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Abstract. Distortion risk measures are risk measures that are law invariant and comonotonic addi-

tive. We characterize notable sub-classes of this wide range of functionals, starting with the property

of prudence recently introduced by Wang & Zitikis. Moreover, we develop a new view of coherent

distortion risk measures and show that they are captured by a single probability charge. By linking

our insights into these two properties, we obtain new characterizations of the Expected Shortfall and

implications associated with its utilization as standard measure of market risk. Along the route, we

obtain some ancillary results of independent interest. These concern: (i) the anticore of a general

submodular distortion; (ii) a full characterization of spectral risk measures on integrable random vari-

ables; and (iii) a novel proof of the automatic Fatou property of convex, law-invariant risk measures.

Finally, we fully close the remaining gap to the Wang-Zitikis axiomatization of the Expected Shortfall

and carefully disentangle the interplay of the involved axioms within the large class of distortion risk

measures.

1. Introduction

With the Basel Accords of 2016, the Expected Shortfall (ES) has risen to the status of standard

risk measure for market risk, replacing the Value-at-Risk (VaR) in that position. Needless to say,

this change has drawn increased attention both on the theoretical properties of the ES and on the

implications associated with its utilization. Notably, a recent paper by Wang & Zitikis [43] has

provided an axiomatization of the ES, which greatly clarifies the logic of the ES as a measure of

market risk. Throughout our investigation, we will return to the Wang-Zitikis (WZ) axiomatization

extensively.

In the recent years, axiomatic studies of particular classes of risk measures have enjoyed growing

interest and inseminated regulatory debates. For instance, full axiomatic characterizations of VaR by

means of elicitability properties have been provided by Kou & Peng [27] and Liu & Wang [31], while

the axiomatic focus of He & Peng [23] lies on the property of surplus invariance. On a more structural
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level, both the ES and the VaR belong to the family of distortion risk measures. These are statistical

functionals in the sense that the risk of a loss profile X only depends on its distribution under a

reference probability measure P (a property widely known as law invariance in the literature), and

have the additional property of being comonotonic additive. That is, any pair (X,Y ) of risks that

are increasing transformations of one and the same source of randomness cannot offer diversification

benefits when combined; the risk ρ(X + Y ) agrees with the sum ρ(X) + ρ(Y ) of individual risks. As

a consequence of a classical result of Schmeidler [37], such risk measures ρ are Choquet integrals with

respect to distortions of the reference probability P, i.e., a capacity that distorts probabilities under

P with a function T : [0, 1] −→ [0, 1]. The literature on functionals of this type and their utilization in

insurance pricing (cf. Castagnoli et al. [10], Wang [44], Wang et al. [45]), risk management (cf. Acerbi

[1], Acerbi & Tasche [2], Dhaene et al. [16], Föllmer & Schied [18, Sections 4.6–4.7], Wang et al. [42],

and the references therein), and decision theory (cf. Carlier & Dana [9], Kadane & Wassermann [25],

and Schmeidler [38]) is rich.

In spite of this commonality, it is well known (cf. Embrechts & Wang [17]) that the Expected Shortfall

is subadditive, i.e., for all integrable risks X,Y ,

ES•(X + Y ) ≤ ES•(X) + ES•(Y ),

a property that VaR lacks. Subadditivity of the Expected Shortfall is, for instance, due to the ES

being a special spectral risk measure in the sense of Acerbi [1], which makes it a coherent risk measure;

cf. Artzner et al. [6]. Moreover, the same relation to spectral risk measures shows that the ES has

far-reaching continuity properties such as the Lebesgue property.

Interestingly, the only axiomatization of the ES to date is Wang & Zitikis [43]. That paper considers

functionals ρ defined on the space L1 of integrable random variables over a rich (i.e., atomless)

probability space (Ω,F ,P). They prove that ESp for some level 0 < p < 1 is the only functional

ρ : L1 −→ R satisfying ρ(1) = 1,

(a) law invariance,

(b) monotonicity,

and two new axioms called

(c) prudence, and

(d) no reward for concentration (NRC).

Broadly speaking, prudence means that the risk ρ(X) of the almost-sure limit X of a sequence

(Xn)n∈N does not exceed the approximating risks. No reward for concentration identifies a shock

event such that risks X and Y producing their largest losses in that event — and must therefore be

seen as concentrated — do not offer diversification benefits when combined.

A striking observation is that Wang & Zitikis make no use of subadditivity, comonotonic additivity,

or the Lebesgue property of the ES. Evidently, these key building blocks of risk measures must be

hidden in the combination of properties (a)–(d) above.

The goal of the present paper is therefore to disentangle the WZ axioms within the huge class of

distortion risk measures, thereby unveiling how exactly they imply subadditivity or comonotonic

additivity, for instance, and develop a better understanding of the new axioms prudence and (NRC).

Structure and contributions of the paper. In Section 3 we study arbitrary distortion risk

measures ρ : L∞ −→ R that are additionally prudent. In Theorem 3.2 we show that prudent distortion
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risk measures must treat near full-probability events as full probability events. More specifically, we

give a complete characterization of them in terms of

(i) the geometry of the associated distortion function T ,

(ii) the fact that ρ must dominate a Value-at-Risk benchmark, and

(iii) the statistical property of lower semicontinuity with respect to convergence in distribution, i.e.,

computing estimates for the risk of a given distribution approximated with a consistent estimator

does not underestimate the true risk.

Remarkably, we do not need additional properties like subadditivity here. Instead, we establish

the link to the tail risk measures of Liu & Wang [31] and introduce a simple behavioural index of

nontriviality to classify prudent risk measures.

In Section 4, we move one step closer to the Expected Shortfall by looking at coherent distortion risk

measures (which we refer to as coherent Choquet distortions). They have enjoyed immense interest

and been identified as a primitive building block for all other law-invariant coherent risk measures;

cf. Kusuoka [28]. Our main result, Theorem 4.3, casts this result and other representation results

in a new light, showing that every coherent Choquet distortion obtains in the following two-step

procedure:

(i) Take a Bayesian view by selecting a finitely additive probability charge q to evaluate expected

losses
∫
X dq. In the terminology of Amarante & Ghossoub [4], this would correspond to a

“Bayesian expert”.

(ii) Secondly, enforce law invariance under the reference measure P by computing the worst-case

expected loss
∫
X ′ dq among all X ′ sharing the same distribution as X.

This procedure starts with the selection of the backbone q, and our further analysis makes heavy use

of its existence.

In Section 5 we then take a detour by exhibiting immediate implications of the aforementioned

characterization. Firstly, we generalize a result of independent interest on the anticore of submodular

distortions due to Carlier & Dana [9]. Secondly, a new and compact proof of the fundamental

“automatic Fatou property” of law-invariant convex risk measures is provided. Thirdly, we show

that spectral risk measures on the much larger space L1 are canonical extensions of a special class of

coherent Choquet distortions, namely those for which the backbone is a countably additive probability

measure.

In Section 6, we take the final step towards the ES and combine our considerations of prudence

and coherence. We prove that the minimal element in the class of prudent and coherent Choquet

distortions with index of nontriviality beyond a certain threshold is the Expected Shortfall. The

assumption of coherence can be dropped: The same result holds in the much larger class of distortion

risk measures with respect to exact distortions. The value of this result is to highlight that the ES,

in comparison to a huge set of alternatives, is the least conservative prudent distortion risk measure,

putting the least taxing capital requirements on financial institutions. Inter alia, the proof leads

to yet another characterization of prudence. A coherent Choquet distortion is prudent if and only

if the backbone q and the (statistical) reference measure P disagree on the possibility of events; a

P-nontrivial null set of q must exist. When computing the worst-case conceivable expected loss of

a “rearrangement” of X under P, this null set must swallow large and therefore speculative gains.

As an application, we obtain a dual condition for statistical well-behavedness of a general convex

law-invariant functional in Corollary 6.6.
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Section 7 concludes and closes the gap to the WZ axioms. Surprisingly, the no reward for concentration

axiom turns out to play a dual role to prudence. We show that a law-invariant, monotone functional

satisfying NRC is necessarily a distortion risk measure. The ES class then turns out to require maximal

capital buffers among all distortion risk measures satisfying NRC. Even though this is not clear at

the outset, prudence turns out to be a much more conservative property than NRC for distortion risk

measures. Our novel mathematical approach to the WZ characterization also demonstrates clearly

that both prudence and NRC play (at least) a double role in pinning down the Expected Shortfall.

Another contribution of independent, but rather technical interest are extension properties of prudent

distortion risk measures outlined in Appendix B. Extension results for risk measures are a classical

topic of interest; cf., for instance, Filipović & Svindland [20] and Liebrich & Svindland [30]. We show

that each prudent distortion risk measure extends uniquely to a proper functional on the space L0 of

all real-valued random variables retaining law invariance, monotonicity, prudence, and lower semicon-

tinuity with respect to convergence in distribution. Such an extension exists without subadditivity, a

striking feature when compared to the literature. Crucially, we produce no gap to Wang & Zitikis by

focusing our analysis mostly on L∞ instead of L1: A comonotonic additive, prudent, and monotone

functional on a larger space is uniquely determined by its values on bounded random variables; cf.

Corollary B.3.

2. Preliminaries

Basic notation. Throughout the paper, (Ω,F ,P) denotes a probability space. As usual, spaces of

equivalence classes up to P-almost sure (P-a.s.) equality of real-valued random variables on Ω are

denoted by Lp, p ∈ [0,∞]. We will be mostly interested in the spaces L0, L1, and L∞ of F-measurable,

resp. integrable, resp. P-essentially bounded real-valued function on Ω.

Given X ∈ L0, its cumulative distribution function and its (left-continuous) quantile function are

denoted by FX : R −→ [0, 1] and F−1
X : (0, 1) −→ R, respectively, and defined by

FX(x) := P(X ≤ x) and F−1
X (s) := inf{x ∈ R | FX(x) ≥ s}.

Given X,Y ∈ L0, we write X
d
= Y if FX = FY , i.e., the two random variables agree in distribution

under P.

