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The paper presents a comprehensive overview of modeling and pricing cyber in-
surance including clear and easily understandable explanations of the underlying
mathematical concepts. We distinguish between three main types of cyber risks:
idiosyncratic, systematic, and systemic cyber risks. While for idiosyncratic and
systematic cyber risks, classical actuarial modeling approaches seem well-suited,
systemic cyber risks require a more sophisticated approach, e.g., based on epidemic
network models. In the context of pricing cyber insurance, interdependence issues
arise for both systematic and systemic cyber risks. In this case, classical actuarial
valuation has to be replaced by a more complex analysis, e.g., based on the concepts
of risk-neutral valuation and (set-valued) monetary risk measures.
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1. Introduction

Cyber risks constitute a major threat to companies WorldwideE] In the last years, the estimated
costs of cyber crime have continuously been increasing — from approximately USD 600 billion in
2018 to more than USD 1 trillion in 2020, cf. CSIS (2020). Consequently, the market for cyber
insurance is experiencing a strong growth providing contracts that mitigate the increasing risk
exposure. However, cyber insurance differs from other lines of business in multiple ways posing
significant challenges to insurance companies that offer cyber coverage:

e Data of cyber events and losses are scarce and typically not available in the desired amount
or granularity.

o Cyber threats are evolving dynamically in a highly non-stationary cyber risk landscape.

!For example, according to the annually published Allianz Risk Barometer (see, e.g., Allianz (2021))), cyber risk
ranges among the top three global business risks since 2016.



o Aggregate cyber risks arise due to common IT architectures or complex interconnections
that cannot easily be captured.

e The term ‘cyber’ risk itself comprises many different types of risks with different root
causes and types of impact.

Insurance companies cannot solely rely on standard actuarial approaches when modeling and
pricing cyber risks. These methods need to be complemented by novel and innovative techniques
for both underwriting and quantitative risk management. The current paper provides the
following main contributions:

(i) We provide a comprehensive overview of the state of the art of modeling and pricing cyber
insurance. In contrast to other surveys (see, e.g., Eling (2020)) that focus on a high-level
review of the literature, we present and explain the underlying mathematical concepts
and discuss their advantages and drawbacks[]

(ii) The second main contribution of the paper is a novel classification of cyber risks into three
different types: idiosyncratic, systematic, and systemic cyber risks. While the distinction
between idiosyncratic and systemic risks is common in the current cyber insurance litera-
ture (see, e.g., Zeller and Scherer (2021)), a further refinement is necessary. Systemic risk
refers to risk that arises from the interaction of the components of a system, either on a
local or on a global level.

Idiosyncratic and systematic cyber risks can be captured by classical actuarial approaches;
systemic cyber risks require different methodologies such as epidemic network models
which capture the interconnectedness of the entities. We suggest pricing techniques that
adequately incorporate interdependence for both systematic and systemic cyber risks by
combining the concepts of risk-neutral valuation and risk measures.

The paper is structured as follows. Section [2] reviews classical actuarial approaches. We
begin with an introduction to the frequency-severity approach in the context of cyber risk and
discuss how to model both idiosyncratic and systematic risks in this framework. We explain
how to capture dependence in such models. Systemic cyber risks are considered in Section
In the first part, we explain how network models capture the interconnections of entities. In
the second part, we discuss game-theoretic approaches that focus on the strategic interaction
of agents. In Section [4] we describe pricing methods for cyber insurance contracts that are
applicable in the face of idiosyncratic, systematic, and systemic risks. Section [5| discusses open
questions for future research.

2. Classical Actuarial Approaches Applied to Cyber Risks

The pricing of cyber insurance contracts as well as quantitative cyber risk management require
a sound model for the loss distribution, customized to the application purpose. While classical
actuarial premium principles are essentially related to the expected claims amount (plus a safety
loading), quantitative risk management particularly refers to extreme losses in the tail of the
distribution and their quantification in terms of risk measures such as Value at Risk or Average
Value at Risk, see Section

In actuarial mathematics, a standard model for insurance losses — used across all lines of
business — is the frequency-severity approach, also called collective risk model. For a certain
time interval [0,¢], ¢ > 0 (typically ¢ = 1 year), a collective of policyholders causes a random

2Surveys that include detailed conceptual explanations are, e.g., Béhme and Schwartz (2010), Marotta et
al] (2017), and Bohme, Laube, and Riek (2018)l In contrast to our paper, these authors focus exclusively on
a game-theoretic models. We discuss such a perspective in Section



number of claims N; (frequency) with corresponding random loss sizes Vi, s, ... (severity)
generating the total claims amount

Nz
St = Zy]', t > 0.
=1

Calculations within the frequency-severity approach typically rely on the following mathematical
assumptions (see, e.g., Mikosch (2004)):

(C1) Claims occur at arrival times 0 < 77 < Ty < .... The number of claims in the time
interval [0,t], t > 0, is defined by

New=#{j 21| T; <t},
ie., N'= (M)i>0 constitutes a counting process on [0, c0).

(C2) The jth claim arriving at time T} causes the claim size Y;. It is assumed that the sequence
(Yj)j>1 of claim sizes consists of independent and identically distributed random variables.

(C3) Claim sizes and claim numbers are assumed to be independent from each other.

In contrast to classical insurance risks, however, cyber risk is more challenging in different ways.
In particular, the standard assumptions of the frequency-severity approach as well as classical
statistical techniques are no longer applicable:

e Claims data are not available in sufficient quantity or in the required granularity.

e Technology and cyber threats are evolving rapidly, i.e., the cyber environment is highly
non-stationary.

e Cyber incidents may affect different policyholders at the same time, i.e., the typical
assumption of independence for insurance risks does not hold any longer. Moreover, there
is — in contrast to natural catastrophe risks — no simple geographical delimitation of
dependent risks.

Nonetheless, the frequency-severity approach can be customized to account for cyber risk —
at least in first proximity and for certain types of non-systemic cyber risks, which can be
subdivided into

e Idiosyncratic risks: cyber risks that occur at individual policyholders — independently
of the other firms; thus, they are subject to pooling of risk. For example, targeted/tailor
made attacks (including individual failure) on individual firms. Modeling of such incidents
highly depends on the firm’s individual characteristics.

e Systematic risks: cyber risks resulting from common vulnerabilities of the insured;
therefore, they affect different firms at the same time, e.g., due to utilization of the same
software, server, or computer system. These risks can be modeled via common risk factors.

In the frequency-severity approaches presented below, we thus explicitly distinguish between
techniques suitable for modeling idiosyncratic or systematic incidents. In the context of cyber
insurance, however, a third class of risks can be identified, namely

e Systemic risks: cyber risks resulting from being a part of a network; for example,
malware or supplier attacks.



Proper modeling of such risks goes beyond the classical framework of actuarial modeling and
requires appropriate models for networks, disease spread, and strategic interaction. Hence, we
discuss the modeling of systemic cyber risks separately in Section [3 while the pricing for all
types of cyber risks is discussed in Section [4]

To adopt the frequency-severity approach in the context of cyber risk, we consider an insurer’s
portfolio of n policyholders (firms) exposed to the considered type of cyber risk incidents. Each
firm admits an individual risk profile characterized by a vector of covariates, e.g., industry sector,
size, IT security level, which are elicitable, for example, via a questionnaire or from public
information. Using the covariates, the insurer’s portfolio is decomposed into homogeneous
groups, labeled {1,..., K}, with covariates vector z* for group k. We denote by ny, k =
1,..., K, the number of firms in group k, i.e., n; + ...+ nx = n. For pricing purposes, these
homogeneous groups can be viewed as tariff cells, i.e., the insurance firm should charge all firms
within group k the same premium 7. In particular, if ng is large, then the premium of the
idiosyncratic cyber risk can be derived from the law of large numbers as the expected claims
amount per firm of group k plus a suitable safety loading to avoid ruin in the long run.

Both idiosyncratic and systematic incidents can be grouped into different cyber risk categories,
labeled {1,...,C}. Categories may include, for example, data breach, fraud, and business
interruption. Two exemplary actuarial classification approaches are sketched and discussed
in Appendix Cyber risk is modeled per risk category ¢ € {1,...,C} and per group k €
{1,...,K}. A pair m := (c, k) is called a cyber risk module. The total number of modules C' - K
is a trade-off between homogeneity and availability of data for statistical estimation.

Within this framework, we model the losses for an insurance company — for each and every
cyber risk module as well as on an aggregate level. For this purpose, we first focus on frequency-
severity based approaches to modeling cyber risks in the spirit of the classical collective risk
model. Second, we add dependence to our cyber risk model in order to capture accumulation
risks. Note that appropriate dependence modeling is particularly important for calculating
capital requirements in quantitative risk management, since the underlying risk measures refer
to events in the extreme tail of the loss distribution.

2.1. Frequency and Severity

A frequency-severity model may be applied on the level of each cyber risk module m = (¢, k).
For simplicity, we describe the losses per risk category of individual firms by a collective risk
model. This can be justified as follows: Since all firms in any group are homogeneous, they
will be charged the same premium for any given risk category. From the point of view of
the insurance company, only aggregate losses are relevant, i.e., an artificial allocation of losses
to individual companies for pricing purposes will produce the correct implications. We thus
describe the losses per risk category at the level of any individual firm by a collective risk model
with the same severity as the corresponding module, but with a suitably reduced frequency.

For a firm 4 in group k and a fixed risk category c, i.e., a cyber risk module m = (¢, k), we
consider the frequency and severity model (N™? (y;'”) j>1). Then the total claims amount of
firm ¢ up to time t can easily be obtained by summing up:

R
myi m,i
SM= Y

=1

In mathematical terms, all quantities correspond to random variables on a suitable probability
space (2, F,P), where P plays the role of the statistical measure.

As outlined in the introduction of this section, one of the most common assumptions in the
frequency-severity model is assumption (C3), i.e., claim numbers and sizes are independent of
each other. This assumptions facilitates and simplifies many calculations regarding the com-
pound total claim amount process. In particular, the expected total claims amount and its



variance follow from Wald’s formulas:
E[S{™'] = EIN{™]-EDY™],  Var(87™) = EIN™] Var(D7™") + Var(A7™) (E[Y])%.

However, the independence assumption may not always be reasonable. For example, Sun, Xu,
and Zhao (2020) detect a positive nonlinear dependence between frequency and severity in
hacking breach risks on firm-level. More precisely, a firm with a strong cyber self protection
is expected to experience both less and weaker hacking attacks than companies with weak self
protection mechanisms. In mathematical terms, the authors capture this dependence between
frequency and severity by the Gumbel copula, see also Section [2.2.2]

2.1.1. Frequency

Let /\/tml denote the number of incidents in module m = (c, k) until time ¢ that are allocated
to a firm 4 in group k, and let (NV;™");>0 denote the corresponding counting process. At the
aggregate level,

ng ' K
N[99 Z/\/tmﬂ and M(C) = ZMm7agg, t>0,
i=1 k=1

will count the total number of incidents per module m = (¢, k) and the total number of incidents
per cyber risk category c, respectively.

