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On the basis of independent and identically distributed bivariate random vectors, where the
components are categorial and continuous variables, respectively, the related concomitants, also
called induced order statistic, are considered. The main theoretical result is a functional cen-
tral limit theorem for the empirical process of the concomitants in a triangular array setting.
A natural application is hypothesis testing. An independence test and a two-sample test are
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studies are conducted. The empirical results obtained confirm the theoretical findings.
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Revision

1. Introduction

Given that n P N is the sample size, let pX1, Y1q, . . . , pXn, Ynq be independent and iden-
tically distributed bivariate random vectors. We suppose that the random variable X1 is
categorial with values in a set Σ of cardinality m P N. For convenience, let Σ � t1, . . . ,mu
with the note that the categories are not necessarily ordinal but can be chosen arbitrary.
It is supposed that the probability that X1 takes the value 1, . . . ,m is different from
zero, respectively. In addition, we assume that the random variable Y1 takes values in R
with continuous distribution function F . Let the joint distribution of pX1, Y1q as well
as the marginal distributions of X1 and Y1 be unknown. We assume that Y1, . . . , Yn are
pair-wise distinct without loss of generality. Let R1:n, . . . , Rn:n be the ranks of Y1, . . . , Yn,

Rj:n �
ņ

l�1

1pYl ¤ Yjq, j � 1, . . . , n,

and denote by R�1
1:n, . . . , R

�1
n:n the inverse ranks of Y1, . . . , Yn such that

YR�1
1:n

  � � �   YR�1
n:n
.
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Then, the random variables

Xrj:ns � XR�1
j:n
, j � 1, . . . , n,

are called the concomitants, also called induced order statistic, of X1, . . . , Xn with respect
to Y1, . . . , Yn. In what follows, we speak shortly about the concomitantsXr1:ns, . . . , Xrn:ns.

Concomitants appear when we sort the values of X-attributes according to real-valued Y -
attributes. There is a large number of works dealing with concomitants. We refer to David
and Nagaraja [6] or Kamps [14] for an overview. Applications are given in change-point
analysis of time series, see Robins, Lund, Gallagher and Lu [18]. The authors consider a
dataset (HURDAT) which contains historic records on n � 1410 Atlantic basin cyclones.
The cyclone is described by one of m � 5 categories, which yields the X-attributes. The
Y -attributes are given by the related points in time of the cyclones. The question whether
or not there is a change-point in the cyclone category with respect to the time is treated
on the basis of the time-ordered observed cyclone categories, i.e., the concomitants. A
cumulative sum type test statistic (CUSUM) is used and the asymptotic of the test
statistic is obtained. In fact, the CUSUM test detects change-points by application to
the HURDAT dataset. Further examples for the application of concomitants are outlined
in David and Nagaraja [5], where in the first example the top k P t1, . . . , n � 1u out of
n ¥ 2 rams, as judged by their genetic make-up according to the Y -attributes, are
selected for breeding, where the X-attributes represent the quality of the wool of one
of their female offspring. These examples show the relevance of categorial attributes in
the study of concomitants. They are also topic in more theoretical works, such as in the
study of size-biased permutations, see Pitman and Tran [16], we refer to section 5.2. in
that work for short historical notes on induced order statistics. Another example is in
exchangeability theory, see Gerstenberg [12].

The unknown joint distribution of pX1, Y1q is determined by the probabilities P pX1 �
i, Y1 ¤ yq, pi, yq P Σ � R. Similar, the unknown joint distribution of X1 and F pY1q is
determined by

ρpi, tq � P pX1 � i, F pY1q ¤ tq, pi, tq P Σ� r0, 1s. (1)

The joint distribution of pX1, Y1q decomposes uniquely into the pair pF, ρq according to
P pX1 � i, Y1 ¤ yq � ρpi, F pyqq, pi, yq P Σ � R, where F corresponds to the marginal
distribution of Y1 and ρ determines the marginal distribution of X1 and the dependency
structure between X1 and Y1. In what follows we focus on inference of ρ. Later it will be
seen that interesting testing problems can be reduced to inference of ρ. For a moment,
suppose that pX1, Y1q, . . . , pXn, Ynq are our observations. For inference of ρ it would
be natural to deal with the independent and identically distributed bivariate random
vectors pXj , F pYjqq, j � 1, . . . , n. Unfortunately, these random vectors are not available
as observations since F is unknown. Estimating F with the empirical distribution function
of Y1, . . . , Yn, pFnpyq � 1

n

ņ

j�1

IpYj ¤ yq, y P R,
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yields the bivariate random vectors pXj , pFnpYjqq, j � 1, . . . , n as observations. From

pFnpYjq � Rj:n{n, j � 1, . . . , n,

rearranging according to the inverse ranks of Y1, . . . , Yn yields pXrj:ns, j{nq, j � 1, . . . , n,
as observations. These deliberations show that the concomitants contain the same infor-
mation as the bivariate random vectors pXj , pFnpYjqq, j � 1, . . . , n. For that reason, it is
reasonable to deal with the concomitants as data for inference of ρ in what follows.

Setting pNnpi, lq � ļ

j�1

1pXrj:ns � iq, i P Σ, l � 1, . . . , n,

the unknown values ρpi, tq can be consistently estimated on the basis of the concomitants
by

1

n
pNnpi, tntuq � 1

n

tntu̧

j�1

1
�
Xrj:ns � i

	
� 1

n

ņ

j�1

1
�
Xrj:ns � i,

j

n
¤ t

	
� 1

n

ņ

j�1

1pXj � i, pFnpYjq ¤ tq, pi, tq P Σ� r0, 1s.

This estimator is strong uniformly consistent in i P Σ, t P r0, 1s meaning that

sup
iPΣ,tPr0,1s

��� pNnpi, tntuq
n

� ρpi, tq
��� ÝÑ 0 almost surely as nÑ8. (2)

We define

Gnpi, tq �
?
n
� pNnpi, tntuq

n
� ρpi, tq

	
, pi, tq P Σ� r0, 1s,

and introduce the empirical process of the concomitants Gn � pGnpi, tqqpi,tqPΣ�r0,1s as
the subject of our investigation. A functional Central Limit Theorem (CLT) for the
concomitants is under consideration in Theorem 24.3.1 in Davydov and Egorov [7], but
in a very general setting. In particular, the concrete structure of the related limit processes
are not transparent there. In contrast, we present in Section 2 a functional central limit
theorem for the empirical process of the concomitants Gn, where the argumentation
in our proof is rather straightforward and use classical empirical process theory as in
Ziegler [22] and knowledge about the well-known Bahadur-Kiefer process, see Bahadur
[1]. Furthermore, we obtain the concrete distribution of the limit process in a closed form.
Thereby, we deal with a fairly general setting of triangular arrays of random variables
and by that extend the result of Davydov and Egorov [7].
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A natural application of the empirical process of the concomitants is hypothesis testing.
Consistent tests can be constructed with the help of functionals of the empirical process
of the concomitants. For that reason, limit results for those tests can be deduced from
our functional Central Limit Theorem. In Section 3, we consider the testing problem of
independence

H : @ pi, tq P Σ� R : P pX1 � i, Y1 ¤ tq � P pX1 � iqP pY1 ¤ tq,
K : D pi, tq P Σ� R : P pX1 � i, Y1 ¤ tq � P pX1 � iqP pY1 ¤ tq, (3)

as the first example for the application of our main result. Tests of independence for
partly continuous and partly categorial data are also under consideration in Genest and
Remillard [10], Genest et al. [11], Heller et al. [13], Székely, Rizzo and Bakirov [21],
Robins, Lund, Gallagher and Lu [18], and Chatterjee [4]. Noticing that

P pX1 � iq � ρpi, 1q, i P Σ,

it is clear that the testing problem is equivalent to

H : @ pi, tq P Σ� r0, 1s : ρpi, tq � tρpi, 1q, K : D pi, tq P Σ� r0, 1s : ρpi, tq � tρpi, 1q.
In particular, the testing problem can be reduced to ρ. As it is explained above, this shows
that it is reasonable to consider an independence test based on the concomitants. Similar
as above, we can estimate ρpi, 1q, i P Σ, consistently on the basis of the concomitants
Xr1:ns, . . . , Xrn:ns by

1

n
pNnpi, nq � 1

n

ņ

j�1

1pXrj:ns � iq, i P Σ.

It is easily seen that

sup
iPΣ,tPr0,1s

��� pNnpi, tntuq � t pNnpi, nqpNnpi, nq
��� ÝÑ 0 almost surely as nÑ8

holds under the null hypothesis H as well. These deliberations motivate to use the test
statistic

Tn �
1»

0

m̧

i�1

pNnpi, nq� pNnpi, tntuq � t pNnpi, nqpNnpi, nq

2

dt. (4)

Large values of Tn should be significant. We establish a simple expression for the test
statistic Tn. Under the null hypothesis, it is seen that the test statistic Tn converges
in distribution while the limit is distribution free. Using the quantiles of the limit dis-
tribution as critical values, we obtain a test which reaches the significance level and
is consistent in the limit. The focus is the application of our main result for the limit
distribution of the test statistic Tn under local alternatives. Behavior of a test statistic
under local alternatives is of interest, e.g., for efficiency deliberations, in particular for
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the Pitman-efficiency, see Serfling [20] and Puri and Sen [17], or the Volume-efficiency, see
Baringhaus and Gaigall [2]. In the finite sample case, simulations compare this test with
tests in Chatterjee [4] and Genest et al. [11] in terms of size and power. The simulation
results indicate that the test based on Tn is a serious competitor to concurring tests from
the literature.

