. The classical cell transmission model (CTM) was developed in

the seminal work of Daganzo (1994) and Daganzo (1995). It is a deterministic macroscopic

tra�c model that captures the evolution of tra�c �ows and densities in discrete time. Daganzo

(1994) explains how this model can be viewed as a discrete approximation to the LWR model

(Lighthill & Whitham (1955) and Richards (1956)); accordingly, he originally introduces CTM

to study homogeneous tra�c �ows on highways.

Since then, CTM has been revisited countless times in the literature. Important research ques-

tions range from estimating tra�c densities (Munoz et al. (2003)) to establishing variable speed

limits on highways (Hadiuzzaman & Qiu (2013))). The introduction of randomness increases

the informativeness and allows a representation of more complex phenomena. Sumalee et al.

(2011) develop a version with stochastic demand and supply constraints. Jin & Amin (2019)

study highway dynamics under random capacity-reducing incidents modeled by an exogenous

Markov chain.

However, the popularity of CTM is also due to the fact that it can be used to represent urban

tra�c. For example, Long et al. (2008) examines the formation and dissipation of congestion

in urban networks. Other papers discuss tra�c lights and their optimization (e.g., Pohlmann &

Friedrich (2010), Xie et al. (2013), Srivastava, Jin & Lebacque (2015)). We refer to Adacher &

Tiriolo (2018) for a detailed review on CTM, especially for urban tra�c.

Another strand of literature generalizes CTM for di�erent tra�c types. Di�erent tra�c users

with their di�erent driving characteristics can share the available space. Tuerprasert & Aswakul

(2010) and Tiaprasert et al. (2017) partition a cell, Levin & Boyles (2016) add partial densities.

Buses can be introduced as moving bottlenecks that reduce capacity (Liu et al. (2015), Tang

et al. (2022)).

In this paper, we explain how cells can represent di�erent types of roads, including highways,

roundabouts, signalized intersections. Our setup allows for randomness as a general modeling

paradigm. We present a precise formulation of the direction of travel that allows detailed

modeling of the interaction of competing tra�c �ows. Some related conceptional issues are also

discussed by Tampère et al. (2011). We note that con�icting �ows are common in pedestrian

�ow modeling (see, e.g., Flötteröd & Lämmel (2015)); Moustaid & Flötteröd (2021) can be

viewed as a special case of our model. We also brie�y indicate how our model can be generalized

for multiple interacting tra�c types.
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Systemic Risk Measures. The axiomatic theory on the quanti�cation of risk dates back to

the seminal paper of Artzner et al. (1999). Past contributions have focused primarily on the

quanti�cation of �nancial risk: The central construction is based on a notion of acceptability,

i.e., a set of (�nancial) positions with an acceptable risk. A monetary risk measure quanti�es the

risk of a �nancial position in monetary units: It is the minimum amount of cash that must be

added to a position to make it acceptable. We refer to Föllmer & Weber (2015) for an overview.

This construction can be generalized to quantify the risk of a system of interacting entities.

Systemic risk measures as a precise mathematical notion are introduced by Feinstein, Rudlo� &

Weber (2017) and Biagini et al. (2018). The theory has proven useful not only for quantifying

risk in �nancial networks (e.g., Weber & Weske (2017)); Cassidy, Feinstein & Nehorai (2016)

applies it to measuring the risk of power outages in transmission networks. Salomon et al. (2020)

use it to control the resilience of technical systems.

Borrowing from these measures of systemic risk, we introduce the concept of acceptability

to assess the e�ciency of tra�c systems. The results, typically measures of e�ciency such

as tra�c �ow, are normatively categorized into acceptable and unacceptable outcomes. The

set of acceptable designs of a tra�c system then refers to those design parameters (e.g., noise

parameters, tra�c light con�gurations, initial densities) that lead to acceptable outcomes. As

a conceptual di�erence, we recognize that systemic risk measures are introduced for �nancial

systems whose risk decreases with the amount of available capital. There is no such a priori

monotonic dependence of tra�c �ows on underlying system parameters.

Gaussian Process Regression. Mathematically, the acceptable designs of a tra�c system

form a set of real vectors de�ned in terms of a level set of a function. To estimate this set, we

estimate the underlying function. To address the computational cost in the context of stochastic

simulation, we develop an active learning approach.

We apply Gaussian Process Regression (GPR), also called Kriging, as a Bayesian inference

method to estimate a metamodel from isolated noisy data. The method assumes a Gaussian

process as a prior distribution over functions and is updated with observed data to produce an

estimate. The popularity of this method is due to its probabilistic foundation, which also allows

an evaluation of the uncertainty of the estimate. We refer to Rasmussen & Williams (2005) as

a standard reference and Kanagawa et al. (2018) and Swiler et al. (2020) for insightful surveys.

Ankenman, Nelson & Staum (2010) examines GPR as a tool for metamodeling in the context

of simulation. Similarly, Binois, Gramacy & Ludkovski (2018) discusses practical aspects. The

focus is on approximating the entire underlying function rather than just a particular level set.

Most closely related to our active learning framework are Gotovos et al. (2013) and Lyu, Binois

& Ludkovski (2021), which also develop iterative procedures for approximating level sets with

GPR. In contrast to previous works, we construct a random search algorithm to determine where

the function values will be estimated next. This circumvents the need to rely on complicated

optimization methods. In addition, we introduce a general sandwich principle to impose upper

bounds on the approximation error of set estimation algorithms. Error bounds on the estimated

function, as extensively discussed in Srinivas et al. (2012) and Lederer, Umlauft & Hirche (2019),

result in bounds on the approximation error of level sets.
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2 Cell Transmission Models for Tra�c Networks
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Figure 1: Highway Network.

2.1 A Motivating Example

Cell transmission models capture the dynamic evolution of tra�c densities and �ows in tra�c

networks. Figure 1 shows a stylized network with 28 cells or nodes. The nodes can be of di�erent

types, for example, the red and green nodes in Figure 1 could be sections of highways or roads,

and the yellow nodes could be intersections or roundabouts. The type of each node determines

how tra�c participants interact within the node. The total tra�c volume in the system may

vary (possibly randomly) due to tra�c participants entering or leaving the system. For example,

the green areas in Figure 1 could be sources and sinks of the tra�c network.

The model determines how much tra�c is transmitted from one node to the next. In gener-

alized cell transmission models on graphs, tra�c in the nodes may move in various directions.

This is especially true for nodes that are connected to multiple other nodes, such as nodes 1, 12,

and 23. It is thus important to indicate di�erent directions or routes by notation when modeling

tra�c dynamics. A rigorous framework is described in the next sections.

2.2 General Framework

To model general tra�c networks, we consider a set of vertices or nodes V denoting all existing

tra�c spaces; these are connected by a collection of edges E ⊆ V × V . The corresponding

graph G = (V,E) is the tra�c network under consideration. Vehicles, bicycles, and pedestrians

move through the graph, and tra�c �ows interact with each other at the nodes. Tra�c �ows

and corresponding tra�c densities in a node v are distinguished by the preceding location u ∈
I (v) and the subsequent destination w ∈ O(v); here, the sets I (v) = {v′ : (v′, v) ∈ E} and

O(v) = {v′ : (v, v′) ∈ E} collect the nodes which can reach v and which can be reached from v,

respectively.
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Tra�c Dynamics. Tra�c is modeled in discrete time, enumerated as t = 0, 1, 2, . . . . For

simplicity, we consider only one type of tra�c participants, although the formalism can easily

be extended to multiple types. For each node v and each route (u, v, w) through v with u ∈ I (v),

w ∈ O(v), ρ(u,v,w)(t) is the tra�c density of agents at time t traveling through v along (u, v, w).

The �ow into v of tra�c participants traveling along (u, v, w) through v during the time interval

(t, t+1) is denoted by qin(u,v,w)(t+1); the corresponding �ow out of v is qout(u,v,w)(t+1). We further

assume that sources and sinks exist in the system, and denote by qnet(u,v,w)(t + 1) the (possibly

random) net �ow of tra�c participants entering or leaving the system in v on the route (u, v, w)

during the time interval (t, t + 1). Nodes represent tra�c spaces (such as roads, intersections,

roundabouts, or shared spaces) and can be of di�erent sizes, labeled lv for v ∈ V . Densities are

updated iteratively for each v ∈ V , u ∈ I (v) and w ∈ O(v) at each point in time t+ 1:

ρ(u,v,w)(t+ 1) = ρ(u,v,w)(t) +
1

lv

(
qin(u,v,w)(t+ 1)− qout(u,v,w)(t+ 1) + qnet(u,v,w)(t+ 1)

)
(2.1)

To model a speci�c tra�c network, its initial conditions and the dynamic behavior of sources

and sinks must be speci�ed exogenously. Tra�c �ows are constrained on routes (u, v, w) by

the characteristics of the corresponding tra�c space, the density of agents on that route, and

other tra�c participants traveling through v; this is modeled by general supply and demand

constraints. In addition, we assume that turning fractions are conserved, cf. Tampère et al.

(2011); this captures the principle of �rst-in-�rst-out for incoming tra�c. The solution of the

tra�c model according to (2.1) is de�ned as the solution of a global optimization problem that

maximizes tra�c �ow. This solution captures a perfect cooperation among tra�c participants

to achieve the objective and provides a benchmark solution; inspired by Tampère et al. (2011),

we introduce interaction rules in Section 2.4 that realistically capture non-cooperative behavior.

Adequate tra�c dynamics is the solution of an optimization problem under these additional

constraints.1

Sending and Receiving Functions. We begin by discussing general supply and demand

constraints. Tra�c densities constrain both in�ow and out�ow; this includes both the density

of tra�c on a given route (u, v, w) and the counter-densities of routes that pass through tra�c

space v. The demand constraint is formalized by the sending function S, which captures existing

tra�c participants that would leave a tra�c area in the next step if they could continue without

any constraints in the subsequent modules (�demand for space by tra�c participants�, ��ow that

may be sent�). The supply constraint is formalized by the receiving function R and captures

the maximum amount of tra�c that can be absorbed from preceding tra�c modules (�supply

of space for tra�c participants�, ��ow that may be received�). The sending function S and the

1The cooperative benchmark does not guarantee the greatest �ow over a longer time horizon because myopic
optimization focuses on a single time period. When focusing on a longer time horizon, constrained optimization
solutions may be superior in some cases, although they are suboptimal for each time window given the same
state at the beginning of that period.
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receiving function R are of the following form:2

S(u,v,w) :

{
RI (v)×O(v)

+ −→ R+

(ρ(u′,v,w′))u′∈I (v),w′∈O(v) 7→ q(u,v,w)

R(u,v,w) :

{
RI (v)×O(v)

+ −→ R+

(ρ(u′,v,w′))u′∈I (v),w′∈O(v) 7→ q(u,v,w)

They bound in�ow and out�ow, i.e.,

qin(u,v,w)(t+ 1) ≤ R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
,

qout(u,v,w)(t+ 1) ≤ S(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
.

For the sending function that bounds the out�ow, we will always require that

S(u,v,w)(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v) ≤ ρ(u,v,w)(t), (2.2)

i.e., the out�ow during the time interval (t, t + 1) cannot be greater than the occupation of

(u, v, w) with tra�c participants.

Sending and receiving functions do not have to be constant in time, but can vary periodically,

randomly or depending on circumstances. This can be modeled by a dependency on additional

state variables besides the dependency on the tra�c densities of the agents on the paths through

a node.

Cooperative Driving Benchmark Model. To be able to specify the cooperative driving

benchmark model, we denote the fraction of tra�c participants on (u, v, w) turning to y ∈ O(w)

by f(u,v,w)→y(t+1) ≥ 0 with
∑

y∈O(w) f(u,v,w)→y(t+1) = 1. This leads to the following identity:

qin(u,v,w)(t+ 1) =
∑

x∈I (u)

f(x,u,v)→w(t+ 1) · qout(x,u,v)(t+ 1) (2.3)

The �ows qout(u,v,w)(t+1) are the solutions of the following myopic global optimization problem:

argmax
∑
v∈V

∑
u∈I (v), w∈O(v)

qout(u,v,w)(t+ 1) (2.4)

s.t. for all v ∈ V , u ∈ I (v), w ∈ O(v):

� qout(u,v,w)(t+ 1) ≥ 0,

� qin(u,v,w)(t+ 1) =
∑

x∈I (u) f(x,u,v)→w(t+ 1) · qout(x,u,v)(t+ 1),

� qin(u,v,w)(t+ 1) ≤ R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
,

� qout(u,v,w)(t+ 1) ≤ S(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
.