Poisson Process A simple counting process for incidents — reflecting non-stationarity of cyber
risk — is a time-inhomogeneous Poisson process with intensity function A\ per firm for cyber
risk module m.

Definition 2.1 (Time-inhomogeneous Poisson process). A counting process (Ni)i>o is called
a time-inhomogeneous Poisson process on (2, F,IP) with locally integrable rate (or intensity)
function A : [0,00) — [0,00) if:

1. Np =0,
2. the process has independent increments,

3. for any time interval (s,t], the number of incidents is Poisson distributed with mean
[EA(w) du, ie.,

t
N; — N ~ Poiss (/ A(u) du) :

Unless the intensity function is constant, the increments of a time-inhomogeneous Poisson
process are non-stationary. The cumulative rate function f(f A(u) du corresponds to the expected
number of incidents up to time ¢.

Zeller and Scherer (2021) adopt this approach for idiosyncratic incidents. For each policy-
holder i of group k and module m = (c, k), the number of idiosyncratic incidents (N;™")¢>0 is
assumed to follow a time-inhomogeneous Poisson process with intensity X = A(©F) . Clearly,
for each cyber risk category ¢, the intensity depends on the covariates z* of group k (but not
on the individual policyholder i), and Zeller and Scherer (2021)| propose a generalized additive
model

AR (1) = exp(fe(2*) + ¢°(t))

to estimate the intensity ratesﬁ In particular, similarities and deviations of the risk profiles of
the K groups — expressed in terms of the covariate vectors 2*, k = 1,..., K — are reflected by
the intensity functions A(¢),

3The auxiliary function f additively maps the covariates, while g captures the time dependence.



Since idiosyncratic incidents are independent across firms, the total number of incidents
N9 > 0, per module m = (c, k) as well as the total number of incidents ./\ft(c), t >0,
per cyber risk category c, respectively, are again time-homogeneous Poisson processes with
respective intensities

K
X099 (1) = mp AR (2), A (1) = 3 AR (@), ¢ > 0. (1)
k=1

Cox Process More delicate, however, is the case of systematic cyber risk incidents. In partic-
ular, frequency distributions of different policyholders might be subject to dependencies due to
joint underlying cyber risk factors Rq,...,Rg4, representing for example commonly used soft-
ware that could be exploited. Such dependencies between counting processes can be captured
in the context of Cox processes, also called doubly stochastic Poisson processes, extending the
notion of a time-inhomogeneous Poisson process to a random intensity.

Definition 2.2 (Cox process). A Cox process (Ni)i>0 is a counting process described by a
random intensity process (At)i>0 such that conditional on the specific realization t — A\¢(w),
w € Q, the process (Ny)i>0 is a time-inhomogeneous Poisson process with intensity t — A(t) =
)\t (w)

A reasonable assumption could be that the intensity is a function of the current state of the
cyber risk factors, i.e., for an R%valued stochastic process Ry = (R},...,R{), t > 0, of cyber
risk factors and a function X : RY — [0, 00), the intensity process is defined as

A(w) = A(Re(w)), t>0,we.

More generally, the intensity process could be modeled as a function of the whole history of
cyber risk factors, i.e.,

AMw) = ARy(w) :u<t), t>0,we.

In sum, in the case of systematic cyber risk, a reasonable model for the number of inci-
dents J\/tmz up to time ¢ per module m and policyholder ¢ of group k could be assuming
that (NV)™")i>0 follows a Cox process with intensity process A" = A\™(R;), ¢ > 0, defined
in terms of a suitable function X : R¢ — oo, such that conditional on the cyber risk factors
t = Ri(w) = (RHW), ..., REw)) the counting processes (N;™");>0, m = (¢,k), c = 1,...,C,
k =1,...,K, are independent time-inhomogeneous Poisson processes. In particular, condi-
tional independence implies that — conditional on the specific realization t — A" (w) — the total
number of incidents A", ¢ > 0, per module m = (¢, k) and the total number of incidents
M(C), t > 0, per cyber risk category c are again time-inhomogeneous Poisson processes with
intensities

K
N =N = S, =0
k=1

in analogy to (|1)).

In contrast to the time-inhomogeneous Poisson process, the increments of a Cox process
(Mi)i>0 are in general no longer independent, but subject to autocorrelation. More precisely,
for any s < t < u < v, the tower property of conditional expectation implies

t v
Cov(Ny — Ns, Ny — Ny) = Cov </ Az dz,/ Az dz) ,

i.e., the autocorrelation depends on the random intensity process. Statistical analyses of Bessy-
Roland, Boumezoued, and Hillairet (2021) yield empirical evidence for autocorrelation in the
number of attacks, and thus provide an additional reasoning for using Cox processes when
modeling claims frequency. However, the specification of the intensity process to reproduce
empirical autocorrelation is challenging.



Hawkes Process To cope with the stylized fact of autocorrelation between the number of
cyber attacks, Bessy-Roland, Boumezoued, and Hillairet] (2021 )|focus on the class of self-exciting
Hawkes processes.

Definition 2.3 (Hawkes process). A one-dimensional Hawkes process (Ni)¢>o is a point process
with jump times 11, T, ... and with random intensity t — A\, given by

M= plt) + Y ot = T) =)+ [ plt - w) NG,

Th<t [Ovt)

where p(-) is a baseline intensity of jumps, and where @ is the excitation function or kernel
function resp. which expresses the positive influence of past incidents at time T,, on the current
value of the intensity.

From a conceptual point of view, Hawkes processes allow to capture — besides autocorrelation
of the number of cyber risk incidents — excitation effects, by coupling the arrival rate of events
with the number of past incidents. In particular, this allows modeling systematic incidents
that affect a very large number of counterparties at the same time, e.g., exploits of widely used
software such as Windows or MacOS.

Self-excitation of cyber incidents for each policyholder as well as the excitation between pol-
icyholders of different groups can be modeled by a multivariate Hawkes model. More precisely,
for all cyber risk modules m = (c, k) and for any policyholder i of group k, the intensity of the
counting process (N;"");>o takes the form

K mny

A§C7k7i) _ u(c,k) (t) + Z Z Z go,i’f’l(t _ TT(LC,I,]'))’

. 1,5

o t i plek) (t) is the deterministic base intensity function, depending on the cyber risk
module m = (¢, k) only,

o t— gof]kl(t) are self- and mutually-exciting maps (called kernels), depending on both the

cyber risk module m = (¢, k), the other group [ and the individual policyholders i, 7,

e and TT(LC’l’j ), n € N, are the claims arrival times of policyholder j in group [ with respect
to the cyber risk category c.

In this multivariate Hawkes model, the kernels goflk 'k Jescribe the self-excitation for policy-

holder ¢ of group k, while the (pfjkl for different policyholders ¢ # j model contagion between
policyholders and across groups.

Using suitable parametric functions for the kernels cpi’f’l, both the baseline intensity and the
kernels can in principle be estimated by the Maximum-Likelihood method — provided that data
is available in the desired amount and granularity.

2.1.2. Severity

Every claim occurring in the frequency-severity model triggers a loss size that is modeled as a
random variable. The key governing parameter for the choice of the claim size distribution is
the incident category c; characteristics of group k then determine distributional details, e.g.,
parameter values. Let y;”“ denote the claim size of the jth event allocated to firm i for module



m = (¢, k). We assume that (yj’.”vi)jZM i=1,...,ng,is a collection of non-negative independen
and identically distributed random variables.

Due to the limited availability of loss data, empirical research on cyber risk severity distri-
butions has mostly focused on the category of data breaches. For this category, open source
data bases, such as the Privacy Rights Clearinghouse Chronology of Data Breaches, are avail-
able and regularly updated. Data breach severities are found to follow strongly heavy-tailed
distributions such as power-law (see, e.g., Maillart and Sornette (2010)), log-normal (see, e.g.,
Edwards, Hofmeyr, and Forresti (2016)|) or generalized Pareto distributions (GPD) (see, e.g.,
Wheatley, Maillart, and Sornette (2016)|or Sun, Xu, and Zhad (2020)). For cyber risk categories
different from data breaches, less data is publicly available. Consequently, fewer studies have
appeared that empirically analyzed the respective severity distributions. A noticeable excep-
tion are analyses based on operational risk data bases such as Biener, Eling, and Wirfs (2015)
or Eling and Wirfs (2019). These approaches possess the advantage of studying all categories
of cyber incidents simultaneously. In particular, Eling and Wirfs (2019)| detect distributional
differences between small and large claim size distributions for all considered cyber incident
categories. The authors thus propose a composite distribution approach, where excess losses
over a threshold are modeled using a GPD and the remaining smaller losses are modeled us-
ing a simple parametric distribution such as a gamma or log-normal distribution. In general,
composite distribution approaches constitute a flexible modeling tool to take the empirically
observed distributional differences between body and tail of severity distributions adequately
into account. A composite distribution approach can be formalized as follows.

For each module m, we choose a threshold 6 distinguishing small from large cyber claims.
Small and large claims, i.e., the body and tail of the severity distribution, are then modeled
separately: The i.i.d. claim sizes follow a composite distribution with density

G fsTltrLlall(y)a if —oo < Yy < 6m7

fym(y) == { .
I cm. f&ge(y), if ™ <y < o0,

where fi .1, flarge are probability density functions modeling the sizes of small and large claims
in module m, respectively, and C™ is a normalizing constant resulting from continuity (and
possibly also differentiability) conditions at the threshold ™. Depending on the characteristics

of the module m, different choices for f{ 11, fiaree may be suitable. Examples include
e Small Claims: PERT, Normal, Gamma, Log-Normal, Kernel Distribution, GPD
o Large Claims: GPD

The composite distribution approach is well-suited for modeling non-life insurance severity
distributions in general, and cyber risks in particularﬂ Note, however, that it is independent
of time, i.e., it provides only a snapshot of the current cyber environment. Due to the fast-
evolving, non-stationary cyber landscape, the suitability of the model needs to be regularly
checked and updated. For further details as well as summaries of other approaches to cyber
severity analyses, we refer the interested reader to the excellent summaries provided by Zeller
and Scherer (2021 )}, Section 2.1, or Eling (2020)|, in particular Table 4 and 6, and to Cooray and
Ananda (2005)|for the introduction and an application of composite distributions in a non-cyber
specific context.

4Cyber event claim sizes in a certain time interval may not always be independent; e.g., due to commonly used
cyber security measures. The resulting dependence structures could be captured by alternatively imposing
conditional independence assumptions given a set of joint underlying risk factors — similar to the idea of Cox
processes as described above.

5Sun, Xu, and Zhag (2020)| also suggest a composite distribution approach for modeling malicious hacking data
breach risk. Here, the tail of the distribution follows a GPD, and the distribution body is modeled using a
non-parametric kernel distribution. Due to both its suitability to and flexibility, a similar approach is also
incorporated in the cyber risk model of Zeller and Scherer (2021).