Charges. Given a probability measure P on the measurable space (Ω,F), ba(P) = ba denotes the

space of all charges that are absolutely continuous with respect to P, and ca(P) = ca the band of all

signed measures in ba. Absolute continuity of a positive charge ξ ∈ ba+ means that every P-null

set is ξ-null; then note that ba = ba+ − ba+. A positive charge µ ∈ ba+ is a pure charge (also

denoted by µ ∈ cad
+) if necessarily ν = 0 whenever ν ∈ ca+ satisfies ν(A) ≤ µ(A) for all A ∈ F .

An alternative characterisation is given by [8, Theorem 10.3.3]: A positive charge ξ ∈ ba+ is a pure

charge if and only if there is a vanishing sequence of events (Bn)n∈N ⊂ F such that, for all n ∈ N,

ξ(Bc
n) = 0. Each ξ ∈ ba+ decomposes uniquely as the sum of a finite measure ζ ∈ ca+ and a pure

charge τ ∈ cad
+. For ξ ∈ ba+, we write

dξ

dP
:=

dζ

dP
.

At last, note that by q we will denote probability charges, positive charges normalized to q(Ω) = 1,

and their totality makes up the set ∆ ⊂ ba.

Risk measures. Throughout the paper, we follow the actuarial convention that risk measures are

applied to random variables modelling net losses. Positive random variables correspond to pure losses,



DISENTANGLING DISTORTION RISK MEASURES AND THE EXPECTED SHORTFALL 5

negative ones to pure gains. A function f defined on a domain D ⊂ L0 is law-invariant if the value

f(X) only depends on the distribution of X under P: For all X,Y ∈ D,

X
d
= Y =⇒ f(X) = f(Y ).

Let X ⊂ L0 be a subspace containing all constant random variables (which we identify with R). A

functional ρ : X −→ (−∞,∞] is a risk measure if it has the following properties:

(a) properness, i.e. ρ(X) <∞ for some X ∈ X .

(b) monotonicity, i.e. X ≤ Y P-a.s. implies ρ(X) ≤ ρ(Y ).

(c) cash-additivity, i.e. for all X ∈ X and all m ∈ R, ρ(X +m) = ρ(X) +m.

A risk measure is coherent if, additionally, it has the properties:

(d) positive homogeneity, i.e. ρ(tX) = tρ(X) for all t ≥ 0.1

(e) subadditivity, i.e. ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X,Y ∈ X .

Let (Xn)n∈N ⊂ L∞ be a sequence of random variables converging P-a.s. to X ∈ L∞ and satisfying

supn∈N ‖Xn‖∞ < ∞. A risk measure ρ : L∞ −→ R has the Fatou property if, in the preceding situa-

tion, ρ(X) ≤ lim infn→∞ ρ(Xn), and the Lebesgue property if both ρ and −ρ have the Fatou property.

Under the actuarial convention above, the Lebesgue (Fatou) property that is usually stated (see [18])

as “continuity from below” (“above”) now corresponds to “continuity from above” (“below”).

Three risk measures that appear recurrently in the remainder of the paper are:

(i) The Value-at-Risk VaRp : L0 −→ (−∞,∞] at level p ∈ (0, 1] defined by

VaRp(X) :=

{
F−1
X (p) p < 1

F−1
X (1−) := lims↑1 F

−1
X (s) p = 1;

(ii) The Expected Shortfall ESp : L1 −→ (−∞,∞] at level p ∈ [0, 1] defined by

ESp(X) =

{
1

1−p
∫ 1
p F

−1
X (s)ds p < 1

F−1
X (1−) p = 1;

(2.1)

(iii) The spectral risk measures of Acerbi [1]: Given a nonnegative and nondecreasing function φ on

[0, 1] such that
∫ 1

0 φ(t)dt = 1, the associated spectral risk measure defined on L1 is given by

ρ(X) =

∫ 1

0
φ(t)F−1

X (t)dt =

∫ 1

0
φ(t)F−1

X (t)+dt+

∫ 1

0
φ(t)(−F−1

X (t)−)dt. (2.2)

This gives a well-defined functional ρ : L1 −→ (−∞,∞] that is additionally lower semicontinuous

with respect to the L1-norm, i.e., every norm-convergent sequence (Xn)n∈N ⊂ L1 with limit X

satisfies ρ(X) ≤ lim infn→∞ ρ(Xn); cf. Lemma A.1. The function φ is called a spectrum.

By using φ := 1
1−p1(p,1), one easily sees that ESp is spectral for all p ∈ (0, 1).

Capacities and the Choquet integral. Capacities and the Choquet integral are key tools in the

present work. Given a measurable space (Ω,F), a (normalized) capacity is a set function v : F −→
[0, 1] that is nondecreasing with respect to set inclusion and satisfies v(∅) = 1 − v(Ω) = 0. Given a

probability P on F , v is P-invariant if v(A) = v(B) whenever P(A) = P(B). In such a case, we say

that v is a distortion of P and there is a nondecreasing function T : [0, 1] −→ [0, 1] such that v = T ◦P.

If P is atomless, T is unique. All appearing capacities in this paper will be distortions, we therefore

1 Here, and in the following, we employ the convention 0 · ∞ = 0.
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restrict our attention to this type. On an atomless probability space, a distortion is continuous if the

associated distortion function is continuous.

The Choquet integral of X ∈ L∞ with respect to a distortion v = T ◦ P is defined as∫
X dv =

∫
X d(T ◦ P) :=

∫ ∞
0

T (P(X > x))dx+

∫ 0

−∞
(1− T (P(X > x))) dx.

The integrals on the right-hand side are Riemann integrals. Notice that the Choquet integral is a

positively homogeneous risk measure on L∞, and we shall therefore call call it distortion risk measure

(DRM). If instead of the capacity the DRM ρ is given, Tρ denotes an associated distortion function.

Its characterizing property of the Choquet integral is its comonotonic additivity: Whenever two

bounded random variables X,Y are comonotonic, i.e., nondecreasing transformations X = f(Z) and

Y = g(Z) of one and the same random variable Z, then∫
(X + Y )dv =

∫
X dv +

∫
Y dv.

A capacity v on F is submodular if, for all events A,B ∈ F ,

v(A ∪B) + v(A ∩B) ≤ v(A) + v(B).

As is well known, the submodularity of a distortion v = T ◦ P of an atomless P is equivalent to the

convexity of the associated Choquet integral and concavity of T ([18, Proposition 4.75]).

The anticore of a distortion v, acore(v), is the possibly empty set

{q ∈ ba+ | q(A) ≤ v(A) for all A ∈ F and q(Ω) = 1}.

If v is submodular, its anticore is necessarily nonempty [36]. Last, a distortion is called exact if, for

all A ∈ F , v(A) = maxq∈acore(v) q(A). Due to results of Kadane & Wassermann [25] and later Aouani

& Chateauneuf [5], a distortion is exact if and only if the hypograph of the distortion function T ,

H(T ) := {(x, y) ∈ [0, 1]2 | y ≤ T (x)}, is star shaped around (0, 0) and (1, 1).

3. Prudent risk measures

In this first section, we present a full characterisation of DRMs which satisfy the recently introduced

prudence axiom below. It goes back to Wang & Zitikis [43].

Prudence (cf. [43]): A risk measure ρ is prudent if, whenever (Xn)n∈N converges P-a.s. to X

and limn→∞ ρ(Xn) exists, then

ρ(X) ≤ lim
n→∞

ρ(Xn).2

As we shall see momentarily, prudent DRMs a particularly notable structure on the level of distortion

functions. This further justifies interest for this class. What is more, the study of these properties

later on casts some new light on the Expected Shortfall. We begin by highlighting a useful implication

of prudence in combination with law-invariance. As in most of the literature we assume:

Assumption 3.1. The underlying probability measure P is nonatomic. In particular, the set U of

random variables with a uniform distribution over (0, 1) is nonempty.

2 Strictly speaking, [43] uses pointwise convergent sequences of random variables in their definition of prudence. This is
due to the fact that they do not identify random variables to equivalence classes as we do here. However, their interest
lies solely in functionals with the property that two random variable agreeing P-a.s. are mapped to the same value.
Clearly, for such functionals, their notion of prudence is equivalent to the definition here.
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The following result on DRMs serves as the cornerstone of our further investigation of prudence. Note

that we do not require additional properties like subadditivity of the risk measure in question.

Theorem 3.2. For a DRM ρ : L∞ −→ R, the following are equivalent:

(1) ρ is prudent.

(2) Tρ is left-continuous and there is 0 < p < 1 such that Tρ|[p,1] is constant.

(3) ρ has the Fatou property and there is 0 < p < 1 such that ρ ≥ VaRp.

(4) ρ is lower semicontinuous with respect to convergence in distribution.

Proof. (1) implies (2): Let (pn)n∈N ⊂ (0, 1) such that pn ↑ p. Select an increasing sequence (An)n∈N ⊂
F such that P(An) = pn, n ∈ N. For A :=

⋃∞
n=1An, 1A = limn→∞ 1An a.s. Hence,

Tρ(p) = ρ(1A) ≤ lim
n→∞

ρ(1An) = lim
n→∞

Tρ(pn).

This is left-continuity. Now, by the way of contradiction, assume that kn := Tρ(1)− Tρ(n−1
n ) > 0 for

all n ∈ N. Let (Bn)n∈N be a decreasing sequence of events such that P(Bn) = 1
n . Then ρ(−k−1

n 1Bn) =

ρ(k−1
n 1Bcn)−k−1

n = −k−1
n

(
1− Tρ(n−1

n )
)

= −1 holds for all n ∈ N. Together with limn→∞ k
−1
n 1Bn = 0

a.s., this yields a contradiction to prudence.

(2) implies (3): As ρ is monotone, the Fatou property is equivalent to continuity from below, which in

turn follows easily with the left-continuity of Tρ and monotone convergence. Moreover, for p ∈ (0, 1)

such that T |[p,1] ≡ 1, we also have

T ≥ 1(p,1] = TVaR1−p .

As such a relation between distortion functions transfers to the associated DRMs, we can infer

VaR1−p ≤ ρ.