2Another function with the same domain and range is the fundamental diagram that characterizes the stationary
or long-run tra�c �ow on a given route (u, v, w), if both demand from preceding tra�c modules and supply
of subsequent modules are unrestricted. It can be computed as the minimum of sending function S(u,v,w) and
receiving function R(u,v,w).
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Remark 2.1. The global problem can be split into decoupled local problems. Since∑
v∈V

∑
u∈I (v), w∈O(v)

qout(u,v,w)(t+ 1) =
∑
v∈V

∑
u∈I (v)

∑
x∈I (u)

qout(x,u,v)(t+ 1),

we can instead solve the decoupled problems

argmax
∑

x∈I (u)

qout(x,u,v)(t+ 1) (2.5)

for all v ∈ V , u ∈ I (v) under the corresponding constraints.3

2.3 Examples of Tra�c Nodes

Our general framework allows us to capture various tra�c modules, including the cell trans-

mission model of Daganzo (1994), roads, multidirectional pedestrian areas as in Moustaid &

Flötteröd (2021), unsignalized and signalized intersections, roundabouts, and many other types

of tra�c spaces. The model can also be extended to multiple types of tra�c participants by

introducing additional constraints that link these types together.

To describe a few motivating examples, consider a node labeled # and assume for simplicity

that I (#) = O(#) are adjacent nodes in a plane. Its elements are enumerated counterclockwise

by 0, 1, . . . , n− 1 with n := card (I (#)). A convenient approach will be to identify I (#) with

the additive group Zn, i.e., to equip 0, 1, . . . , n− 1 with the operation + modulo n.

Highways. Lanes of highways are separated, thus interaction between di�erent directions is

not present. Setting I (#) = Z2, a simple linear model for sending and receiving functions is,

with u ∈ Z2,

S(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

{
smax
# , aρ(u,#,u+1)

}
,

R(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax
#

2
− cρ(u,#,u+1)

)
, 0

)
,

where ρmax
# > 0 is the maximum density, smax

# > 0 is the maximum �ow, 0 < a ≤ 1 is the

free-�ow speed, 0 < b ≤ 1 is the congestion wave speed, and c > 0 is an interaction parameter.

Bidirectional Linear Interfaces. A generalization of the unidirectional situation is adequate

for pedestrians with bidirectional interacting �ows. We introduce an additional interaction

parameter d > 0 that re�ects the impact of tra�c travelling in opposite direction and obtain a

simple linear model for sending and receiving functions; their speci�cation is, with u ∈ Z2,

S(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

{
smax
# , aρ(u,#,u+1)

}
,

R(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax
# − cρ(u,#,u+1) − dρ(u+1,#,u)

)
, 0

)
.

3The constraints require that for all x ∈ I (u), w ∈ O(v): qout(x,u,v)(t + 1) ≥ 0, qin(u,v,w)(t + 1) =∑
x∈I (u) f(x,u,v)→w(t+1) · qout(x,u,v)(t+1), qin(u,v,w)(t+1) ≤ R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
, qout(x,u,v)(t+

1) ≤ S(x,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
.
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The models may, of course, include nonlinear relationships if the data or expert knowledge

suggest other functional forms. An example can be found in Moustaid & Flötteröd (2021), where

the sending function is nonlinear if both the density and the counter-density are subcritical.

Their model can be easily transferred to our notation.

Pedestrian Square. Bidirectional linear interfaces can be generalized canonically to multiple

directions. A fully symmetric geometry with n entries/exits and can be captured by a node #

with I (#) = Zn. Assuming pedestrians do not return to the same entry, constant turning rates

f(x,u,#)→w(t) ≡ 1/(n− 1) for all u ∈ Zn, w ∈ Zn \ {u} are a simple choice. For u ̸= w, a simple

model is

S(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

(
smax
# , aρ(u,#,w)

)
,

R(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax
# − cρ(u,#,w) − d

∑
u′∈I (#)\{u},
w′∈O(#)\{w}

ρ(u′,#,w′)

)
, 0

)
.

Roundabouts. In roundabouts the interaction of the various participants is also determined

by the overlap of their paths. This leads to somewhat more complicated sending and receiving

functions, but the main ideas are similar to those outlined above. We provide a description of

the details in Appendix A, including a bidirectional tra�c circle for pedestrians and an extension

of the framework to tra�c models with multiple populations.

Intersections. Just as with roundabouts, complex interactions of tra�c participants can also

be modeled at intersections. As examples, we consider two cases: a highly simpli�ed model of

an unsignalized junction and a rather complex model of an intersection with a tra�c light.

A possible simpli�ed model of an intersection adjusts the pedestrian space. Since cars move

slower on crowded intersections, we include an exponential damping factor between 0 and 1 in

the de�nition of the sending function that depends on a parameter ζ > 0. For u ∈ I (v) and

u ̸= w ∈ O(v) we set

S(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

smax
# , aρ(u,#,w) exp

−ζ ·
∑

u′∈I (#),w′∈O(#)

ρ(u′,#,w′)

 ,

R(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

b
ρmax

# − c
∑

u′∈I (#),w′∈O(#)

ρ(u′,#,w′)

 , 0

 .

At the other end of the spectrum are models incorporating more details that allow cell trans-

mission models (albeit still much simpler than microscopic models) to reproduce complex inter-

action patterns. As an example, consider a signalized intersection with I (#) = O(#) = Z4.

Consider u ∈ I (#) and right-hand tra�c. The path (u, v, u + 1) corresponds to a right turn,

while the paths (u, v, u+2) and (u, v, u+3) represent going straight and a left turn, respectively.

As additional state variables, we consider for each path the current signal (state 0 � red, or state

1 � green) and the time it has been in this state. To capture the tra�c lights, we assume that

both the sending functions and receiving functions depend on these states. More speci�cally,

LA(u,#,u+i), i = 1, 2, 3, adjusts the free-�ows speed of tra�c. In signal state LS(u,#,w) = 0, it is

set to 0, but in state LS(u,#,w) = 1 the adjustment LA(u,#,u+i) depends on the time the signal

has been in this state. The tra�c light does not immediately show green in state 0 but with a
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delay, so that LA(u,#,u+i) is initially 0 and increases with time due to the acceleration of tra�c

until the maximal free-�ow speed is reached. When turning right and driving straight ahead,

the adjusted sending functions are

S(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

, LA(u,#,u+1)

)
= min

{
smax
# , LA(u,#,u+1)aρ(u,#,u+1)

}
,

S(u,#,u+2)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

, LA(u,#,u+2)

)
= min

{
smax
# , LA(u,#,u+2)aρ(u,#,u+2)

}
.

When turning left, the sending function may be decreased due to oncoming tra�c. This can be

modeled by an exponential term for a parameter ζ > 0, for example:

S(u,#,u+3)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(v)

, LA(u,#,u+3)

)
=

min

{
smax
# , LA(u,#,u+3)aρ(u,#,u+3) · exp

(
− ζ ·

(
ρ(u+2,#,u) + ρ(u+2,#,u+3)

))}

The tra�c node # of the signalized intersection also includes the areas in front of the tra�c

lights. Their capacity is limited by ρmax
u,# , and this is re�ected by the receiving functions:

R(u,v,w)

((
ρ(u′,v,w′)

)
u′∈I (v),w′∈O(v)

)
= max

b
ρmax

u,# −
∑

w′∈O(#)

ρ(u,#,w′)

 , 0

 .

2.4 Interaction Rules

The global optimization problem (2.4) captures perfect cooperation to achieve maximum (albeit

myopic) tra�c �ow in the tra�c system. This is unrealistic for models of real tra�c, since

individual participants optimize only their own utility, which may con�ict with the goals of

others. As explained in Tampère et al. (2011), further constraints � interaction rules � can

mimic the local behavior of agents. We explicitly specify three formal approaches.

Demand Proportional Flows. Sending functions model the demand of road users for move-

ment. An interaction rule could specify that realized �ows are proportional to demand. To be

more speci�c, we focus on the decoupled problems (2.5) and assume that there exists a constant

λ(u,v)(t+ 1) ∈ [0, 1], independent of x, such that

qout(x,u,v)(t+ 1) = λ(u,v)(t+ 1)S(x,u,v),k
(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
(2.6)

Maximizing �ow in (2.5) is now considerably simpli�ed and equivalent to solving for all v ∈ V

and u ∈ I (v) the problems argmaxλ(u,v)∈[0,1] λ(u,v) under the constraints given in Remark 2.1.

These problems possess the explicit solutions

λ(u,v)(t+ 1) = min

{
1, min

w∈O(v)

{
R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)∑
x∈I (u) f(x,u,v)→w(t+ 1) · S(x,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)}} ,
yielding the �ows

qout(x,u,v)(t+ 1) =

min

{
S(x,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
, min
w∈O(v)

{
R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)∑
x∈I (u) f(x,u,v)→w(t+ 1)

}}
.
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Capacity Proportional Flows. Instead of assuming that realized �ows are proportional to

demand for the same factor, di�erent directions could have di�erent capacities that determine

the proportionality factors. Letting
∑

x∈I (u) d(x,u,v) = 1 with d(x,u,v) ≥ 0, x ∈ I (u), one may

assume that there exists a constant λ(u,v)(t+ 1) ∈ [0, 1], independent of x, such that

qout(x,u,v)(t+ 1) = min
(
λ(u,v)d(x,u,v), 1

)
S(x,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
(2.7)

The factor min
(
λ(u,v)d(x,u,v), 1

)
ensures that realized �ows cannot become larger than the send-

ing �ows. As in the case of demand proportional �ows, this leads again to several one-dimensional

optimization problems that can be easily solved explicitly:

λ(u,v)(t+ 1) = min
w∈O(v)

{
inf

{
λ ≥ 0:

∑
x∈I (u)

f(x,u,v)(t+ 1)min
(
λd(x,u,v), 1

)
·

S(x,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
= R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)}}
.

The interior minimization is simply the solution of an equation in the single variable λ. The

right hand side is continuous and increasing in λ. Due to its piecewise linearity, this problem

can be solved by a �nite number of iterations.

Priority Rules. Priority rules vary from country to country. A common example is that on an

intersection tra�c from the right often has priority. This can be implemented as an interaction

rule in our model. Again, for v ∈ V and u ∈ I (v), as in problem (2.5), we consider the decoupled

problems of local optimization of the �ow over the next time period. To capture priority rules, we

assume that based on the current tra�c state, a �xed enumeration of I (u) = {xu,1, . . . , xu,Iu}
is chosen. This order of incoming nodes is �xed for a certain period of time during which local

tra�c �ows are computed hierarchically. Tra�c originating from the nodes listed before the

others has priority. The duration of the regime must be chosen according to the real situation

being modeled and the real time to which each time period in the model corresponds. Formally,

we sequentially solve for i = 1, . . . , Iu the problems argmax qout(xu,i,u,v)
(t+1) for the corresponding

constraints4 and obtain the solution

qout(xu,1,u,v)
(t+ 1) =min

(
S(xu,1,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
,
R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
f(xu,1,u,v)→w(t+ 1)

)
,

qout(xu,i+1,u,v)
(t+ 1) =min

(
S(xu,i+1,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
,

R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
−
∑i

j=1 f(xu,j ,u,v)→w(t+ 1) · qout(xu,j ,u,v)
(t+ 1)

f(xu,i+1,u,v)→w(t+ 1)

)
,

for all i = 1, . . . , Iu.

4The constraints are qout(xu,i,u,v)
(t + 1) ≥ 0, qin(u,v,w)(t + 1) =

∑i
j=1 f(xu,j ,u,v)→w(t + 1) · qout(xu,j ,u,v)

(t +

1), qin(u,v,w)(t + 1) ≤ R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
for all w ∈ O(v) and qout(xu,i,u,v)

(t + 1) ≤
S(xu,i,u,v)

(
(ρ(x′,u,v′)(t))x′∈I (u),v′∈O(u)

)
.
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3 Acceptable Con�gurations and Designs

3.1 The Question

We will be interested in evaluating the performance of tra�c systems under various conditions.

Speci�cally, the in�uence of measures to regulate tra�c should be understood. To this end,

we consider a collection of cell transmission models enumerated by a vector k ∈ D ⊆ Rr for

some dimension r ∈ N. The set D is assumed to be bounded. The components of k specify the

characteristics of a tra�c system, such as total tra�c volume, tra�c control parameters, the

magnitude of random variations of various variables, and weather conditions. For �xed k ∈ D,
the (possibly random) time evolution of the corresponding cell transmission model is described

following the approach from Section 2. We will call k a design parameter. For each design

parameter k ∈ D, the tra�c system can be simulated and the corresponding random variables

of interest can be calculated. We assume that we wish to evaluate a random variable Qk and

compare the results across k ∈ D. The random variable Qk could model the total network tra�c

�ow or tra�c �ow per tra�c volume over a given time horizon, for example.