2.2. Dependence Modeling

The distribution of the total claims amount per module and at portfolio level is affected by the
underlying dependence structures. For cyber risk, dependencies are present in different ways
including;:

 dependence between frequency and severity of a certain cyber risk (category) distribution,
in contrast to the classical framework of frequency severity models (e.g., due to a low level
of cyber self protection of a firm),

o dependence between frequency distributions of different policyholders (e.g., due to com-
monly used software, such as Windows or MacOS, that could be exploited),

o dependence between severity distributions of different policyholders (e.g., due to com-
monly used IT security measures).

In this section, we analyze classical concepts of modeling such dependencies in a cyber risk
context.
2.2.1. Common Risk Factors and Correlation

Two of the most classical concepts used in cyber risk dependence modeling are (linear) correla-
tion and common risk factors. The (linear) correlation coefficient

Cov(X,Y)
Var(X)Var(Y)

p(X,Y) = € [-1,1]

captures a possible linear relationship between the random variables X and Y: The extreme
values of 1 and —1 indicate bivariate distributions entirely supported on an upward or down-
ward sloping line, respectively. Thus, linear correlation captures dependence on a macro-level.
Common risk factors, in contrast, model dependence for systematic risks on a micro-level. Here,
the main idea is similar to the concept behind Cox processes: There exist explicitly modeled
underlying risk factors to which all risks are jointly exposed.

Both of these classical concepts have been widely used in the cyber risk modeling literature.
For example, they are key elements of the cyber risk models proposed by Bohmg (2005), Zeller
and Scherer (2021), and Bohme and Kataria (2006). Bohme (2005 )|models dependence using one
common risk factor. This factor represents a common vulnerability in a portfolio of n individual
risks. The connection between individual risks and the latent risk factor is then modeled and
studied using linear correlation. More recently, common risk factors have also appeared in the
cyber risk model of Zeller and Scherer (2021). Here, the authors use marked point processes
with two-dimensional marks: the first component describes the strength of an attack, and the
second component represents the subset of companies affected. Dependence among firms occurs
due to the restriction of incidents to certain industry sectors. This sector-specificity is modeled
through a common Bernoulli risk factor. In Béhme and Kataria (2006), the authors observe
that different types of cyber incidents such as hacker attacks, hardware failures, viruses or
phishing attacks vary in the type of induced intra- and inter-firm dependence. Hence, Bohme
and Kataria (2006) propose a "twin-tier”’-approach modeling internal (within a firm) and global
linear correlation (across firms) separately. To be precise, Béhme and Kataria (2006) suggest
beta-binomial marginal distributions adapted to the chosen internal correlation p;y and assume
a certain dependence structure (a t-copula) between the margins with given global correlation
G-

A given linear correlation coefficient does not fully determine the dependence structure be-
tween random variables. Many dependence structures exist that are consistent with the same
linear correlation, but that may strongly differ from each other. The dependence structure of
the components of a random vector is fully determined by their copula.



2.2.2. Copulas

In actuarial applications, copulas are a standard tool for modeling dependencies. A d-dimensional
copula C : [0,1]¢ — [0,1] is the distribution function of a d-dimensional random vector with
uniform one-dimensional marginal distributions unif ([0, 1]). Copulas provide a detailed under-
standing of dependence beyond linear correlation.

Theorem 2.4 (Sklar’s Theorem). 1. For any d-dimensional distribution function F with
margins I, ..., Fy there exists a copula C with

F(z1,...,2q) =C(Fi(z1),...,Fq(xq)) for all zi,...,xq € [—00,00]. (2)

In particular, if all F; are continuous, then C is unique.

2. Conversely, for a given copula C and given one-dimensional distribution functions Fy, ..., Fy,
the function F in (@) s a d-dimensional distribution function with copula C and marginal
distribution functions Iy, ..., Fy.

Property 1 states that a copula extracts the dependence structure of a random vector from
its multivariate distribution, while property 2 provides a flexible construction principle of mul-
tivariate models by combing marginal distributions and copulas to multivariate distributions.
Prominent examples for copulas include:

« Gaussian copula: Let ®~! be the quantile function of the standard normal distribu-
tion and @y the joint cumulative distribution of a multivariate normal distribution with
covariance matrix X. Then the Gaussian copula is given by

CS(uy, ... up) = B (® Y (u), ..., 2 (up)).

o t-copula: Let ¢,y signify the distribution function of a d-dimensional ¢-distribution
tq(v,0,%) for a given correlation matrix 3 and with v degrees of freedom, and let ¢, denote
the distribution function of a univariate standard t-distribution. Then the t-copula takes
the form

CIt/,Z(ulv R 7ud) = tV,Z(t;l(ul)a s 7t;1(ud)) (ulv sy Ug € [07 1])

o Archimedean copulas: Consider a continuous function ¢ : [0,00) — [0, 1] with ¥(0) =
1, limy 0o 9(z) = 0, and 9 strictly decreasing on [0,171(0)], where 1~! denotes its
generalized inverse. The Archimedean copula with generator ¢ is given by

Co (s ) = 7 (W) + - 4 (un)).
In particular, we obtain the so-called Gumbel copula for ¥y(s) = (—1n(s))?, 6 € [1, 00).

Copulas capture dependence on a global scale — and can thus represent various kinds of
dependencies when aggregating cyber risks. For example, Herath and Herath (2011) model the
loss distribution at a single firm using a copula that captures the dependence structure between
the number of affected computers of the firm and the overall severity of the loss. Dependence
between different firms is captured using a t-copula with a given linear correlation coefficient in
Bohme and Kataria (2006 ).

For the particular incident category c¢ of hacking data breaches, Sun, Xu, and Zhao (2020)
model the dependence between frequency and severity for a single firm 7 in module m up to time
t using a Gumbel copula, i.e., their idea corresponds to the joint distribution function

Eymi s (1,9) = exp(—|(~ In(Eyons () + (= In(Eyms @)%, 6> 1,

t g J

10



for all j =1,... ,J\/'tmZ In contrast to the standard independence assumption in the collec-
tive risk model, the Gumbel copula is asymmetric and thus allows to capture the statistically
observed upper tail dependence for frequency and severity of hacking breaches.

Note, however, that fixed copulas cannot represent the dynamic interactions occurring during
systemic incidents such as cyber epidemics on the firm level. To model this interdependence
explicitly, we suggest the use of epidemic network models, as detailed in the subsequent section.
Still, as we will see, copulas also appear as parts of some of these models, e.g., of systemic
non-Markovian network models.

3. Systemic Cyber Risks

Systemic risk generally refers to the possibility that distortions in a system may spread across
many entities and be augmented due to local or global feedback effects. It is often associated
with a cascading propagation of losses such that multiple entities in a system are seriously
affected within a specific period of time. In the context of cyber risks, the following definition
was given by the World Economic Forum (see WEF| (2016))):

“Systemic cyber risk is the risk that a cyber event [...] at an individual component
of a critical infrastructure ecosystem will cause significant delay, denial, breakdown,
disruption or loss, such that services are impacted not only in the originating com-
ponent but consequences also cascade into related ecosystem components [...]”

In this section, we study systemic cyber risk models. We focus on two different approaches:
network models that capture interconnectedness and cascading propagation (Section , and
game-theoretic models that represent the strategic interaction of cyber ecosystem components
(Section [3.2)). Pricing of systemic (and non-systemic) cyber risks is considered in Section

3.1. Interconnectedness and Contagious Risk Modeling in Networks

Interconnectedness constitutes a key characteristic of cyber systems. It may trigger and amplify
cyber events. Cyber network models for contagious risk propagation consist of the following
three key components:

1. A network (also called graph) whose nodes represent components or agents. These en-
tities could be individual corporations, subsystems of computers, or single devices. The
edges of the network correspond to possible transition channels, e.g., I'T connections or
exchange of data/computer code, see Section ;

2. A spread process on the network that models the propagation of a computer virus, a
Trojan, or ransomware, see Section [3.1.2

3. A loss model which determines the severity of cyber events and the monetary impact on
different agents in the network, see Section

3.1.1. Networks

Definition 3.1 (Network). A network (or graph) G is an ordered pair of sets G = (V,€),
where V # 0 is a countable set of N elements, called nodes (or vertices), and £ is a set of pairs
(i,7), i,J € V, of different nodes, called edges (or links). If all edges in € are unordered, G is
called an undirected network. Otherwise, the network G is called directed.
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The network structure is encoded in its adjacency matriz A = (aij); jeq1,.. Ny € 10, LVXN,
which is defined by its entries

L if (i,7) € €
Yo, df () ¢ €

By definition, G is undirected if and only if A is symmetric. Examples of undirected network
topologies with N = 8 nodes are depicted in Figure [I}

isolated nodes star-shaped fully connected branching tree

Figure 1: Examples of network topologies with NV = 8 nodes.

In applied network analysis, the exact network structure is often unknown. In this case,
random network models enable sampling from a class of networks with given fixed topological
characteristics (such as the overall number of nodes). In a random network, each possible edge
in the network is present (or absent) with a given fixed probabilityﬁ

In the cyber insurance literature, network models are mainly applied to the study of risk
contagion, e.g., modeling the propagation of malware in I'T networks of interconnected firms or

devices.

In addition to an underlying network, an adequate model of the contagion process is

required that captures the epidemic spread.

5Two standard classes of undirected random networks are Erdés-Rényi networks and scale-free networks:

Erd6s—Rényi networks: The simplest random network model was introduced by Erdés and
Rényi (1959): The Erdés-Rényi network G,(N) is constructed from a set of N nodes in which each
of the possible N(N — 1)/2 edges is independently present with the same probability p. The resulting
degree distribution, i.e., the distribution of the number of neighbors of any node in the network, is
binomial, since the probability to create a node of degree k (i.e., with k neighbors) P(k) is equal to the
probability that this node is connected to exactly k& other nodes and not connected to the remaining
N — 1 — k nodes of the network:

P(k) = (Nk_ 1)19’“(1 —-p)N R

For large N and in the limit of constant average degree (N — 1)p &~ Np =: ¢, the binomial distribution
can be approximated by a Poisson distribution

k
e

Pk)=e ik

Scale-free networks: Empirical analysis in various research areas suggests that real-world networks
exhibit much more heterogeneous degrees than Poisson distributions would suggest. Often a hierarchy
of nodes is observable — with a few nodes of high degree (called hubs), and a vast majority of less
connected nodes having a relatively low degree. Typically, the degree distribution is approximately
scale-free, i.e., we have

P(k)~ak™, a>0, A>0.

A special case with A = 3 is given by the Barabdsi-Albert model where a growing network is generated
following a preferential attachment rule, see Barabési and Albert| (1999)| for details.
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3.1.2. Epidemic Spread Processes

Models of infectious spread dynamics have intensively been investigated in the field of math-
ematical biology and epidemiology, dating back at least to the seminal work of Kermack and
McKendrick (1927)[] In this paper, we focus on epidemic network models for populations of
entities.