(3) implies (4): Under assertion (3), [31, Theorem F.1] shows that ρ is a so-called tail-relevant DRM

in the terminology of the aforementioned paper. In particular, there exists q ∈ (0, 1) such that, for

all X ∈ L∞,

ρ(X) = ρ
(
X ∨VaRq(X)

)
. (3.1)

Let (Xn)n∈N ⊂ L∞ and assume that the sequence converges in distribution to X. Let U ∈ U be

arbitrary and note that X ′n := F−1
Xn

(U)
d
= Xn converges to X ′ = F−1

X (U)
d
= X a.s. Hence, also

Yn := X ′n ∧ X ′ satisfies limn→∞ Yn = X ′. By Skorokhod’s Representation Theorem, F−1
Yn
→ F−1

X

Lebesge-a.e., which allows us to select 0 < r < q such that limn→∞VaRr(Yn) = VaRr(X). Let

z := infn∈N VaRr(Yn) and set Y ′n := Yn ∨ z, n ∈ N, and Y ′ := X ′ ∨ z. Moreover, observe that

VaRq(X
′) = VaRq(Y

′) and that VaRq(Yn) = VaRq(Y
′
n), n ∈ N. Using (3.1) and the Fatou property

for the first estimate, we observe:

ρ(X) = ρ(X ′) = ρ(X ′ ∨VaRq(X
′))

= ρ(Y ′ ∨VaRq(Y
′)) = ρ(Y ′)

≤ lim inf
n→∞

ρ(Y ′n) = lim inf
n→∞

ρ(Yn)

≤ lim inf
n→∞

ρ(X ′n) = lim inf
n→∞

ρ(Xn).

(4) implies (1): This implication is due to a.s. convergence implying convergence in distribution. �

Remark 3.3.
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(1) Point (2) in Theorem 3.2 demonstrates that prudence is geometrically characterized by a partic-

ular shape of the distortion function Tρ, which in turn treats near full-probability events as full

probability events.

(2) Theorem 3.2(3) makes precise the intuition that prudence is a “propped-up Fatou property” of

the risk measure in question.

(3) Item (4) in Theorem 3.2 suggests that prudent DRMs are statistically well behaved: The risk

does not exceed approximating risks even under a weak notion of approximation like convergence

in distribution. It is an open question to us whether the equivalence between items (1), prudence,

and (4) lower semicontinuity with respect to convergence in distribution, holds for general law-

invariant functionals. Sufficient conditions beyond DRMs are stated in Proposition B.5.

(4) As mentioned in the context of (3.1) in the proof of Theorem 3.2, prudent DRMs are necessarily

tail relevant in the terminology of [31]. That paper presents a thorough study of tail risk measures

that are characterized by the limited possibilities to cross-subsidize losses with large, but specu-

lative gains, i.e., gains that are not sufficiently likely under P. To a certain degree it is surprising

that there is such an intimate link between this property with a clear regulatory interpretation

and statistical well-behavedness established in our result. Note also the reminiscence between

(3.1) and the property of surplus invariance; cf. [23, 26].

Theorem 3.2 turns out to be very useful. For one thing, it immediately leads to the following result,

which was proved in [43] in a rather lengthy way:

Corollary 3.4.

(1) VaRp is prudent for all 0 < p ≤ 1.

(2) ESp is prudent for all 0 < p ≤ 1.

Proof. (1) VaRp is the DRM with respect to the distortion function TVaRp = 1(1−p,1), 0 < p < 1. The

latter is left-continuous and constant in a neighbourhood of 1.

(2) ES1 = VaR1 is prudent by (1). For 0 < p < 1, ESp is the DRM with respect to the continuous

distortion function TESp : [0, 1] −→ [0, 1] defined by TESp(x) = x
1−p ∧ 1. The latter satisfies

TESp |[1−p,1] ≡ 1.

�

In Remark 3.3, we observed that measuring risk with a prudent DRM limits the possibilities to cross-

subsidize losses with large, but speculative gains. In the following, we use Theorem 3.2 to put this

intuition into a more behavioural context. To this end, we define the a priori unrelated index of

nontriviality defined as follows.

Definition 3.5. Let ρ be a law-invariant risk measure. The index of nontriviality of ρ is

nt(ρ) := inf{P(A) | A ∈ F , ρ(−1A) < 0}.

In order to get some intuition for this definition, recall that we identify the arguments of ρ as net

losses. Thus, the financial position X = −1A provides a gain of 1 on A and neutrality on Ac.

When the event A is such that 0 < P(A) < 1, both A and Ac obtain with positive probability, and

nontriviality means that the agent strictly prefers X = −1A to not receiving any payoff at all. Notice

that if ρ is law invariant and A ∈ F is nontrivial event (i.e., 0 < P(A) < 1) such that ρ(−1A) < 0,

then ρ(−1B) = ρ(−1A) < 0 for all B ∈ F such that P(B) = P(A). This intuition can be generalized

to more general net losses. Moreover, the index of nontriviality can characterize prudent DRMs.
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Proposition 3.6. Let ρ be any positively homogeneous law-invariant risk measure on L∞.

(1) We have

nt(ρ) = inf{P(X > 0) | X ∈ L∞+ , ρ(−X) < 0}.
(2) If ρ is additionally a DRM, then

nt(ρ) = 1− inf{p ∈ [0, 1] | Tρ(p) = 1}
= sup{p ∈ (0, 1) | ρ ≥ VaRp}.

(3) If ρ is a DRM with Fatou property, then ρ is prudent if and only if nt(ρ) > 0.

Proof.

(1) Suppose X ∈ L∞+ satisfies ρ(−X) < 0. Then X 6= 0 and monotonicity of ρ together imply

ρ(−‖X‖∞1{X<0}) < 0. By positive homogeneity of ρ,

ρ(−1{X<0}) =
ρ(−‖X‖∞1{X<0})

‖X‖∞
< 0.

Hence, nt(ρ) ≤ inf{P(X > 0) | X ∈ L∞+ , ρ(−X) < 0}. The converse inequality obviously holds.

(2) We have Tρ(p) = 1 if and only if, for all A ∈ F with P(A) = 1− p,

ρ(−1A) = ρ(1Ac)− 1 = Tρ(p)− 1 = 0.

This is sufficient to prove the first identity. For the second, Tρ(p) = 1 implies that Tρ ≥ 1(p,1) =

TVaR1−p . Hence,

(3) Tρ is left-continuous by virtue of the Fatou property. By (2) and Theorem 3.2(3), ρ is prudent if

and only if nt(ρ) > 0.

�

An immediate corollary is the observation that the Value-at-Risk family is minimal in the family of

prudent DRMs.

Corollary 3.7. Let ρ be a prudent DRM on L∞. Then ρ ≥ VaRnt(ρ). In particular, VaRp is the

minimal prudent DRM ρ with nt(ρ) ≥ p.

Remark 3.8. As mentioned, one of the present goals is to develop a deeper understanding of the ES

axiomatization in [43]. While we consider prudent DRMs defined on L∞ in this section, prudence in

[43] is introduced for maps on the larger model space L1. As thoroughly discussed in Appendix B,

this difference is immaterial for comonotonic additive functionals. Prudent DRMs extend uniquely

to L0 without losing their desirable properties, and comonotonic additive risk functionals on lattices

of unbounded random variables are fully captured by their restriction to L∞.

Our discussion of prudence so far has made no use of additional properties of DRMs like subadditivity.

It may therefore not surprise that the Expected Shortfall has not yet made an appearance. In the

next section, we will therefore focus on the most immediate property that distinguishes the Expected

Shortfall from many other distortion risk measures, most prominently the Value-at Risk: coherence.

4. Coherent Choquet distortions

Coherent and/or law-invariant risk measures have been an object of interest for more than two

decades. The rise of the ES has drawn attention to those risk measures that satisfy, in addition, the
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property of comonotonic additivity. We will refer to risk measures that are law invariant, coherent,

and comonotonic additive as coherent Choquet distortions (CCD). Summing up more formally, a CCD

is any risk measure ρ : X ⊂ L0 −→ (−∞,∞] satisfying the following three axioms:

Coherence: ρ has properties (a) to (e) in Section 2.

Law invariance: ρ is P-law invariant.

Comonotonic additivity: If X and Y are comonotonic, then ρ(X + Y ) = ρ(X) + ρ(Y )

Remark 4.1. Within the realm of properties that distinguish Value-at-Risk and Expected Shortfall,

one may also consider consistency with second-order stochastic dominance; cf. [32]. Given random

variables X,Y ∈ L1, Y dominates X in second-order stochastic dominance relation (X �ssd Y ) if,

for all nondecreasing and convex test functions v : R −→ R, E[v(X)] ≤ E[v(Y )]. A DRM is consistent

if X �ssd Y implies ρ(X) ≤ ρ(Y ). It is well known that the Expected Shortfall is consistent while

the Value-at-Risk is not. However, this feature does not require separate analysis because a DRM is

consistent if and only if it is coherent; see, for instance, [42, Theorem 3].

Before we state Theorem 4.3, the main result of this section, we introduce a piece of notation.

Notation 4.2. Given a probability charge q ∈ ∆, we define the functional ψq : L∞ −→ R by

ψq(X) = sup

X′
d
=X

∫
X ′ dq. (4.1)

Theorem 4.3. For a risk measure ρ : L∞ −→ R, the following are equivalent:

(1) ρ is a CCD.

(2) ρ = ψq for some probability charge q ∈ ∆.

Moreover, two probability charges q, r satisfy ψq = ψr if and only if dq
dP

d
= dr

dP .

Proof. (1) implies (2): Consider a CCD ρ : L∞ −→ R. Combining Theorems 4.93 and 4.70 in [18], ρ

is the Choquet integral with respect to a distortion T ◦ P and can be represented as

ρ(X) = T (0+)F−1
X (1−) +

∫ 1

0
F−1
X (t)T ′(1− t)dt, X ∈ L∞, (4.2)

where

(a) T (0+) := infx∈(0,1] T (x).

(b) T ′ the a.e. existent derivative of T .

As T is nondecreasing and concave, T ′ must be nonnegative and nonincreasing. We conclude that

the function (0, 1) 3 t 7→ T ′(1 − t) is nondecreasing and continuous almost everywhere. We can

therefore select a random variable Z whose quantile function satisfies F−1
Z (t) = T ′(1 − t) for almost

all t ∈ (0, 1). As T ′ ≥ 0 and
∫ 1

0 T
′(1 − t)dt = 1 − T (0+) < ∞, we have Z ∈ L1

+. Thus, Z is the

density of a finite measure λ� P on (Ω,F).