As another example for the application of our main result, we consider a two-sample
problem in Section 4. Consider two independent samples of sizes n1, n2 P N consisting of
bivariate random vectors

pX1,1, Y1,1q, . . . , pX1,n1
, Y1,n1

q and pX2,1, Y2,1q, . . . , pX2,n2
, Y2,n2

q,

such that for each k � 1, 2 the pairs pXk,j , Yk,jq, j � 1, . . . , nk are independent and iden-
tically distributed and pXk,1, Yk,1q satisfies the properties stated above for pX1, Y1q with
continuous distribution functions Fkptq � P pYk,1 ¤ tq. Within each group we consider
the concomitants of the X-with respect to the Y -attributes,

X1,r1:n1s, . . . , X1,rn1:n1s and X2,r1:n2s, . . . , X2,rn2:n2s.

Introducing the set T of all monotonic transformations from R to R, we are interested
in the two-sample testing problem

H : DT P T @pi, tq P Σ� R : P pX1,1 � i, Y1,1 ¤ tq � P pX2,1 � i, T pY2,1q ¤ tq,
K : @T P T Dpi, tq P Σ� R : P pX1,1 � i, Y1,1 ¤ tq � P pX2,1 � i, T pY2,1q ¤ tq. (5)

Setting for k � 1, 2

ρkpi, tq � P pXk,1 � i, FkpYk,1q ¤ tq, pi, tq P Σ� r0, 1s,

it will be shown that the two-sample testing problem is equivalent to

H : @ pi, tq P Σ�r0, 1s : ρ1pi, tq � ρ2pi, tq, K : D pi, tq P Σ�r0, 1s : ρ1pi, tq � ρ2pi, tq, (6)

i.e., the testing problem can be reduced to ρ. As it is explained above, this motivates to
consider a two-sample test based on the two concomitant sequencesXk,r1:nks, . . . , Xk,rnk:nks,
k � 1, 2. With

pNk,nk
pi, lq �

ļ

j�1

1pXk,rj:nks � iq, i P Σ, l � 1, . . . , nk, k � 1, 2,

it is easily seen that

sup
iPΣ,tPr0,1s

��� pN1,n1
pi, tn1tuq
n1

�
pN2,n2

pi, tn2tuq
n2

��� ÝÑ 0 as nÑ8 almost surely as
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under the null hypothesis H. For that reason, it is reasonable to use the test statistic

Tn1,n2 �
c

n1n2

n1 � n2
sup

pi,tqPΣ�r0,1s

��� pN1,n1pi, tn1tuq
n1

�
pN2,n2pi, tn2tuq

n2

���. (7)

Clearly, large values of Tn1,n2
should indicate that the alternative K is true. It is seen

that the test statistic Tn1,n2
converges in distribution. Because the test statistic is not

distribution free, neither under the null hypothesis, nor asymptotically, an approximation
of the unknown quantiles of the distribution of Tn1,n2 is demanded. For this purpose, we
suggest a bootstrap procedure. We apply our main result and a general result of Bücher
and Kojadinovic [3] to show that the resulting bootstrap test reaches the significance
level and is consistent in the limit. Simulations investigate size and power of the test in
the finite sample case. The empirical results confirm the theoretical findings. We note
that it is possible to apply our functional Central Limit Theorem for the concomitants in
the context of other testing problems as well, for example a one-sample goodness-of-fit
problem analogously to the two-sample case.

2. Convergence of the empirical process of the
concomitants

In this section we provide a functional CLT for the empirical process of the concomitants

in the situation of triangular arrays. To be more precise, we assume that pXpnq
j , Y

pnq
j q, j �

1, . . . , n, are independent and identically distributed and pXpnq
1 , Y

pnq
1 q has properties as

stated above. We denote by X
pnq
rj:ns, j � 1, . . . , n, the concomitants. Let F pnq be the

continuous distribution function of the real-valued random variable Y
pnq
1 . Now we have

ρpnqpi, tq � P pXpnq
1 � i, F pnqpY pnq

1 q ¤ tq, pi, tq P Σ� r0, 1s,

and

Gnpi, tq �
?
n
� pNnpi, tntuq

n
� ρpnqpi, tq

	
, pi, tq P Σ� r0, 1s,

where pNnpi, lq � °l
j�1 1pXpnq

rj:ns � iq, l � 0, . . . , n. For each i P Σ we introduce the i-th

component process Gnpi, �q � pGnpi, tqqtPr0,1s which takes values in Dpr0, 1sq, that is the
Skorohod space of right-continuous real-valued functions with existing left-hand limits
defined on the unit interval r0, 1s. We identify Gn with pGnp1, �q, . . . ,Gnpm, �qq such that
Gn takes values in Dpr0, 1sqm. We equip Dpr0, 1sqm with the m-fold product topology such
that we deal with a polish space. Let Cpr0, 1sq � Dpr0, 1sq be the subset of continuous
functions. We say that a Dpr0, 1sqm-valued random variable has continuous paths if it
takes values in Cpr0, 1sqm, i.e., if all component processes have continuous paths. We call
a stochastic process G � pGpi, tqqpi,tqPΣ�r0,1s Gaussian process if for all h P N and all
pi1, t1q, . . . , pih, thq P Σ� r0, 1s the h-dimensional random vector pGpi1, t1q, . . . ,Gpih, thqq
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has a h-dimensional multivariate normal distribution. Suitable structural assumptions on
the sequence ρpnq, n P N, ensure that Gn converges in distribution to a centered Gaussian
process with continuous paths. If not otherwise specified, all convergences are meant as
nÑ8. These are usual assumptions to ensure distributional convergence of test statistics
under local alternatives, see, e.g., Section 6 and Assumption 3 in Gaigall [8], for instance.
Local alternatives are a theoretical tool, e.g., for efficiency deliberations, in particular for
the Pitman-efficiency, see Puri and Sen [17], or the Volume-efficiency, see Baringhaus
and Gaigall [2]. In Section 3, we will verify these assumptions to obtain asymptotic
properties of the test statistic of independence under local alternatives. Moreover, in
Section 4 it is also seen that the assumptions are satisfied in the context of the bootstrap
procedure considered there. Note that the assumptions include the common case of a
fixed distribution independent of n. The assumptions are given as follows.

Assumption 1. For each n P N we have a map ψpnq : Σ� r0, 1s Ñ R such that

ρpnqpi, tq � ρpi, tq � ψpnqpi, tq?
n

, pi, tq P Σ� r0, 1s, (8)

and that

a) ρpi, tq � P pX � i, U ¤ tq for some bivariate random variable pX,Uq with P pX P
Σq � 1 and U real-valued with P pU ¤ tq � t for each t P r0, 1s,

b) t ÞÑ ρpi, tq t P r0, 1s, is continuously differentiable for each i P Σ with derivative
ρ1pi, tq,

c) there is a continuous limit function ψ : Σ� r0, 1s Ñ R such that supi,t |ψpnqpi, tq �
ψpi, tq| Ñ 0.

Under Assumption 1 the sequence of bivariate random vectors pXpnq
1 , F pnqpY pnq

1 qq con-
verges in distribution to the random vector pX,Uq and ρpi, tq � P pX � i, U ¤ tq. Note
that under Assumption 1 the point-wise convergence of ρpnq to ρ holds also uniformly
over Σ� r0, 1s since this space is compact and we assume all functions being continuous.
The following is the main result of this section. We denote almost sure convergence by
a.s.Ñ , convergence in probability by

PÑ and distributional convergence by
dÑ.

Theorem 2.1. Under Assumption 1 it holds that Gn
dÝÑ G, where G is a centered

Gaussian process with continuous paths and covariance function

Cov
�
Gpi, tq,Gph, sq� � 1pi � hqρpi, s^ tq � ρpi, tqρph, sq � ρ1pi, tqρ1ph, sq�s^ t� ts

�
� ρ1pi, tq�ρph, s^ tq � tρph, sq�� ρ1ph, sq�ρpi, s^ tq � sρpi, tq�,

where pi, tq, ph, sq P Σ� r0, 1s.

A proof of Theorem 2.1 can be found in Appendix A.1.
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3. Application: Independence test

We consider the testing problem of independence (3), treated on the basis of the test
statistic (4). In fact, by splitting the integration in parts of length 1{n we obtain the
following simple expression of the test statistic

Tn � 1

6n
� 1

2
� n

3
�

m̧

i�1

ņ

j�1

pNnpi, jq2
n pNnpi, nq , (9)

useful for calculation purposes in practice. A simple consequence of our results in this
section is that under the null hypothesis of independence H it holds the following con-
vergence in distribution

Tn
dÝÑ T �

8̧

k�1

Wk

k2π2
, (10)

where Wk, k P N, is a sequence of independent χ2-distributed random variables with
m � 1 degrees of freedom. In particular, T is distribution free. For that reason, the
related asymptotic test at significance level α P p0, 1q, that is the test which rejects the
null hypothesis H if and only if Tn ¡ c, where c is the p1� αq-quantile of T , is suitable
for the treatment of the testing problem of independence. Critical values for selected m
and significance levels α, obtained by Monte-Carlo simulation with 2 � 106 replications,
where the infinite sum in (10) is truncated after 800 terms, are displayed in Table 1.

PPPPPPm
α

0.1 0.05 0.01 0.005 0.001

2 0.3477 0.4621 0.7456 0.8718 1.1654

3 0.6065 0.7473 1.073 1.2148 1.5355

4 0.8407 0.9997 1.3591 1.513 1.8565

5 1.0632 1.2378 1.6202 1.7766 2.1444

10 2.0947 2.3237 2.811 3.0081 3.4342

15 3.0731 3.3431 3.9025 4.1243 4.6125

20 4.0281 4.3308 4.9506 5.1965 5.7387

Table 1. Critical values for the implementation of the independence test.

