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Abstract

Protection of creditors is a key objective of financial regulation. Where the protection
needs are high, i.e., in banking and insurance, regulatory solvency requirements are an
instrument to prevent that creditors incur losses on their claims. The current regulatory re-
quirements based on Value at Risk and Average Value at Risk limit the probability of default
of financial institutions, but they fail to control the size of recovery on creditors’ claims in the
case of default. We resolve this failure by developing a novel risk measure, Recovery Value
at Risk. Our conceptual approach is flexible and allows the construction of general recovery
risk measures for various risk management purposes. We provide detailed case studies and
applications. We show that recovery risk measures can be used for performance-based man-
agement of business divisions of firms and discuss how to calibrate recovery risk measures
to historical regulatory standards. Finally, we analyze how recovery risk measures react to
the joint distributions of assets and liabilities on firms’ balance sheets and compare the cor-
responding capital requirements with the current regulatory benchmarks based on Value at
Risk and Average Value at Risk.

Keywords: Risk Measures, Capital Requirements, Solvency Regulation, Recovery on Liabili-
ties.

1 Introduction

Banks and insurance companies are subject to a variety of regulatory constraints. A key objective
of financial regulation is the appropriate protection of creditors, e.g., depositors, policyholders,
and other counterparties. Corporate governance, reporting, and transparency are cornerstones
of regulatory schemes, but equally important is capital regulation. Financial companies are
required to respect solvency capital requirements that define a minimum for their current net
asset value. Firms that fail to meet these requirements are subject to supervisory interventions.
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The computation of solvency capital requirements is often based on some pre-specified notion
of acceptable default risk. Banks and insurance companies must hold enough capital to meet
their obligations in a sufficient number of future economic scenarios. Regulators typically focus
on quantities such as the change of net asset value over a specific time horizon — for example,
one year — and require that a suitable risk measure applied to such quantities is below the
current level of available capital. The risk measure implicitly defines a notion of acceptable
default risk. Different risk measures are applied in practice.

The standard example are solvency capital requirements defined in terms of Value at Risk.
In this case, a company is adequately capitalized if its default probability is lower than a given
threshold. The upcoming regulatory framework for the internationally active insurance groups
uses a Value at Risk at the level 0.5%. In Europe, insurance companies and groups are subject
to the same requirement under the Solvency II regime. Value at Risk has been strongly criticized
due to its tail blindness and its lack of convexity – not encouraging diversification.

An alternative to Value at Risk is the coherent risk measure Average Value at Risk, also
called Conditional or Tail Value at Risk or Expected Shortfall. The market risk standards in
Basel III, the international regulatory framework for banks, and the Swiss Solvency Test, the
Swiss regulatory framework for insurance companies, are both based on Average Value at Risk
with levels 2.5% and 1%, respectively. In this case, a company or portfolio is deemed adequately
capitalized, if it generates profits on average conditional on its tail distribution below the chosen
level. Average Value at Risk is sensitive to the tail, and, being convex, it does not penalize
diversification. It is also a tractable ingredient to optimization problems in the context of asset-
liability-management and provides an instrument for decentralized risk management, e.g., limit
systems within firms.

Despite all its merits, Average Value at Risk fails — just as Value at Risk — at one central
task: It cannot control recovery in the case of default, i.e., the probabilities that creditors recover
prespecified fractions of their claims. This goal is, of course, important from a regulatory point
of view. Recovering, say, 80% instead of 0% in the case of default makes a big difference to
creditors such as depositors or policyholders. This failure is apparent when we consider Value
at Risk. By design, the corresponding solvency tests only limit the probability of insolvency and
are incapable of imposing any stricter bound on the loss given default.

But the same failure is shared by Average Value at Risk. In spite of being sensitive to tail
losses, Average Value at Risk still leaves too many degrees of freedom to control recovery. This is
because the loss given default is captured by way of an average loss, which is too gross to exert
a fine control on the recovery probability. An additional key deficiency is that all monetary risk
measures in current solvency regulation focus on a residual quantity, i.e., the difference between
assets and liabilities, that is owned by shareholders. This quantity is insufficient to adequately
capture what will happen in the case of default.

The goal of this paper is to address the question:

How should regulators design solvency tests in order to control
the recovery on creditors’ claims in the case of default?

Our contributions are the following:

I. We demonstrate that classical monetary risk measures such as Value at Risk and Average
Value at Risk are unable to control recovery on creditors’ claims in the case of default.
In fact, we argue that, to capture this important aspect of tail risk, one has to abandon
solvency tests based on the net asset value only and consider more articulated solvency
tests based on both the net asset value and the firm’s liabilities. This is discussed in
Section 2.