Fix any purely additive charge ξ ∈ ba+ (whose existence is guaranteed by the infinite dimension of

L∞) additionally satisfying ξ(Ω) = T (0+). Set q := λ + ξ and apply [13, Proposition 3.9] to infer

that, for arbitrary X ∈ L∞,

sup

X′
d
=X

∫
X ′ dq = T (0+)F−1

X (1−) +

∫ 1

0
F−1
X (t)F−1

Z (t)dt

= T (0+)F−1
X (1−) +

∫ 1

0
F−1
X (t)T ′(1− t)dt = ρ(X).

(4.3)
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(2) implies (1): Let q ∈ ∆ be a probability charge and define a map ρ on L∞ as in (4.1). By the

Yosida-Hewitt Theorem, q decomposes uniquely as the sum of a measure λ and a pure charge ξ.

Setting Z := dq
dP , we obtain from [13, Proposition 3.9] for all X ∈ L∞ that

ρ(X) =

∫ 1

0
F−1
Z (t)F−1

X (t)dt+ F−1
X (1−)q(Ω).

Comonotonic additivity of the right-hand expression readily follows with [18, Lemma 4.90]. Mono-

tonicity and continuity is due to the quantile function possessing these properties. It remains to

prove subadditivity. To this end, let X,Y ∈ L∞ be simple functions and abbreviate Z := X+Y . Let

Z ′
d
= Z, I := {z ∈ R | P(Z = z)}, and J := {(x, y) ∈ R2 | P(X = x, Y = y) > 0}. For each z ∈ I we

can use nonatomicity of P to partition {Z ′ = z} into events {Ax,y | (x, y) ∈ J , x+ y = z} such that

P(X = x, Y = y) = P(Ax,y). Then set

X ′ =
∑

(x,y)∈J

x1Ax,y and Y ′ =
∑

(x,y)∈J

y1Ax,y ,

and note that X ′
d
= X, Y ′

d
= Y , and X ′ + Y ′ = Z ′. In total, we obtain that∫

Z ′ dq =

∫
X ′ dq +

∫
Y ′ dq ≤ ρ(X) + ρ(Y ).

Taking the supremum over all Z ′
d
= Z yields subadditivity on simple functions. The general case

follows by approximation using the continuity of ρ.

It remains to prove the uniqueness statement. Let q and r be two probability charges such that

ψq = ψr. Let ξ, τ ∈ cad
+ be the pure charges in the Yosida-Hewitt decomposition of q and r and

(An)n∈N ⊂ F be a vanishing sequence of events with positive probability. Then [13, Proposition 3.9]

yields

ξ(Ω) = lim
n→∞

ψq(1An) = lim
n→∞

ψr(1An) = τ(Ω).

Next, we obtain for all p ∈ (0, 1] and A ∈ F with P(A) = p that∫ 1

1−p
F−1

dq
dP

(t)dt = ψq(1A)− ξ(Ω) = ψr(1A)− τ(Ω) =

∫ 1

1−p
F−1

dr
dP

(t)dt.

By [39, Theorem 3.A.5], this implies equivalence between dq
dP and dr

dP in the so-called convex order.3

This is the case if and only if dq
dP

d
= dr

dP ([39, Theorem 3.A.43]).

Conversely, if dq
dP

d
= dr

dP , we first have δ := 1 − E[ dq
dP ] = 1 − E[ dr

dP ]. Next, [13, Proposition 3.9] yields

for arbitrary X ∈ L∞ that

ψq(X) =

∫ 1

1−p
F−1

dq
dP

(t)F−1
X (t)dt+ δF−1

X (0+) =

∫ 1

1−p
F−1

dr
dP

(t)F−1
X (t)dt+ δF−1

X (0+) = ψr(X).

This concludes the proof. �

Definition 4.4. Given a CCD ρ : L∞ −→ R, we call a probability charge q satisfying ρ = ψq a

backbone of ρ.

Remark 4.5.

3 Denoting the convex order by �, X,Y ∈ L1 satisfy X � Y if and only if E[v(X)] ≤ E[v(Y )] for all convex functions
v : R −→ R.
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(1) Backbones are not unique. Whether or not a particular probability charge q ∈ ∆ is a backbone

of a given CCD ρ depends, however, only on the distribution of dq
dP . The pure charge part ξ

of a backbone can be chosen completely freely up to normalization.

(2) The argument in the proof of Theorem 4.3 shows a finer property. Let � denote the convex

order on L1 and suppose that two charges p, q ∈ ∆ satisfy dq
dP �

dr
dP . Then E[ dq

dP ] = E[ dr
dP ] and

ψq ≤ ψp.

As a corollary, we immediately recover a representation result for CCDs very similar to others pre-

viously obtained by Kusuoka [28] and Föllmer & Schied [18, Sections 4.6–4.7], in particular [18,

Corollary 4.80].

Corollary 4.6. Let ρ : L∞ −→ R be a risk measure. Then the following are equivalent:

(1) ρ is a CCD.

(2) There is α ∈ [0, 1] such that, for the concave and continuous distortion function T1(x) :=

T (x)− T (0+), x ∈ [0, 1], we have

ρ(X) = α

∫ 1

0
T ′1(t)F−1

X (t)dt+ (1− α)F−1
X (1−).

In comparison to [28], Corollary 4.6 removes altogether the assumption that the underlying space

be standard and identifies all the functions appearing in the representation. We shall see that it

seamlessly leads to the characterization of spectral risk measures given in Proposition 5.4 below.

5. Implications of Theorem 4.3

5.1. The anticore of general submodular distortions. A noteworthy byproduct of our previous

analysis is Corollary 5.1 characterizing the anticore (and, by passage to the dual capacity, the core)

of a general submodular (supermodular) distortion. It generalizes the result of [9] obtained in the

differentiable case. As the study of the core of a capacity is central to the theory of cooperative

games, the implications of Corollary 5.1 go beyond the setting of the present paper.

Corollary 5.1. Let v = T ◦ P be a submodular distortion with P nonatomic. Denote by Dv the set

of all measures ζ � P with
dζ
dP ∈ co

{
T ′(U) | U ∈ U

}L1

.

Then

acore(v) = Dv + T (0+)∆.

Proof. Consider the distortion function T1 from Corollary 4.6 and set T2 := T − T1 = 1(0,1]T (0+).

Both functions are concave, i.e., both distortions vi := Ti ◦ P are submodular. As the mapping

v 7→ acore(v) is affine on the cone of submodular capacities (cf. [12]), it suffices to identify acore(vi),

i = 1, 2. One easily sees that acore(v2) = T (0+)∆. By continuity of T1 and [33, Proposition 4.4],

acore(v1) ⊂ ca+. By Remark 4.5(2) and the proof of Theorem 4.3, acore(v1) is identifiable with all

measures ζ ∈ L1
+ such that dζ

dP � T
′(1− U∗) for some U∗ ∈ U . Using [7, Lemma 3.5] in the first and

[18, Lemma A.32] in the second identity,

{Z ∈ L1 | Z � T ′(1− U∗)} = co{V d
= T ′(1− U∗)}

L1

= co{T ′(U) | U ∈ U}L
1

.

�
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The set of extreme points in ∆ is the set of pure probability charges. While evidently not Dirac

measures, these behave quite like Dirac measures in that they are {0, 1}-valued and correspond to

the muliplicative linear functionals on L∞. By virtue of the Krein-Milman Theorem, Corollary 5.1

establishes that the anticore of a submodular distortion is the closed convex hull of its differentiable

part and the set of positive, normalized multiplicative linear functionals.

5.2. The automatic Fatou property of convex monetary risk measures. A fundamental

result in the study of law-invariant functionals f : L∞ −→ R is the automatic Fatou property of those

that are monotone and convex. Originally proved in [24] for standard probability spaces, it was

extended in [41] to arbitrary atomless probability spaces. In recent years, this result has been studied

extensively on very general function spaces encompassing unbounded random variables, cf. [11, 21]

and the references cited therein.

The strategy of the proofs of [24, 41] is to take a detour and first establish the so-called dilatation

monotonicity of the functionals in question. Perhaps unexpectedly, an immediate application of

Theorem 4.3 and Corollary 4.6 yields an alternative and more straightforward proof of this important

result.

Lemma 5.2. Suppose q ∈ ∆ is a probability charge. Then there is a set Dq ⊂ L∞+ of bounded

probability densities such that

ψq(X) = sup
D∈Dq

E[DX], X ∈ L∞.

Proof. Abbreviate T := Tψq and define, for n ∈ N, Tn : [0, 1] −→ [0, 1] by

Tn(x) :=

{
2nT (2−n)−1x x ≤ 2−n,

T (x) x > 2−n.

Tn is a continuous distortion function with bounded derivative T ′n. Moreover, Tn can be shown to be

concave and, because of concavity of the the hypograph H(T ), Tn ≤ T . By Theorem 4.3, there is a

bounded density Dn such that the associated probability measure Qn satisfies ψQn =
∫
· d(Tn ◦ P).

Moreover, by monotone convergence and the Hardy-Littlewood inequality,

ψq(X) = sup
n∈N

ψQn(X) = sup
n∈N

sup

D
d
=Dn

E[DX], X ∈ L∞.

At last, set Dq :=
⋃
n∈N{D

d
= Dn}. �

Theorem 5.3. Suppose a convex function ϕ : L∞ −→ R is monotone and law invariant. Then ϕ is

σ(L∞, L∞)-lower semicontinuous and therefore has the Fatou property.