Remark 1. Based on the full observations pX1, Y1q, . . . , pXn, Ynq it is possible to trans-
late our testing problem of independence to the multi-sample testing problem of homo-
geneity in Kiefer [15] by grouping the Y -observations with respect to the X-observations.
Among others, Kiefer [15] treat a Cramér-von Mises type test statistic. This approach
leads to an asymptotic test equivalent to the independence test. For that reason, it is pos-
sible to obtain (10) from the results in Kiefer [15]. Nevertheless, it is not obvious at first
sight that the Cramér-von Mises type test statistic introduced by Kiefer [15] is measurable
with respect to the concomitants. We emphasize that our aim in this section is to use our
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main result Theorem 2.1 not only to prove (10) but also to obtain the distributional limit
of Tn under local alternatives, hence our results can be seen as an extension of the result
of Kiefer [15] to the case of local alternatives around the hypotheses of homogeneity.

In what follows, we aim to prove distributional convergence under local alternatives for
the test statistic Tn.

3.1. Local alternatives

Now we consider a sequence of local alternatives ρpnq, n P N, which satisfies the following
structural assumption.

Assumption 2. For each n P N we have a map ψpnq : Σ � r0, 1s Ñ R as well as
p1, . . . , pm P p0, 1q with

°m
i�1 pi � 1 such that

ρpnqpi, tq � t � pi � ψpnqpi, tq?
n

, pi, tq P Σ� r0, 1s, (11)

and that supiPΣ,tPr0,1s |ψpnqpi, tq � ψpi, tq| Ñ 0 with a continuous limit function ψ : Σ �
r0, 1s Ñ R.

Note that, under Assumption 2, the independence of X
pnq
1 and Y

pnq
1 is equivalent to

ψpnqpi, tq � t � ψpnqpi, 1q for all pi, tq P Σ � r0, 1s. for that reason, we say that ρpnq

approaches independence locally iff the limiting function ψ fulfills ψpi, tq � tψpi, 1q for all
pi, tq P Σ� r0, 1s.

Our aim is to prove the distributional convergence of Tn under Assumption 2 using
Theorem 2.1. Note that Assumption 2 is stronger than Assumption 1, where the function
ρpi, tq � pit, pi, tq P Σ � r0, 1s, is differentiable with constant derivative ρ1pi, tq � pi,
pi, tq P Σ� r0, 1s. Hence we deduce directly from Theorem 2.1 the following result.

Corollary 3.1. Under Assumption 2 it is Gn
dÝÑ G, where G is a centered Gaussian

process with covariance function

Cov
�
Gpi, tq,Gph, sq� � �

1pi � hqpi � piph
� � pt^ sq, pi, tq, ph, sq P Σ� r0, 1s.

Defining the stochastic process Un � pUnptqqtPr0,1s by

Unptq �
m̧

i�1

� pNnpi, tntuq � t pNnpi, nq�2

pNnpi, nq , t P r0, 1s,

the test statistic can be rewritten as

Tn �
» 1

0

Unptqdt.
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We first prove a result about the distributional convergence for Un. Then, we use the
Karhuen-Loève expansion to prove the distributional convergence of Tn. Thereby, As-
sumption 2 is supposed.

Note that the limiting random vector pGp1, 1q, . . . ,Gpm, 1qq, that is the stochastic process
G evaluated at time t � 1, which appears in Corollary 3.1 is similar to the limit in the
classical CLT for multinomial distributions. Let

Ξ � pξpi, hqqi,h�1,...,m

be the telated covariance matrix, i.e. Ξpi, hq � 1pi � hqpi � piph, i, h � 1, . . . ,m, and

define Λ � diagpp�1{2
1 , . . . , p

�1{2
m q � Ξ � diagpp�1{2

1 , . . . , p
�1{2
m q, that is

Λ � pλpi, hqqi,h�1,...,m, λpi, hq � 1pi � hq � ?
piph, i, h � 1, . . . ,m.

Note that Λ is the covariance matrix of pGp1, 1q{?p1, . . . ,Gpm, 1q{?pmq, which is sym-
metric and positive semi-definite with rank m� 1. The eigenvalues of Λ are 0, 1, 1, . . . , 1,
hence there is a orthogonal matrix A � papi, hqqi,h�1,...,m such that

AΛAT � diagp0, 1, 1, . . . , 1q.
For each i � 1, . . . ,m let

ai � papi, 1q, . . . , api,mqqT
be the i-th column of AT . The m vectors a1, . . . , am form an orthonormal basis of Rm
and it is Λa1 � 0 and Λai � ai for each i � 2, . . . ,m. Note that for the first eigenvector

a1 � p?p1, . . . ,
?
pmqT

holds. For vectors a, b P Rm we write xa, by � °m
i�1 aibi for the euclidean scalar product.

Further we write
ψptq � �

ψp1, tq, . . . , ψpm, tq�T , t P r0, 1s,
where ψ is the limiting function from Assumption 2, and

ψptq �
�ψp1, tq?

p1
, . . . ,

ψpm, tq?
pm

	T
, t P r0, 1s.

As a application of Theorem 2.1 we obtain the following result. Proofs of the following
statements can be found in Appendix A.2.

Theorem 3.1. Under Assumption 2 it holds that

Un
dÝÑ

� m̧

i�2

�
Biptq � xai, ψptq � tψp1qy�2	

tPr0,1s
, (12)

where B2, . . . ,Bm are m � 1 independent Brownian bridges. In the case where ρpnq ap-
proaches independence locally the limiting distribution of Un is that of the sum of m� 1
independent squared Brownian bridges. In the latter case, the limiting distribution of Un
does not depend on the concrete values of p1, . . . , pm.
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Using Theorem 3.1 yields the following statement.

Theorem 3.2. Under Assumption 2 we have

Tn
dÝÑ T �

8̧

k�1

m̧

i�2

�Zk,i
kπ

� ck,i

�2

,

where Zk,i, k P N, i � 2, . . . ,m, are independent standard normal distributed random
variables and

ck,i �
» 1

0

xai, ψptqy
?

2 sinpkπtqdt� p�1qk
?

2

kπ
xai, ψp1qy, k P N, i � 2, . . . ,m.

In the case that the map t ÞÑ ψptq, t P r0, 1s, is differentiable for each i � 2, . . . ,m with

(the vector of) derivatives ψ
1ptq, t P r0, 1s, it is

Tn
dÝÑ T �

8̧

k�1

m̧

i�2

rZk,i � dk,is2
k2π2

with

dk,i �
» 1

0

xai, ψ1ptqy
?

2 cospkπtqdt, k P N, i � 2, . . . ,m.

In the case that ρpnq approaches independence locally we have

Tn
dÝÑ T �

8̧

k�1

Wk

k2π2
,

where Wk, k P N, are independent random variables, each with the same χ2-distribution
with m� 1 degrees of freedom.

Let us summarize the consequences of Theorem 3.2 for the independence test.

Corollary 3.2. The following properties of the independence test are valid.

(i) Under local alternatives of the form of Assumption 2 it is P pTn ¡ cq Ñ β with
β P rα, 1s, i.e., the test is asymptotically unbiased.

(ii) In addition to (i) it is β � α if and only if ψpnq approaches independence locally.
This holds in particular in the case ψpnq � 0, i.e., under the null hypothesis H. In
other words, the test reaches the significance level exactly in the limit.

(iii) Under any fixed alternative K it is P pTn ¡ cq Ñ 1, i.e., the test is consistent.
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3.2. Simulations

We investigate size and power of our asymptotic independence test Tn with simulations
under the null hypothesis of independence and under alternatives. The performance of
Tn is compared with the recently proposed tests in Chatterjee [4] and Genest et al. [11].
The test in Chatterjee [4], denoted by Cn in what follows, shares several features to
our test. For that reason this test is chosen as competitor. In detail, the test statistic
is also distribution free in the limit under the null hypothesis of independence and use
the asymptotic quantiles as critical values, Cn only depends on the concomitants as well,
and the test is also consistent. Beyond that, the test is asymptotically standard normal
distributed under the null hypothesis of independence. For the test in Genest et al. [11],
denoted by Sn in what follows, it is seen in Genest et al. [11] that the test has much
power, hence we included it in our simulation studies. The test is also consistent, but the
test statistic is not distribution-free, even asymptotically or under the null hypothesis of
independence. For that reason, a wild Bootstrap procedure is suggested to obtain critical
values. In addition, the complexity of Sn is high which limits the applicability of the test
for large sample sizes. We point out that the tests in Chatterjee [4] and Genest et al. [11]
are applicable for random vectors pX1, Y1q, where the components take values in the real
line. To enable the application of the tests in our situation, we consider the special case
that Σ � t1, . . . ,mu and note that our test Tn is applicable also for general categories Σ.

The simulations are based on a Monte-Carlo simulation with 10.000 replications. For
the implementation of our test Tn, critical values are obtained from from Table 1. For
the implementation of the test Cn, quantiles of the standard normal distribution are
used as critical values. For the determination of critical values for the test Sn, we use a
wild Bootstrap with 1.000 replications. Due to the complexity of this test we restrict the
simulations for Sn to sample sizes less than 200. Table 2 shows our simulation results.
The presented values are average rejection rates. We consider the case that the joint
distribution of pX1, Y1q follows a mixed-normal model, i.e., the conditional distribution
Y1|X1 � i is a normal distribution with mean µi and standard deviation σi ¡ 0, and
P pX1 � iq � pi ¡ 0, i � 1, . . . ,m. We set p � pp1, . . . , pmq, µ � pµ1, . . . , µmq, and
σ � pσ1, . . . , σmq. Note that in this model X1 and Y1 are independent if and only if
µ1 � � � � � µm and σ1 � � � � � σm. For that reason, the alternative K is valid if µ or σ
has entries which are not all the same.