3.2 Preference Functionals and Acceptable Designs

By X we denote a normed space of random variables such as Lp, p ∈ [1,∞], and assume that

Qk ∈ X , k ∈ D. We evaluate the performance of the tra�c system by a preference functional

U : X → R. Typically, U is increasing on X , i.e., if Q ≤ Q′ almost surely, then U(Q) ≤ U(Q′).

A special case is expected utility with U(Q) = E(u(Q)) for an increasing function u : R → R.
In the case studies in Section 5, we will study

(i) Expectation: u(x) = x,

(ii) Polynomial Utility: u(x) = −|x− cp|α1{x ≤ cp}, cp ∈ R, α ≥ 1,

(iii) Expectile Utility: u(x) = α(x − ce)+ − (1 − α)(x − ce)−, ce ∈ R, α ≤ 1/2 where

x+ = max(x, 0) and x− = max(−x, 0),

(iv) Square Root Utility: u(x) =
√
x.

For the practical evaluation of all tra�c systems enumerated by design parameters k ∈ D,
categorization by performance is a convenient methodology. This is related to the level sets of

the utility functionals. For a utility functional U and a �xed level γ ∈ R, the set of acceptable
designs is

D = DU,γ = {k ∈ D : U(Qk) ≥ γ} .

This characterizes the tra�c systems with utility of at least γ. In applications, the level γ is

often chosen as the utility of a benchmark distribution, i.e., γ := U(Q) for a random variable Q

with the benchmark distribution.

The acceptable designs are closely related to systemic risk measures as introduced in Fein-

stein, Rudlo� & Weber (2017). In the special case that U and k 7→ Qk are increasing and k

parametrizes the design parameters in terms of incremental monetary costs, the systemic risk
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measure

R((Qm)m∈Rr ; k) = {m ∈ D : U(Qk+m) ≥ γ} = {m ∈ D : k +m ∈ R} = R− k

is the collection of vectors of additional investments required for the various features of the tra�c

system to achieve the acceptable design.

4 Learning the Acceptable Design

We are interested in characterizing acceptable designs D = {k ∈ D : E(u(Qk)) ≥ γ} of tra�c

systems. The challenge is that Qk can only be simulated for �nitely many k ∈ D and needs to

be interpolated in between these points. The selection of points for the simulation is also an

important issue. In this section, we propose a machine learning algorithm for the accelerated

estimation of this set.

We approach the problem by approximating the function5

µ : D → R, k 7→ E(u(Qk)),

based on simulated data (k, µ̂k)k∈D.
6 The simulated data are generated by Monte Carlo sim-

ulation of Qk for selected points k ∈ D. We use an iterative learning algorithm that succes-

sively selects �nite sets Di of points, i = 1, 2, . . . . These sets form an increasing sequence

D0 ⊆ D1 ⊆ D2 ⊆ . . . , and new points Di \ Di−1 are strategically selected. The corresponding

values µ(k) at k ∈ Di \ Di−1 are estimated with increasing accuracy. To extend the (k, µ̂k)k∈Di

to the entire design space D, we use Gaussian process regression (GPR), a Bayesian inference

method. The corresponding estimator of µ is denoted by mi : D → R. A key feature of GPR is

that it not only produces an estimator of µ, but also captures the corresponding uncertainty.

The acceptable designs D are estimated by the plug-in estimators D̂i = {k ∈ D : mi(k) ≥ γ},
i ∈ N. Gaussian process regression has been used previously for estimating level sets (Lyu,

Binois & Ludkovski (2021)). The main innovation of this section is to develop a framework for

active learning using sequential statistics in conjunction with GPR. For this purpose, we use a

heteroscedastic version of Gaussian process regression.

4.1 Monte Carlo Estimation of Function Values

We �rst describe the Monte Carlo estimation of the simulated data, i.e., the estimation of the

function value µ(k) = E(u(Qk)) given a �xed design parameter k ∈ D in a �xed iteration i ∈ N.
Denote by (τ i)2 > 0 a selected target variance of estimates (k, µ̂k)k∈Di . Increasing precision is

obtained by letting τ i be decreasing for i ≥ 1; however, τ0 is associated to the initialization of

the algorithms and therefore typically chosen smaller than τ1. We combine a heuristic from the

central limit theorem with sequential statistics to determine a stopping criterion.

If Q̂1
k, Q̂

2
k, . . . is a sequence of i.i.d. samples of Qk, the central limit theorem implies that, for

5To control the approximation error, we assume that D is bounded. This implies that D ⊆ D is bounded.
6We use the index notation for the data µ̂k at isolated points k and retain the notation µ(·) when referring to
a function de�ned on D.
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large n ∈ N, the distribution of the sample mean µ̂nk = 1
n

∑n
j=1 u(Q̂

j
k) is roughly N

(
µ(k),

(σ̂n
k )

2

n

)
where the correct variance is replaced by the sample variance (σ̂nk )

2 of our estimates of expected

utility.

We stop sampling when the sample noise (σ̂nk )
2/n falls below the desired target noise (τ i)2.

Additionally, we impose a minimal number of simulations nmin and a maximal number of simula-

tions nmax ≫ nmin so that a known upper bound on computational resources can be guaranteed

� but this does not have to be required. To be precise, we end our simulations of Qk when

n = min

{
min

{
nmin ≤ n̄ :

(σ̂n̄k )
2

n̄
≤ (τ i)2

}
, nmax

}
.

Finally, we set µ̂k := µ̂nk and (with a slight abuse of notation) τ2k :=
(σ̂n

k )
2

n .

4.2 Gaussian Process Regression

We give a brief overview of Gaussian process regression7, adapted to our framework. A Gaussian

process de�nes a probability law over functions from D to R such that the �nite-dimensional

marginal distributions are normal. The distribution is fully characterized by its mean func-

tion m : D → R and covariance function (also called kernel) c : D × D → [0,∞). The cor-

responding law or process is denoted by GP(m, c). For any �nite set8 Di ⊆ D, we know

that M(Di) ∼ N
(
m(Di),Σ(Di,Di)

)
with M(Di) = (M(l))l∈Di , m(Di) = (m(l))l∈Di , and

Σ(Di,Di) = (c(l, l′))l,l′∈Di . The kernel c is also associated to properties of the process such

as the existence of regular versions.

Gaussian process regression is a probabilistic procedure for inference on an unknown function

from possibly noisy data on the values of the function at some points. GPR is a Bayesian

approach, i.e., the function is assumed to be an unknown sample from a prior distribution. The

prior is taken to be the law of a Gaussian process. The posterior distribution is then calculated

based on the data.

There are numerous approaches for choosing the prior. In this paper, we will use the standard

choice m ≡ 0 as the prior mean and consider two commonly used covariance functions9, namely

the squared exponential function and the Matérn kernel. Both are de�ned in terms of hyperpa-

rameters σ2c > 0 (referred to as the signal variance) and l > 0 (characteristic length scale). The

squared exponential function is given by

cSE(k, k
′) = σ2c · exp

(
−∥k − k′∥2

2l2

)
, k, k′ ∈ D,

and, for ν > 0, the Matérn kernel is de�ned as

cM(k, k′; ν) = σ2c ·
21−ν

Γ(ν)

(√
2ν∥k − k′∥

l

)ν

Kν

(√
2ν∥k − k′∥

l

)
, k, k′ ∈ D,

with Kν being a modi�ed Bessel function. The squared exponential function has mean square

7We refer to Rasmussen & Williams (2005) as a standard reference for more details
8Note that we retain the index i even though it is not technically required for this section.
9Rasmussen & Williams (2005) o�er an extensive discussion on covariance functions.
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derivatives, yielding smooth behavior of the sample paths. The smoothness properties of the

Matérn kernel are controlled by ν: Small choices lead to rougher sample paths, while, in the limit

ν → ∞, the Matérn kernel equals the squared exponential function and can, thus, be understood

as a generalization. For more details, we refer to Rasmussen & Williams (2005). In our case

studies, we will consider the common choice ν = 3/2.10 The Matérn kernel o�ers advantages

when higher curvature is required at some points to reduce the amplitude of oscillations in the

approximation.

To estimate the unknown function from data, the following Bayesian approach will be applied:

The unknown function µ is interpreted as a realization of a Gaussian processM ∼ GP(m, c) with

the given prior distribution. For any �nite set D∗ ⊆ D\Di,M evaluated in (Di,D∗) follows a joint

normal distribution. This still holds true, if we introduce independent noise εk ∼ N (µ(k), τ2k )

with τk ≥ 0 and set M̂k =M(k) + εk, k ∈ Di. The joint distribution with noise is[
M̂(Di)

M(D∗)

]
∼ N

([
m(Di)

m(D∗)

]
,

[
Σ(Di,Di) + diag

(
τ21 , . . . , τ

2
|Di|

)
Σ(Di,D∗)

Σ(D∗,Di) Σ(D∗,D∗)

])
(4.1)

with M̂(Di) = (M̂l)l∈Di = (M(l) + εl)l∈Di , M(D∗) = (M(l))l∈D∗ and Σ(Di,Di) = (c(l, l′))l,l′∈Di ,

Σ(Di,D∗) = (c(l, l′))l∈Di,l′∈D∗ , Σ(D∗,Di) = Σ(Di,D∗)
⊤, Σ(D∗,D∗) = (c(l, l′))l,l′∈D∗ .

We assume that noisy observations are obtained on Di. Then a Bayesian update for the

Gaussian process is computed. A Bayesian estimator of µ is given by the posterior mean function,

and its uncertainty can be captured by the posterior variance. The posterior distribution, i.e.,

the distribution of (M | M̂(Di) = µ̂(Di)), is characterized by the following theorem.

Theorem 4.1 (Gaussian Process Regression). Suppose that the Gaussian process M ∼
GP(m, c) has a mean function m : D → R and a covariance function c : D × D → [0,∞). We

assume that M̂k = M(k) + εk, k ∈ Di, where the random variables εk ∼ N (0, τ2k ), k ∈ Di, are

jointly independent and also independent of M . For given noisy observations µ̂(Di) of M̂ on Di,

the conditional law of the process is (M | M̂(Di) = µ̂(Di)) ∼ GP(mi, ci) where

mi(k) = m(k) + Σ(Di, k)⊤
(
Σ(Di,Di) + diag

(
τ21 , . . . , τ

2
|Di|

))−1
(µ̂(Di)−m(Di)), k ∈ D,

ci(k, k′) = c(k, k′)− Σ(Di, k)⊤
(
Σ(Di,Di) + diag

(
τ21 , . . . , τ

2
|Di|

))−1
Σ(Di, k′), k, k′ ∈ D.

with µ̂(Di) = (µ̂l)l∈Di , m(Di) = (m(l))l∈Di , Σ(Di, k) = (c(l, k))l∈Di , and Σ(Di,Di) = (c(l, l′))l,l′∈Di .

The standard deviations are given by σi(k) =
√
ci(k, k).

Proof. See, for example, Goldberg, Williams & Bishop (1997).

The previous theorem requires that the hyperparameters are determined in advance. The

prior distribution of the Gaussian distribution and the sampling distribution of the noisy obser-

vation specify the distribution of the observed data given the hyperparameters. To select the

10For ν = 3/2, the Matérn kernel simpli�es into cM(k, k′; 3/2) =
(
1 +

√
3∥k−k′∥

l

)
exp

(
−

√
3∥k−k′∥

l

)
.
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hyperparameters θ, we maximize the marginal likelihood11 of the observed data µ̂(Di) using

M̂(Di) | θ ∼ N
(
m(Di),Σ(Di,Di) + diag

(
τ21 , . . . , τ

2
|Di|

))
,

cf. equation (4.1).

4.3 Active Learning Framework

We propose an algorithm that combines GPR and the successive acquisition of new sets of

points D0 ⊆ D1 ⊆ D2 ⊆ . . . . The goal is to approximate the set of acceptable designs D.
The general structure is described in Algorithm 1, which we will discuss in more detail in the

following subsections. We would like to emphasize that each part of this algorithm is related to

active learning approaches with stochastic kriging that have been used before (see, for example.

Binois, Gramacy & Ludkovski (2018), Lyu, Binois & Ludkovski (2021), and Gotovos et al.

(2013)); however, as far as we are aware, our particular combination of stochastic search and

GPR is novel. Our estimation procedure consists of two major steps:

� Phase 1: Initialize. First, we create an initial set of points D0 and estimate values µ̂k

with a target noise (τ0)2 for each k ∈ D0. The hyperparameters of the GPR are estimated

by maximizing the marginal likelihood.12 We then compute our �rst GPR13 estimate

m0 : D → R and σ0 : D → [0,∞) according to Theorem 4.1.

� Phase 2: Loop. Second, we repeat an active learning procedure to improve our GPR

estimate. We use an acquisition function to randomly construct Di \Di−1. Function values

at the new arguments are estimated14 and used to improve the estimates of the posterior

mean and variance of GPR (see again Algorithm 5).