II. We develop a novel risk measure, Recovery Value at Risk, to successfully address the goal
of controlling recovery risk. We demonstrate that Recovery Value at Risk can serve as the
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basis of solvency tests and discuss its operational interpretation as a capital requirement
rule. This new risk measure can be applied to both external and internal risk management
and helps to quantify how far standard regulatory risk measures are from controlling
recovery risk, thereby improving our understanding of (the limitations of) these standard
risk measures. This is discussed in Section 3.

III. Our conceptual approach is flexible and leads to the construction of general recovery
risk measures that include Recovery Average Value at Risk. This allows to integrate the
ability to control the recovery on creditors’ claims with other desirable properties such
as convexity or subadditivity. Convexity facilitates applications to optimization problems
such as portfolio choice under risk constraints. Subadditivity provides incentives for the
diversification of positions and enables limit systems within firms for decentralized risk
management. This is discussed in Section 4.1 and in Section 4.2.

IV. We demonstrate how recovery risk measures can be applied to performance-based man-
agement of business divisions of firms. We define and investigate the appropriate notion
of RoRaC-compatibility. This is discussed in Section 5.2.

V. We discuss a possible strategy to calibrate recovery risk measures consistently with existing
regulatory standards, following a common methodology chosen by regulators in the context
of classical risk measures. We refer to Section 5.3.

VI. In order to better understand the behavior of recovery risk measures we illustrate how
they react to changes of the joint distribution of assets and liabilities on the firm’s balance
sheet. We focus on two characteristics – marginal distributions and stochastic dependence
– and compare risk measurements to the classical solvency benchmarks, i.e., Value at Risk
and Average Value at Risk. This is discussed in Section 5.4.

The paper is structured as follows. Section 2 reviews solvency regulation based on Value at Risk
and Average Value at Risk with a focus on recovery risk. In Section 3 we introduce the new
risk measure Recovery Value at Risk and discuss its main properties. In the parallel Section 4.1
we introduce the convex risk measure Recovery Average Value at Risk. Section 5 focuses on
a number of related applications including risk allocation in the context of decentralized risk
and performance management of firms. We also discuss calibration issues that arise when sol-
vency regimes are modified. Section 5.4 features detailed case studies providing insights on how
risk measures react to the shape of distributions and stochastic dependence. General recovery
risk measures are discussed in Section 4.2 in the appendix. All proofs and further technical
supplements are collected in Section A of the appendix.

Literature

Solvency capital requirements impose constraints on the operations of businesses such as banks
and insurance companies. Their purpose is to protect creditors from excessive downside risk.
Capital requirements are an integral part of broader regulatory frameworks that allow companies
to freely operate within pre-specified legal boundaries. Historically, regulatory deliberations like
Basel I and Solvency I formulated simple rules. However, these could be exploited by regulatory
arbitrage, see, e.g., Basel Committee on Banking Supervision (1988), The European Parliament
and the Council of the European Union (2002a), The European Parliament and the Council
of the European Union (2002b), and Jones (2000). Regulatory frameworks have been modified
multiple times during the past decades, but – as we will demonstrate in this paper – serious
problems remain.

A key issue is how to define the required solvency capital in an appropriate manner. Basel
II, Solvency II, and the upcoming international Insurance Capital Standard compute solvency
capital on the basis of Value at Risk, while Basel III and the Swiss Solvency Test use Average
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Value at Risk. The risk measure Value at Risk has been criticized in the context of solvency
regulation since the 1990s, in particular due to its tail blindness and lack of convexity. Alter-
natives are provided by the axiomatic theory of risk measures — initiated in a seminal paper
by Artzner, Delbaen, Eber & Heath (1999) — that systematically analyzes properties of risk
measures, implications, and examples. The notion of coherent risk measures is introduced in
Artzner et al. (1999) and is generalized to the class of convex risk measures in Frittelli & Gianin
(2002) and Föllmer & Schied (2002). Key developments are discussed in the monograph Föllmer
& Schied (2016) and the surveys Föllmer, Schied & Weber (2009) and Föllmer & Weber (2015).
The coherence of Average Value at Risk is first established in Acerbi & Tasche (2002). We refer
to Wang & Zitikis (2020) for a recent axiomatic characterization of Average Value at Risk.