For all tests Tn, Cn, and Sn, it is seen that the empirical size values tend to the significance
level and that the empirical power values tend to one as the sample size increases. In
this regard, the empirical results confirm our theoretical findings for the test Tn. For
m � 2 and m � 5, all tests Tn, Cn, and Sn keep the significance level quite well. For
m � 20, the test Tn does not keep the significance level quite well for small sample sizes
in contrast to the tests Cn and Sn. For m � 2, all tests Tn, Cn, and Sn have much
power, where the power of Tn is comparable with the power of Sn and much higher than
the power of Cn. For m � 5, the tests Tn and Sn have power, where the power of Tn
is clearly higher than the power of Sn, and Cn has little power. For m � 20, all tests
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Tn, Cn, and Sn have power, where for small sample sizes the power of Tn is little and
the power of Cn is higher than the power of Sn, for moderate sample sizes the power
of Sn is higher than the power of Cn, and for large sample sizes the test Tn gains more
power. The simulation results indicate that the sample size should be sufficiently large
compared with the number of categories to ensure a suitable quality of the test Tn in
terms of size and power. Taking the latter into account, the simulation results indicate
that the test Tn is a serious competitor to concurring tests from the literature.

4. Application: Two-Sample test

In this section we consider the two-sample testing problem (5). Proofs can be found in
Appendix A.3. Throughout this section we assume that both maps t ÞÑ ρ1pi, tq, t P r0, 1s,
and t ÞÑ ρ2pi, tq, t P r0, 1s, are continuously differentiable for all i P Σ. At first, we
show that the two-sample testing problem is equivalent to the testing problem (6), which
motivates the usage of the test statistic (7). For this purpose, we need the following
general preparatory result.

Lemma 4.1. Let h, g : RÑ R be two non-decreasing functions and let Y a real-valued

random variable with hpY q d� gpY q. Then it is hpY q � gpY q almost surely.

Finally the equivalence of the testing problems (5) and (6) follows from the following
general result.

Lemma 4.2. Let pX1, Y1q, pX2, Y2q be two bivariate random vectors where Xk takes val-
ues in an arbitrary measurable space and Yk is real valued with a continuous distribution
function Fk for each k � 1, 2. In this case the following two statements are equivalent.

(i) There exists a non-decreasing function g : RÑ R such that pX1, Y1q d� pX2, gpY2qq.
(ii) pX1, F1pY1qq d� pX2, F2pY2qq.

For each k � 1, 2 we define the process Gk,nk
� pGk,nk

pi, tqqpi,tqPΣ�r0,1s by

Gk,nk
pi, tq � ?

nk

� pNk,nk
pi, tnktuq
nk

� ρkpi, tq
	
, pi, tq P Σ� r0, 1s. (13)

Defining the stochastic process Fn1,n2
� pFn1,n2

pi, tqqpi,tqPΣ�r0,1s, by

Fn1,n2
pi, tq �

c
n1n2

n1 � n2

� pN1,n1
pi, tn1tuq
n1

�
pN2,n2

pi, tn2tuq
n2

	
, pi, tq P Σ� r0, 1s, (14)

and the map Ψ : Dr0, 1sm Ñ R by

Ψpgpi, tqpi,tqPΣ�r0,1sq � sup
iPΣ,tPr0,1s

|gpi, tq|,
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H K

m m � 2

p pp1, p2q � p0.5, 0.5q

µ pµ1, µ2q � p0, 0q pµ1, µ2q � p0, 1q

σ pσ1, σ2q � p1, 1q

Level α � 0.1 α � 0.05 α � 0.1 α � 0.05

Test Tn Cn Sn Tn Cn Sn Tn Cn Sn Tn Cn Sn

n � 25 .120 .109 .130 .058 .055 .073 .748 .397 .761 .627 .245 .660

n � 50 .109 .097 .115 .055 .052 .061 .951 .527 .953 .906 .430 .913

n � 75 .103 .090 .107 .051 .053 .055 .993 .65 .993 .983 .515 .984

n � 100 .099 .097 .101 .051 .045 .053 .998 .754 .998 .997 .635 .997

n � 200 .111 .094 .11 .055 .052 .057 1 .913 1 1 .856 1

n � 500 .104 .101 – .053 .049 – 1 .998 – 1 .995 –

n � 1000 .098 .096 – .050 .048 – 1 1 – 1 1 –

m m � 5

p pp1, . . . , p5q � p0.05, 0.1, 0.1, 0.25, 0.5q

µ µi � 0, i � 1, . . . , 5 pµ1, . . . , µ5q � p1, 0.5,�0.5, 0, 0q

σ σi � 1, i � 1, . . . , 5

Level α � 0.1 α � 0.05 α � 0.1 α � 0.05

Test Tn Cn Sn Tn Cn Sn Tn Cn Sn Tn Cn Sn

n � 25 .060 .091 .123 .023 .044 .065 .165 .118 .159 .074 .061 .088

n � 50 .084 .095 .111 .033 .046 .059 .385 .127 .191 .242 .065 .107

n � 75 .101 .094 .106 .045 .045 .054 .561 .132 .227 .416 .071 .135

n � 100 .095 .100 .105 .044 .050 .052 .702 .141 .279 .577 .076 .169

n � 200 .094 .096 .106 .045 .046 .053 .948 .157 .474 .905 .086 .319

n � 500 .102 .091 – .050 .046 – .999 .199 – .999 .117 –

n � 1000 .101 .097 – .050 .048 – 1 .235 – 1 .135 –

m m � 20

p pi � 0.05, i � 1, . . . , 20

µ µi � 0, i � 1, . . . , 20

σi � 0.5, i � 1, . . . , 5

σ σi � 1, i � 1, . . . , 20 σi � 1, i � 6, . . . , 15

σi � 1.5, i � 16, . . . , 20

Level α � 0.1 α � 0.05 α � 0.1 α � 0.05

Test Tn Cn Sn Tn Cn Sn Tn Cn Sn Tn Cn Sn

n � 25 .0 .090 .119 .0 .045 .064 .0 .227 .204 .0 .133 .104

n � 50 .023 .099 .111 .004 .049 .059 .046 .337 .330 .013 .225 .172

n � 75 .061 .095 .102 .022 .044 .052 .127 .427 .518 .055 .297 .296

n � 100 .078 .101 .106 .029 .051 .055 .191 .504 .681 .093 .375 .443

n � 200 .100 .099 .105 .046 .052 .052 .390 .712 .969 .248 .584 .899

n � 500 .090 .096 – .042 .048 – .931 .948 – .841 .900 –

n � 1000 .101 .099 – .050 .048 – 1 .997 – .999 .993 –

Table 2. Average rejection rates for our independence test Tn, the independence test Cn in Chatterjee
[4], and the independence test Sn in Genest and Remillard [10].
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the test statistic can be rewritten as

Tn1,n2 � ΨpFn1,n2q � sup
iPΣ,tPr0,1s

|Fn1,n2pi, tq|. (15)

If G � pGpi, tqqpi,tqPΣ�r0,1s is a centered Gaussian process with continuous paths and
covariance structure as given in Theorem 2.1 we write

G � GPpρq (16)

and Gn
dÝÑ GPpρq if convergence in distribution towards a GPpρq-distributed Gaussian

process holds. Application of Theorem 2.1 yields the following result.

Corollary 4.1. Under the null hypothesis H (i.e., ρ1 � ρ2 � ρ) and if n1, n2 Ñ 8
such that n1{pn1 � n2q Ñ γ P p0, 1q it is Fn1,n2

dÝÑ GPpρq.

In order to treat the two-sample testing problem with the test statistic Tn1,n2 , suitable
critical values are needed. As a consequence of Corollary 4.1 combined with the con-
tinuous mapping theorem, the test statistics Tn1,n2

converges in distribution towards

a random variable T with distribution GPpρqΨ under the null hypothesis H (i.e., if

ρ1 � ρ2 � ρ). In general, GPpρqΨ depends on the unknown distribution ρ � ρ1 � ρ2

and hence is not distribution free. To resolve this problem and to obtain suitable critical
values, a Bootstrap approach is suggested.

4.1. Bootstrap procedure

Let us define the pooled set of concomitants by

Xn1,n2
� pX1,r1:n1s, . . . , X1,rn1:n1s, X2,r1:n2s, . . . , X2,rn2:n2sq,

that is Xn1,n2 takes values in Σn1�n2 . We now explain the procedure for generating a
suitable Bootstrap sample of Xn1,n2

.

1. Independently from Xn1,n2 generate independent random variables Bk,j , Uk,j , j �
1, . . . , nk, k � 1, 2, such that each Uk,j is uniformly distributed on r0, 1s and each
Bk,j satisfies

P pBk,j � 1q � n1

n1 � n2
and P pBk,j � 2q � n2

n1 � n2
.

2. For k � 1, 2 and j � 1, . . . , nk set Ik,j � rn1 �Uk,js and Jk,j � rn2 �Uk,js and define

pXk,j �
#
X1,rIk,j :n1s, if Bk,j � 1

X2,rJk,j :n2s, if Bk,j � 2.
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3. For k � 1, 2, define the concomitants pXk,rj:nks, j � 1, . . . , nk, of the pXk,j , j �
1, . . . , nk, with respect to Uk,j , j � 1, . . . , nk, and set

pXn1,n2
� p pX1,r1:n1s, . . . , pX1,rn1:n1s, pX2,r1:n2s, . . . , pX2,rn2:n2sq.

Let pFn1,n2 be the stochastic process obtained by replacement of Xn1,n2 with pXn1,n2

in (14) and let pTn1,n2
� Ψp pFn1,n2

q be the associated statistic. Denote by Kn1,n2
the

(random) distribution function of pTn1,n2 given Xn1,n2 , that is

Kn1,n2
pxq � P

� pTn1,n2
¤ x|Xn1,n2

�
, x P R, (17)

and let K�1
n1,n2

be the inverse quantile function of Kn1,n2 . Given that α P p0, 1q is the
significance level, we suggest to use the two-sample test which rejects the null hypothesis
H if and only if Tn1,n2

¡ K�1
n1,n2

p1�αq. In general,K�1
n1,n2

p1�αq is not available in a closed
form. For that reason, K�1

n1,n2
p1�αq has to be approximated by Monte-Carlo simulation.