Proof. To begin, ϕ is norm-continuous (see, for instance, [35]). Consider the convex conjugate

ϕ∗ : ba −→ (−∞,∞] defined by ϕ∗(µ) := sup{
∫
X dµ − ϕ(X) | X ∈ L∞}, and set dom(ϕ∗) :=

{ϕ∗ <∞}. By Fenchel-Moreau,

ϕ(X) = sup
µ∈dom(ϕ∗)

∫
X dµ− ϕ∗(µ), X ∈ L∞.
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By monotonicity, dom(ϕ∗) ⊂ ba+. Applying Lemma 5.2 if µ ∈ dom(ϕ∗) \ {0}, we find for all

µ ∈ dom(ϕ∗) a set Dµ of bounded densities such that, for all X ∈ L∞,

sup

X′
d
=X

∫
X ′ dµ− ϕ∗(µ) = sup

D∈Dn
E[DX]− ϕ∗(µ).

Hence, by law invariance of ϕ, we obtain for arbitrary X ∈ L∞ that

ϕ(X) = sup
µ∈dom(ϕ∗)

sup

X′
d
=X

∫
X ′ dµ− ϕ∗(µ) = sup

µ∈dom(ϕ∗)
sup
D∈Dµ

(E[DX]− ϕ∗(µ)) ,

which shows that ϕ is l.s.c. with respect to the σ(L∞, L∞)-topology and therefore has the Fatou

property. �

5.3. Spectral risk measures. Introduced by Acerbi [1], spectral risk measures are defined via

formula (2.2) (see Section 2). By Lemma A.1, spectral risk measures are subadditive. In view of

the proof of Theorem 4.3, one therefore sees that a spectral risk measure restricted to L∞ is a CCD

which additionally satisfies the following property:

Lebesgue property: For any sequence (Xn)n∈N ⊂ L∞ which converges P-a.s. to X ∈ L∞ and

satisfies supn∈N ‖Xn‖∞ <∞, ρ(X) = limn→∞ ρ(Xn).4

The next proposition follows seamlessly from Theorem 4.3 and Corollary 4.6 and shows that the

converse to the above statement is also true; that is, the Lebesgue property characterizes spectral

risk measures among the CCDs. Proposition 5.4 is different from preceding results in that the domain

of the risk measure is L1 as required by Acerbi’s definition.

Proposition 5.4. The following are equivalent for a functional ρ : L1 −→ (−∞,∞].

(1) ρ is norm-l.s.c., coherent, law invariant, comonotonic additive, and has the Lebesgue property.

(2) ρ is a spectral risk measure.

(3) There is a probability measure Q� P such that, for all X ∈ L1,

ρ(X) = sup{EQ[X] | X ′ d= X, EQ[X ′] well defined}. (5.1)

Proof. (3) implies (2): If ρ is defined by (5.1), [18, Theorem A.28] yields

ρ(X) =

∫ 1

0
F−1

dQ
dP

(t)F−1
X (t)dt.

Thus, ρ is a spectral risk measure.

(2) implies (1): A spectral risk measure is proper, l.s.c., and subadditive by Lemma A.1, law in-

variant by definition, comonotonic additive by [18, Lemma 4.90], monotone and cash-additive by the

respective properties of the quantile function.

(1) implies (3): Suppose ρ : L1 −→ (∞,∞] is a l.s.c., coherent, law-invariant, comonotonic additive

risk measure with the Lebesgue property. Denote by ρ[ := ρ|L∞ . By Theorem 4.3, there is a

probability charge q ∈ ba+ such that ρ[ = ψq. For every vanishing sequence (An)n∈N ⊂ F , we have

lim supn→∞ q(An) ≤ limn→∞ ρ
[(1An) = 0, i.e., q is a countably additive probability measure Q. By

the implication (3) =⇒ (2) and Lemma A.1, the extension ρ′ of ρ[ in the sense of (5.1) is l.s.c.,

law invariant, and coherent. It is well known that a coherent law-invariant risk measure on L∞ has

a unique l.s.c., law-invariant and convex extension to L1; cf. [20]. We therefore obtain ρ = ρ′. �

4 Recall, once more, the actuarial convention of Section 2.
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Remark 5.5. The equivalence (1) ⇐⇒ (2) was already shown, with different methods, in Shapiro

[40] for finite risk measures on Lp-spaces; cf. [40, Remark 3]. We are able to deal with the general case

of spectral risk measures defined on their canonical model space L1. A further technical difference is

that we do not rely on the existence of measure-preserving transformations, allowing us to establish

the result on a general atomless space.

6. Minimal prudent DRMs: the Expected Shortfall

We now return to prudence, our goal being to link the results obtained in Sections 3 and 4 to the

Expected Shortfall. The first proposition shows that the latter is indeed the minimal family in wide

classes of prudent DRMs. This has three possible interpretations, depending on the application one

has in mind:

(a) The Expected Shortfall leads to the minimal capital requirement ρ(X) needed to raise and inject

in the financial position modelled by X among using a prudent DRM ρ.

(b) The Expected Shortfall leads to the most relaxed capital adequacy test Aρ := {ρ ≤ 0}, where a

net loss is deemed adequately capitalized if it belongs to the so-called accpeptance set Aρ of a

prudent DRM.

(c) The last interpretation is more in the spirit of comparative ambiguity or risk aversion. Let ρ1

and ρ2 be two DRMs with associated distortion functions T1 and T2, respectively, satisfying

Ti ≥ id[0,1], i = 1, 2. We say that ρ1 distorts P more than ρ2 if T1 ≥ T2 pointwise ...

Proposition 6.1. Suppose ρ is a DRM on L∞ whose associated distortion is exact. Then the

following are equivalent:

(1) ρ is prudent.

(2) ρ ≥ ESp for some 0 < p ≤ 1.

In that case, we also have

ρ ≥ ESnt(ρ) .

Proof. (1) implies (2): If ρ is prudent, we may invoke Proposition 3.6 to infer that nt(ρ) > 0 and that,

for all q > 1 − nt(ρ), Tρ(q) = 1. As the hypograph H(Tρ) is star shaped arount (0, 0) and contains

the point (q, 1),

Tρ(x) ≥ x
q ∧ 1, x ∈ [0, 1],

which implies ρ ≥ ES1−q. Letting q ↓ 1 − nt(ρ) and using continuity of α 7→ ESα(X), we obtain

ρ ≥ ESnt(ρ).

(2) implies (1): If ρ ≥ ESp for some 0 < p ≤ 1, we may infer for Tρ and 1 − p < q < 1 that Tρ(q) =

TESp(q) = 1. As Tρ is also left-continuous (Lemma A.3), ρ must be prudent by Theorem 3.2. �

Remark 6.2. Recall from Theorem 3.2 that a DRM is prudent if and only if it is tail-relevant.

The characterization nevertheless deviates from and generalizes [31, Theorem 2] because the DRMs

considered are not necessarily coherent.

We are now ready to identify large sets of prudent DRMs containing a minimal element which turns

out to be an ES, thereby complementing the already mentioned [31, Theorem 2].

Corollary 6.3. Let 0 < p ≤ 1 and set

(i) Re(p) to be the set of prudent DRMs with respect to an exact capacity satisfying nt(ρ) ≥ p;

(ii) Rc(p) ⊂ Re(p) the subset of prudent CCDs;



16 M. AMARANTE AND F.-B. LIEBRICH

(iii) Rs(p) ⊂ Re(p) the subset of spectral risk measures.

Then ESp is the minimal risk measure in any of the sets Re(p), Rc(p), and Rs(p).

The next lemma leverages our results to infer another alternative formula for the index of nontriviality.

This characterization is dual and identifies nt(ρ) to be the maximal P-probability of null events of

elements in the anticore of Tρ ◦ P.

Lemma 6.4. Let ρ : L∞ −→ R be a DRM with associated exact capacity. Then

nt(ρ) = sup{P(N) | N ∈ F and q(N) = 0 for some q ∈ acore(v)}. (6.1)

For a CCD with backbone q∗, we have

nt(ψq∗) = sup{P(N) | N ∈ F and q∗(N) = 0}. (6.2)

Proof. No matter whether v is exact or ρ is a CCD, let q ∈ acore(v) and N ∈ F be such that

q(N) = 0. Then 1 ≥ Tρ(1 − P(N)) = v(N c) ≥ q(N c) = 1, meaning that 1 − nt(ρ) ≤ 1 − P(N), or

equivalently, P(N) ≤ nt(ρ). This shows the estimate “≤” in both (6.1) and (6.2).

In order to show the converse inequality in (6.1), recall from Proposition 3.6(2) that

nt(ρ) = 1− inf{p ∈ (0, 1] | Tρ(p) = 1}.

Let 0 ≤ q < nt(ρ), which entails that Tρ(1− q) = 1. Select N ∈ F with P(N) = q. Then

max
q∈acore(v)

q(N c) = v(N c) = Tρ(1− q) = 1,

implying that q(N c) = 1 for some q ∈ acore(v). In total,

q ≤ sup{P(N) | N ∈ F and q(N) = 0 for some q ∈ acore(v)}.

As this estimate holds for all q < nt(ρ), we obtain the same bound for the index of nontriviality. This

shows the desired formula (6.1) in case v is exact.

Now consider the coherent case and suppose q∗ is a backbone of ρ. One readily verifies that

T ′ρ|(1−nt(ρ),1) ≡ 0. Abbreviating Z := dq∗

dP , we may select a random variable U ∈ U such that

Z = F−1
Z (U) = T ′ρ(1 − U) ([18, Lemma A.32]). Moreover, we can find a vanishing sequence

(Bn)n∈N ⊂ F of events such that the pure charge ξ in the Yosida-Hewitt decomposition of q∗ satisfies

ξ(Bc
n) = 0, n ∈ N. Then

q∗({U < nt(ρ)} ∩Bc
n) = E

[
T ′ρ(1− U)1{U<nt(ρ)}∩Bcn

]
= 0, n ∈ N.

In total,

sup{P(N) | q∗(N) = 0} ≥ sup
n∈N

P
(
{U < nt(ρ)} ∩Bc

n

)
= nt(ρ).

This concludes the proof of (6.2). �

Using Lemma 6.4, we arrive at a dual characterization of prudence for large classes of DRMs that

complements the results of Section 3.

Corollary 6.5. Let ρ : L∞ −→ R be a DRM with associated exact capacity v. Then the following are

equivalent:

(1) ρ is prudent.

(2) acore(v) contains some q 6≈ P.

(3) acore(v) contains a probability measure Q 6≈ P.
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If ρ is additionally coherent, then (1)–(3) are equivalent to:

(4) Each backbone q of ρ satisfies q 6≈ P.