Monetary risk measures are based on the notion of acceptability. While preferences rank
distributions, random variables, or processes, acceptance sets divide the universe of such objects
into acceptable and unacceptable ones. Monetary risk measures can be interpreted as numerical
representations of acceptance sets and parallel in this respect utility functionals that represent
preferences. Within the theory of choice, risk measures provide a model of guard rails for the
actions of financial firms. At the same time, they possess an operational interpretation as capital
requirement rules, measuring the distance from acceptability in terms of cash or, more generally,
eligible assets. We refer to Föllmer & Schied (2016) for a broad discussion on these aspects and
to Filipović & Svindland (2008), Artzner, Delbaen & Koch-Medina (2009), Farkas, Koch-Medina
& Munari (2014), Feinstein, Rudloff & Weber (2017), and Biagini, Fouque, Frittelli & Meyer-
Brandis (2019) for specific applications to capital adequacy, hedging, risk sharing, and systemic
risk. Our paper follows the same approach, i.e., taking the notion of acceptability as the starting
point when formalizing recovery-based solvency tests. A different approach is pursued by the
literature on acceptability indices that mainly focus on performance measurement, see Aumann
& Serrano (2008), Cherny & Madan (2009), Foster & Hart (2009), Brown, Giorgi & Sim (2012),
Drapeau & Kupper (2013), Rosazza Gianin & Sgarra (2013), Bielecki, Cialenco & Zhang (2014).1

A related concept is also the notion of Loss Value at Risk introduced by Bignozzi, Burzoni
& Munari (2020). Monetary risk measures have also natural applications to risk allocation
problems; see, e.g., Tasche (2000), Kalkbrener (2005), Tasche (2008), Dhaene, Tsanakas, Valdez
& Vanduffel (2012), Bauer & Zanjani (2013), Bauer & Zanjani (2016), Embrechts, Liu & Wang
(2018), Weber (2018), Hamm, Knispel & Weber (2020), and Guo, Bauer & Zanjani (2020).

To the best of our knowledge, this paper is the first to introduce and study solvency capital
requirements that are designed to control the recovery on creditors’ claims. The literature on
recovery rates has historically focused on explaining the determinants of recovery rates in specific
settings, e.g., for corporate and government bonds or bank loans. We refer to Duffie & Singleton
(1999), Altman, Brady, Resti & Sironi (2005), and Guo, Jarrow & Zeng (2009) for a presentation
of different models for recovery rates and to Khieu, Mullineaux & Yi (2012), Jankowitsch, Nagler
& Subrahmanyam (2014), and Ivashina, Iverson & Smith (2016) for some recent empirical
investigations.

2 Solvency Regulation and Claims Recovery

The protection of creditors is a key goal of capital regulation. To achieve this goal, financial
institutions are required to hold a certain amount of capital as a buffer against future losses.
The regulatory capital is chosen such that it ensures an acceptable level of safety against the
risk of default. The standard rules used in practice to compute solvency capital requirements

1Parametric families of Value at Risk were previously studied in this literature. But acceptability indices are
applied to fixed univariate positions (modelling net asset values). In our case, parametric families of Value at Risk
or different risk measures are applied to bivariate positions (modelling net asset values jointly with liabilities).
As a consequence, the formal construction of acceptability and their financial interpretation differs substantially
from our approach.
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are based on risk measures such as Value at Risk or Average Value at Risk. We demonstrate
that these rules are insufficient to provide a satisfactory control on the recovery on creditors’
claims and suggest an alternative approach that achieves this goal.

From now on, we fix a probability space (Ω,F ,P) and we denote by X some vector space
of random variables. We assume that X contains all bounded random variables with discrete
distribution. In particular, X includes all constant random variables. The subset of positive
random variables is denoted by X+. As usual, we do not distinguish two random variables that
coincide on a set of full probability.

2.1 Risk-Sensitive Solvency Regimes

Most existing regulatory frameworks share a “balance sheet approach” to determine capital
requirements. The random evolution of assets and liabilities of a financial institution is captured
at time horizons specified by regulators, typically one year.2 The following table displays a
stylized balance sheet of a company at a generic time t:

Assets Liabilities

At
Lt

Et = At − Lt

The quantity Et represents the net asset value of the firm and can be either positive or negative
depending on whether the asset value At is larger than the liability value Lt or not. In the typical
setting of a one-year horizon we have two reference dates which are denoted by t = 0 (beginning
of the year) and t = 1 (end of the year). The quantities at time t = 0 are known whereas
the quantities at time t = 1 are random variables. In a risk-sensitive solvency framework, a
company is deemed adequately capitalized if its available capital E0 is larger than a suitable
solvency capital requirement that reflects the inherent risk in the evolution of the balance sheet.
This is typically captured by applying a suitable risk measure ρ to the net asset value variation
∆E1 := E1 − E0.3 The corresponding solvency test is formally defined by:4