For this purpose, we generate B P N, where B is sufficiently large, independent Bootstrap

samples pXpbq
n1,n2 , b � 1, . . . , B, the associated statistics pT pbqn1,n2 , b � 1, . . . , B, and estimate

Kn1,n2
by

K̂B,n1,n2pxq �
1

B

B̧

b�1

I
� pT pbqn1,n2

¤ x
�
, x P R.

We state the main result of this section in advance.

Theorem 4.1. If n1, n2 Ñ8 such that

n1

n1 � n2
Ñ γ P p0, 1q and

p1� γqn1 � γn2?
n1 � n2

Ñ η P R, (18)

it follows that

(i) P
�
Tn1,n2 ¡ K�1

n1,n2
p1� αq

	
ÝÑ α under the null hypothesis H,

(ii) P
�
Tn1,n2

¡ K�1
n1,n2

p1� αq
	
ÝÑ 1 under alternatives K.

For the proof of this result, some effort is needed. We present all the necessary interim
statements and the final proof step here, the missing proof can be found in Appendix
A.3. For the rest of the section we regard the sample sizes n1 and n2 as two functions
n1, n2 : NÑ N with limnÑ8 n1pnq � 8, limnÑ8 n2pnq � 8 and

lim
nÑ8

n1pnq
n1pnq � n2pnq � γ P p0, 1q and lim

nÑ8
p1� γqn1pnq � γn2pnqa

n1pnq � n2pnq
� η P R. (19)

All limits considered in the following are as n Ñ 8. If we write nk we always mean
nkpnq for some n. Sometimes we refer to pn, n1, n2q in the sense that we understand nk
as nkpnq.
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Lemma 4.3. Suppose that the null hypothesis H is true, where the underlying joint
distribution is defined by

ρpnqpi, tq � ρpi, tq � ψpnqpi, tq?
n1

, pi, tq P Σ� r0, 1s, (20)

with a map ψpnq : Σ� r0, 1s Ñ R and that

a) ρpi, tq � P pX � i, U ¤ tq where P pX P Σq � 1 and P pU ¤ tq � t for each t P r0, 1s,
b) t ÞÑ ρpi, tq t P r0, 1s, is continuously differentiable for each i P Σ with derivative

ρ1pi, tq,
c) there is a continuous limit function ψ : Σ�r0, 1s Ñ R such that supiPΣ,tPr0,1s |ψpnqpi, tq�

ψpi, tq| Ñ 0.

Then, it holds that Fn1,n2

dÝÑ GPpρq.

In what follows we work in a particular probability space for Xn1,n2 � Xn1pnq,n2pnq,
n P N. For this purpose, we specify this special construction and prove its existence next.

Lemma 4.4. There exists a probability space pΩ,A, P q with random variables Xn1,n2
,

n P N, such that the following properties hold.

(i) limn supiPΣ,tPr0,1s | pNk,nk
pi, tnktuq{nk � ρkpi, tq| � 0 almost surely for k � 1, 2.

(ii) There exist independent centered Gaussian processes with continuous paths G1 �
GPpρ1q and G2 � GPpρ2q such that G1,n1 Ñ G1 and G2,n2 Ñ G2 almost surely.

(iii) There exists a random variable U , uniformly distributed on r0, 1s, such that U ,
Xn1,n2

, n P N, G1,G2, are independent.

Using (30) we obtain the following result.

Corollary 4.2. On the probability space constructed in Lemma 4.4 and under H, i.e.,
in the case of ρ1 � ρ2 � ρ, the process Fn1,n2 converges almost surely towards the centered
Gaussian process with continuous paths G � ?

1� γG1 �?
γG2 � GPpρq.

On the probability in Lemma 4.4 we can use the independent randomization variable U to
construct countable many Bootstrap samples ofXn1,n2

which are conditional independent

given Xn1,n2
. We write pXn1,n2

for a Bootstrap sample of Xn1,n2
and pFn1,n2

for the

stochastic process (14) on the basis of pXn1,n2 instead of Xn1,n2 . We denote by pXpbq
n1,n2 , b P

N, a (conditional independent given Xn1,n2) sequence of Bootstrap samples, and we define

by pF pbq
n1,n2 , b P N, the related stochastic process (14).

The key proposition used in the proof of Theorem 4.1 is the following.

Proposition 4.1. On the probability space in Lemma 4.4 it holds that

pFn1,n2

dÝÑ GPpγρ1 � p1-γqρ2q given Xn1,n2
almost surely.
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If in addition H holds, i.e., if ρ1 � ρ2 � ρ, then pFn1,n2

dÝÑ GPpρq given Xn1,n2
almost

surely.

Because the map Ψ is continuous and almost sure weak convergence of random probabil-
ity measures always implies weak convergence of expectations, we obtain the following
corollary from the previous proposition.

Corollary 4.3. On the probability space in Lemma 4.4 it holds thatpTn1,n2

dÝÑ GPpγρ1 � p1-γqρ2qΨ given Xn1,n2 almost surely.

On any probability space it ispFn1,n2

dÝÑ GPpγρ1 � p1-γqρ2q and pTn1,n2

dÝÑ GPpγρ1 � p1-γqρ2qΨ . (21)

In order to prove Theorem 4.1 we proceed with the following lemma.

Lemma 4.5. Under H, i.e., if ρ1 � ρ2 � ρ, it holds that�
Fn1,n2 ,

pF p1q
n1,n2

, pF p2q
n1,n2

� dÝÑ GPpρqbGPpρqbGPpρq .
Applying the map Ψ in the sense that pg, g1, g2q ÞÑ pΨpgq,Ψpg1q,Ψpg2qq yields a contin-
uous map. Hence as a direct consequence of the previous lemma we obtain the following
result.

Corollary 4.4. Under H, i.e., if ρ1 � ρ2 � ρ, it holds that�
Tn1,n2

, pT p1qn1,n2
, pT p2qn1,n2

� dÝÑ GPpρqΨbGPpρqΨbGPpρqΨ .
The following lemma is needed.

Lemma 4.6. Let T � ΨpGq � supiPΣ,tPr0,1s |Gpi, tq| with G � GPpρq. Then the map
x ÞÑ P pT ¤ xq, x P R, is continuous and strictly increasing on p0,8q.
Finally we prove the main result in this section .

Proof of Theorem 4.1. For (i) we apply Lemma 4.2 in Bücher and Kojadinovic [3].
For this purpose, it is sufficient to show that

pTn1,n2 ,
pT p1qn1,n2

, pT p2qn1,n2
q dÝÑ pT, T p1q, T p2qq

such that

(a) T, T p1q, T p2q are independent and identically distributed under H,
(b) T has a continuous distribution function under H.

For ii) we show that

(c) pTn1,n2 converges in distribution under K.

Well, (a) is Corollary 4.4, (b) is Lemma 4.6, and (c) follows from Corollary 4.3.
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4.2. Simulations

In what folows, size and power of the two-sample test is investigated via simulations.
The simulations are based on a Monte-Carlo simulation with 3.000 replications, where
the Monte-Carlo approximation of the Bootstrap critical values based on 500 replications
in each case. In the simulations, the joint distribution of pXk,1, Yk,1q follow a mixed-
normal model in the simulations, i.e., the conditional distribution Yk,1|Xk,1 � i is a
normal distribution with mean µk,i and standard deviation σk,i ¡ 0, and P pXk,1 � iq �
pk,i ¡ 0, i � 1, . . . ,m, k � 1, 2. We set pk � ppk,1, . . . , pk,mq, µk � pµk,1, . . . , µk,mq,
and σk � pσk,1, . . . , σk,mq. Empirical size and power values of the he two-sample test are
displayed in Table 3 and Table 4, respectively. It is seen that the empirical size values
of the test tent to the significance level and that and that the empirical power values
of the test tend to one as the sample size increases. The empirical results confirm the
theoretical findings.

m m � 2 m � 3 m � 5

p1 � p2 p1 � p2 � p0.5, 0.5q p1 � p2 � p0.5, 0.25, 0.25q p1 � p2 � p0.4, 0.2, 0.2, 0.1, 0.1q

µ1 � µ2 µ1 � µ2 � p0, 0q µ1 � µ2 � p0,�1, 1q µ1 � µ2 � p0, 0, 0, 0, 0q

σ1 � σ2 σ1 � σ2 � p1, 1q σ1 � σ2 � p1, 1, 1q σ1 � σ2 � p1, 2, 3, 4, 5q

n1 n2 α � 0.1 α � 0.05 α � 0.1 α � 0.05 α � 0.1 α � 0.05

25 25 0.086 0.050 0.074 0.044 0.069 0.041

50 25 0.091 0.040 0.101 0.049 0.097 0.044

50 50 0.090 0.041 0.088 0.038 0.071 0.033

100 50 0.094 0.044 0.086 0.043 0.083 0.037

100 100 0.081 0.036 0.093 0.046 0.072 0.037

500 100 0.096 0.052 0.102 0.054 0.093 0.049

1000 200 0.105 0.057 0.089 0.049 0.101 0.052

1000 1000 0.090 0.051 0.093 0.045 0.103 0.056

Table 3. Empirical size values for the two-sample test.
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m m � 2 m � 3 m � 5

p1 p1 � p0.5, 0.5q p1 � p0.5, 0.25, 0.25q p1 � p0.4, 0.2, 0.2, 0.1, 0.1q

µ1 µ1 � p0, 0q µ1 � p0,�1, 1q µ1 � p0, 0, 0, 0, 0q

σ1 σ1 � p1, 1q σ1 � p1, 1, 1q σ1 � p1, 2, 3, 4, 5q

p2 p2 � p0.3, 0.7q p2 � p0.5, 0.25, 0.25q p2 � p0.4, 0.2, 0.2, 0.1, 0.1q

µ2 µ2 � p0, 0q µ2 � p0, 0, 0q µ2 � p0, 0, 0, 0, 0q

σ2 σ2 � p1, 1q σ2 � p1, 1, 1q σ2 � p1, 1, 1, 1, 1q

n1 n2 α � 0.1 α � 0.05 α � 0.1 α � 0.05 α � 0.1 α � 0.05

25 25 0.359 0.263 0.114 0.062 0.066 0.040

50 25 0.483 0.341 0.140 0.065 0.115 0.052

50 50 0.613 0.490 0.167 0.080 0.108 0.056

100 50 0.728 0.621 0.215 0.115 0.132 0.074

100 100 0.863 0.777 0.316 0.175 0.167 0.092

500 100 0.970 0.952 0.572 0.368 0.249 0.140

1000 200 1.000 0.999 0.940 0.826 0.493 0.300

1000 1000 1.000 1.000 1.000 1.000 0.998 0.987

Table 4. Empirical power values for the two-sample test.