At each point in time, each node is in a particular state that may change over time due to
its interaction with other nodes. According to their state, individuals are divided into distinct
compartments, e.g., individuals that are susceptible (S) to an infection, infected (I) individuals,
or individuals who have recovered (R) from the infection. For a network of N nodes, the spread
process can at each point in time ¢ be described by a state vector

X(t) = (X1(t),...,Xn(t) € EV,

where F is the set of compartments. Both Markov and non-Markov processes have been con-
sidered in the context of epidemic spread processesE]

Markovian Spread Models In Markovian spread models on networks, the evolution of the state
vector X (t) is described by a (time-homogeneous) continuous-time Markov chain on the dis-
crete state space EV. The SIS (Susceptible-Infected-Susceptible) and SIR (Susceptible-Infected-
Recovered) Markov models constitute the most frequently used epidemic spreading models on
networks. They differ in the presence (SIR) or absence (SIS) of immunity: Reinfection events
are only possible in the SIS framework, since in the SIR model, recovered individuals gain (per-
manent) immunity, i.e., the models build on the two different compartment sets E = {S, I} and
E = {S, 1, R}, respectively.

In both models, a transition of X from one state in EV to another is only possible if exactly
one node changes its state X; in E. State changes can occur through infection or recovery:
It is assumed that each node may be infected by its infected neighbors, but can be cured
independently of all other nodes in the network. Each node is endowed with an independent
exponential clock and changes its state when the exponential clock rings. Letting 7 > 0 and
~v > 0, the rates of these transitions are illustrated in Figureand given as follows (i = 1,...,N):

N
X;: S —1 withrate 7 Zaijﬂ{Xj(t):I} )
j=1

X;: I — 7 with rate -+,

where Z = S, for the SIS, and Z = R for the SIR model, respectively.
e — 00 06— 00
Y Y
@ ~ @© @~ ®

(a) SIS Model (b) SIR Model

Figure 2: Infection and recovery for the SIS and SIR network model.

"The models focus either on an epidemic spread within a population, as, e.g., in Kermack and McK-
endrick (1927), or on the spread along paths of a predefined network; for a detailed overview, see, e.g.,
Pastor-Satorras et al) (2015) and Kiss, Miller, and Simon (2017).

8Intuitively, the Markov property implies that a process is “memoryless”, i.e., that the conditional distribution
of future values X5, s > 0, of the process does only depend on the present value of the process X; and not
on past values X, pu < t.
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The exponential transition times enable an intuitive stochastic simulation algorithm: the
well-known Gillespie algorithm, first introduced in Gillespiq (1976) and Gillespie (1977).

Algorithm 3.2 (Gillespie). Input: Initial state of the system xq € EN and initial time ty > 0.
1. (Initialization) Set the current state x — xo and current time t — to.

2. (Rate Calculation) For the current state of the system x, calculate the sum of rates for all
possible transitions q, = Zfil Qz;, Where q,, denotes the rate for a state change of node i

according to .

3. (Generate Next Event Time) Sample the next event time tyeq from an exponential distri-
bution with parameter q.

4. (Choose Next Event) Sample the node iney at which the next transition occurs: FEach node
i=1,...,N is chosen with probability q.,/q..
Change the state x;,,, — Yi,., according to .

5. Sett = t+ tnew, T = (T1y vy Tippu—1s Yinows Tinowtls - - - » TN ) and return to Step 2 until a
prespecified stopping criterion is met.

For practical purposes such as the pricing of cyber insurance contracts, we often do not need
the full information provided by the Markov chain evolution, but only the dynamics of specific
quantities such as moments or (infection) probabilities. Of particular interest are the dynamics
of the state probabilities of individual nodes P(X;(t) = z;), t > 0. They can be derived from

Kolmogorov’s forward equation and written in general form as (i = 1,..., N)
dP(X;(t) ==«
y = Z Z =z sz P(X(t) = y)Qyz]a (4)
YYi =T z#£y

where ¢, denotes the transition rate of the entire process X from z — y. In natural sciences,
this equation is also known under the term master equation. For the SIS and SIR models,
using Bernoulli random variables S;(t) := 1yx,#)=s}, Li(t) := Lyx,)=1}, and (for SIR) R;(t) :=
L¢x, (=R}, the dynamics of state probabilities of individual nodes can conveniently be
written via moments:

« SIS modelf)| Since F = {I,S}, we have S;(t) = 1 — I;(t), i.e., the evolution of X is
fully described by the evolution of the vector I(t) = (I1(t),...,In(t)), and the single node
infection dynamics are given by

. N
— 0 — _AE[L(H)] + TZ% O] =7 agE[L(t) (1), i=1,...,N, (5)
j=1

since P(X;(t) = I) = P(;(t) = 1) = E[I;(¢))]. Note that this system of N equations is
not closed as second order moments E[I;(t)I;(t)], i.e., second order infection probabilities,
appear.

o SIR model: The dynamics of the recovery Bernoulli random variable R;(¢) result from
the dynamics of I;(t) and S;(t) due to E[R;(t)] = 1 — E[S;(t)] — E[Z;(t)]. Equation (4]

In the cyber insurance literature, the SIS Markov model was used by Fahrenwaldt, Weber, and Weske (2018).
Also, a brief application was studied in Xu and Hua (2019)| with a modified e-SIS model, originally proposed
in Mieghem and Catoy (2012). Here, an infectious threat for node ¢ from outside the network is included with
a rate €;.
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corresponds to:

dE[Si(H)] _ RN e
e _Tj;awla[sz(t)h(t)],

(6)
dE[L(1)] &
=l T;l: aiB[S;(t)1;(t)] — vE[Li(t)],

for i = 1,2,..., N. Again, the system is not closed due to the presence of second order
moments.

The main problem with systems and @ is the fact that they are not closed: They depend
on second order moments, which, in turn, depend on third order moments, etc. For example, the
fully closed SIS model yields 3" (]Zf ) = 2% — 1 moment (i.e., infection probability) equations.
Solving these systems exactly becomes intractable for networks of realistic size. To deal with
this issue, the following two approximation approaches have been proposed:

1. Monte Carlo simulation: Monte Carlo simulation using the Gillespie algorithm (Algo-
rithm above) constitutes a powerful tool to obtain various quantity estimates related
to the evolution of the epidemic spread. In particular, this includes the state probability
dynamics of individual nodes m

2. Moment closures: If a set of nodes J C V is infected, this increases the probability
of other nodes in the network (that are connected to the set J via an existing path) to
become infected as well. Hence, node states are to some extent correlated. To break the
cascade of equations and to make ODE systems tractable, the moment closure approach
consists in assuming independence at a certain order k, neglecting any further correlations.
This is done by considering the exact moment equations up to this order k and closing
the system by approximating moments of order k + 1 in terms of products of lower-order
moments using a mean-field function. A detailed explanation of two different types of
moment closures is provided in Appendix [B]

However, a major problem with moment closures is that only little is known about rigorous
error estimatesE This presents an important avenue for future research.

Non-Markovian Spread Models Non-Markovian models possess conditional distributions that
may depend on the past and further random factors. In contrast to the Markovian setup, where
transition times are necessarily exponential, non-Markovian models typically allow the flexibility
to freely choose the distributions of infection and recovery times. In addition, dependence among
the infection times may be included. This generality may certainly improve the quality of a
fit to real-world data. However, the extended generality in comparison to Markov models is
typically associated with reduced tractability. For this reason, non-Markovian are less commonly
considered.

A simple example of a non-Markovian model for the spread of cyber risks has been proposed
by Xu and Hua (2019). The model does not include immunity, i.e., the underlying compartment
set is the same as for the Markovian SIS model. Waiting times considered in the model are

e The individual recovery times 77°“°" of infected nodes.

0Pseudocode and further explanations of the Gillespie algorithm applied to the SIS and SIR epidemic network
models is, e.g., given in Appendix A.1.1 of Kiss, Miller, and Simon (2017),

"This problem has also been highlighted in the epidemic literature, see, e.g., Kiss, Miller, and Simon (2017),
p.-115.
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e For nodes 7 which are in the susceptible state, two different types of infections are consid-
ered, internal infections from within the network and external infections comming from
outside:

1. Internal infection times: Let the random variable K;(t) = Z;-V:l a;j1;(t) denote
the number of infected neighbors of node i at time ¢. Infectious transmissions to node
¢ are given with waiting times Tj,, ... 7EK1-' These times share the same marginal

distribution F;. Their underlying dependence structure is captured by a prespecified

copula.

2. External infection times: A random variable 7" with distribution G; models
the arrival time of threats from outside the network to node 1. Tf“t is assumed to
be independent of times T, ,. .. ,TiKi.

To simulate the process, the waiting times for all nodes are generated according to their current
state (i.e., recovery times for all infected nodes, and internal and external infection times for
all infected nodes). The minimum of these waiting times determines the next event (infection
or recovery). After this change, the process is repeated until a prespecified stopping criterion
is met [

Finally, note that a Markovian SIS model with outside infections{ig] can be obtained as a
special case by choosing exponentially distributed infection and recovery times and assuming
independence between all waiting times.

Top-Down Approaches The spread models proposed so far are bottom-up models where exact
infection dynamics are studied. This requires complete information about the underlying net-
work topology. A major challenge in real-world applications is the fact that the exact network
structure is often unknown. This makes a more general risk assessment desirable.

For this reason, an entirely different approach was taken in Hillairet and Lopez (2021). The
authors determine the impact of massive global-scale cyber-incidents, like the WannaCry sce-
nario, on insurance losses and assistance services. While network contagion is implicitly con-
sidered, it is not modeled within an actual network framework; instead, the authors choose
the original population-based SIR model of Kermack and McKendrick (1927) to determine the
deterministic dynamics of the total numbers of susceptible, infected, and recovered individuals
within the global population of IT devices. The corresponding ODE system is given by

as() _

S = —rswr)

M0 250)100) 10
dR(t)

dt =I(t)

with constant global population size N = S(t) + I(t) + R(t).

Given this global spread, the focus of the paper lies on the stochastic evolution of the insurer’s
local portfolio consisting of n << N policyholders and their corresponding losses. The influence
of the global cyber epidemic on the local portfolio is captured by the hazard rate Apinsec of the
policyholders’ infection times Timf e

1 A A
Moingec(t) = lim —P(T ¢ [t t + dt] | T > ¢) .= 71(¢
gingee(t) dtgrogdt(z €t,t+dt] | T, >t) :=1I(1),

i.e., the local hazard rates are assumed to be proportional to the number of infected individuals
in the global population.

12Pseudocode for stochastic simulations is provided in Algorithm 1 of Xu and Hua (2019).
13T be precise, the so-called e-SIS model, originally proposed in Mieghem and Cator (2012), arises.
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Due to the scarcity of data currently available, such top-down approaches present promising
avenues for future research on cyber risk and insurance.