Proof. First of all, note that the distortion function Tρ is left-continuous both if v is exact and

submodular. Thus, by Proposition 3.6, ρ is prudent if and only if nt(ρ) > 0. Together with (6.1),

this immediately shows that (1) and (2) are equivalent, implied by (3), and equivalent to (4) if ρ is

coherent. Thus, it suffices to show that (2) implies (3) in the following.

Let q ∈ acore(v) be such that q 6≈ P. Then the coherent DRM ψq is prudent and dominated by ρ:

ψq ≤ ρ. By Proposition 6.1, there is 0 < p < 1 such that ESp ≤ ψq ≤ ρ. For any probability measure

Q� P satisfying P(dQ
dP = 1

1−p) = 1− P(dQ
dP = 0) (and thereby necessarily also satisfying Q 6≈ P),

EQ[·] ≤ ESp ≤ ρ,

which means that Q ∈ acore(v). �

We conculde this section with an implication our results have for convex law-invariant functionals

ϕ : L∞ −→ R. More precisely, we give a sufficient dual condition under which ϕ is l.s.c. with respect

to convergence in distribution. To this end, recall the definition of the convex conjugate ϕ∗ in the

context of Theorem 5.3.

Corollary 6.6. For a monotone and convex law-invariant functional ϕ on L∞ define

M := {µ ∈ dom(ϕ∗) | µ 6≈ P} and M? :=M∩ ca.

Then, for all X ∈ L∞,

sup
µ∈M

( ∫
X dµ− ϕ∗(µ)

)
= sup

ζ∈M?

( ∫
X dζ − ϕ∗(ζ)

)
.

Moreover, ϕ is l.s.c. with respect to convergence in distribution at X satisfying

ϕ(X) = sup
µ∈M

( ∫
X dµ− ϕ∗(µ)

)

Proof. In this proof, we define ψµ for an arbitrary µ ∈ ba+ in complete analogy with (4.1). By

definition, M? ⊂ M, and the latter set is nonempty if the former is nonempty. In that case,

supµ∈M
( ∫

X dµ − ϕ∗(µ)
)
≤ supζ∈M?

( ∫
X dζ − ϕ∗(ζ)

)
. Now assume that we can choose µ ∈ M.

If µ = 0, then also µ ∈ M?. If µ 6= 0, we may consider the probability charge q := µ(Ω)−1µ. By

Corollary 6.5, ψq is prudent. Let (Tn)n∈N be the sequence of continuous distortion functions defined

in the proof of Lemma 5.2 approximatiung Tψµ . Moreover, there is n0 ∈ N such that n ≥ n0 implies

Tn(x) = 1 for all 1 − nt(ϕ) < x ≤ 1. As observed in that proof, the associated DRMs ψn satisfy

ψn ≤ ψq and are generated by countably additive backbones Qn. By Corollary 6.5, for all n ≥ n0,

Qn 6≈ P. We infer that every probability measure Q′ in the set

Q =
⋃
n≥n0

{
Q′ � P | dQ′

dP
d
= dQn

dP

}
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satisfies, n ∈ N being appropriately chosen,

ϕ∗(µ(Ω)Q′) = sup
X∈L∞

(
µ(Ω)ψn(X)− ϕ(X)

)
≤ sup

X∈L∞

(
µ(Ω)ψq(X)− ϕ(X)

)
= sup

X∈L∞

( ∫
X ′ dµ− ϕ(X ′)

)
= ϕ∗(µ).

Hence, {µ(Ω)Q′ | Q′ ∈ Q} ⊂M? and

sup
ζ∈M?

( ∫
X dζ−ϕ∗(ζ)

)
≥ sup

Q′∈Q

(
µ(Ω)EQ′ [X]−ϕ∗(µ(Ω)Q′)

)
≥ sup

n∈N
µ(Ω)ψn(X)−ϕ∗(µ) ≥

∫
X dµ−ϕ∗(µ).

Taking the supremum over all µ ∈M on the right-hand side finishes the proof of the desired identity.

Now suppose that X ∈ L∞ is such that ϕ(X) = supq∈M
( ∫

X dq − ϕ∗(q)
)
. Applying Corollary 6.5

and Theorem 3.2 if µ 6= 0, each functional

X 7−→ sup

X′
d
=X

∫
X dµ− ϕ∗(µ)

is l.s.c. with respect to convergence in distribution. We can thus express ϕ(X) as the evaluation of

the hull of a family of functionals that are all l.s.c. with respect to said convergence, which in turn

transfers to ϕ. �

Example 6.7. Suppose ρ is a convex and law-invariant monetary risk measure on L∞ for which{
Q� P | dQ

dP ∈ L
∞} ⊂ dom(ρ∗)

and for which ρ∗ is continuous on the former set with respect to total variation. One may think of

the entropic risk measure as an example here. Then Corollary 6.6 applies and ρ is l.s.c. with respect

to convergence in distribution.

7. No reward for concentration

The previous section characterizes the Expected Shortfall as the minimal element in large classes

of prudent DRMs. At first blush, this characterization is very different from the one provided by

Wang & Zitikis [43]. The scope of this section is to link the two characterizations, which requires

to take into account the fourth axiom considered for the Expected Shortfall in [43]: no reward for

concentration. In particular, we shall give an alternative proof of the key part of the Wang-Zitikis

axiomatisation of the ES, offering a complementary approach.

Recall that [43] characterizes ESp, 0 < p < 1, as the unique functional ρ : L1 −→ R satisfying ρ(1) = 1,

monotonicity, law invariance, prudence, and:

No reward for concentration (NRC): There is an event A ∈ F satisfying 0 < P(A) < 1

such that, for all X,Y ∈ L1 sharing the tail event A,

ρ(X + Y ) = ρ(X) + ρ(Y ).5

We first consider the combination of monotonicity, law invariance, and NRC. Functionals with this

properties have been characterized in [43] by combining Proposition 4 and Lemma A.2 therein. Our

approach is different though and based primarily on the observation that such functionals (up to

5 A being a tail event of X and Y means that there are α, β ∈ R such that X1A ≥ α1A, X1Ac ≤ α1Ac , Y 1A ≥ β1A,
and Y 1Ac ≤ β1Ac .
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scaling) are DRMs whose distortion function is of very special shape — it has to be piecewise linear

and must consist of two pieces only.

Proposition 7.1. Suppose a law-invariant, monotone functional ρ : L∞ −→ R satisfies ρ(1) = 1 and

offers NRC with tail event A. Then ρ is a DRM whose distortion function Tρ is given by

Tρ(x) =

{
γx x ≤ P(A)

γP(A) + δ(x− P(A)) x > P(A).

The constants γ, δ ≥ 0 satisfy

(γ − δ)P(A) = 1− δ. (7.1)

Proof. In a first step, we prove ρ is a Choquet integral with respect to a P-distortion. To this effect,

it suffices to prove that ρ is comonotonic additive. Let p := P(A) ∈ (0, 1) and select random variables

U1 : A −→ R and U2 : Ac −→ R such that P(·|A) ◦ U−1
1 is a uniform distribution over (0, p), while

P(·|Ac) ◦ U−1
2 is a uniform distribution over (p, 1). The random variable Û := U21Ac + U11A is then

seen to have a uniform distribution over (0, 1). Let X,Y ∈ L1 be comonotone. Select nondecreasing

functions f, g : R −→ R such that X = f(X + Y ) and Y = g(X + Y ) ([18, Lemma 4.89]). Let U ∈ U
be such that X + Y = F−1

X+Y (U). By using the law-invariance of ρ in the second and fourth equality

below and NRC in the third, we have

ρ(X + Y ) = ρ
(
(f ◦ F−1

X+Y )(U) + (g ◦ F−1
X+Y )(U)

)
= ρ
(
(f ◦ F−1

X+Y )(Û) + (g ◦ F−1
X+Y )(Û)

)
= ρ
(
(f ◦ F−1

X+Y )(Û)
)

+ ρ
(
(g ◦ F−1

X+Y )(Û)
)

= ρ(X) + ρ(Y ).

Now that we have verified that ρ is a DRM, it remains to extract the precise shape of the associated

distortion function T := Tρ. Suppose that x, y ∈ [0, p] are such that x + y ≤ p. Fix disjoint events

B,C ⊂ A such that P(B) = x and P(C) = y. As 1C and 1B share the tail event A, NRC shows that

T (x) + T (y) = ρ(1B) + ρ(1C) = ρ(1B∪C) = T (x+ y).

Thus, T is additive on [0, p], i.e., T (x) = γx for a suitable γ ≥ 0 and all x ∈ [0, p]. Now let s, t ∈ [0, 1]

such that p+ s+ t ≤ 1. Select event D,E ⊃ A such that

P(D) = p+ s, P(E) = p+ t, P(D ∪ E) = p+ s+ t, D ∩ E = A.

By using NRC in the second equality below and comonotonic additivity in the third, we have

T (p+ t) + T (p+ s) = ρ(1D) + ρ(1E) = ρ(1D∪E + 1A) = ρ(1D∪E) + ρ(1A) = T (p+ s+ t) + T (p).

Hence, for all such choices of s, t,

T (p+ s+ t)− T (p+ s) = T (p+ t)− T (p).

which implies that, on [p, 1], T has shape

T (x) = T (p) + δ(x− p) = γp+ δ(x− p), x ∈ [p, 1],

the constant δ ≥ 0 being suitably chosen. As T (1) = 1, we infer the normalization condition γp +

δ(1− p) = 1. Rearranging this yields (7.1). �

Corollary 7.2. A law-invariant, monotone functional ρ : L∞ −→ R which offers NRC is necessarily

sub- or superadditive.
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Proof. If ρ 6= 0, we can assume without loss of generality that ρ is a DRM. Let A ∈ F be the tail event

with respect to which ρ offers no reward for concentration. By Proposition 7.1 we can distinguish

two cases.

Case 1: Tρ(P(A)) = γP(A) ≥ P(A). In this case, Tρ is concave, which means that ρ must be

subadditive.