The algorithm either terminates after a maximum number of iterations, or an upper bound

for the approximation error can be speci�ed to control the quality of the approximation.15

The set estimate D̂i is a function of the point estimate of the mean mi. Additionally, the

measure of uncertainty σi will be used to construct Di \Di−1, i.e., selecting points to sample. It

also provides information on the approximation errors associated with this procedure.

Selecting Points to Sample. The goal of selecting new points Di \Di−1 after iteration i− 1

is to improve the estimate of the superlevel set D = {k ∈ D : E(u(Qk)) ≥ γ}. To examine

D, we �rst randomly select new points. Sampled points k ∈ D will only be used for further

improvements in step i in the GPR, if for some constant c1 > 1 the inequality c1 · τ i < σi−1(k)

11Maximizing the marginal likelihood is also referred to as empirical Bayes, evidence approximation, or type-II
maximum likelihood (cf. Rasmussen & Williams (2005) or Schulz, Speekenbrink & Krause (2018)). This is
a non-convex problem and typical methods may converge to local maxima. However, numerical experiments
indicate that prediction based on the squared exponential function is robust with respect to the estimation
of its hyperparameters (see Chen & Wang (2018)). Alternatively, one could place a hyperprior on θ at the
expense of tractability. We refer to Lalchand & Rasmussen (2020) for more details.

12The detailed procedure is described in Algorithm 4.
13The details are provided in Algorithm 5.
14The GPR from each iteration yields a prior N (mi−1(k), (σi−1(k))2) which could be exploited in the subsequent

iteration for sampling. This idea of Bayesian sampling is brie�y described in Appendix B.1.
15Such an upper bound is discussed in more detail in Section 4.4.
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Algorithm 1 Active Learning Framework.

Phase 1: Initialize

(i) Sample an initial data set D0 of ninitial points uniformly in D

(ii) Estimate values at points k ∈ D0 such that the variance is bounded by the target
variance (τ0)2

(iii) Estimate the hyperparameters for GPR (which will be �xed hereafter)

(iv) Compute the posterior mean and variances according to Theorem 4.1

Phase 2: Loop

(i) Build the acquisition function from the last posterior estimates. The acquisition en-
codes tradeo�s between the distance from the estimated boundary and the posterior
uncertainty, when selecting additional points

(ii) Sample nloop new points according to the acquisition function via rejection sampling.
This set is Di \ Di−1

(iii) Simulate values at points k ∈ Di \Di−1 such that the variance is bounded by the target
variance (τ i)2

(iv) Use all simulated values (i.e., the simulations for Di) to compute the new posterior mean
and variance by Bayesian updating of the original prior according to Theorem 4.1

(v) Determine whether to stop

holds, i.e., if Monte Carlo sampling can substantially decrease the uncertainty at that point. We

use c1 = 5 in our implementations of the algorithm.

Moreover, points that are close to the previously estimated boundary mi−1(k) = γ are pre-

ferred. This can be encoded by an acquisition function Ii : D → [0,∞) that seeks to capture

the informative potential of estimating E(u(Qk)) at a new design parameter k ∈ D. We use

Ii(k) : = Φ
(
−ci2 · |mi−1(k)− γ|

)
, i = 1, 2, . . . , where Φ is the standard normal CDF and ci2 > 0

is an increasing sequence.16 Up to its normalizing constant, we treat Ii as a density in order to

simulate new points in D.
In order to sample from this acquisition function, we employ rejection sampling (see, e.g.,

Glasserman (2003) for more details on the method) to sample from Ii. We note that Ii(k) ≤
1/2 for all k ∈ D by construction. Therefore by sampling points uniformly in D (i.e., with

density 1/vol(D)), we can accept the point k with probability 2Ii(k) to recover samples from

our acquisition function Ii.17 This algorithm is modi�ed by �rst checking the inequality c1 ·τ i <
σi−1(k). The procedure is provided by Algorithm 2.18

16Alternatively, one could use Ii(k) : = Φ
(
−c2 · |mi−1(k)−γ|

σi−1(k)

)
, i = 1, 2, . . . , with constant c2 > 0. It is large

when k is close to the estimated boundary and when the posterior uncertainty is large. This acquisition
function is comparable to that used in Lyu, Binois & Ludkovski (2021); in that work, the acquisition function
is optimized using a genetic algorithm to determine a single next point. Here, one would directly implement
a stochastic sampling routine to generate nloop ≥ 1 new points to construct Di \ Di−1.

17The upper bound on the likelihood ratio for the rejection sampling can be given by supk∈D Ii(k)/(1/vol(D)) ≤
vol(D)/2.

18The implementation of Algorithm 2 includes a maximal number of trials for the while loop. If no point is
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Algorithm 2 Rejection Sampling.

for j = 1, 2, . . . , nloop do
Set flag = true.
while flag = true do
Sample Ûj ∼ Unif(D).
if c1 · τ i < σi−1(k) then
Sample p ∼ Unif(0, 1).
if p < 2Ii(Ûj) then
Set flag = false.

end if
end if

end while
end for

4.4 Sandwich Principle and Bounds on the Approximation Error

In this section, we evaluate the approximation error of the estimate D̂i of the set D. We construct

inner and outer approximations D̂i
− and D̂i

+ of D that sandwich the true set. We �nd these inner

and outer approximations by constructing lower and upper approximations mi
−,m

i
+ : D → R of

µ : D → R, in the context of Gaussian process regression. We study approximation errors under

the assumptions that are described in Theorem 4.1. The metric we use is given by the commonly

studied Nikodym metric19

dN

(
D̂i,D

)
= vol

(
D̂i∆D

)
,

where D̂i∆D =
(
D̂i \ D

)
∪
(
D \ D̂i

)
is the symmetric di�erence between D̂i and D, and the vol-

ume vol(·) refers to the l-dimensional Lebesgue measure. Given inner and outer approximations

D̂i
− and D̂i

+ that sandwich D, we can upper bound the true error dN

(
D̂i,D

)
as follows.

Lemma 4.2 (Sandwich Principle and Error Bound). Let D̂i
−, D̂i, and D̂i

+ be estimators

of D such that D̂i
− ⊆ D̂i ⊆ D̂i

+ and P (D̂i
− ⊆ D ⊆ D̂i

+) ≥ 1− δ for δ ∈ (0, 1). Then it holds

P
(
dN

(
D̂,D

)
≤ vol

(
D̂i

+ \ D̂i
−

))
≥ 1− δ.

Proof. See Section B.4.1.

We consider two alternatives to de�ne the lower and upper approximations mi
−,m

i
+ : D → R

and apply them in the sandwich principle Lemma 4.2. These choices are associated to uniform

and pointwise bounds, respectively.20

found that satis�es c1 · τ i < σi−1(k), the algorithm continues with the next iteration i + 1. Moreover, after
the estimation of a function value, we check if its sample noise is small enough so that including the new
data point is bene�cial. For c3 > 0 (we use c3 = 2 in our simulations), we discard a new data point (k, µ̂k) if
σ̂k/

√
n ≥ c3 · τ i.

19There are other distance metrics between sets. We refer, for example, to Cuevas (2009) or Brunel (2018) for
an overview. Another common metric is the Hausdor� metric, which has a more visual character. Here, the
distance between two sets A1, A2 ⊆ D is de�ned by dH (A1, A2) = inf{ε > 0 | A1 ⊆

⋃
k∈A2

B(k, ε) , A2 ⊆⋃
k∈A1

B(k, ε)} where B(k, ε) is the open ball of radius ε centered in k.
20Appendix B.2 discusses how to compute the proposed upper bounds. Appendix B.3 presents additional ideas

for robustifying the pointwise bound.
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Uniform Bounds. Functions mi
−,m

i
+ : D → R are called uniform bounds for some δ ∈ (0, 1),

if

P
(
∀ k ∈ D : mi

−(k) ≤M(k) ≤ mi
+(k) | M̂(Di) = µ̂(Di)

)
≥ 1− δ. (4.2)

The region in between is referred to as a credible band for the unknown function µ : D → R.
Lederer, Umlauft & Hirche (2019)21 discuss the derivation of such uniform bounds for Gaussian

process regression. They impose Lipschitz conditions on the true function µ : D → R and the

covariance function c : D × D → R. The uniform bounds can then be constructed by applying

a bound on values at sampled points and bounding the values in between using the Lipschitz

assumptions.22 While a Lipschitz constant on µ is often unknown, a Lipschitz condition is

satis�ed by commonly used covariance functions. As an immediate consequence, we can relate

such uniform bounds to probabilistic bounds of the set D, so that the sandwich principle can be

applied. We set D = {k ∈ D : M(k) ≥ γ}.

Corollary 4.3 (Credible Band for the Acceptable Design and Error Bound). De�ne

the estimators D̂i = {k ∈ D : mi(k) ≥ γ}, D̂i
− = {k ∈ D : mi

−(k) ≥ γ}, and D̂i
+ = {k ∈

D : mi
+(k) ≥ γ}. If condition (4.2) is satis�ed, then

P (D̂i
− ⊆ D ⊆ D̂i

+ | M̂(Di) = µ̂(Di)) ≥ 1− δ,

P (dN (D, D̂i) ≤ vol(D̂i
+∆D̂i

−) | M̂(Di) = µ̂(Di)) ≥ 1− δ

where vol(D̂i
+∆D̂i

−) = vol(D̂i
+ \ D̂i

−) = vol
{
k ∈ D : mi

+(k) ≥ γ > mi
−(k)

}
.

Proof. See Section B.4.2.

Controlling the approximation error uniformly with high probability typically results in a large

set D̂i
+\D̂i

− used to locate the boundary of D, which is not desirable. Moreover, uniform bounds

require more prior information on the true function µ : D → R, i.e., the Lipschitz constant. These
problems do not occur with pointwise bounds.

Pointwise Bounds. In practice, it is often su�cient to assess the quality of a single candidate

design k. This issue can be approached as follows.

Lemma 4.4 (Pointwise Approximation Error). Let δ ∈ (0, 1). It holds

∀ k ∈ D : P

(
|M(k)−mi(k)| ≤ Φ−1

(
1− δ

2

)
σi(k)

∣∣∣∣ M̂(Di) = µ̂(Di)

)
≥ 1− δ

where Φ−1 denotes the inverse CDF of the standard normal distribution.

Proof. This is a standard argument, see Section B.4.3 for a proof.

21See, in particular, Theorem 3.1 in Lederer, Umlauft & Hirche (2019). These results are extended in Lederer,
Umlauft & Hirche (2021).

22For s ∈ R+, the bounds can be de�ned by

mi
±(k) = mi(k)±

√
α(s)σi(k)± β(s), k ∈ D,

where α(s) = 2 log
(

M(s,D)
δ

)
and β(s) = (Lmi + Lµ)s +

√
α(s)ωσi(s) for Lipschitz constants Lmi , Lµ ≥ 0,

ωσi(·) being the modulus of continuity of σi, and M(s,D) the s-convering number of D. We refer to Lederer,
Umlauft & Hirche (2019) for details.
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This pointwise credible band can be attained with the functions m̄i
−(k) := mi(k)+Φ−1

(
δ
2

)
σi(k)

and m̄i
+(k) := mi(k) + Φ−1

(
1− δ

2

)
σi(k) for the GPR estimates mi, σi, i.e.,

P
(
m̄i

−(k) ≤M(k) ≤ m̄i
+(k) | M̂(Di) = µ̂(Di)

)
≥ 1− δ ∀ k ∈ D.

To set up a sandwich principle, we de�ne the inner and outer approximations

D̂i
± = {k ∈ D : m̄i

±(k) ≥ γ}

and evaluate the Nikodymmetric dN

(
D̂i

−, D̂i
+

)
. For k ∈ D̂i

+\D̂i
−, we have that γ ∈ (m̄i

−(k), m̄
i
+(k)],

thus, due to Lemma 4.4 and the choice of m̄i
−(k) and m̄

i
+(k),

P

(
|M(k)− γ| < 2 · Φ−1

(
1− δ

2

)
σi(k)

∣∣∣∣ M̂(Di) = µ̂(Di)

)
≥ 1− δ.

5 Case Studies

We study two tra�c networks, one with two signalized intersections and another one with

variable capacities of highways, speed limits and bottlenecks due to roundabouts. Appendix

C.1 provides a pseudocode for the implementation of our tra�c model for general networks.

We investigate acceptable designs based on demand proportional �ows. For selected design

parameters, we compare these with the cooperative driving benchmark model.

5.1 Urban Network

Tra�c signals are essential control elements in modern urban networks. Their main function is

to temporarily block certain tra�c �ows so that competing tra�c �ows can pass safely. E�cient

placement and design are nontrivial problems; issues include the choice of tra�c �ow to be

interrupted and the duration of the interruption. Complex interdependencies arise in networks,

for example, when there is more than one tra�c light in a network.