3.1.3. Loss Models

Given the underlying network, and the epidemic spread process X on it, the third and final
ingredient of a cyber risk network model is given by a suitable loss model Y; ; for each node
i=1,...,N, where j describes the number of loss events. In the existing literature, loss models
are kept rather simple as the focus lies on modeling the cyber-epidemic spread. We give two
examples:

1. In Fahrenwaldt, Weber, and Weske (2018), cyber attacks are launched in a two-step
procedure: First, using a homogeneous Poisson process, times of attacks on the entire
network (loss events) t1,to, ... are generated. Second, for each node i, a possible random
loss L; ; is modeled, where j describes the index of the corresponding attack time. The
loss, however, only materializes if node i is infected at the attack time. This is captured
by the loss model

Yij=Lij lx)-1, i=1,...N, j=12....

2. In Xu and Hua (2019), the loss model Y; ; is given by
Yij=mni(Dij) + Ci(T5°"), i=1,...N, j=1,...,M;(T)

with a legal cost function 7;, the number D; ; of data damaged in the infection j, the total
number M;(T) of infections of node ¢ up to time T, and a cost function C; depending
on the recovery time 775" of node i for infection event j. Here, both the number of
infection events M;(T') and the recovery time 775" for each event j are derived from the
infection dynamics X; up to time 7" while the data loss sizes D; ; are assumed to follow a
beta distribution.

Future research should analyze the implementation of more realistic loss models, that, e.g.,
contain different types of cyber events and capture their characteristic severity distributions
(see also the discussion on classical frequency-severity approaches in Section . This would
strengthen the applicability of network models in real-world insurance and risk management
contexts and, thus, overall help to provide a safer cyber landscape.

3.2. Game-Theoretic Models and Strategic Interaction Effects

The risk exposure of individuals is often interdependent, since it is influenced by the behavior
of other actors. In addition to contagion due to the interconnectedness of entities in cyber
networks, potentially different objectives of the involved actors and their strategic interaction
constitute a key characteristic of systemic cyber risk. Game theory provides a suitable frame-
work to study these components of risk in the cyber ecosystem.

In the first part of this section, we briefly review and provide a short mathematical intro-
duction to game theoretic approaches applied to study cyber risk and cyber insurance (Section
. For an exhaustive review of the corresponding literature, we refer to the surveys Bohme
and Schwartz (2010), Bohme, Laube, and Riek (2018), and Marotta et al. (2017). We will adopt
the notation from Marotta et al) (2017). Section evaluates the considered models.

3.2.1. Game-Theoretic Modeling Approaches

The majority of game theoretic contributions focuses on self protection of interdependent actors
in the presence or the absence of cyber insurance. A key question is whether and under which
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conditions cyber insurance provides incentives for self protection and improves global I'T security.
In this section, we presenﬂ the main ideas and characteristics of such models.

Three Different Types of Actors in the Game We consider three types of strategic players
with potentially different objectives; potential buyers of insurance, insurance companies, and
the regulator:

1. Agents are the potential cyber insurance policyholders. To capture interdependence,
most models assume that agents form a network. Agent ¢ aims to maximize her expected
utility

max E[U;(W;)],

where

e U; denotes the utility function of agent ¢. Various types of utility functions are consid-
ered in the literature; most of them satisfy the classical von-Neumann-Morgenstern
axioms. While some papers, such as Naghizadeh and Liu (2014), Pal (2012), and
Pal et al! (2014), allow for heterogeneous preferences, the majority of models assumes
homogeneous preferences, i.e., U; = U across all agents.

o Wi; is the financial position of agent ¢ at the end of the insurance period. The value
W; depends on whether the agent has bought an insurance contract or not, on her
investment C} in cyber security, and on potential losses L; in case the agent is affected
by a cyber attack.

The agent’s self protection level x; is a crucial model component when studying in-
terdependenceﬁ Most of the existing literature falls under either of the following two
distinct categories: Some assume that only two security states are possible, secured or
not, with the corresponding constant cost C or 0. Others propose a continuous scale of
security levels, e.g., z; € [0,1]. The value of z; affects

e the cost of self protection C;:
For a continuous spectrum of security levels, i.e., z; € [0,1], C; = C(x;) is typically
assumed to be an increasing convex function of x;, reflecting that user costs rapidly
increase when improving security.

o agent i’s probability of becoming infected p; := P(I; = 1):
Obviously, this probability depends on the individual security level x; of the agent i,
but — due to interdependence — it may also be influenced by the individual security
levels of other network participants.

Within this framework, agent i’s expected utility can be computed

a) without insurance:

EU;(W;)] = (1 —pi) - Ui(W = C;) + pi - Us(W — Ly — C;)

b) with insurance:

E[UZ<WZ)] = (1 —pi) . Ul(WO — Ty — CZ) —l—pi . Ui(WiO - Li — Cz — T + [A/Z)

1

where

o WY denotes the initial wealth of agent i.

1We refer to Marotta et al| (2017)| for an in-depth overview of the topic.
150nly few papers, e.g. Bohmd (2005), Béhme and Kataria (2006), Johnson, Laszka, and Grossklagd (2014a)
and Johnson, Laszka, and Grossklags (2014b), do not include self protection in the model.
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e 7; is the insurance premium of agent i set by the insurer. This premium depends on
the type of insurance market; we will discuss different models below.

e L,; is the potential loss of agent i that is governed by a binary distribution: only
two possible scenarios are considered. Either the agent experiences a cyber attack
with a fized loss size, or she is not attacked which corresponds to no loss. This
particular setting excludes the possibility of different types of cyber attacks. Multiple
attacks are also not consideredlzgl The majority of game theoretic models relies on
the assumption of constant homogeneous losses for all agents, i.e., L; = L.

o L, is the cover in case of loss which is specified in the insurance contract. Most papers
assume full coverage, i.e., L; = L;, but some consider alternatively partial coverage,
e.g., in order to mitigate the impact of information asymmetries, c¢f. Mazzoccoli and
Naldi (2020), Pal (2012), Pal et al. (2014)!

2. Insurance Companies: The insurer defines cyber insurance premiums and specifies the
insurance cover L;. Insurance premiums depend on the market structure:

e Competitive market: This is the prevailing model in the literature. The profits of
the insurers are zero in this case; customers pay fair premiums. Competitive markets
are a boundary case that almost surely leads to the insurer’s ruin in the long run.

o Monopolistic market / Representative insurer: Another extreme is a market
with only one insurance company. In these models, the impact of a monopoly can
be studied. An alternative consists in studying objective functions that are different
from the insurer’s profit. This situation is mostly studied in the context of regu-
lation: The insurer represents a regulatory authority and is not aiming for profit
maximization, but focuses on the wealth distribution in order to incentivize a certain
standard of IT protection[]

o Immature market/Oligopoly: Instead of a monopoly, imperfect competition is
studied with multiple insurers that may earn profits. The increments between the
fair price and the insurance premium is determined by the markets Structurer;g]

3. Regulator: Market inefficiencies and a lack of cyber security may be mitigated by reg-
ulatory policies. Regulatory instruments include mandatory insurance, fines and rebates,
liability of contagion, etc. The choice of policies and their impact can be studied@ by
introducing a third party, the regulator. The objective of the regulator is maximize a
social welfare function. This could, for example, be chosen as the sum of the expected
utilities of the agents

ZE[Ui(Wi)]'

Interdependent Self Protection in IT Networks The strategic interaction of the three types of
players introduced above is modeled as a game. The agents form an interconnected network and
optimize their expected utility. Their individual security level and the amount of cyber insurance
coverage serve as their controls. The insurance companies are provider of risk management
solutions. In some models, a regulator is included as a third party with the aim to improve
welfare, e.g., by implementing standards of protection in cyber systems.

16We will discuss the scope of the existing models in Section [3.2.2

1"Market models of this type are studied in Naghizadeh and Liu (2014)| with a zero-profit insurer. Profits are
still possible in Pal (2012)} Pal et al) (2014) and Pal et al! (2019), and maximized in Khalili, Naghizadeh, and
Liu (2017).

18Immature markets are considered, e.g., in Martinelli et al| (2017), Martinelli and Yautsiukhin (2016), Ogut,
Menon, and Raghunathan (2005).

9The effects of such regulatory instruments were, e.g., studied in Bolot and Lelargd (2009), Naghizadeh and
Liu (2014), Pa] (2012)| Pal et al! (2014).
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The network topologies are, typically, quite stylized to guarantee tractability. For exam-
ple, two-agent models are considered in Ogut, Menon, and Raghunathan (2005). Most papers
investigate complete graphs, e.g., Ogut, Menon, and Raghunathan (2005), Schwartz and Sas-
try (2014) and Pal et al. (2014). Bolot and Lelargg (2009) and Yang and Lui (2014 )}, in contrast,
investigate networks with degree heterogeneity, but restrict their analysis to Erdés-Rényi ran-
dom graphs.

Agents are interdependent in the network, since the infection probability p; depends on the
local security level x; and levels of the other nodes y; := (z1,...,2i—1,%it1,...,xN) (or at least
of i’s neighbors). In some cases, p; is assumed to depend on an overall network security level
as well’| However, in contrast to the models from Section attacks do not result from
a dynamic contagion process; instead, the infection is assumed to be static and the values p;
are derived from ad hoc schemes. The most common ond?l] assumes a continuous spectrum of
security levels and computes p; as the complementary probability of the case that neither a
direct nor an indirect attack occurs:

pimi,y) =1 — (1= pf") (1 — p{o™)
=1— (1 —i(xs) x [T~ hijs(z)))
J#i
where
o pd" = 1;(x;) denotes the probability of direct infection of i through threats from outside
the network. It is interpreted as a function of the individual security level x;.

o Pt =1— [1;£(1 = hijj(z;)) is the probability for node i to become infected through
contagion. The probability for i to be infected via node j is given by h; ;, i.e., h;; # 0
only if ¢ and j are adjacent. This is where the underlying network topology comes into
play.

In the absence of information asymmetries, the cooperative game between agents and the
insurer(s) involves three perspectives

1. A legal framework is set by the regulator (if a regulator is present).

2. Agents specify their levels of self protection and insurance protection and select the avail-
able contract types to maximize their expected profits.

3. Insurance companies compute the corresponding contract details, i.e., premiums 7; and
indemnities L;. In absence of information asymmetries between agents and the insurer(s),
the protection levels of policyholders can be observed by the insurer and are reflected by
the contract.

The model may be augmented to incorporate information asymmetries:

e« Moral hazard: A dishonest policyholder may behave in a way that increases the risk, and
the insurer cannot observe the policyholder’s behavior after the conclusion of a contract.
In the game, this is represented by the possibility for agents to change their self protection
level after step 3.

20This is the case in Shetty, Schwartz, and Walrand (2010)}, Shetty et al (2010)|and Schwartz and Sastry (2014)|

21 An alternative approach using a simplified two-state scenario of security investments is analyzed in Bolot and
Lelarge (2008a), Bolot and Lelarge (2008b), and Yang and Lui (2014)l Infection probabilities are derived
from a recursive branching process.