Case 2: Tρ(P(A)) < 1. In this case, Tρ is convex, which means that the function T : [0, 1] −→ [0, 1]

defined by T (x) := 1− Tρ(1− x) is concave. Note that the dual capacity v(A) := 1− v(Ac), A ∈ F ,

is given precisely by T ◦ P. Hence,
∫
· dv is convex. Moreover, by [33, Proposition 4.12], we have for

all X ∈ L∞ that

ρ(X) =

∫
X dv = −

∫
(−X) dv,

meaning that ρ must be concave. �

For the sake of completeness, we state how the result of [43] follows seamlessly from Proposition 7.1

and the characterization of prudence given in Theorem 3.2.

Theorem 7.3. [43] Suppose a functional ρ : L1 −→ R is law invariant, monotone, and satisfies NRC

as well as prudence. Then ρ = ESp for some p ∈ (0, 1).

Proof. Let p := P(Ac) for the tail event A associated with ρ. Then ρ|L∞ is a distortion risk measure

as in Proposition 7.1. By Theorem 3.2, we find 1 − p ≤ x < 1 such that Tρ(x) = 1. In particular,

letting γ, δ as in Proposition 7.1, γ(1− p) + δ(x− 1 + p) = γ + p(δ − γ), which entails δ(x− 1) = 0.

This is possible only if δ = 0. By (7.1), γ = 1
1−p , which means that Tρ = x

1−p ∧ 1, and ρ|L∞ = ESp.

This identity is extended to all of L1 using prudence; for instance, one may apply the uniqueness

result in Corollary B.3 below. �

While rather evident at this point, it is worth recording once more how the WZ axioms imply the

more basic axioms studied in this paper and satisfied by the Expected Shortfall. Both sets of axioms

contain monotonicity and law invariance. The two together with NRC imply comonotonic additvity

(and thereby also cash-additivity); cf. Proposition 7.1. The same combination of axioms also shows

that the associated distortion function satisfies Tρ(0
+) = 0, i.e., the resulting risk measure has the

Lebesgue property. At last, the addition of prudence implies the concavity of Tρ, i.e. the subadditivity

of ρ. By Proposition 5.4. Again, prudence pins down the risk measure uniquely on L∞ given the

minimality result in Corollary 6.3. In another step, it allows to transfer all considerations from L∞

to L1. In sum, both prudence and NRC play — at least — a twofold role in the axiomatization, and

our considerations indeed disentangle them.

At last, note that by virtue of Proposition 7.1, the Expected Shortfall requires maximal capital buffers

among law-invariant risk measures offering no reward for concentration. This dual observation to the

minimality result in Corollary 6.3 demonstrates that prudence and NRC express two different types

of caution, the former expressing more conservative risk attitudes. In other words, NRC as an axioms

acts dually to prudence.

Appendix A. Auxiliary results

Lemma A.1. (2.2) gives a well-defined map ρ : L1 −→ (−∞,∞] that is additionally norm-l.s.c. and

subadditive.
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Proof. Note that Lebesgue-a.e., (φF−1
X ) ∧ 0 = φ(F−1

X ∧ 0) = φF−1
X∧0. Hence, for arbitrary 0 < α < 1,

computing the integral of the negative part of φF−1
X gives∫ 1

0
(φ(t)F−1

X (t))−dt =

∫ 1

0
φ(t)(−F−1

X∧0(t))dt

≤
∫ α

0
φ(t)(−F−1

X∧0(t))dt+

∫ 1

α
φ(t)(−F−1

X∧0(t))dt

≤ φ(α)

∫ 1

0
(−F−1

X∧0(t))dt+ |F−1
X∧0(α)|

∫ 1

0
φ(t)dt

= φ(α)E[X−] + |F−1
X∧0(α)| <∞.

This shows that ρ is well-defined and does not attain the value −∞. Next, we show L1-l.s.c. Note

first that we can instead verify the following property:

(Xn)n∈N ⊂ L1 satisfies Xn ↑ X ∈ L1 =⇒ ρ(Xn) ↑ ρ(X). (A.1)

Indeed, every norm-l.s.c. monotone functional on L1 has this property. Conversely, let (Yn)n∈N ⊂ L1

be convergent to Y ∈ L1. Select a subsequence (nk)k∈N with the following properties:

(i) limk→∞ ρ(Ynk) = lim infn→∞ ρ(Yn).

(ii)
∑

k∈N E[|Ynk − Y |] <∞.

In particular, setting Xm := infk≥m Ynk , m ∈ N, we obtain a sequence in L1 because

Y1 ≥ Xm ≥ |X| − |Xm −X| ≥ |X| −
∑
k∈N

|Ynk −X| ∈ L
1.

Moreover, Xm ↑ Y as m→∞. Consequently,

ρ(Y ) = sup
m∈N

ρ(Xm) ≤ lim
k→∞

ρ(Ynk) = lim inf
n→∞

ρ(Xn),

and (A.1) is verified to be equivalent to L1-lower semicontinuity of ρ. Now, if (Xn)n∈N ⊂ L1 satisfies

Xn ↑ X, monotone convergence implies that ρ satisfies (A.1).

We now turn to verifying subadditivity of ρ. To this end, let X,Y ∈ L1 and set Z := X + Y . By [19,

Proposition 5.1] there are nondecreasing continuous functions f, g : R −→ R such that f + g = idR, X

dominates f(Z) in convex order, and Y dominates g(Z) in convex order. In particular, f(Z), g(Z)

are comonotone. Using [7, Lemma 3.4] for the first estimate and selecting n ∈ N large enough such

that the second holds,∫ 1

0
(φ(t) ∧ n)F−1

Z (t)dt =

∫ 1

0
(φ(t) ∧ n)F−1

f(Z)(t)dt+

∫ 1

0
(φ(t) ∧ n)F−1

g(Z)(t)dt

≤
∫ 1

0
(φ(t) ∧ n)F−1

X (t)dt+

∫ 1

0
(φ(t) ∧ n)F−1

Y (t)dt

≤ ρ(X) + ρ(Y ).

Now let n→∞ on the left-hand side and use monotone convergence. �

Lemma A.2. Let v = T ◦ P be a distortion of an atomless probability measure P that satisfies

acore(v) 6= ∅. Then T is continuous at 1. In particular, if v is a submodular distortion, the distortion

function T is continuous on (0, 1].
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Proof. By [5, Corollary 3.1], T ≥ id[0,1] holds under the assumption of the lemma. For any sequence

(xn)n∈N ⊂ [0, 1] satisfying xn ↑ 1 as n→∞, we thus observe

1 ≥ sup
n∈N

T (xn) ≥ lim
n→∞

xn = 1,

which is sufficient for continuity of T at 1. If v is submodular, T is concave and thus continuous on

(0, 1]. �

Lemma A.3. Let v = T ◦ P be an exact distortion of an atomless probability measure P. Then T is

left-continuous.

Proof. By [29, Proposition 5.10], we have for the set Q of countably additive elements in acore(v)

that

v(A) = sup
Q∈Q

Q(A), A ∈ F .

Let 0 ≤ xn ↑ x ≤ 1 and suppose U ∈ U . Then

sup
n∈N

T (xn) = sup
n∈N

v({U ≤ xn}) = sup
Q∈Q

sup
n∈N

Q({U ≤ xn}) = sup
Q∈Q

Q({U ≤ x}) = v({U ≤ x}) = T (x).

This establishes left-continuity of T . �

Appendix B. Extension properties of prudent DRMs

Suppose ρ : L∞ −→ R is a prudent DRM. By the proof of Theorem 3.2, ρ is tail relevant (in the

terminology of [31]) and we find q ∈ (0, 1) such that, for all X ∈ L∞,

ρ(X) = ρ
(
X ∨VaRq(X)

)
=

∫ ∞
0

Tρ
(
P(X > x)

)
dx+

0∫
VaRq(X)∧0

(
1− Tρ

(
P(X > x)

))
dx. (B.1)

Definition B.1. For a prudent distortion risk measure ρ on L∞ and q chosen as above, we define

ρ] : L0 −→ (−∞,∞] by

ρ](X) :=

∫ ∞
0

Tρ
(
P(X > x)

)
dx+

∫ 0

VaRq(X)∧0

(
1− Tρ

(
P(X > x)

))
dx.

The following proposition demonstrates that the preceding definition canonically extends the original

ρ to all of L0 retaining all of its nice properties. This is of independent interest because the question

how to define risk measures on L0 has a long history in the literature and is treated for coherent risk

measures in [14, Section 5]. Moreover, most extension results for risk measures in the literature make

use of their dual representation and therefore have to assume convexity; cf. [20, 30]. Prudent DRMs

are not necessarily convex.

Proposition B.2. The extension ρ] is well defined, monotone, law invariant, prudent, l.s.c. with

respect to convergence in distribution, and comonotonic additive.

Proof. Step 1: ρ] does not depend on the concrete choice of a feasible q ∈ (0, 1). Indeed, suppose

two thresholds 0 < q < r < 1 satisfy (B.1). Then, for all t > 1 − r and U ∈ U , VaRr(1{U≤t}) = 1.

Hence,

Tρ(t) = ρ(1{U≤t}) = ρ
(
1{U≤t} ∨ 1

)
= ρ(1) = 1.
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Moreover, observe that for x < VaRr(X), P(X > x) > 1 − r, which entails for the function h(x) :=

1− Tρ(P(X > x)), x ∈ [0, 1], that∫ 0

VaRq(X)∧0
h(x) dx =

∫ VaRr(X)∧0

VaRq(X)∧0
h(x) dx+

∫ 0

VaRr(X)∧0
h(x) dx

=

∫ 0

VaRr(X)∧0
h(x) dx.

Step 2: For every X ∈ L0, the function h defined in Step 1 is nondecreasing, hence its integral over

the bounded domain [VaRq(X) ∧ 0, 0] is always finite. Thus, ρ](X) is well defined.

Step 3: ρ] is law invariant and monotone on L0 by definition. Its prudence is verified once we show

the stronger property of ρ] being l.s.c. with respect to convergence in distribution.