5.1.1 Set-Up

1 2 3 4 5 6 7

8 9 10 11

12 13 14 15 16 17 18

19 20 21 22

23 24 25 26 27 28 29

Figure 2: Signalized urban network.

20



Network. We consider a stylized urban network as depicted in Figure 2. It consists of 29

nodes V = {1, . . . , 29}, which are interconnected in a grid-like manner. The network features

three types of nodes (cf. Section 2.3):

� Signalized Intersection. We consider two signalized intersections R = {14, 16}, marked in

red. Both are connected to four adjacent intersections and allow vehicles to travel hori-

zontally or vertically through the network while blocking vehicles in orthogonal directions.

We study the duration of their green time T g and the displacement of the two green phases

T s of nodes 14 and 16 as important design parameters. Details on the implementation of

the tra�c lights are given in Section C.2.1.

� Unsignalized Intersection. On the periphery are six unsignalized intersections Y = {3, 5, 12, 15, 25, 27},
highlighted in yellow. Each of these intersections connects tra�c �ows from three adjacent

nodes.

� Bidirectional Road. The remaining nodes of the network are simple bidirectional roads

G = V \ (R∪ Y) which are highlighted in green.

We assume that the signalized and unsignalized intersections have the same diameter of 40m

while the green connecting bidirectional roads are of length 120m. Vehicles move at a free-�ow

speed of 50 km/h. We assume symmetric and constant turning fractions.23 The connecting

bidirectional roads G are of length 120m. We normalize tra�c densities, i.e., we let lv = 1 for

v ∈ R ∪ Y and set lv = 3 for v ∈ G. As an initial con�guration, we set ρ(·,v,·)(0) = 5 for v ∈ G
and ρ(·,v,·)(0) = 1 for v ∈ Y ∪ R. At 50 km/h, intersections can be passed in 2.88 s, i.e., the

interval [t, t+ 1] corresponds to treal = 2.88 s. We simulate T = 1, 250 time steps corresponding

to 1 h of tra�c. The remaining parameters of the modules are listed in Table 1.

Table 1: Parameter choice.

smax
v ρmax

v av bv cv ζv

v ∈ R 5 16 1 1 1 1/10
v ∈ Y 5 10 1 1 1 1/10
v ∈ G 5 30 1 1 1 -

Random Environment. We place the tra�c network described above in a random envi-

ronment by introducing random sources and sinks. Speci�cally, we implement two stochastic

processes to model qnet(6,7,11)(t) and qnet(24,23,19)(t) for t = 1, . . . , T . As building blocks, we take

two autoregressive models with a given dependence structure. The details are described in Sec-

tion C.2.2. The key idea is that both time series models include white noise ε(6,7,11)(t + 1)

and ε(24,23,19)(t+ 1). For each time step, these are normal random variables centered around 0

with standard deviations σ(6,7,11) ≥ 0 and σ(24,23,19) ≥ 0. We assume a particular dependence

23The turning fractions are f(x,u,v)→w(t + 1) = 1 for v ∈ G w ∈ O(v), w ̸= u ∈ I (v), u ̸= x ∈ I (u) and, in
analogy, f(x,u,v)→w(t+ 1) = 1/2 for v ∈ Y and f(x,u,v)→w(t+ 1) = 1/3 for v ∈ R.
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structure on ε(6,7,11)(t+ 1) and ε(24,23,19)(t+ 1) modeled by the Frank copula24

Cr(u1, u2) = −1

r
log

(
1 +

(e−ru1 − 1)(e−ru2 − 1)

e−r − 1

)
, u1, u2 ∈ (0, 1),

which is parametrized by r ∈ R. The Frank copula interpolates from full countermonotonicity

for r → −∞ (i.e., ε(6,7,11)(t + 1) is large when ε(24,23,19)(t + 1) is small and vice versa) to full

comonotonicity for r → ∞ (i.e., ε(6,7,11)(t+1) and ε(24,23,19)(t+1) move in the same direction).

In the limit r → 0, ε(6,7,11)(t+ 1) and ε(24,23,19)(t+ 1) are stochstically independent.

5.1.2 Acceptable Con�gurations and Design

Construction of Acceptance Sets. To assess the performance of tra�c systems, we employ

the normative approach of Section 3.2 and compare acceptable designsDu,γ = {k ∈ D : E(u(Qk)) ≥ γ}
for di�erent utility functions u and levels γ. Speci�cally, we consider expectation, polynomial

utility, expectile utility and square root utility.25

The comparison across di�erent utility functions is facilitated by calibrating the thresholds to

benchmark �ow distributions Q̃A, Q̃B, Q̃C . For all utility functions, we choose the corresponding

threshold levels as γAu = E(u(Q̃A)), γBu = E(u(Q̃B)), and γCu = E(u(Q̃C)).26

Simulation Set-Up. We consider �ve design parameters that characterize tra�c models,

k =
(
r, σ(6,7,11), σ(24,23,19), T

g, T s
)
:

� Sources and Sinks. We vary the dependence structure of the autoregressive models de-

termining the source and sink �ows, i.e., the dependence parameter r and the respective

standard deviations of the noise terms σ(6,7,11) and σ(24,23,19).

� Signal Control. We vary the duration of the green phases of the two tra�c lights T g and

the displacement of the green phases T s.

Performance is characterized by average network tra�c �ow de�ned by

Q = Qk =
1

T

T−1∑
t=0

∑
v∈V

∑
u∈I (v)

∑
x∈I (u)

qout(x,u,v)(t+ 1)

24A copula is a multivariate distribution function with uniform marginals. It captures dependence among the
marginals of a random vector by virtue of Sklar's theorem. We refer to McNeil, Frey & Embrechts (2015) for
more details.

25While the square-root utility is a standard utility function (increasing and concave), polynomial utility and
expectile utility, with appropriately chosen constants cp, ce ∈ R, place special emphasis on downside risk. We
set cp = 2E(Qk∗) and ce = E(Qk∗) for a �good� design parameter k∗ ∈ D. Polynomial utility evaluates only
�ows smaller than cp, and expectile utility evaluates random �uctuations around ce asymmetrically, with a
stronger penalty for outcomes below this value.

26Speci�cally, let X = X(β) ∼ Beta(β, β) be a beta distribution with mean 1/2 and standard deviation σ(X) =
1/

√
8β + 4. We compute βA, βB and βC such that σ(X(βA)) = 0.1, σ(X(βB)) = 0.15 and σ(X(βC)) = 0.2.

We obtain benchmark �ow distributions Q̃A, Q̃B , Q̃C by setting Q̃A = eA · 2X(βA), Q̃B = eB · 2X(βB),
and Q̃C = eC · 2X(βC) for chosen benchmark expectations eA > eB > eC > 0. Numerical evaluation yields
the corresponding thresholds γA = E(u(Q̃A)), γB = E(u(Q̃B)), and γC = E(u(Q̃C)) for the di�erent utility
functions. Beta distributions were chosen as benchmarks because they are simple two-parametric distributions
on compact intervals that generalize the uniform distribution; they are uniquely speci�ed by their mean and
variance.
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for k ∈ D := [−50, 50]× [0, 0.025]× [0, 0.025]× [0, 100]× [0, 100]. The network �ow is simulated27

and evaluated by our stochastic search algorithm.28

5.1.3 Results

Impact of Sources and Sinks. Fixing T g = 10, T s = 0, we vary the parameters r, σ(6,7,11), σ(24,23,19)

under the condition σ(6,7,11) = σ(24,23,19). The impact of the dependence structure on perfor-

mance is small. Increasing noise decreases the system performance considerably.29

Acceptable Tra�c Lights Design. Second, we �x the parameters of the random environ-

ment as r = 2.5 and σ(6,7,11) = σ(24,23,19) = 0.01 and examine the acceptable designs of the two

tra�c lights. Figure 3 shows acceptable con�gurations of green time duration T g and shift T s.

The resulting quantities are nontrivial.

E(u(Q)), as a function of T g and T s, is concave in T g � �rst increasing and then decreasing,

since too short green times lead to low tra�c �ow and are unacceptable, and the same applies

to values that are too high; moreover, it is periodic in T s. The simulations show that for longer

green times T g (i.e., T g ≥ 40), acceptable designs can also be found on a diagonal in the (T g, T s)

plane. The comparison across di�erent utility functions indicates qualitatively similar behavior.

However, di�erent normative assessments of risk are re�ected in the di�erent sizes of the domains

that are preferred over the three benchmark levels.

Comparison with the Cooperative Driving Benchmark Model. The preceding results

are based on the demand proportional �ows as an interaction rule. We investigate the benchmark

model of cooperative driving as a theoretical alternative for selected design parameters.30 Table

2 compares the expected tra�c �ows for four selected design parameters. We �nd that the

myopically optimized cooperative driving model yields moderately but consistently higher tra�c

�ows in these examples.

27Since this is a discrete-time model, this property must be respected for each simulation run by T g, T s. This
issue is addressed by independently sampling discrete numbers for each simulation run from {⌊T g⌋, ⌈T g⌉} and
{⌊T s⌋, ⌈T s⌉} such that their respective expected value is T g or T s.

28For the level set estimation, we apply the following computational budget: We consider 8 iterations of our
algorithm, where ninitial = 150 points are sampled uniformly in the initial phase and nloop = 50 are
sampled in the following 7 iterations according to the acquisition function. We de�ne target noises as
{5%, 10%, 8%, 6%, 5%, 4%, 3%, 2%} · (γC − γA) for the respective utility functions. We consider at
least nmin = 20 independent simulations and set nmax = 500, 150, 200, 300, 400, 650, 1200, 3000.
In our case studies, we �nd that a design parameter k∗ for the �rst network is good if E(Qk∗) = 60; therefore,
we set eA = 60, eB = 55, eC = 50 and use these to calibrate γA, γB , and γC as described above.

29This is shown in Figure 6 and Figure 7 in the appendix.
30The simulations are more complex because they have to solve a linear program for each node per time step.

We use Matlab's built-in solver for these linear programs.
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(a) u(x) = x

(b) u(x) = 0.1(x − 60)+ −
0.9(x− 60)−

(c) u(x) = 0.2(x − 60)+ −
0.8(x− 60)−

(d) u(x) =
√
x

(e) u(x) = −|x − 2 · 60|31{x ≤
2 · 60}

(f) u(x) = −|x − 2 · 60|21{x ≤
2 · 60}

(g) u(x) = −|x−2·60|3/21{x ≤
2 · 60}

Figure 3: Acceptable tra�c lights con�gurations for r = 2.5 and σ(6,7,11) = σ(24,23,19) = 0.01.
GPR is based on the Matérn kernel.

Table 2: Comparison with the benchmark model
for cooperative driving.

(T g, T s)

(20, 75) (20, 10) (30, 30) (30, 20)

DPF 60.48 60.49 61.75 59.17
CDBM 65.78 64.71 64.29 64.28

Approximation of E(Q) for demand proportional �ows
(DPF) and the cooperative driving benchmark model
(CDBM) based on 500 independent simulations per
tra�c light con�guration.
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5.2 Highway Network

Highways are an important part of the road network as they allow e�cient travel over longer

distances. Vehicles can move at higher speeds, with the risk of accidents limited by the fact that

the directions of travel are physically separated. Control mechanisms (such as di�erent speed

limits, optional driving on the shoulder, etc.) can be used to increase e�ciency, depending on

the tra�c situation.

5.2.1 Set-Up

Network. We consider a stylized highway network as shown in Figure 1. The network consists

of 33 nodes V = {1, . . . , 33}. Three roundabouts Y = {1, 12, 23} connect two types of highway

modules. Those in the core R = {7, . . . , 11, 18, . . . , 22, 29, . . . , 33} allow optional driving on the

shoulder, while those in the periphery G = V \ {Y ∪ R} do not. When the shoulder is open to

tra�c, the maximum density and maximum tra�c �ow are increased while the maximum speed

is reduced.

All highway modules G ∪ R have the same length of 3 km, while the roundabouts have a

diameter of 200m. We assume a free-�ow speed on the highways of 100 km/h and an average

speed of 40 km/h on the roundabout. Highway modules v ∈ R allow for an optional driving

on the hard shoulder: In this case, maximal �ow and density are increased by 50 %, while

the free-�ow speed is decreased to 80 km/h. We normalize tra�c densities in terms of the

roundabouts, i.e., we let lv = 1 for v ∈ Y and set lv = 15 for v ∈ G ∪ R. Moreover, we

specify symmetric and constant turning fractions, i.e., f(x,u,v)→w(t + 1) = 1/3 for v ∈ Y and

w ∈ O(v), w ̸= u ∈ I (v), u ̸= x ∈ I (u) and f(x,u,v)→w(t+ 1) = 1 for v ∈ G ∪R in analogy.