Appendix: Proofs

A.1. Proofs for Section 2

Proof of Theorem 2.1. Suppose without loss of generality that Y
pnq
1 has the uniform

distribution on r0, 1s, i.e., F pnqptq � t for all t P r0, 1s. In particular, ρpnqpi, tq � P pXpnq
1 �

i, Y
pnq
1 ¤ tq for all pi, tq P Σ� r0, 1s. A natural and consistent estimator for ρpnq based on

the full observations pXpnq
j , Y

pnq
j q, j � 1, . . . , n, is given by

ρ̂pnqn pi, tq � 1

n

ņ

j�1

1pXpnq
j � i, Y

pnq
j ¤ tq, pi, tq P Σ� r0, 1s.

Consider the empirical process based on the full observations

En � pEnpi, tqqpi,tqPΣ�r0,1s with Enpi, tq �
?
n
�
ρ̂pnqn pi, tq � ρpnqpi, tq�, pi, tq P Σ� r0, 1s.

Classic empirical process theory for triangular arrays yields that

En
dÝÑ E ,

where E � pEpi, tqqpi,tqPΣ�r0,1s is a centered Gaussian process with continuous paths and
covariance function

CovpEpi, tq, Eph, sqq � 1pi � hqρpi, s^ tq � ρpi, tqρph, sq, pi, tq, ph, sq P Σ� r0, 1s,
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see Ziegler [22]. Like before we write Enpi, �q, Epi, �q for coordinate processes. Let pFn be

the empirical distribution function of Y
pnq
j , j � 1, . . . , n. It is

� m̧

i�1

Enpi, tq
	
tPr0,1s

�
�?

n
� pFnptq � t

�	
tPr0,1s

dÝÑ B,

where B � pBptqqtPr0,1s is a Brownian bridge. It follows from the continuous mapping
theorem that the limiting sum process

°m
i�1 Epi, �q is a Brownian bridge.

Let Y
pnq
r1:ns   � � �   Y

pnq
rn:ns be the order statistic of Y

pnq
1 , . . . , Y

pnq
n . For each t P r0, 1s we

define the empirical t-quantile of Y1, . . . , Yn as

pQnptq � Y
pnq
rtntu:ns,

where we set Y
pnq
r0:ns � 0. In the triangular situation, both the empirical distribution

function pFn and the process of empirical quantiles pQn converge uniformly to the identity

in probability. As noted above,
?
np pFnptq � tqtPr0,1s dÑ B, where B is a Brownian bridge.

The so-called Bahadur-Kiefer process, that is the sum process
�?
np pFnptq�tq�?np pQnptq�

tq�
tPr0,1s, converges uniformly to zero in probability, i.e.,

suptPr0,1s
��?n� pFnptq � t

��?
n
� pQnptq � t

��� PÝÑ 0, (22)

see Bahadur [1] and chapter 15 and chapter 18 Shorack and Wellner [19]. As a consequence
of (22) we obtain the joint distributional convergence� ?

np pFnptq � tqtPr0,1s,
?
np pQnptq � tqtPr0,1s

	
dÝÑ pB,�Bq,

where B is a Brownian Bridge.

The proof of Theorem 2.1 is now based on the following representation of Gn involving the
empirical process based on the full observations En and the process of empirical quantilespQn. First note that for each t P r0, 1s, and j � 1, . . . , n, it holds the equivalence

pFnpY pnq
j q ¤ t ô Y

pnq
j ¤ pQnptq.

This implies

pNnpi, tntuq
n

� 1

n

ņ

j�1

1pXpnq
j � i, pFnpY pnq

j q ¤ tq

� 1

n

ņ

j�1

1pXpnq
j � i, Y

pnq
j ¤ pQnptqq

� ρpnqn pi, pQnptqq, pi, tq P Σ� r0, 1s,
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and hence

Gnpi, tq � Enpi, pQnptqq � ?
n
�
ρpnqpi, pQnptqq � ρpnqpi, tq�, pi, tq P Σ� r0, 1s. (23)

Using Assumption 1 yields for each i P Σ, t P r0, 1s

Gnpi, tq � Enpi, pQnptqq � ?
n
�
ρpi, pQnptqq � ρpi, tq�� �

ψpnqpi, pQnptqq � ψpnqpi, tq�. (24)

We first consider the third summand on the right hand side of (24). By assumption is is

suppi,tqPΣ�r0,1s |ψpnqpi, tq � ψpi, tq| Ñ 0 and ψ is continuous. Because suptPr0,1s | pQnptq �
t| PÝÑ 0 we have

suppi,tqPΣ�r0,1s
��ψpnqpi, pQnptqq � ψpnqpi, tq�� PÝÑ 0. (25)

We now investigate the first summand on the right hand side of (24) and show that

suppi,tqPΣ�r0,1s
��Enpi, pQnptqq � Enpi, tq

�� PÝÑ 0. (26)

We show (26) using the Skorokhod’s representation theorem. First note that pQn is a
Dpr0, 1sq-valued random variable witch converges in distribution to the constant iden-

tity function id. Since this limit is constant, En
dÝÑ E implies the joint convergence

pEn, pQnq dÝÑ pE , idq. Now using Skorokhod’s representation theorem we assume that the
joint convergence is almost surely. Note that convergence takes place in the topological
product space Dpr0, 1sqm � Dpr0, 1sq and that the limit pE , idq is concentrated on the
subspace of continuous functions Cpr0, 1sqm � Cpr0, 1sq. It is a well known fact that a
sequence of functions en P Dpr0, 1sq converges to some continuous function e P Cpr0, 1sq
if and only if suptPr0,1s |enptq � eptq| Ñ 0. This fact can be extended for the product

spaces Cpr0, 1sqm and Dpr0, 1sqm and hence suppi,tqPΣ�r0,1s |Enpi, tq � Epi, tq| a.s.ÝÑ 0 holds.
Triangle inequality yields

sup
pi,tqPΣ�r0,1s

��Enpi, pQnptqq � Enpi, tq
��

¤ sup
pi,tqPΣ�r0,1s

��Enpi, pQnptqq � Epi, pQnptqq��� sup
pi,tqPΣ�r0,1s

��Epi, pQnptqq � Epi, tq��.
The first summand in the upper bound is bounded by suppi,tqPΣ�r0,1s

��Enpi, tq�Epi, tq�� and
hence converges to zero almost surely. The second summand in the upper bound converges
to zero almost surely as well since E has continuous paths and suptPr0,1s | pQnptq� t| a.s.ÝÑ 0.
Hence (26) holds.

Now we investigate the second summand on the right hand side of (24). By Assumption 1
the map t ÞÑ ρpi, tq, t P r0, 1s, is continuously differentiable with derivative ρ1pi, tq for
each i P Σ. We use a first order Taylor expansion and obtain

ρpi, sq � ρpi, tq � ρ1pi, tqps� tq � rpi, t, sqps� tq, i P Σ, t, s P r0, 1s
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with

rpi, t, sq � ρpi, sq � ρpi, tq
s� t

� ρ1pi, tq, i P Σ, t, s P r0, 1s,

where we set rpi, t, tq � 0. With s � pQnptq, t P r0, 1s, we obtain

?
n
�
ρpi, pQnptqq � ρpi, tq� � �

ρ1pi, tq � rpi, t, pQnptqq� � �?np pQnptq � tq�, t P r0, 1s. (27)

Since t ÞÑ ρ1pi, tq, t P r0, 1s is continuous for each i P Σ by assumption, pt, sq ÞÑ rpi, t, sq,
t, s P r0, 1s, is continuous for each i P Σ and hence suptPr0,1s | pQnptq � t| PÝÑ 0 implies

suppi,tqPΣ�r0,1s |rpi, t, pQnptqq| PÝÑ 0 because rpi, t, tq � 0 for each pi, tq P Σ � r0, 1s. We
obtain

suppi,tqPΣ�r0,1s
��� ?n�ρpi, pQnptqq � ρpi, tq� � ρ1pi, tq?n� pQnptq � t

� ��� PÝÑ 0.

Using (22) and
?
np pFnptq � tq � °m

i�1 Enpi, tq, t P r0, 1s, we can replace
?
n
� pQnptq � t

�
with �°m

i�1 Enpi, tq in the previous equation for each t P r0, 1s and obtain

suppi,tqPΣ�r0,1s
��� ?n�ρpi, pQnptqq � ρpi, tq� �

�
� ρ1pi, tq

m̧

h�1

Enph, tq
� ��� PÝÑ 0. (28)

Combining (24), (25), (26), and (28) yields

suppi,tqPΣ�r0,1s
���Gnpi, tq � �

Enpi, tq � ρ1pi, tq
m̧

h�1

Enph, tq
���� PÝÑ 0. (29)

Because t ÞÑ ρ1pi, tq, t P r0, 1s, is continuous for all i P Σ by assumption, the map
Φ : Dpr0, 1sqm Ñ Dpr0, 1sqm, defined by.