Step 4: Suppose (Xn)n∈N ⊂ L0 is a sequence such that Xn
d−→ X ∈ L0 as n→∞. By Skorokhod’s

representation, it suffices to consider the case where Xn ≤ X and Xn → X P-a.s. In particular,

left-continuity of Tρ (Theorem 3.2) ensures that, Lebesgue-a.e.,

lim
n→∞

Tρ (P(Xn > x)) = Tρ (P(X > x)) .

By [3, Theorem 11.32] and dominated convergence, we obtain for all k ∈ N that

lim inf
n→∞

∫ ∞
0

Tρ (P(Xn > x)) dx ≥ lim
n→∞

∫ k

0
Tρ (P(Xn > x)) dx =

∫ k

0
Tρ (P(X > x)) dx.

Moreover, by Step 1 and Skorokhod representation, we can select the parameter q ∈ (0, 1) such that

limn→∞VaRq(Xn) = VaRq(X). In particular, the sequence (VaRq(Xn))n∈N is bounded below by a

constant c ≤ 0. By the argument underlying Step 1 we infer for all Y ∈ {X,X1, X2, . . .} that∫ 0

VaRq(Y )∧0

(
1− Tρ

(
P(Y > x)

))
d(x) =

∫ 0

c

(
1− Tρ

(
P(Y > x)

))
d(x).

[3, Theorem 11.32] and dominated convergence again imply

lim
n→∞

∫
VaRq(Xn)∧0

(
1− Tρ

(
P(Xn > x)

))
d(x) =

∫ 0

VaRq(X)∧0

(
1− Tρ

(
P(X > x)

))
d(x).

Using the monotonicity of ρ] in the last estimate,

ρ](X) = sup
k∈N

∫ k

0
Tρ (P(X > x)) dx+

∫ 0

VaRq(X)∧0

(
1− Tρ

(
P(X > x)

))
d(x)

≤ lim inf
n→∞

∫ ∞
0

Tρ (P(Xn > x)) dx+ lim inf
n→∞

∫ 0

VaRq(Xn)∧0

(
1− Tρ

(
P(Xn > x)

))
d(x)

≤ lim inf
n→∞

ρ](Xn) ≤ lim sup
n→∞

ρ](Xn) ≤ ρ](X).

Step 5: ρ] is comonotonic additive. Let X,Y ∈ L0 be comonotonic. By [15, Proposition 4.5] we

find continuous functions f, g : R→ R such that X = f(X + Y ) and Y = g(X + Y ). By [18, Lemma

A.32], there is U ∈ U such that X + Y = F−1
X+Y (U). Set f? := f ◦ F−1

X+Y , g? := g ◦ F−1
X+Y , and note

that these two functions are left-continuous. Using [18, Lemma A.27] in the penultimate identity

f?(U ∨ q) = f
(
F−1(X + Y ) ∨VaRq(X + Y )

)
= X ∨VaRq(f(X + Y )) = X ∨VaRq(X).
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In complete analogy, g?(U ∨ q) = Y ∨ VaRq(Y ). Abbreviate Un :=
(
U ∧ (1− qe−n)

)
∨ q, n ∈ N, and

observe that

ρ](X + Y ) = ρ]
(
(X + Y ) ∨VaRq(X + Y )

)
= ρ] ((f? + g?)(U ∨ q))

Now we can use Step 4 and left-continuity of the involved functions to see that

ρ] ((f? + g?)(U ∨ q)) = lim
n→∞

ρ ((f? + g?)(Un)) = lim
n→∞

(
ρ (f?(Un)) + ρ (g?(Un))

)
.

In the last identity we have used comonotonic additivity of ρ. Invoking Step 4 again for f?,

lim
n→∞

ρ (f?(Un)) = ρ] (f?(U ∨ q)) = ρ]
(
X ∨VaRq(X)

)
= ρ](X).

Analogously, limn→∞ ρ (g?(Un)) = ρ](Y ) and the proof is complete. �

As a consequence of the preceding proposition, we may identify situations in which prudent functionals

on domains of unbounded random variables are uniquely determined by their values on L∞. More

precisely, the following result holds.

Corollary B.3. Suppose X ⊂ L0 is a lattice containing L∞. Suppose that ϕ : X → R is monotone,

law invariant, prudent, and comonotonic additive. Set ρ := ϕ|L∞. Then ρ is a prudent DRM and

ϕ = ρ]|X .

Proof. ρ is finite, monotone, comonotonic additive, law invariant, and prudent, that is, a prudent

DRM. As such, ρ] is well defined on L0. Let X ∈ X , m ∈ N, and set Y := X ∨ (−m). Observe that

Y ∧n ↑ Y a.s. Hence, limn→∞ ρ(Y ∧n) = ϕ(Y ) must hold by prudence. However, the argument from

Step 4 in the proof of the preceding proposition also shows that limn→∞ ρ(Y ∧n) = ρ](Y ). Hence, for

all (X,m) ∈ X × N, ϕ(X ∨ (−m)) = ρ](X ∨ (−m)). Now observe that Zm := (X +m)1{X<−m} ≤ 0

for all m ∈ N and Zm ↑ 0 as m → ∞. By prudence, limn→∞ ϕ(Zm) = 0 = limm→∞ ρ
](Zm). Using

comonotonic additivity,

ϕ(X) = ϕ(X)− lim
m→∞

ϕ(Zm) = lim
m→∞

ρ](X ∨ (−m)) = ρ](X)− lim
m→∞

ρ](Zm) = ρ](X).

�

One potential drawback of Corollary B.3 is that the functional must be finite-valued. Assuming

that ϕ is not only prudent, but l.s.c. with respect to convergence in distribution, we can drop this

assumption. Inter alia, we show that ρ] is the unique extension of a prudent DRM ρ to L0 retaining

all of its nice properties.

Corollary B.4. Suppose X ⊂ L0 is a lattice containing L∞. Suppose that ϕ : X → (−∞,∞] satisfies

ϕ(0) = 0, is monotone, law invariant, prudent, and comonotonic additive. Set ρ := ϕ|L∞. Then ρ is

a prudent DRM and ϕ = ρ]|X .

Proof. We first show that ρ only takes finite values. By monotonicity, it suffices to show that ϕ(x) ∈ R
holds for all x ∈ R. Indeed, for x ≤ 0, ρ(x) ≤ ρ(0) = 0. For x > 0, comonotonic additivity implies

ρ(x) = ρ(x) + ρ(−x)− ρ(−x) = ρ(0)− ρ(−x) = −ρ(−x) <∞.

Thus, ρ is finite-valued, monotone, comonotonic additive, law invariant, and prudent, and therefore a

prudent DRM. The remainder of the proof is identical to the one of Corollary B.3 up to the observation

that limn→∞ ρ(Y ∧ n) = ϕ(Y ) is established for Y bounded below by virtue of lower semicontinuity

with respect to convergence in distribution, not prudence. �
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We conclude this appendix with a more general observation, establishing sufficient conditions for

prudence of a law-invariant monotone functional being equivalent to lower semicontinuity with respect

to convergence in distribution. As anticipated in Remark 3.3, the general relation is an open question

to us.

Proposition B.5. Suppose ϕ : L∞ −→ (−∞,∞] is law invariant, monotone, and prudent, and that

one of the following additional conditions holds:

(i) ϕ has a monotone and proper extension ϕ] to all of L0.

(ii) There are a ≥ 0, b ∈ R, and p ∈ (0, 1) such that

ϕ ≥ aVaRp + b.

(iii) There is a finite measure ζ � P such that ζ 6≈ P and β ∈ R satisfying

ϕ ≥
∫
· dζ + β. (B.2)

Then ϕ is also lower semicontinuous with respect to convergence in distribution.

Proof. Suppose (Xn)n∈N ⊂ L∞ is a sequence satisfying Xn
d→ X ∈ L∞ as n→∞. We need to show

that ϕ(X) ≤ lim infn→∞ ϕ(Xn). By law invariance, we can assume the existence of U ∈ U such that

Xn = F−1
Xn

(U) −→ FX(U) = X a.s. If limn→∞ ϕ(Xn) ∈ (−∞,∞] exists, the assertion follows either

trivially or invoking prudence. In the following, we prove that lim infn→∞ ϕ(Xn) = −∞ is impossible.

Without loss, we may assume ϕ(Xn) ↓ −∞ and ‖X‖∞ ≤ ‖Xn‖∞ − 1 → ∞ for n → ∞. Set

An := {Xn > −‖X‖∞ − 1}, n ∈ N, and

Yn := −(‖X‖∞ + 1)1An − ‖Xn‖1Acn .

Then Yn ≤ Xn, i.e., ϕ(Yn) ≤ ϕ(Xn) ↓ −∞ as n→∞. If additional condition (i) holds, we can choose

a subsequence (nk)k∈N such that
∑∞

k=1 P(Acnk) <∞. Thus,

Y :=
∞∑
k=1

Ynk

is a well-defined random variable in −L0
+ satisfying Y ≤ Ynk for all k ∈ N. Hence, −∞ < ϕ(Y ) ≤

infk∈N ϕ(Ynk) = −∞, a contradiction.

If alternative (ii) holds, the sequence (Yn)n∈N satisfies

−a‖X‖∞ − a+ b = aVaRp(Yn) + b ≤ ϕ(Yn)

for all n large enough. Hence, the assumption that ϕ(Xn) ↓ −∞ has to be absurd in this case as well.

At last, suppose that (iii) holds. If ζ = 0, then ϕ ≥ 0 and a sequence constructed as above cannot exist.

The equivalence of prudence and lower semicontinuity with respect to convergence in distribution is

clear. Else, let Q := ζ(Ω)−1ζ and note that — by law invariance of ϕ — (B.2) holds if and only if

ϕ ≥ ζ(Ω)−1ψQ + β. As Q 6≈ P, ψQ is prudent by Corollary 6.5. By Theorem 3.2, there is p ∈ (0, 1)

such that ψQ ≥ VaRp. Hence,

ϕ ≥ ζ(Ω)−1VaRp + β,

and condition (ii) is satisfied. �

Example B.6. Suppose that for a convex law-invariant risk measure ρ on L∞ there is q ∈ ∆ such

that q 6≈ P and ρ∗(q) <∞. Then ρ satisfies alternative (ii) in Proposition B.5 and is prudent if and

only if l.s.c. with respect to convergence in distribution.
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