At 100 km/h, a roundabout would be traversed in 7.2 s, i.e., the interval [t, t+ 1] corresponds

to treal = 7.2 s. Initially, the system is homogeneously �lled with 5% of the maximum density.31

We simulate T = 500 time steps corresponding to 1 h of tra�c. The remaining parameters of

the modules are given in Table 3. In this section, (CLOSED) means that the shoulder is closed

to tra�c, while (OPEN) denotes the con�guration in which it is open.

Table 3: Parameter choice.

smax
v ρmax

v av bv cv dv

v ∈ G 20 100 1 1 1 1
v ∈ Y 5 30 2/5 1 1 1
v ∈ R (CLOSED) 20 100 1 1 1 1
v ∈ R (OPEN) 30 150 4/5 1 1 1

Random Sources and Sinks. We focus mainly on tra�c �owing from the bottom to the top

of the network. For this purpose, we consider sources and sinks at the periphery, so that the

31To be precise, let ρ0 =
∑

v∈V

∑
u∈I(v), u̸=w∈O(u) ρ(u,v,w)(0)/

∑
v∈V ρmax

v ∈ [0, 1] denote the total initial density,

as a fraction of the maximal density. For given ρ0 = 0.05, we distribute the density homogeneously via

ρ(u,v,w)(0) =
ρmax
v

#{(u, v, w) : u ∈ I(v), u ̸= w ∈ O(u)} · ρ0.
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corresponding tra�c has to cross two tra�c circles. These can be considered as bottlenecks in

the network. We mix this tra�c with additional tra�c in the core of the network that uses only

the highways, which have a high capacity; however, heavy tra�c can cause congestion. Opening

the shoulder with a lower speed limit can alleviate this problem.

� Periphery. The sources at the bottom of the network are associated with auxiliary �ows

qaux(5,4,3)(t + 1) = qaux(14,15,16)(t + 1), where qaux(5,4,3)(t + 1) ∼ N (ξ1, ψ
2
1 · ξ21). At the top, deter-

ministic sinks are de�ned via auxiliary �ows qaux(27,26,25)(t+ 1) = qaux(25,26,27)(t+ 1) = −2ξ1.

� Core. The additional tra�c on the highways is speci�ed by sources and sinks associated

with the following auxiliary �ows:

qaux(18,19,20)(t+ 1) ∼ N (ξ2, ψ
2
2 · ξ22), qaux(20,21,22)(t+ 1) = −qaux(18,19,20)(t+ 1),

qaux(33,32,31)(t+ 1) ∼ N (ξ2, ψ
2
2 · ξ22), qaux(31,30,29)(t+ 1) = −qaux(33,32,31)(t+ 1),

qaux(7,8,9)(t+ 1) ∼ N (ξ2, ψ
2
2 · ξ22), qaux(9,10,11)(t+ 1) = −qaux(7,8,9)(t+ 1),

qaux(11,10,9)(t+ 1) ∼ N (ξ2, ψ
2
2 · ξ22), qaux(9,8,7)(t+ 1) = −qaux(11,10,9)(t+ 1).

All random variables are assumed to be independent. As in Case Study 1, qnet(u,v,w)(t + 1) is

equal to qaux(u,v,w)(t + 1), if this leads to 0 ≤ ρ(u,v,w)(t + 1) ≤ (ρmax
v )/2; otherwise, the absolute

value of qaux(u,v,w)(t + 1) is reduced, such that one of these boundaries is attained. The quantity

qaux(u,v,w)(t + 1) should be interpreted as the �ow of vehicles that attempt to enter the network

in the considered time period. In our simulations, we set the coe�cient of variation to be

ψ1 = ψ2 = 0.1 and vary ξ1 and ξ2.

5.2.2 Acceptable Con�gurations and Design

We study the impact of varying the design parameters ξ1 and ξ2, which control the volume

and �uctuation of tra�c originating from the periphery and the core, respectively. We compare

two highway con�gurations: driving on shoulder prohibited (CLOSED) vs. driving on shoulder

allowed (OPEN). We focus on the mean performance E(·) and consider two di�erent performance

measures.

The set N contains all travel directions (u, v, w) that are sources or sinks. Letting

Qa =

1
T

∑T−1
t=0

∑
(u,v,w)∈N

(
qnet(u,v,w)(t+ 1)

)
−

1
T

∑T−1
t=0

∑
v∈V

∑
(u,v,w)∈N

(
qaux(u,v,w)(t+ 1)

)
+

,

Qa can be regarded as measure of the actual throughput: The sum of the �ows that are actually

removed from the network is divided by the sum of the available �ows that attempt to enter the

network.

Another performance measure is

Qb =
1

T

T−1∑
t=0

(
qout(12,18,19)(t+ 1)

ρ(12,18,19)(t)
+
qout(1,33,32)(t+ 1)

ρ(1,33,32)(t)

)
.
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that measures average velocity on (12, 18, 19) and (1, 33, 32) by considering the fraction of �ow

that actually moves divided by the available density. We compute acceptable designs32 based

on the two performance measures Qa and Qb in the two regions Da = [1, 61] × [1, 61] and

Db = [1, 31]× [1, 31].33

5.2.3 Results

We evaluate the two highway con�gurations (CLOSED) and (OPEN) based on the two perfor-

mance measures Qa and Qb. To better compare the driving con�gurations, we also investigate

the di�erences for (CLOSED) and (OPEN). The results are presented in Figure 4.

Figure 4a, Figure 4c, and Figure 4e show the set of acceptable designs based on Qa. We can

clearly distinguish the e�ects of ξ1 (tra�c generated in the periphery) and ξ2 (tra�c generated

in the core). If we increase ξ1 (tra�c from the periphery) and keep ξ2 constant, performance

deteriorates because the former tra�c needs to pass through roundabouts, which are bottlenecks.

Increasing ξ2 while ξ1 is �xed initially increases the overall performance of the system. This is

because the highway has enough capacity for core tra�c; increasing ξ2 increases the proportion

of tra�c that performs well. The statistic Qa measures overall performance, and its expected

value is therefore increasing. If ξ2 becomes even larger, congestion will occur on the highway,

again reducing performance. Opening the shoulder to tra�c is advantageous when tra�c density

is higher, as can be seen in Figure 4e. However, the advantages are less pronounced when the

system as a whole is too congested.

Figure 4b, Figure 4d, and Figure 4f show the set of acceptable designs based on Qb. Qb

essentially measures the speed of tra�c originating from the periphery that has just entered the

core area after passing through a tra�c circle. It can be clearly observed that the acceptable

designs do not depend on ξ1: The roundabouts serve as bottlenecks that control �ow into the

core area so that no additional congestion is caused by these tra�c participants and therefore

no reduction in speed. An increase in ξ2, in contrast, leads to a decrease in speed; this is due to

congestion at nodes 19, 20 and 32, 31. In low density regimes, tra�c �ows with constant free-

�ow speed. Once a critical density is reached, the speed decreases relatively quickly. Depending

on ξ2, there is a clear region where it is bene�cial to open the shoulder to tra�c (see Figure 4d).

This e�ect is again less pronounced when the system is too congested.

32For the level set estimation, we apply the following computational budget: We consider 8 iterations of our
algorithm, where ninitial = 100 points are sampled uniformly in the initial phase and nloop = 50 are
sampled in the following 7 iterations according to the acquisition function. We de�ne target noises as
{5%, 10%, 8%, 6%, 5%, 4%, 3%, 2%} · 0.1. We consider at least nmin = 20 independent simulations
and set nmax = 500, 150, 200, 300, 400, 650, 1200, 3000.

33We assume ξ1, ξ2 ≥ 1 > 0 to exclude simulations with almost no tra�c that might lead to small values in the
denominators of the performance measures.
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(a) Qa: (CLOSED) (b) Qb: (CLOSED)

(c) Qa: (OPEN) (d) Qb: (OPEN)

(e) Qa: Di�erence (f) Qb: Di�erence

Figure 4: Acceptable designs and con�gurations.
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6 Conclusion

In this work, we introduced a rigorous framework for stochastic cell transmission models for

general tra�c networks. The performance of tra�c systems was evaluated based on preference

functionals. The numerical implementation combined simulation, Gaussian process regression,

and a stochastic exploration procedure. The approach was illustrated in two case studies that

served as proofs of concept.

Future research should address the following tasks: a) Our �exible framework can be applied

to many tra�c systems. This requires careful calibration and validation at both the tra�c

cell level and the tra�c system level. b) These models can then be used to answer speci�c

questions in tra�c planning. c) As shown in a simple example in the appendix, the setting can

be extended to multiple interacting populations. This requires a closer look at model extensions.

d) The algorithm combines stochastic search and Gaussian process regression. The latter could

be replaced by other techniques, e.g., Bayesian neural networks (cf. Goan & Fookes (2020)), and

the performance of di�erent techniques should be compared. e) The normative criteria in this

paper were based on expected utility. Other preference functionals might be appropriate in the

face of uncertainty, for example. Their implementation requires adapted estimation procedures.
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A Further Examples of Cells

A.1 Roundabout

Unidirectional Roundabout. Consider an unidirectional roundabout# with four entries/exits

enumerated counterclockwise and identi�ed with Z4 = I (#) = O(#) as shown in Figure 5. In

right-hand tra�c, vehicles travel counterclockwise through the roundabout. For simplicity, we

assume that the roundabout is completely symmetric.

#

0

1

2

3

Figure 5: Symmetric roundabout.

One possibility is to assume that sending functions are as for highways, but receiving functions

capture that di�erent paths overlap in the roundabout. This leads to sending function of the

following form:

S(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

(
smax
# , aρ(u,#,w)

)
, w ̸= u

The receiving functions have a similar shape as for bidirectional linear interfaces, but the coun-

terdensity of vehicles traveling in opposite direction is replaced by the densities on overlapping

paths. These densities must be adjusted by a factor corresponding to the length of the overlap

in the roundabout. This is due to the fact that the densities are normalized for each node and

are proportional to the number of vehicles on each path within each node. We assume that for

each path the vehicles are uniformly distributed over the segments of the path. Under these

assumptions we obtain the following receiving functions:

R(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax
#

4
− cρ(u,#,u+1) − d

(
1

2
ρ(u,#,u+2) +

1

3
ρ(u,#,u+3)

+
1

3
ρ(u+2,#,u+1) +

1

2
ρ(u+3,#,u+1) +

1

3
ρ(u+3,#,u+2)

))
, 0

)
,

R(u,#,u+2)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
2ρmax

#

4
− cρ(u,#,u+2) − d

(
ρ(u,#,u+1) +

2

3
ρ(u,#,u+3)

+ ρ(u+1,#,u+2) +
1

2
ρ(u+1,#,u+3) +

1

3
ρ(u+1,#,u)

+
1

3
ρ(u+2,#,u+1) +

1

2
ρ(u+3,#,u+1) +

2

3
ρ(u+3,#,u+2)

))
, 0

)
,

R(u,#,u+3)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
3ρmax

#

4
− cρ(u,#,u+3) − d

(
ρ(u,#,u+1) + ρ(u,#,u+2)

+ ρ(u+1,#,u+2) + ρ(u+1,#,u+3) +
2

3
ρ(u+1,#,u)
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+ ρ(u+2,#,u+3) +
1

2
ρ(u+2,#,u) +

1

3
ρ(u+2,#,u+1)

+
1

2
ρ(u+3,#,u+1) +

2

3
ρ(u+3,#,u+2)

))
, 0

)

Bidirectional Roundabout. The roundabout model discussed above can be easily extended

to bidirectional tra�c �ows of pedestrians in a bidirectional tra�c area that has the form of

a roundabout. The main di�erence is that the densities of tra�c on overlapping paths for

participants moving in the same direction and in the opposite direction must be considered in

the receiving functions. In addition, pedestrians are assumed to choose the shortest path in the

tra�c circle. If two paths have the same length, half of the pedestrians will use the �rst path and

the other half will use the second path. These assumptions lead to the following formalization:

S(u,#,w)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= min

(
smax
# , aρ(u,#,w)

)
, w ̸= u,

R(u,#,u+1)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax
#

4
− cρ(u,#,u+1) − d

(
1

4
ρ(u,#,u+2) + ρ(u+1,#,u)

+
1

4
ρ(u+1,#,u+3) +

1

4
ρ(u+2,#,u) +

1

4
ρ(u+3,#,u+1)

))
, 0

)
,

R(u,#,u+2)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax
# − cρ(u,#,u+2) − d

∑
u′∈I (#)\{u},

w′∈O(#)\{u+2}

ρ(u′,#,w′)