22Variations of the game design are possible; e.g., in Laszka, Panaousis, and Grossklags (2018)| the authors
use a signaling game instead of a cooperative game model to study the adverse selection problem, allowing
insurers to audit the agents’ security. A similar game is considered in Khalili, Naghizadeh, and Liu (2017)
who introduce a pre-screening procedure.
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o Adverse selection: Agents with larger risks have a higher demand for insurance than
safer ones. The degree of the policyholders’ risk tolerances cannot be observed by the
insurer. The self protection levels of policyholders is not precisely known by the insurer
when the contract details are computed.

In most papers, cyber insurance is not associated with additional incentives to enhance self
protection. In contrast, agents may prefer to buy insurance instead of investments in self
protection, i.e., from a welfare perspective, they underinvest in security.

These observations may be interpreted as an indication that regulatory interventions are
necessary, such as fines and rebates, mandatory cyber insurance, or minimal investment levels@

3.2.2. Evaluation of Game Theoretic Modeling Approaches

Many questions for future research remain to be answered, since the existing game theoretic
models of cyber insurance and cyber security are oversimplified:

o Simplified network topologies: In the vast majority of the discussed literature, net-
works are assumed to be homogeneous. However, agents are typically heterogeneous in
reality which substantially alters the cyber ecosystem. Network contagion and cyber loss
accumulation are highly sensitive to the topological network arrangement; for example,
important determinants are the presence (or the absence) of central hub nodes or clus-
tering effects, see, e.g., Fahrenwaldt, Weber, and Weske (2018). For appropriate risk
measurement and management these aspects need to be taken into account explicitly.

e Static contagion: A key feature of cyber risk in networks is the systemic amplification of
disturbances. From the insurer’s perspective, the contagion dynamics will clearly influence
tail risks; an example are catastrophic incidents that affect a large fraction of its portfolio.
Such events may be critical in terms of the insurer’s solvency. An understanding of
cyber losses and an evaluation of countermeasures requires dynamic models of contagion
processes.

o Constant losses: In all considered game-theoretic models, the agent’s losses are assumed
to be constant, i.e., modeled as binary random variables. However, in reality we observe
that the severity of instances varies substantially due to the heterogeneity of cyber events,
ranging from mild losses (e.g. malfunctioning of email accounts) to very large losses (e.g.
attacks on production facilities or systemic breakdowns).

Cyber insurance and instruments to control cyber risk depend on the structures of networks,
the dynamics of epidemic spread processes, as well as loss models — and vice versa. These
feedback loops need to be properly incorporated in future research. Key ingredients of sys-
temic cyber risks — the interconnectedness captured by epidemic network models, and strategic
interaction described in game-theoretic models — must be combined.

4. Pricing Cyber Insurance

Cyber risk comprises both non-systemic risk, further subdivided into idiosyncratic and sys-
tematic cyber risk, cf. Section [2| and systemic risk, cf. Section [3] Classical actuarial pricing,
however, relies on the principle of pooling, and it is thus applicable for idiosyncratic cyber
incidents only. For systematic and systemic cyber risk, the appropriate pricing of insurance
contracts requires more sophisticated concepts and techniques.

ZThe effect of fines and rebates was studied in papers Bolot and Lelarge (2009), Naghizadeh and Liu (2014))
Pal (2012), and Pal et all (2014)l In the presence of information asymmetries, fines and rebates cannot
easily be applied. An alternative regulatory instrument are requirements on minimal investment levels for
IT security. However, Shetty, Schwartz, and Walrand (2010) Shetty et al! (2010)|and Schwartz, Shetty, and
Walrand (2013) argue against such requirements.
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4.1. Pricing of Non-Systemic Cyber Risks

In non-life insurance, contracts are usually signed for one year. At renewal time, the insurer
may adjust premium charges as well as terms and conditions, while the policyholder can decide
whether or not to continue the contract. Premium calculation thus typically refers to loss
distributions on a one-year time horizon. In this section, we adopt this market convention and
consider premiums payable annually in advanceF_I]

As introduced in Section [2] losses and associated premiums are considered in the granularity
of cyber risk categories ¢ € {1,...,C} and homogeneous groups k € {1, ..., K} of policyholders.
Each pair m = (¢, k) is called a cyber risk module. In terms of a modular system, the premium
per risk category serves as a component for the overall premium. Homogeneous groups —
specified for example in terms of covariates — correspond to tariff cells, i.e., any policyholder
in group k should pay the same premium 7™ """ per risk category. We denote by nj the
number of policyholders in group k.

To decouple the pricing of idiosyncratic and systematic cyber losses, either both components
must be modeled separately (see, e.g., Zeller and Scherer (2021))) or a decomposition of the total
non-systemic claims amount on a one-year time horizon is needed. In the context of Section
this decomposition takes — in a stylized manner — the form

m,non-sys m,idio m,systematic
81 ) Y — Sl 3 + Sl Sy ,

where both the total idiosyncratic claims amount S;" idio 5 nd the total systematic claims amount
Spsystematic e described by a frequency-severity approach. According to this decomposition,

m,idio and Wm,systematlc7 respectively,
m,non-sys

the premiums for idiosyncratic and systematic cyber risk 7
are calculated separately and aggregated to form the total premium

Finally, a smoothing algorithm might be helpful in order to avoid structural breaks between
the premiums of risk groups with similar covariates.

Idiosyncratic Risk Idiosyncratic cyber incidents occur within each firm independently. For
homogeneous groups of policyholders, defined in terms of covariates vectors z*, k € {1,..., K},
this type of cyber risk is thus subject to pooling of risk, and hence classical actuarial pricing
is still applicable. More precisely, a valuation based on means with respect to the statistical
or real-world measure P is mathematically justified by the strong law of large numbers, i.e.,
for each firm i with cyber risk module m = (c, k) with iid. annual losses S/ ~ Sm dio.
i=1,...,ng, the average claims amount tends to the expected claims amount per policyholder
asymptotically:

Y

li 1 Sm,z,ldlo o Sm ,idio P-a.s..

RED FIST e

This suggests that the premium per pohcyholder for idiosyncratic cyber incidents should — for
a large number of policyholders ng in group k — be equal to the expected claims amount, also
called net risk premium:

ﬂm,idio _ E[Sin’idio] )

However, the net risk premium is not sufficient. Indeed, in a multi-period setting, ruin theory
states that ruin of the insurer occurs — no matter of the initial capital — in the long run P-a.s.
if only the net risk premium is charged, see, e.g., Mikosch (2004)| and the references therein. A
similar result already holds in the one-period setting: Letting the number of policyholders ny
tend to infinity, the one-period loss probability

"k .. qs m,i,idio m,idio
moidi Z I —E[s 4]
]P)(n s idio E Sm’l’ldlo < O) ( > 0)
k P 1 \/Va (Sm 1d10)

24For simplicity, we assume that interest rates are zero, or alternatively that insurance claims are already dis-
counted.
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converges to 50%, due to the central limit theorem. To stay on the safe side, a safety loading is
necessary in addition to the net risk premium. Classical actuarial premium principles provide
explicit safety loadings in a transparent manner, based on the first two moments of the loss
distribution:

« Expected value principle: 774 = (1 + a)E[SIn’idio] for a parameter a > 0,
« Variance principle: 7™ = E[S{n’idio] + aVar(SIn’idio) with a > 0,

« Standard deviation principle: 7™ idio = E[ST°] 1 g\ /Var(S7"'4°) with a > 0.

The safety loading parameter a can be chosen for each cyber risk module m = (¢, k) separately,
for example, depending on the specific loss distribution and the number of contracts ny in tariff
cell k.

In addition to these simple explicit premium principles, the safety loading can be imposed
implicitly, e.g., in terms of convex principles of premium calculation including the well-known
exponential principle or Wang’s premium principle as special cases, cf. Example

Systematic Risk Systematic cyber incidents affect different firms at the same time — in contrast
to idiosyncratic cyber incidents. Thus, (perfect) pooling of risk is no longer applicable and
classical actuarial valuation has to be replaced by a more complex analysis. In this section,
we propose a valuation of systematic cyber risk in terms of modern financial mathematics,
combining the principle of risk-neutral valuation with the theory of monetary risk measures,
see Knispel, Stahl, and Weber (2011) for a similar discussion related to the Market-Consistent
Embedded Value (MCEV) of insurance portfolios.

Assume that the one-year losses S} for all policyholders i in group k with cyber
risk module m = (¢, k) are described by frequency-severity models, and suppose that frequency
and severity distributions depend on common risk factors. In this case, the total claims amount
may be viewed as a contingent claim, depending on the evolution of common factors.

Generally speaking, contingent claims are contracts between two or more parties which deter-
mine future payments to be exchanged between the parties conditional or contingent on future
events. Formally, a contingent claim with payoff at terminal time ¢ = 1 is described as a ran-
dom variable. In financial mathematics, the valuation of contingent claims relies on a financial
market model on a filtered probability space (2, F, (F¢)e[o,1, P) with a number, say d + 1, of
liquidly traded primary products with price processes (P?)e(0.1], (P )tef0.1]s - - - (Ptd)te[o,l]' The
underlying price processes can be modeled either as stochastic processes in discrete time or in
continuous time. The asset ‘0’ plays the role of a numéraire, i.e., it is used for discounting
purposes. A contingent claim H; maturing at time ¢ = 1 is called replicable or hedgeable if
there exists a self-financing trading strateg 9= (09,9}, ... 779§l)te[0,1] (specifying the number
of shares ¥} of primary products in the portfolio at time ¢) whose terminal wealth V}’ coincides
with the payoff H; for almost all scenarios. In absence of arbitrage, the price Hy of a replicable
contingent claim H; is unique and equals the cost of perfect replication. The calculation of
this price can, however, be decoupled from the calculation of the replication strategy itself by
the principle of risk-neutral valuation. Formally, risk-neutral valuation resembles the classical
actuarial valuation in the sense that prices are computed as expectation of future payments.
The real-world measure P must, however, be replaced by a technical probability measure Q,
called risk-neutral measure or martingale measure. The latter name is motivated by the fact
that discounted prices (P{/P?)sci01], ¢ = 1,...,d, must be martingales with respect to Q. The
risk-neutral valuation formula yields

o= pYa [1].

Z5Intuitively, the self-financing condition means that the portfolio is always rearranged such that on the one hand
no additional capital is required and on the other hand no capital is withdrawn.
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i.e., the cost of replication can be obtained as expectation of the discounted payoff with respect
to any arbitrary (equivalent) martingale measure Q.

Markets are, however, typically incompletelﬂ in the sense that not every contingent claim
can be replicated in terms of liquidly traded primary products. In particular, contingent claims
arising from cyber risks cannot be hedged perfectly in the financial market. For non-replicable
contingent claims, risk-neutral valuation is still applicable, but now provides — depending on a
whole class of martingale measures — an interval of prices which are consistent with the absence
of arbitrage. Our evaluation of non-replicable contingent claims, however, is based on monetary
risk measures and capital requirements.