Φpe1, . . . , emq � pg1, . . . , gmq where giptq � eiptq � ρ1pi, tq
m̧

h�1

ehptq, t P r0, 1s,

is continuous and hence En
dÑ E implies ΦpEnq dÑ ΦpEq. Combining this with (29) yields

Gn
dÝÑ G � ΦpEq �

�
Epi, tq � ρ1pi, tq

m̧

h�1

Eph, tq
	
pi,tqPΣ�r0,1s

.

It is obvious that G has continuous paths. Moreover, the finite dimensional distributions
of G are linear transformations of the finite dimensional distributions of E which are
centered Gaussian, hence G is a centered Gaussian process. Simple calculation shows
that the covariance function of G is as claimed in the theorem.
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A.2. Proofs for Section 3

Proof of Theorem 3.1. From Assumption 2 it follows that for each i P Σ, t P r0, 1s

?
n
� pNnpi, tntuq

n
� t �

pNnpi, nq
n

	
�
�
Gnpi, tq � ψpnqpi, tq

	
� t �

�
Gnpi, 1q � ψpnqpi, 1q

	
.

Combining the distributional convergence Gn
dÝÑ G from Theorem 2.1, the uniformly

convergence ψpnq Ñ ψ and the almost sure convergence

b
n{ pNnpi, nq Ñ 1{?pi, i �

1, . . . ,m, yields

� pNnpi, tntuq � t � pNnpi, nqb pNnpi, nq
	
pi,tqPΣ�r0,1s

dÝÑ
�Gpi, tq?

pi
�ψpi, tq�t�

�Gpi, 1q?
pi

�ψpi, 1q
		

pi,tqPΣ�r0,1s
.

Let W2, . . . ,Wm be independent Brownian Motions. Basic calculations show that�Gp1, �q?
p1

, . . . ,
Gpm, �q?
pm

	
d� p0,W2, . . . ,Wmq �A.

Because
°m
i�1 ψ

pnqpi, tq � 0 for all t P r0, 1s it is
°m
i ψpi, tq � 0 for all t P r0, 1s and hence

with ηiptq � xai, ψ̄ptqy for i � 2, . . . ,m and t P r0, 1s it follows that

ψptq �
�ψp1, tq?

p1
, . . . ,

ψpm, tq?
pm

	
� p0, η2ptq, . . . , ηmptqq �A, t P r0, 1s.

The orthogonality of A yields

Un �
� m̧

i�1

� pNnpi, tntuq � t � pNnpi, nqb pNnpi, nq
�2	

tPr0,1s

dÝÑ
� m̧

i�2

�
Wiptq � tWip1q � xai, ψptq � tψp1qy�2	

tPr0,1s
.

The result follows since Biptq �Wiptq � tWip1q, t P r0, 1s, is a Brownian bridge.

Proof of Theorem 3.2. Theorem 3.1 together with continuous mapping theorem yields

Tn
dÝÑ T , where

T �
m̧

i�2

» 1

0

�
Biptq � xai, ψptq � tψp1qy�2dt

with independent Brownian bridges B2, . . . ,Bm. Te distribution of T can be expressed
using the Karhuen-Loève expansion. For this purpose, consider the Hilbert space L2 �
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L2pr0, 1sq with inner product xf, gyL2 � ³1
0
fptqgptqdt, f, g P L2. An orthonormal basis is

given by ekptq �
?

2 sinpkπtq, t P r0, 1s, k P N. The well-known Karhuen-Loève expansion
for Brownian bridges yields

Bi
d�

8̧

k�1

Zk,i
kπ

ek,

where Zk,i, k P N, i � 1, . . . ,m, are independent standard normal distributed random
variables. The map t ÞÑ ψ̄pi, tq, t P r0, 1s, is continuous for each i � 1, . . . ,m by assump-
tion, hence an element of L2. The same is true for fiptq � xai, ψptq � tψp1qy, t P r0, 1s,
and hence fi �

°8
k�1 ck,iek, i � 1, . . . ,m, where

ck,i � xfi, ekyL2 �
» 1

0

xai, ψptq � tψp1qy
?

2 sinpkπtqdt, k P N, i � 2, . . . ,m,

it is

Bi � fi
d�

8̧

k�1

�Zk,i
kπ

� ck,i
�
ek, i � 2, . . . ,m,

and

T
d�

m̧

i�2

8̧

k�1

�Zk,i
kπ

� ck,i
�2
.

Partial integration and cospkπq � p�1qk yields
³1
0
t sinpkπtqdt � p�1qk 1

kπ , k P N. The

first convergence stated follows using the linearity. If ψ is differentiable we apply partial

integration to
³1
0
xai, ψptqy

?
2 sinpkπtqdt and use ψp0q � 0 to obtain the second conver-

gence stated. In the case that ρpnq approaches independence locally it holds ψptq � tψp1q,
t P r0, 1s, and hence ψ

1ptq � ψp1q, t P r0, 1s. Analogously to above we obtain

dk,i �
» 1

0

xai, ψ1ptqy
?

2 cospkπtqdt � xai, ψp1qy
?

2

» 1

0

cospkπtqdt � 0, k P N, i � 2, . . . ,m.

It follows that T
d� °8

k�1
1

k2π2

°m
i�2 Zk,i and from the fact that the sum of independent

squared standard normal distributed random variables is χ-squared distributed the last
convergence stated follows.

Proof of Corollary 3.2. First we consider the case where ψpnq approaches indepen-

dence locally. Theorem 3.2 yields that Tn
dÝÑ T , where T � °

kWk{pk2π2q with inde-
pendent random variables Wk, k P N, each with the same χ-squared distribution with
m� 1 degrees of freedom. The distribution function of the a.s. positive random variable
T is continuous and strictly increasing on p0,8q. For that reason, the p1 � αq-quantile
c is uniquely determined and P pTn ¡ cq Ñ α follows. Now we consider local alter-
natives, where ψpnq does not approach independence locally. The first convergence in

Theorem 3.2 yields that Tn
dÝÑ T 1, say, where T 1 is the sum of independent random vari-

ables, each with a continuous distribution and support p0,8q. This yields the convergence
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of P pTn ¡ cq to some β P r0, 1s. Note that the ck,i appearing in the representation of T 1

are zero for all k P N, i � 2, . . . ,m, if and only if ψpnq approaches independence locally;
hence at least one ck,i is different from zero resulting in that T 1 is stochastically strictly
larger then T which yields β ¡ α in this case. These arguments prove (i) and (ii). The
consistency of the test in (iii) for fixed alternatives follows with standard arguments.

A.3. Proofs for Section 4

Proof of Lemma 4.1. By symmetry it is sufficient to show that P phpY q   gpY qq � 0.
It is thpY q   gpY qu valid if and only if there exists y P Q such that hpY q ¤ y and
gpY q ¡ y. Union bound yields

P phpY q   gpY qq ¤
¸
yPQ

P phpY q ¤ y, gpY q ¡ yq.

For that reason, it is sufficient to show that

P phpY q ¤ y, gpY q ¡ yq � 0 for each y P R.

Let y P R be fixed and let A � thpY q ¤ yu and B � tgpY q ¤ yu such that P phpY q ¤
y, gpY q ¡ yq � P pA X Bcq holds. Because h, g are assumed to be non-decreasing it is
A � B or B � A. If A � B it follows that AXBc � H and hence

P phpY q ¤ y, gpY q ¡ yq � P pHq � 0.

If B � A it follows that

P phpY q ¤ y, gpY q ¡ yq � P pAq � P pBq.
Since hpY q and gpY q are assumed to have the same distribution it is P pAq � P pBq,
hence

P phpY q ¤ y, gpY q ¡ yq � 0.

Proof of Lemma 4.2. For k � 1, 2 let F�1
k pyq � inftx P R : Fkpxq ¥ yu, y P p0, 1q be

the inverse quantile function of Fk which is non-decreasing. Since Fk is continuous and
Yk has distribution Fk, FkpYkq follows the uniform distribution on r0, 1s. First, we show
that (ii) implies (i). Applying F�1

1 to the second components of both vectors yields

pX1, F
�1
1 pF1pY1qqq d� pX2, F

�1
1 pF2pY2qqq

Since F1pY1q follows the uniform distribution on r0, 1s the random variable F�1
1 pF1pY1qq

has the same distribution as Y1. The function h � F�1
1 � F1 is non-decreasing and hence

F�1
1 pF1pY1qq � Y1 almost surely by Lemma 4.1. This yields

pX1, Y1q d� pX2, F
�1
1 pF2pY2qqq
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and hence (i) follows by application of the non-decreasing function g � F�1
1 �F2. To show

that (i) implies (ii), let g be a non-decreasing function such that pX1, Y1q d� pX2, gpY2qq.
Applying F1 to the second components on both sides yields

pX1, F1pY1qq d� pX2, F1pgpY2qqq.

Since F1pY1q follows the uniform distribution on r0, 1s, F1pgpY2qq follows the uniform
distribution on r0, 1s as well. But F2pY2q is also uniformly distributed on r0, 1s, hence
F1pgpY2qq and F2pY2q have the same distribution. Since both F1 � g and F2 are non-
decreasing Lemma 4.1 applies and we obtain F1pgpY2qq � F2pY2q almost surely and
hence (ii).

Proof of Corollary 4.1. Since ρ1 � ρ2 � ρ we add a zero 0 � ρ� ρ and obtain

Fn1,n2 �
c

n2

n1 � n2
G1,n1 �

c
n1

n1 � n2
G2,n2 . (30)

Theorem 2.1 yields Gk,nk

dÝÑ GPpρq for k � 1, 2. The independence of G1,n1
,G2,n2

yields Fn1,n2

dÝÑ G � ?
1� γG1 � ?