)
, 0

)
,

R(u,#,u+3)

((
ρ(u′,#,w′)

)
u′∈I (#),w′∈O(#)

)
= max

(
b

(
ρmax
#

4
− cρ(u,#,u+3) − d

(
1

4
ρ(u,#,u+2)

+
1

4
ρ(u+1,#,u+3) +

1

4
ρ(u+2,#,u) + ρ(u+3,#,u) +

1

4
ρ(u+3,#,u+1)

))
, 0

)

Roundabout with Vehicles and Pedestrians. The conceptual framework we develop can

be generalized to multiple populations. In this paper, for simplicity, we focus only on explaining

generalized cell transmission models for tra�c participants of one type. However, in the current

example, we describe how an extension to more than one population is feasible.
Again, we focus on a node # with I (#) = O(#) = Z4 with vehicles (k = 1) moving as in the

unidirectional roundabout. The cell transmission model can be implemented on di�erent time
scales. Here we assume that each time step corresponds to a relatively short real time span.
Pedestrians (k = 2) move in both directions, but � according to their lower speed � only up to
the next exit. Pedestrians have priority in the roundabout. The dynamics of the pedestrians is
independent of the movement of the vehicles. Vehicles move as in the unidirectional roundabaout,
but can be blocked by pedestrians who have priority. This canonically leads to the following
formalization, where we introduce an additional subscript for the type (k = 1, 2):

S(u,#,w),1

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
=

min
(
smax
#,1 , a1ρ(u,#,w),1

)
· 1{ρ(w−1,#,w),2 + ρ(w,#,w−1),2 = 0}, w ̸= u (pedestrians may block exit),

S(u,#,w),2

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
=

min

{
smax
#,2 , a2ρ(u,#,w),2

}
, w ∈ {u− 1, u+ 1} (pedestrians move independently of vehicles),

R(u,#,u+1),1

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
=

1{ρ(u,#,u+1),2 + ρ(u+1,#,u),2 = 0} ·max

(
b1

(
ρmax
#,1

4
− c1ρ(u,#,u+1),1 − d1

(
1

2
ρ(u,#,u+2),1 +

1

3
ρ(u,#,u+3),1

+
1

3
ρ(u+2,#,u+1),1 +

1

2
ρ(u+3,#,u+1),1 +

1

3
ρ(u+3,#,u+2),1

))
, 0

)
(pedestrians may block entrance),
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R(u,#,u+2),1

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
=

1{ρ(u,#,u+1),2 + ρ(u+1,#,u),2 = 0} ·max

(
b1

(
2ρmax

#,1

4
− c1ρ(u,#,u+2),1 − d1

(
ρ(u,#,u+1),1 +

2

3
ρ(u,#,u+3),1

+ ρ(u+1,#,u+2),1 +
1

2
ρ(u+1,#,u+3),1 +

1

3
ρ(u+1,#,u),1 +

1

3
ρ(u+2,#,u+1),1

+
1

2
ρ(u+3,#,u+1),1 +

2

3
ρ(u+3,#,u+2),1

))
, 0

)
(pedestrians may block entrance),

R(u,#,u+3),1

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
=

1{ρ(u,#,u+1),2 + ρ(u+1,#,u),2 = 0} ·max

(
b1

(
3ρmax

#,1

4
− c1ρ(u,#,u+3),1 − d1

(
ρ(u,#,u+1),1 + ρ(u,#,u+2),1

+ ρ(u+1,#,u+2),1 + ρ(u+1,#,u+3),1 +
2

3
ρ(u+1,#,u),1 + ρ(u+2,#,u+3),1 +

1

2
ρ(u+2,#,u),1 +

1

3
ρ(u+2,#,u+1),1

+
1

2
ρ(u+3,#,u+1),1 +

2

3
ρ(u+3,#,u+2),1

))
, 0

)
(pedestrians may block entrance),

R(u,#,w),2

((
ρ(u′,#,w′),k′

)
u′∈I (#),w′∈O(#),k′=1,2

)
= max

(
b2

(
ρmax
#,2

4
− c2ρ(u,#,w),2 − d2ρ(w,#,u),2

)
, 0

)
,

w ∈ {u− 1, u+ 1}, (pedestrians move independently of vehicles)

Here, for types k = 1, 2, ρmax
#,k > 0 is the maximum density, smax

#,k > 0 is the maximum �ow,

0 < ak ≤ 1 is the free-�ow speed, 0 < bk ≤ 1 is the congestion wave speed, and ck, dk > 0 are

interaction parameters.

B The Algorithm

B.1 A Bayesian Approach to Sampling

In most applications, generating the samples of the complex system Qk is expensive. A Bayesian

approach exploits the previous GPR (mi, σi) in order to do variance reduction and, thus, reduce

computational costs. Speci�cally, we propose utilizing the GPR (with its normal distribution) as

a prior for the estimation of µ̂k. With this structure, we consider Bayesian inference for normal

mean conditional on the variance (see, e.g., Ho� (2009, Section 5.2)) with a single sample taken

at a time. Mathematically, we have the following structure:

� Prior distribution: µ(k) ∼ N (mi(k), σi(k)2),

� Sampling distribution: µ̂nk | µ(k) ∼ N
(
µ(k),

(σ̂n
k )

2

n

)
as a central limit theorem heuristic by

prior assumptions, and

� Posterior distribution: µ(k) | µ̂nk ∼ N
(
tpost,n, s

2
post,n

)
where

tpost,n =

1
(σi(k))2

mi(k) + n
(σ̂n

k )
2 µ̂

n
k

1
(σi(k))2

+ n
(σ̂n

k )
2

and s2post,n =
1

1
(σi(k))2

+ n
(σ̂n

k )
2

.

Note that s2post,n ≤ (σ̂n
k )

2

n , i.e., the variance (and corresponding sample size) is reduced compared

to the purely frequentist view described in Section 4.3. At the same time, precision may be

reduced as tpost in general may not be an unbiased estimator of E(u(Qk)). The updated stopping

criterion in the Bayesian approach, i.e., so that the sample variance drops below (τ i)2, is given

35



by

n = min
{
min

{
nmin ≤ n̄ : s2post,n̄ ≤ (τ i)2

}
, nmax

}
.

B.2 Computing the Error Bounds

We wish to return to our discussion of the error bounds with some remarks on its computation

with Monte Carlo estimation. As shown in Section 4.4, the estimation error can be upper

bounded by integrals of the form

vol
{
k ∈ D : mi

+(k) ≥ γ > mi
−(k)

}
,

where mi
−,m

i
+ : D → R are constructed as either uniform or pointwise error bounds.

The computation of these integrals is not trivial as the functions mi
− and mi

+ are typically not

analytically accessible. Yet, values at speci�c positions k ∈ D can be evaluated. This provides

a natural setting for approximation via Monte Carlo simulation:

� For a �xed budget neval ∈ N, let U1, . . . , Uneval
∼ Unif(D).

� An approximation is given by

vol
{
k ∈ D : mi

+(k) ≥ γ > mi
−(k)

}
=

∫
D
1{mi

+(k) ≥ γ > mi
−(k)}dk

≈ vol(D)
neval

neval∑
j=1

1
{
mi

+(Uj) ≥ γ > mi
−(Uj)

}
� In order to eliminate random �uctuations in the comparison of the error bound for di�erent

iterations i, we �x a particular sequence34 of samples Û1, . . . , Ûneval
.

The details of the evaluation procedure with the Monte Carlo approximation are given in Algo-

rithm 3.

Algorithm 3 Evaluation Procedure for the Approximation Error.

Input: neval ∈ N, mi
+,m

i
− : D → R, samples Û1, . . . , Ûneval

∈ D.
Compute

êi =
vol(D)
neval

neval∑
j=1

1

{
mi

+(Ûj) ≥ γ > mi
−(Ûj)

}
.

Output: êi.

B.3 Robusti�cation of the Pointwise Error Bound

The pointwise error bound can be extended locally if we impose a Lipschitz assumption on M .

This can be understood as a robusti�cation of the pointwise bounds. We present the following

statement in analogy to the uniform error bounds by Lederer, Umlauft & Hirche (2019).

34This is a natural application for Quasi-Monte Carlo methods in order to decrease the approximation error; here,
we use the Sobol sequence. We refer to Glasserman (2003) for an overview on Quasi-Monte Carlo methods.
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Proposition B.1 (Local Credible Band). Let δ ∈ (0, 1) and ε > 0. For �xed k∗ ∈ D with

Bε(k
∗) ⊆ D, let L = L(k∗) > 0 and assume that |M(k∗) −M(k)| ≤ L∥k∗ − k∥ P -a.s. for all

k ∈ Bε(k
∗). It holds

P

(
∀ k ∈ Bε(k

∗) : |M(k)−mi(k∗)| ≤ Φ−1

(
1− δ

2

)
σi(k∗) + L∥k − k∗∥ | M̂(Di) = µ̂(Di)

)
≥ 1− δ

Proof. Let k∗ ∈ D be �xed. Applying the pointwise approximation error for k∗, we have

P

(
|M(k∗)−mi(k∗)| ≤ Φ−1

(
1− δ

2

)
σi(k∗) | M̂(Di) = µ̂(Di)

)
≥ 1− δ.

For all k ∈ D, triangular inequality and Lipschitz assumption imply

|M(k)−mi(k∗)| ≤ |M(k)−M(k∗)|+ |M(k∗)−mi(k∗)| ≤ L∥k − k∗∥+ |M(k∗)−mi(k∗)|.

We conclude

P

(
∀ k ∈ Bε(k

∗) : |M(k)−mi(k∗)| ≤ Φ−1

(
1− δ

2

)
σi(k∗) + L∥k − k∗∥ | M̂(Di) = µ̂(Di)

)
≥ 1− δ

The local credible band gives rise to a local sandwich principle; we can upper bound the

approximation error D̂i locally by intersecting it with Bε(k
∗) := {k ∈ D : ∥k − k∗∥ < ε}.

Corollary B.2 (Local Credible Band for the Acceptable Design and Error Bound).

In the setting of Proposition B.1, let mi
±,k∗(k) := mi(k∗) ± Φ−1

(
1− δ

2

)
σi(k∗) ± L∥k − k∗∥

and de�ne the estimators D̂i = {k ∈ D : mi(k) ≥ γ}, D̂i
−,k∗ = {k ∈ D : mi

−,k∗(k) ≥ γ}, and
D̂i

+,k∗ = {k ∈ D : mi
+,k∗(k) ≥ γ}. Let D = {k ∈ D : M(k) ≥ γ} be the corresponding prior for

D. Then, for all k∗ ∈ D, it holds

P (D̂i
−,k∗ ∩Bε(k

∗) ⊆ D ∩Bε(k
∗) ⊆ D̂i

+,k∗ ∩Bε(k
∗) | M̂(Di) = µ̂(Di)) ≥ 1− δ

and

P

(
dN (D ∩Bε(k

∗), D̂i ∩Bε(k
∗)) ≤ dN

(
(D̂i

+,k∗ ∩Bε(k
∗), D̂i

−,k∗) ∩Bε(k
∗)
)

| M̂(Di) = µ̂(Di)

)
≥ 1− δ.

Proof. Clear.

The preceding statement tells us that widening the pointwise lower and upper approximations

locally allows to probabilistically bound the approximation error of the acceptable design locally.

In analogy to the uniform error bounds by Lederer, Umlauft & Hirche (2019), this requires an

additional Lipschitz assumption with a (local) Lipschitz constant L which, in practice, is typically

unknown.
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B.4 Proofs

B.4.1 Proof of Lemma 4.2

We compute

vol
(
D̂i∆D

)
= vol

((
D̂i \ D

)
∪
(
D \ D̂i

))
= vol

(
D̂i \ D

)
+ vol

(
D \ D̂i

)
≤ vol

(
D̂i \ D̂i

−

)
+ vol

(
D̂i

+ \ D̂i
)
= vol

(
D̂i \ D̂i

−

)
+ vol

(
D̂i

+ \ D̂i
−

)
− vol

(
D̂i \ D̂i

−

)
= vol

(
D̂i

+ \ D̂i
−

)
.

Depending on the type of inclusion, also the inequality is guaranteed P -a.s. or with probability

greater than 1− δ.

B.4.2 Proof of Corollary 4.3

It is clear that, for all k ∈ D, mi
−(k) ≤ mi(k) ≤ mi

+(k). This implies the inclusion of the

corresponding set estimators. More precisely, we have

D̂i
− = {k ∈ D : mi

−(k) ≥ γ} ⊆ {k ∈ D : mi(k) ≥ γ} = D̂i ⊆ {k ∈ D : mi
+(k) ≥ γ} = D̂i

+.