Let us denote by X the set of financial positions with maturity ¢ = 1 whose risk needs to
be assessed. Mathematically, the family X is a vector space of real-valued mappings X; on
(2, F,P) that contains the constants. By sign-convention, negative values of X; correspond
to debt or losses, i.e., the claims amount ;" Leystematic' o responds to the financial position
X = —§)visystematic - A monetary risk measur p: X — R quantifies the risk of a contingent
claim that cannot be priced by the cost of perfect replication. Intuitively, a monetary risk
measure can be viewed as a capital requirement: p(X;) is the minimal capital that has to
be added to the position X; to make it acceptable, e.g., from the perspective of a financial
supervisory authority, a rating agency, or the board of management. To capture the idea that
homogeneous risks are assessed in the same way, we assume that p is distribution-based, i.e.,
p(X) = p(Y) whenever the distributions of X and Y under P are equal. Prominent examples of
distribution-based monetary risk measures are Value at Risk (VaR) and Average Value at Risk
(AVaR) P

Combining these two approaches, an algorithm for the calculation of the premium 7™ systematic
can be summarized as follows:

1. Consider a decomposition of the financial position —S;" systematic _ gy "+ RT*, where
o H{" is a replicable contingent claim with respect to the underlying market model,

o and RT* denotes the residual term.

2. Calculate the premium gmsystematic — prm 4 5(RM) wwhere Hy equals the cost of perfect
replication of H{", and p(R}") is the cost of the risk capital for R}".

The decomposition and the premium derived from it may not be unique. From the insurer’s
perspective, the goal of the decomposition into the summands (H{", R}") is the minimization of
the theoretical premium g™systematic — pym 4 (™) which provides a lower bound for the actual
premium charge. The minimization problem apparently involves a trade-off between the cost of
replication and the risk of the residual. In practice, it might be reasonable to impose constraints
on the decomposition such as upper bounds for Hjy* and p(RT"), respectively. Indeed, since the
risk of the hedgeable part H; can be completely eliminated for the price Hy, the specification
of a bound p(RY") < pmax would already control the overall risk of the systematic cyber losses

26In absence of arbitrage, incomplete financial market models are characterized by the existence of a whole class
of equivalent martingale measures.

*TFor a rigorous introduction to the theory of risk measures we refer to Féllmer and Schied (2016)|

%8For a financial position X1, its Value at Risk at level X € (0,1) is the smallest monetary amount that needs to
be added to X; such that the probability of a loss becomes smaller than A:

VaRx(X1) = inf{m € R|P[X1 + m < 0] < A}

In particular, VaR(X1) = —qj(l (M), where qjgl is the upper quantile function of X;. The Average Value at
Risk, also called Expected Shortfall, at level A € (0, 1] is defined by

A
AVaRa (X)) = % / VaRa(X1) da.
0
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tematic . : . . .
SyEEMENE Hin accordance with the company’s risk strategy. Conversely, if the insurer’s risk

budget has not yet been exhausted, it might be helpful to limit the hedging expenses by a bound
Hj" < Hpmax and to accept the remaining risk p(RT").

This concept can be applied for each cyber risk module standalone, but provides additional
benefits at portfolio level. If the underlying risk measure p is even subadditive (and thus
provides incentives for diversification), then the lower bound for the actual premium charge can
be further reduced. More precisely, for any given decomposition —Sy»»¥sematic — prmt | gt
per cyber risk module m = (¢, k) and policyholder ¢ = 1,...,n in group k, the risk of the
residual term of the aggregated systematic risk satisfies

C K ng ) C K ng ]
, (z 5 R;"ﬂ) T )
c=1k=11i=1 c=1k=11=1

while the costs of perfect replication are additive. Thus, the total premium required at portfolio
level is in fact lower than the aggregated premiums:

C K ny 4 C K nyg ) C K ng )
SSS H (z 5 szm) <SS SN 4 p(R)
c=1k=11:=1 c=1k=11=1 c=1k=111=1

The diversification effect can be allocated — according to the insurer’s business strategy — to the
cyber risk modules, yielding a reduction of the lower bound for the actual premium charge per
module.

4.2. Pricing of Systemic Cyber Risks

Systemic risk is an important issue in cyber insurance. If entities are interconnected, risks may
spread and amplify in cyber networks. In addition, this process depends on investments in
cyber security and self protection of the agents in the network. Insurance premiums may, in
turn, influence investment decisions and thereby modify the safety of the system, cf. Section
How to deal with complex cyber systems and the computation of systemic cyber insurance
premiums is a topic of current research.

In this section, we introduce a preliminary, stylized approach that builds a bridge between the
pricing of cyber insurance contracts and systemic risk measures. We consider N interconnected
insurance customers in a cyber network that are also subject to idiosyncratic and systematic risk.
For simplicity, we suppose that there exists only a single insurance company that offers J types
of contracts. There are two dates, ¢t = 0 and ¢ = 1. The initial prices of the insurance contracts,
represented by a matrix M = (m;;);; € RN*J are m;; where i = 1,2,..., N denotes the
insurance customer and j = 1,2,...,J the contract type. Each customer ¢ chooses a contract
type ji; from this menu and is charged a premium m;j,. Customers decide simultaneously
about insurance contracts and their investments into cyber security resulting in random losses
YM = (YM),_15. n at date t = 1, the end of the considered period.

In this setting, we discuss the notion of systemic premium principles. Suppose that —excluding
the considered cyber business — the random net asset value of the insurance firm at date t =1
is given by E. Including the cyber contracts, the net asset Valu of the insurance firm is

N

N
EM = B+ Y my — Y v (7)
i=1 =1

The computation of the net asset value implicitly considers network effects that influence losses
and the underlying investment decisions of the insurance customers, i.e., the systemic risk
inherent in the network.

29The interest rate over the considered period is set to 0 in this example.
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Systemic premium principleﬂ refer to the family of premium matrices M that are consis-
tent with solvency requirements or risk limits and admissibility requirements of the insurance
company. These can, for example, be formalized in terms of two acceptance setﬂ AF and AY
of monetary risk measures. The solvency condition or risk limit is satisfied, if EM € AF. An
admissibility requirement is that the stand-alone business is viable, i.e.,

N N
domig — > VM e A (8)
=1 =1

Conditions @ and characterize the systemic premiums, i.e., the family S of admissible
premium matrices M.

Example 4.1. Solvency regulation varies in different regions of the world. Solvency II in the
European Union and the Swiss Solvency Test in Switzerland are based’? on the risk measures
VaR and AVaR, respectively. These risk measures would define the acceptance set AF in our
setting.

The acceptance set AY , in contrast, corresponds to a classical premium principle. Important
actuarial premium principles are based on convex risk measures p (defined w.r.t. financial
positions) by choosing p(—L) as a premium for loss position L € X C LQF(Q,]:)@ Suitable
examples of risk measures p corresponding to premium principles are:

e The family of entropic risk measures:

py(X) = sup {Eg[-X] — “H(@Q[P)}, ~ € (0,00).
QeM, v

Here, My is the set of all probability measures on (2, F), and

H(QIP) = {EQ[log 2], ifQ<P,

o, else,
is the relative entropy of Q with respect to a reference measure P, for example, the real-
world measure. Using a variational principle for the relative entropy, the entropic risk
measure p, takes the explicit form p(X) = %log Eplexp(—yX)] and thus corresponds to
the exponential premium principle for the claims amount L = —X. Note that p,(X) is
increasing in vy and satisfies

lim py(X) = Ep[—X] and lim p,(X) = esssup(—X),

70 Yoo
i.e., the limiting cases are the negative expected value p(X) = Ep[—X] (net risk premium)
as a lower bound and the mazximum loss as an upper bound for premium charges.

o Distortion risk measures: For any increasing function ¢ : [0,1] — [0, 1] with ¥(0) =0
and (1) = 1 the map c¥(A) := Y(P(A)), A € F, is called a distortion of a probability
measure P. The Choquet integral

P (X) = /(—X)dc‘b _ /OO Fl-X > a]de + /0 (@[-X > 2] — 1) dz

0 —00

39The suggested concept of systemic premium principles parallels the notion of systemic risk measures, see
Feinstein, Rudloff, and Weber (2017), Biagini et al] (2019).

31See Follmer and Weber| (2015)|and Follmer and Schied (2016)| for reviews on monetary risk measures.

32To be more precise, the implementation of the regulatory rules are based on Mean-VaR and Mean-AVaR.
Details are, e.g., discussed in Weber (2018), Hamm, Knispel, and Weber (2020)k

33For details, see Section 8 in Féllmer and Knispel (2013)| and the references therein.
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defines a distortion risk measure, a comonotonic risk measure. If the distortion function
is concave, the distortion risk measure corresponds to Wang’s premium principle

P (X) = /OOO DP(=X > z))da > /OOO P(—-X > z)dz = Ep[~X]

that guarantees a non-negative loading for any loss position L = —X > 0. In particular,
the limiting case ¢ = id again corresponds to the negative expected value which provides
a lower bound for the actuarial premium.

If we introduce a weak partial order < on R/ by component-wise <-comparison, the smallest
admissible premiums S in the family S of admissible premium matrices may be characterized.
Although we are dealing only with one insurance firm in our specific construction, the heuristic
argument of competitiveness might motivate to focus on premiums in S only. Typically, the
admissible premium allocations will not be unique.

A remaining question is the choice of a specific premium allocation. Further criteria or
objectives need to be specified for this purpose. We briefly discuss three options:

e Competition: The heuristic argument of competitiveness might also be used to argue
that total premium payments should be as small as possible. This would lead to those
allocations where 3>~ | m; j, is minimal.

« Competitive segments: If some insurance customers are more price-sensitive and more
important than other, one might introduce positive weights v;, i = 1,2,..., N, and focus
on allocations with minimal 3"V ; v;m; ;..

¢ Performance optimization: If insurance customers were willing to accept any premium
allocation in S, one could formulate an objective function of the insurance company that
determines specific premium allocations. This could be a utility functional or a perfor-
mance ratio such as RoRaC.

A detailed analysis of systemic premium principles in specific models and their statistical and
algorithmic implementation are challenging and important questions for future research.

5. Conclusion and Future Research

In this paper, we provided a comprehensive overview of the current literature on modeling and
pricing cyber insurance. For this purpose, we introduced a basic distinction between three
different types of cyber risks: idiosyncratic, systematic and systemic cyber risks. Models for
both non-systemic risk types were discussed within the classical actuarial framework of collective
risk models. The (separate) discussion of modeling systemic cyber risks then focused on risk
contagion among network users in interconnected environments as well as on their strategic
interaction effects. Finally, we presented concepts for an appropriate pricing of cyber insurance
contracts that crucially relies on the specific characteristics of each of the three risk types.