γG2 where G1,G2 � GPpρq are independent. Basic
calculations yield G � ?

1� γG1 �?
γG2 � GPpρq.

Proof of Lemma 4.3. Since we can adopt the argumentation in the proof of Corollary
4.1, it is sufficient to show that G1,n1

and G2,n2
converge in distribution towards GPpρq.

This is clear for G1,n1
by Theorem 2.1 because Assumption 1 is fulfilled. For G2,n2

note
that

ρpnqpi, tq � ρpi, tq �

b
n2

n1
� ψpnqpi, tq
?
n2

, pi, tq P Σ� r0, 1s,

and because ψpnq converges uniformly towards a continuous ψ by assumption,
b

n2

n1
�ψpnq

converges uniformly towards the continuous function
b

1�γ
γ � ψ. Hence Assumption 1 is

also satisfied for G2,n2
.

Proof of Lemma 4.4. Let CpΣq be the set of all functions ρ : Σ � r0, 1s Ñ r0, 1s that
are of the form ρpi, tq � P pX � i, U ¤ tq, i P Σ, t P r0, 1s for some bivariate random
vector pX,Uq with P pX P Σq � 1 and P pU ¤ tq � t for all t P r0, 1s. For each w P Σn we

define Nw : Σ� r0, 1s Ñ r0, 1s by Nwpi, tq � 1
n

°tntu
j�1 1pwj � iq, i P Σ, t P r0, 1s. Let

M � tNw;w P Yn¥1Σnu Y CpΣq.

For ρ, ρ1 P M define dpρ, ρ1q � supiPΣ,tPr0,1s |ρpi, tq � ρ1pi, tq|. In Gerstenberg [12] it is

shown that pM,dq is a compact metric space. Considering the map pi, tq ÞÑ pNk,nk
pi, tnktuq{nk,

pi, tq P Σ � r0, 1s, k � 1, 2, as random variable with values in the compact metric space
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pM,dq, the convergences stated in (ii) hold in probability on any probability space. More-

over we have G1,n1

dÝÑ G1 � GPpρ1q and G2,n2

dÝÑ G2 � GPpρ2q. In all, since the limits ρ1

and ρ2 are constants and G1,n1 ,G2,n2 are assumed to be independent it holds the joint con-
vergence in distribution with respect to the product space M �M �Dr0, 1sm�Dr0, 1sm,
which is as a product of polish spaces also a polish space, to pρ1, ρ2,G1,G2q on any proba-
bility space. Using the Skohorod embedding theorem yields the existence of a probability
space pΩ,A, P q where all these random variables are defined and the convergence holds al-
most surely. In all, (i) and (ii) are proved. (iii) can be obtained easily by attaching uniform
randomization to the probability space, i.e., by setting pΩ�r0, 1s,AbBr0,1s, Pbunifr0, 1sq
and Upω1, ω2q � ω2.

Proof of Proposition 4.1. Let U be uniform distributed on r0, 1s independent from
Xn1,n2

and for each k � 1, 2 let Jk � rnkU s. For pi, tq P Σ� r0, 1s define

ρk,nk
pi, tq � P

�
Xk,rJk:nks � i, U ¤ t

��Xn1,n2

	
.

It holds that

ρk,nk
pi, tq �

pNk,nk
pi, tnktuq
nk

�P
�
Xk,rJk:nks � i,

tnktu

nk
  U ¤ t

��Xn1,n2

	
, pi, tq P Σ�r0, 1s,

and hence

sup
pi,tqPΣ�r0,1s

���ρk,nk
pi, tq �

pNk,nk
pi, tnktuq
nk

��� ¤ 1

nk
. (31)

By construction, the distribution of the bootstrap sample pXn1,n2
conditioned on Xn1,n2

is determined by

ρpnq � n1

n1 � n2
ρ1,n1

� n2

n1 � n2
ρ2,n2

.

We aim to apply Lemma 4.3 and to show that the sequence ρpnq fulfills the assump-
tions there almost surely. Because of (31), suppi,tqPΣ�r0,1s |ρpnqpi, tq � pγρ1pi, tq � p1 �
γqρ2pi, tqq| Ñ 0 almost surely. Moreover, t ÞÑ γρ1pi, tq � p1 � γqρ2pi, tq is continuously
differentiable for all i P Σ. It remains to show that

?
n1

�
ρpnq � rγρ1 � p1� γqρ2s

	
(32)

converges almost surely uniformly towards a continuous limit. Plugging in definitions
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yields

?
n1

�
ρpnq � rγρ1�p1� γqρ2s

	
� ?

n1

� n1

n1 � n2
ρ1,n1

� γρ1

	
�?

n1

� n2

n1 � n2
ρ2,n2

� p1� γqρ2

	
� n1

n1 � n2

�
?
n1

�
ρ1,n1 � ρ1

�� ρ1
p1� γqn1 � γn2?

n1

�

� n2

n1 � n2

c
n1

n2

�
?
n2

�
ρ2,n2 � ρ2

�� ρ2
γn2 � p1� γqn1?

n2

�
.

We consider the terms
?
nk
�
ρk,nk

� ρk
�
, k � 1, 2. From (31) it follows

sup
pi,tqPΣ�r0,1s

���?nk�ρk,nk
pi, tq � ρkpi, tq

�� Gk,nk
pi, tq

��� ¤ 1?
nk
.

It converges G1,n1 Ñ G1,G2,n2 Ñ G2 almost surely and since the upper bound in the
latter formula goes to zero, both

?
n1

�
ρ1,n1

� ρ1

� Ñ G1 and
?
n2

�
ρ2,n2

� ρ2

� Ñ G2

almost surely. The terms ρ1
p1�γqn1�γn2?

n1
and ρ2

γn2�p1�γqn1?
n2

converge by assumption on

the integer sequences, see (19). Finally we obtain the almost sure convergence of (32)
against a continuous limit function. Hence for almost all ω the sequence ρpnqpωq satisfies
the assumption needed for applying Lemma 4.3.

Proof of Lemma 4.5. Assume we are on the probability space in Lemma 4.4. We write
Lp�q for the distribution of a random element and Lp�|�q for conditional distributions. It
is

L
�
Fn1,n2

, pF p1q
n1,n2

, pF p2q
n1,n2

� � E
�
L
�
Fn1,n2

, pF p1q
n1,n2

, pF p2q
n1,n2

���Xn1,n2

		
.

Since Fn1,n2
is measurable with respect to Xn1,n2

it follows that

L
�
Fn1,n2 ,

pF p1q
n1,n2

, pF p2q
n1,n2

� � E
�
δFn1,n2

b L
� pF p1q

n1,n2
, pF p2q

n1,n2

���Xn1,n2

		
,

where δx is the Dirac measure at x. Since pF p1q
n1,n2 , pF p2q

n1,n2 are conditionally independent
given Xn1,n2

it is

L
�
Fn1,n2

, pF p1q
n1,n2

, pF p2q
n1,n2

� � E
�
δFn1,n2

b L
� pF p1q

n1,n2

���Xn1,n2

	
b L

� pF p2q
n1,n2

���Xn1,n2

		
.

Now Fn1,n2 Ñ G almost surely by assumption, see Lemma 4.2, hence δFn1,n2

dÝÑ δG

almost surely. Moreover by Proposition 4.1 it is L
� pF pbq

n1,n2

���Xn1,n2

� dÝÑ GPpρq almost

surely for b � 1, 2. The map pµ, νq ÞÑ µb ν is continuous and so

δFn1,n2
b L

� pF p1q
n1,n2

���Xn1,n2

�b L
� pF p2q

n1,n2

���Xn1,n2

� dÝÑ δG bGPpρqbGPpρq almost surely.
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In addition, it is

L
�
Fn1,n2 ,

pF p1q
n1,n2

, pF p2q
n1,n2

� � E
�
δFn1,n2

b L
� pF p1q

n1,n2

���Xn1,n2

	
b L

� pF p2q
n1,n2

���Xn1,n2

		
dÝÑ E

�
δG bGPpρqbGPpρq

	
.

and we get

L
�
Fn1,n2

, pF p1q
n1,n2

, pF p2q
n1,n2

� dÝÑ E
�
δG
�bGPpρqbGPpρq � GPpρqbGPpρqbGPpρq .

Proof of Lemma 4.6. First note that T � supiPΣ,tPr0,1sXQ |Gpi, tq| almost surely since
G � GPpρq has continuous paths. Noting that G is a centered Gaussian process and takes
values in a separable space we want to apply Corollary 1.3 together with Remark 4.1
from Gänssler, Molnár and Rost [9]. It remains to show in that G is not identically to
zero, i.e., that the variances VarpGpi, tqq differ from zero for some pi, tq P pi, tq P Σ�r0, 1s.
By assumption it is ρpi, 1q P p0, 1q for all i P Σ and hence

VarpGpi, 1qq � ρpi, 1qp1� ρpi, 1qq ¡ 0.
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[3] Bücher, A., Kojadinovic, I. (2019). A Note on conditional versus joint uncon-
ditional weak convergence in bootstrap consistency results. Journal of Theoretical
Probability 32, 1145–1165.

[4] Chatterjee, S. (2020). A new coefficient of correlation. Journal of the American
Statistical Association, 1–21.

[5] David, H.A., Nagaraja, H.N. (1998). Concomitants of Order Statistics. In Hand-
book of Statistics, Vol. 16, Balakrishnan, N., Rao, C.R. (eds.),

[6] David, H.A., Nagaraja, H.N. (2003). Order Statistics, Third Edition. Wiley.
[7] Davydov, Y., Egorov, V. (2001). Functional CLT and LIL for induced order

statistics. Asymptotic Methods in Probability and Statistics with Applications (St.
Petersburg, 1998). Stat. Ind. Technol. 333–349. Boston, MA: Birkhäuser.
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