Correspondingly, P
(
∀ k ∈ D : mi

−(k) ≤M(k) ≤ mi
+(k)

)
≥ 1− δ implies

P (D̂i
− ⊆ D ⊆ D̂i

+) ≥ 1− δ.

Thus, Theorem 4.2 yields the claimed error bound P (vol(D∆D̂i) ≤ vol(D̂i
+∆D̂i

−)) ≥ 1− δ and,

due to the inclusion D̂i
− ⊆ D̂i

+, it follows

vol(D̂i
+∆D̂i

−) = vol(D̂i
+ \ D̂i

−)

= vol
(
{k ∈ D : mi

+(k) ≥ γ} \ {k ∈ D : mi
−(k) < γ}

)
= vol

{
k ∈ D : mi

+(k) ≥ γ > mi
−(k)

}
.

B.4.3 Proof of Lemma 4.4

The GPR based on observed data µ̂(Di) yields

∀ k ∈ D : M(k) | M̂(Di) = µ̂(Di) ∼ N
(
mi(k), (σi(k))2

)
.

The pointwise approximation error directly follows from standard con�dence intervals for the

mean of the normal distribution N
(
mi(k), (σi(k))2

)
.

B.5 Algorithms

Algorithm 4 includes a pre-processing of the data: Subtracting the sample mean resembles the

prior assumption m ≡ 0 (see also Schulz, Speekenbrink & Krause (2018)); the additional stan-

dardization of the data by its sample standard deviation serves to circumvent numerical issues.

In our implementation, we use Matlab's built-in optimization routine. In case of numerical is-

sues, we restart with a random initial point or reduce the number of points considered in the
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log likelihood.

Algorithm 4 Pre-Processing and Estimation of Hyperparameters.

Input:

� Noisy data (k, µ̂k)k∈D0 such that µ̂k = µ(k) + εk with εk ∼ N (0, τ2k ) independent,

� prior mean m ≡ 0,

� prior covariance function c : D× D → [0,∞) depending on hyperparameters σc, l > 0.

Pre-Process Data: Let µ̄0 = 1/|D0|
∑

k∈D0 µ̂k, ς̄
0 =

√
1/(|D0| − 1)

∑
k∈D0(µ̂k − µ̄0)2 and

de�ne ν̂k = (µ̂k − µ̄0)/ς̄0, k ∈ D0.
Model Selection: Determine (σ̂c, l̂) by maximizing the (log) marginal likelihood

ℓ(ν̂(D0);σc, l) = −1

2
ν̂(D0)⊤

(
Σ(D0,D0) + diag

(
τ21 , . . . , τ

2
|D0|

))−1
ν̂(D0)

− 1

2
det
(
Σ(D0,D0) + diag

(
τ21 , . . . , τ

2
|D0|

))
− |D0|

2
log(2π).

Output: µ̄0, ς̄0, σ̂c, l̂.

Algorithm 5 Estimation Procedure with Gaussian Process Regression.

Input:

� Noisy data (k, µ̂k)k∈Di such that µ̂k = µ(k) + εk with εk ∼ N (0, τ2k ) independent,

� µ̄0, ς̄0, σ̂c, l̂ from Algorithm 4

Transformation: De�ne ν̂k = (µ̂k − µ̄0)/ς̄0, k ∈ Di.
Bayesian Update: Based on (σ̂c, l̂) and the data (k, ν̂k)k∈Di , compute mi

ν : D → R and
σiν : D → [0,∞) given by σiν(k) =

√
cν(k, k) according to Theorem 4.1.

Retransformation: De�nemi : D → R, mi(k) := mi
ν(k)ς̄

0+µ̄0 and σi : D → [0,∞), σi(k) :=
σiν(k)ς̄

0.
Output: D̂i = {k ∈ D : mi(k) ≥ γ}, mi, σi.

C Supplement to the Case Studies

C.1 Companion to Section 5.1: Tra�c Simulation

The implementations of our tra�c models adhere to the structure of the following pseudo-code.
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Algorithm 6 Basic Tra�c Simulation

Input:

� Adjacency matrix: AE ∈ {0, 1}|V |×|V | for a set of enumerated nodes V = {1, . . . , |V |}.

� Initial tra�c con�guration: ρ(u,v,w)(0) ≥ 0 for all v ∈ V , u ∈ I (v), u ̸= w ∈ O(v)

� Parameters (including terminal time: T ∈ N)

for t = 0, . . . , T − 1 do
Phase 1: Compute sending and receiving constraints.
for v ∈ V do
for u ∈ I (v) and u ̸= w ∈ O(v) do
Compute sending function S(u,v,w)

(
(ρ(u′,v,w′),k′(t))u′∈I (v),w′∈O(v)

)
and receiving func-

tion R(u,v,w)

(
(ρ(u′,v,w′)(t))u′∈I (v),w′∈O(v)

)
.

end for
end for
Phase 2: Compute out�ows.
for u ∈ V do
for x ∈ I (u) and x ̸= v ∈ O(u) do
Compute qout(x,u,v)(t+ 1).

end for
end for
Phase 3: Compute in�ows.
for v ∈ V do
for u ∈ I (v) and u ̸= w ∈ O(v) do
Compute qin(u,v,w)(t+ 1) =

∑
x∈I (u) f(x,u,v)→w(t+ 1) · qout(x,u,v)(t+ 1).

end for
end for
Phase 4: Compute source/sink �ows.
for v ∈ V do
for u ∈ I (v) and u ̸= w ∈ O(v) do
Compute qnet(u,v,w)(t+ 1).

end for
end for
Phase 5: Update densities.
for v ∈ V do
for u ∈ I (v) and u ̸= w ∈ O(v) do
Compute ρ(u,v,w)(t+ 1) = ρ(u,v,w)(t) + qin(u,v,w)(t+ 1)− qout(u,v,w)(t+ 1) + qnet(u,v,w)(t+ 1).

end for
end for

end for
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C.2 Urban Network

C.2.1 Companion to Section 5.1: Tra�c Light Implementation

Let v ∈ R = {14, 16}. For any u ∈ I (v) and u ̸= w ∈ O(v), let LA(u,v,w) ∈ [0, 1] model the

tra�c light adjustment for tra�c users with traveling direction (u, v, w) which is based on the

respective tra�c light signal LS(u,v,w) ∈ {0, 1}.
In the following, we identify {13, 20, 15, 9} and {15, 21, 17, 10} with Z4 and set

S(u,v,u+1)

((
ρ(u′,v,w′)

)
u′∈I (v),w′∈O(v)

, LA(u,v,u+1)

)
= min

{
smax
v , avLA(u,v,u+1)ρ(u,v,u+1)

}
,

S(u,v,u+2)

((
ρ(u′,v,w′)

)
u′∈I (v),w′∈O(v)

, LA(u,v,u+2)

)
= min

{
smax
v , avLA(u,v,u+2)ρ(u,v,u+2)

}
,

S(u,v,u+3)

((
ρ(u′,v,w′)

)
u′∈I (v),w′∈O(v)

, LA(u,v,u+3)

)
= min

{
smax
v , avLA(u,v,u+3)ρ(u,v,u+3)·

exp
(
−ζv

(
ρ(u+2,v,u) + ρ(u+2,v,u+3)

))}
,

R(u,v,w)

((
ρ(u′,v,w′)

)
u′∈I (v),w′∈O(v)

)
= max

bv
ρmax

v

4
−

∑
w′∈O(v)

ρ(u,v,w′)

 , 0

 .

We implement the signal policy as follows. Let T g ∈ N be the duration of the green phase

and T s ∈ N the shift between the green times of the two tra�c lights. Let I14 = {13, 15},
J14 = {9, 20} and I16 = {15, 17}, J16 = {10, 21}. We set

LS(u,14,w)(t) =



1, t mod 2T g ∈ {0, 1, . . . , T g − 1}, u ∈ I14, w ̸= u,

0, t mod 2T g ∈ {0, 1, . . . , T g − 1}, u ∈ J14, w ̸= u,

0, t mod 2T g ∈ {T g, T g + 1, . . . , 2T g − 1}, u ∈ I14, w ̸= u,

1, t mod 2T g ∈ {T g, T g + 1, . . . , 2T g − 1}, u ∈ J14, w ̸= u.

and

LS(u,16,w)(t) =



1, t+ T s mod 2T g ∈ {0, 1, . . . , T g − 1}, u ∈ I16, w ̸= u,

0, t+ T s mod 2T g ∈ {0, 1, . . . , T g − 1}, u ∈ J16, w ̸= u,

0, t+ T s mod 2T g ∈ {T g, T g + 1, . . . , 2T g − 1}, u ∈ I16, w ̸= u,

1, t+ T s mod 2T g ∈ {T g, T g + 1, . . . , 2T g − 1}, u ∈ J16, w ̸= u.

We assume that vehicles accelerate comfortably with areal = 1.5m/s2 when a tra�c lights

switches from red to green. We introduce tsafe = 2 to model the acceleration delay caused by

safety and reaction time and set

LA(u,v,w)(t) = max

{
0,min

{
1,
(
tswitch
(u,v,w)(t)− tsafe

)
· treal · a

real

vreal

}}
· LS(u,v,w)(t)
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with the time intervals since the last switch being

tswitch
(u,v,w)(t) = inf{s ∈ N : LS(u,v,w)(t) ̸= LS(u,v,w)(t− s)}.

C.2.2 Companion to Section 5.1: Net Flows

Net �ows are modelled as follows: For (u, v, w) ∈ {(6, 7, 11), (24, 23, 19)}, we de�ne autoregres-
sive models of order 1:

qar(u,v,w)(t+ 1) = qar(u,v,w)(t) + ε(u,v,w)(t+ 1)

where ε(u,v,w)(t + 1) ∼ N
(
0, σ(u,v,w)

)
, σ2(u,v,w) ≥ 0, and innovations are stochastically indepen-

dent across time. The initial value is qar(u,v,w)(0) = 0. The dependence of ε(6,7,11)(t + 1) and

ε(24,23,19)(t+1) is governed by a Frank copula, parametrized by r ∈ R \ {0}. In order to respect
non-negativity constraints and maximal densities, we set

qnet(u,v,w)(t+ 1) = min

(
max

(
qar(u,v,w)(t+ 1), qout(u,v,w)(t+ 1)− qin(u,v,w)(t+ 1)− ρ(u,v,w)(t)

)
,

ρmax
v + qout(u,v,w)(t+ 1)− qin(u,v,w)(t+ 1)− ρ(u,v,w)(t)

)
.

C.2.3 Companion to Section 5.1: Dependence Parameter and Noise

To study the e�ects of the random environment, we set T g = 10 and T s = 0 and run simulations35

in the three-dimensional subset
{(
r, σ(6,7,11), σ(24,23,19), 10, 0

)
∈ D

}
. Figure 6 shows acceptable

designs in terms of dependence structure and noise (where we set σ(6,7,11) = σ(24,23,19)) for the

considered utility functions. The impact of the dependence parameter r is small. In Figure

7, we set r = 0, corresponding to independent noise at the sources. The system performance

decreases with increasing noise present in the system.

C.2.4 Companion to Section 5.1: Comparison of Squared Exponential and Matérn

Kernel

Figure 8 compares the squared exponential and Matérn kernel in the situation of Figure 3. The

Matérn kernel can more �exibly adapt to functions that require higher curvature at some points.

The surface plots have smaller amplitudes of the �uctuations than the squared exponential

kernel.

35GRP is based on the Matérn kernel. We also compared this to the squared exponential kernel which leads to
almost the same results.
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(a) u(x) = x

(b) u(x) = 0.1(x − 60)+ −
0.9(x− 60)−

(c) u(x) = 0.2(x − 60)+ −
0.8(x− 60)−

(d) u(x) =
√
x

(e) u(x) = −|x − 2 · 60|31{x ≤
2 · 60}

(f) u(x) = −|x − 2 · 60|21{x ≤
2 · 60}

(g) u(x) = −|x−2·60|3/21{x ≤
2 · 60}

Figure 6: Acceptable dependence and noise. GRP is based on the Matérn kernel.
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(a) u(x) = x

(b) u(x) = 0.1(x − 60)+ −
0.9(x− 60)−

(c) u(x) = 0.2(x − 60)+ −
0.8(x− 60)−

(d) u(x) =
√
x

(e) u(x) = −|x − 2 · 60|31{x ≤
2 · 60}

(f) u(x) = −|x − 2 · 60|21{x ≤
2 · 60}

(g) u(x) = −|x−2·60|3/21{x ≤
2 · 60}

Figure 7: Acceptable noise for r = 0. GPR is based on the Matérn kernel.
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(a) Level sets: Squared exponential kernel (b) Surface plot: Squared exponential kernel (γ =
60)

(c) Level sets: Matérn kernel (d) Surface plot: Matérn kernel (γ = 60)

Figure 8: Comparison of kernels.
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