For both practitioners and academic researchers, modeling and pricing cyber insurance con-
stitutes a relatively new topic. Due to its relevance, the area of research is growing rapidly,
but modeling and pricing approaches are still in its infancy. In our analysis, we identified the
following promising avenues for future research:

e Data: Classical actuarial approaches heavily rely on claims data. Epidemic network
models, in turn, require connectivity data for the design of realistic network topologies
as well as epidemic spread data for determining the values of the epidemic parameters
(such as the transition rates 7 and «). Up to now, data is scarce, and in the actuarial
context, often is inaccessible due to confidentiality issues. If more data becomes available,

27



the presented modeling approaches could more easily be tested and evaluated. Hence,
building (open access) data collections for cyber risks constitutes an important issue for
future research.

o Epidemic model solutions: Solving epidemic models becomes intractable for realistic
network sizes. Therefore, modelers typically rely on Monte Carlo simulations or moment
closures. However, Monte Carlo simulations are often computationally intensive, and
moment closures often lack estimates of the resulting approximation error. For the design
and implementation of appropriate control measures, improvement in these areas as well
as the development of exact versions of the master equations are thus highly desirable.

e Top-down approaches: To determine the impact of global cyber epidemics on insur-
ance portfolios, there currently exist a few top-down approaches, which solely take a
population-based approach and ignore the underlying structure of the network. How-
ever, the network topology, e.g., centrality or clustering effects, possesses a significant
impact on the epidemic spread. Hence, more sophisticated refinements of these models
are desirable, building bridges between the bottom-up network modeling and top-down
population-based approaches.

« Dynamic strategic interaction: Currently, the analysis of strategic interaction effects
takes place in static environments, thereby neglecting systemic spread effects. Studying
strategic interaction of network participants within a dynamical set-up could thus help
to determine the impact of cyber insurance contracts on the policyholders’ behavior and
vice versa.

e Multi-layer networks: Manufacturing and financial transactions both heavily rely on
digital technology today. Thus, cyber attacks on critical infrastructures such as supply
chains or financial institutions constitute a systemic threat to modern societies. Typi-
cally, these hierarchical systems are characterized by a high degree of interdependence
again. Therefore, the analysis of multi-layer networks constitutes a promising approach
to modeling such systems.

o Pricing systemic cyber risks: In Section we have presented a stylized approach
on pricing systemic cyber risks based on the concept of systemic premium principles, a
particular class of set-valued monetary risk measures. Future research should refine this
idea and analyze systemic premium principles in specific models as well as their statistical
and algorithmic implementation.

Finally, we would like to emphasize that this list is not exhaustive — there exists plenty of room
for research on building suitable actuarial methods for modeling and pricing cyber insurance
which will hopefully contribute to a more resilient and safer cyber landscape in the future.
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Appendix A Classification of Cyber Risks

In this section, we present two exemplary classification approaches of cyber risks from an actu-
arial perspective: CRO Forum (2016) and Zeller and Scherer (2021). For general cyber classi-
fication approaches without a specific focus on insurance, we refer to the information security
literature, see, e.g., Harry and Gallagher (2018)| and the references therein.

CRO Forum (2016) suggests a classification by manifold factors summarized in Table
However, due to its granularity, it does not seem very suitable for modeling purposes. Indeed,
the classification rather intents to provide a “starting point for discussion” (CRO Forum (2016),
p.24) on a unifying framework for data-gathering purposes.

Table 1: CRO Forum| (2016) Classification Overview

Actor
1 Nation states
2 Organised criminals

Root Causes
A People
B External causes

Impact Type
Business interruption
Data and software loss

Cyber Incident
1 System malfunctions/misuse
2 Data confidentiality

Event Type
Operational Risk Categories

3 Data integrity/availability C Processes 3 Hackers Theft or fraud
4 Malicious activity D System 4 Hacktivists Cyber ransom and extortion
5 Insiders Breach of privacy

Reputational damage

Regulatory & legal defense costs

Fines and penalties

Physical asset damage

and many more, in total: 22 categories

Zeller and Scherer (2021)| provides a more model-oriented classification of cyber incidents, see
Table [2l The paper distinguishes between idiosyncratic and systemic incidents. However, the
latter category should, in our view, be further divided into systematic and systemic incidents,
see the discussion in Section [2.

Table 2: Zeller and Scherer (2021)| Classification Examples (see Table 2 therein)

Idiosyncratic incidents Systemic events

Targeted attack

Individual failure

Untargeted attack

Mass failure

Data Breach (DB) | Targeted data theft Individual Data theft through Unintended data
unintended data | widespread mal- disclosure at cloud
disclosure ware / phishing service provider

Business Interrup- | Targeted (D)DoS / Disruption of IT | Widespread ran- Cloud service out-

tion (BI)

Ransomware attack

system or process
through accidental

somware attack

age disrupting busi-
ness services

malfunction
Fraud / General | CEO fraud  Accidental compro- | Widespread ran- Accidental compro-
(FR) through targeted mise of database by | somware attack or mise of data stored
(spear-)phishing employee social engineering at cloud service
attack fraud provider

Appendix B Moment Closures

This section provides details on moment closures as a measure to solve the Markovian master
equation problems and @
For node 7, we let B; be a representative of the Bernoulli random variables I;, S;, or R; at

a certain time ¢. The product Bj, --

-B

Jk+1

29

with pairwise different and ordered indices j; <



oo < Jr+1 < N, is denoted by By, J = {j1,...,jk+1}. For example, By with J = {j1,j2, 3}
may denote a triple I}, S;,1;,, or S;,Sj,1j,, etc.
A moment closure now approximates the moment E[B;| by

E[BJ]%H(E[BJJ,...,}E[BJM]), Ji, ... I CJ, ’Jl‘,,|Jm|§k

Assuming that the single variables B; are independent leads to the simplest possible moment
closure, the first order independent approrimation, also known as NIMFA in the epidemic liter-
aturd®?] Tt is given by

Under this assumption, the full SIS and SIR dynamics are given by the ODE systems of equations
and @, respectively, when replacing second-order moments with the corresponding product
of means. The resulting systems can easily be analyzed by standard techniques from ODE
theory@

However, in certain network structures, the first order independent approximation may yield
a large approximation error, see, e.g., Fahrenwaldt, Weber, and Weske (2018). Hence, more
complex approaches to moment closures have been derived. Examples include:

1. Split closures: These closures are considered by Fahrenwaldt, Weber, and Weskd (2018)|
The main idea of split closures consists in splitting a set of £ 4+ 1 nodes into two disjoint
and non-empty subsets of order < k:

H(E[B,],E[B]) = F(E[By]) - F(E[By]), JiNJe=0, J1UJo=J, [|}]|]] <k,

with a mean-field function F : [0,1] — [0,1]. Different mean-field functions lead to
different approximations, e.g.:

o Independent approximation: Using the identity as mean-field function, F'(y) = vy,
the factorization of the moment of order k+ 1 is done as if the split components were
independent:

E[BJ} ~ E[le]E[BJQ]

For the special case kK = 1, this equals the first order independent approximation
derived above.

In the SIS model, since

E[IJ} = E[IJJE[BIz] + COV(IleIJz)
and Cov(Iy,, I1,) > 0, cf. Cator and Mieghem (2014), the independent approximation
leads to an upper bound of infection probabilities.

e Hilbert approximation: The space of square-integrable random variables forms
a Hilbert space with scalar product (Y, Z) := E[Y - Z] and corresponding norm
Y] = /{V,Y) = VE[Y2]. For Y,Z € L? the scalar product defines an angle ¢
between the elements:

Y, 2) =Y I- 2] - cos ¢. (9)

Hence, taking the mean-field function F(y) = /y, and using the idempotence of
Bernoulli random variables, a moment of order £ + 1 can be split into:

E[B)] ~ \/E[B,]\/E[By,)-

34NIMFA is short for “N-intertwined mean-field approximation”, see Mieghem, Omic, and Kooij (2009)| for
details.

35For the SIS model, the linear stability condition Ry = % < L for the infection-free state of the network can be
obtained, where /i denotes the spectral radius, i.e., the largest absolute eigenvalue, of the adjacency matrix
A.
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Due to @D, the resulting approximation error is low, if the angle ¢ is close to 0° or
180°. This observation may be used to determine an optimal split (J1, J2) of a given
index set J.

In the SIS model, the Cauchy-Schwarz inequality implies that the first order Hilbert
approximation leads to a lower bound of infection probabilities.

To apply these approximations, an appropriate partition scheme (Jy, J2) for index sets J
of order £+ 1 needs to be found. For the SIS model, a first optimal split procedure for both
approximation types is suggested in Fahrenwaldt, Weber, and Weske (2018), Algorithm
3.13.

. Kirkwood closures: These closures constitute the main approach used in the epidemic
literature. The underlying idea originates from statistical physics, precisely from the
so-called BBGKY hierarchy, which describes the evolution dynamics of an interacting
N-particle system, originally proposed by Kirkwood (1935); Considering a set J C V of
k + 1 nodes and the corresponding moment E[B ], we only take correlations into account
which are stemming from infectious transmissions over paths of length at most k — 1, i.e.,
passing through a maximum of £ nodes. This idea reflects the original statistical physics
approach that particle states may be assumed to be independent, if their distance exceeds
a certain critical threshold.

Now, assuming the independence of node states which are sufficiently far apart, the Kirk-
wood approximation estimates the moment E[B;| of Bernoulli random variables with

J ={j1,-- -, jr+1} through

k m;
_1\k—i
H(E[lel],...,E[B%],...,E[B‘,lk],...,E[B%]):HMHlE[BJg]( v
1= =
where Jg C J denotes a subset of size i, i < k, and £ € {1,...,m;}, i.e., m; denotes

the number of such subsets. A detailed derivation can be found, e.g, in Section V of
Singer (2004). The Kirkwood approximation can be interpreted as generalization of the
following scheme:

For k = 1, states of any two nodes are assumed to be independent, i.e., the approximation
equals the first order independent approximation described above.

For k = 2, we obtain a so-called pair-based model. Here, the system is closed on the
level of triplets and correlations over edges are considered. In this case, the closure reads
E[lesz]E[leBja]E[szBjs]

E[B;,|E[Bj,|E[B;s]

E[le Bj2 Bj3] =

Two different cases for the node triplet {j1, j2, j3} may be considered: For closed triplets,
i.e., triplets in which edges exist between all pairs of nodes (triangles), node states are
pairwise correlated, and hence, the closure cannot be reduced. In contrast, for an open
triplet only consisting of edges (ji,72) and (jo,J3), the states of nodes j; and js are
assumed to be independent, and therefore, the closure may be reduced to

E[le Bj2]E[Bj2 Bjs]

E[leszBj3] = E[B‘ ]
J

This equals the exact result for E[B;, Bj, Bj,| under the independence assumption, using
Bayes’ theorem.

Thus, in the SIR Markov model, exact closures can be derived when considering cut-
vertices i, i.e., nodes connecting two otherwise disconnected subgraphs G and G2 of the
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network: If ¢ is in the susceptible state of the SIR model, the infection has not yet passed
through this node. Hence, the infection processes in the subgraphs G; and Gs, that are
connected solely through i, are independent of each other, see, e.g., Kiss et al| (2015).
This result in particular applies to tree graphs, where, by definition, all nodes with degree
higher than one are cut-vertices and all triplets are open with B;, = S;,. For tree networks,
the SIR pair-based model is thus exact.
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