ρ(∆E1) ≤ E0. (1)

If ρ is a monetary risk measure such as Value at Risk or Average Value at Risk, condition (1)
can be equivalently expressed in terms of the future net asset value E1 only as

ρ(E1) ≤ 0. (2)

The standard risk measures Value at Risk (V@R) and Average Value at Risk (AV@R) at some
level α ∈ [0, 1) are defined for a random variable X by5

V@Rα(X) := inf{x ∈ R ; P(X + x < 0) ≤ α},
2A balance sheet approach requires an internal model of the stochastic evolution of the balance sheet of

the financial firm or insurance company that is subject to capital regulation. Many firms do not have sufficient
capacities and expertise to implement and analyze such models. For this reason, in practice, simplifications
are admissible which may substantially deviate from the original objectives of the regulator. Examples are the
standard approach in the Insurance Capital Standard or the standard formula in Solvency II.

3In practice, solvency capital requirements may only refer to “unexpected” losses. In this case, E0 is replaced
by the expected value of (the suitably discounted) E1. In this respect, the European regulatory framework for
insurance companies Solvency II is contradictory in itself. We refer to Hamm et al. (2020) for a detailed discussion.

4For simplicity, we assume in this paper that interest rates over the one-year horizon are approximately zero.
For adjustments on the definition of the solvency tests if interest rates are not zero see Christiansen & Niemeyer
(2014).

5Throughout the paper we apply the following sign convention: Positive values of X represent a profit or a
positive balance, negative values of X represent a loss or a negative balance.
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AV@Rα(X) :=

{
1
α

∫ α
0 V@Rβ(X)dβ, if α ∈ (0, 1),

esssup(−X), if α = 0.

Note that V@R at level α > 0 coincides, up to a sign, with the upper α-quantile of the probability
distribution of X. Equivalently, it coincides with the lower (1−α)-quantile of the distribution of
−X. Note also that V@R and AV@R at level α = 0 correspond to the so-called worst-case risk
measure which equals the essential supremum of −X, i.e., up to a sign, the smallest realization
of X.

In insurance regulation, V@R at level α = 0.5% is used in the Insurance Capital Standard
and in Solvency II while AV@R at level α = 1% is adopted in the Swiss Solvency Test. In
banking regulation, AV@R with level α = 2.5% has recently become the reference risk measure
in Basel III, where it replaces V@R at level α = 1%. In a V@R setting, the solvency test (2)
can equivalently be reformulated as

V@Rα(E1) ≤ 0 ⇐⇒ P(E1 < 0) ≤ α ⇐⇒ P(E1 ≥ 0) ≥ 1− α. (3)

This shows that a company is adequately capitalized under V@R if it is able to maintain its
default probability below a certain level. Similarly, in an AV@R setting, we can equivalently
rewrite the solvency test (2) for α > 0 as6

AV@Rα(E1) ≤ 0 ⇐⇒
∫ α

0
V@Rβ(E1)dβ ≤ 0 ⇐⇒ E(E1|E1 ≤ −V@Rα(E1)) ≥ 0. (4)

Hence, a company is adequately capitalized under AV@R if on the lower tail beyond the α-
quantile it is solvent on average. In this case, we automatically have P(E1 < 0) ≤ α. In other
words, if we fix the same probability level α, capital adequacy under AV@R is more conservative
than capital adequacy under V@R.

It is often stressed that — in contrast to V@R — AV@R is a tail-sensitive risk measure and,
hence, captures tail risk in a more comprehensive way. In fact, V@R is completely blind to the
tail of the reference loss distribution beyond a certain quantile level. While this is correct, one
should bear in mind that AV@R captures tail risk in a specific way, namely via expected losses
in the tail, thereby leaving many degrees of freedom to the behavior of the tail distribution.

2.2 Claims Recovery Under V@R and AV@R

The point of departure of our contribution is to highlight that risk measures such as V@R and
AV@R fail to provide a direct control on a fundamental aspect of tail risk, namely the recovery
on creditors’ claims. The basic problem is that both risk measures are functions of the net asset
value E1 only. The net asset value summarizes the financial resources of the equity holders
without any reference to leverage, i.e., without imposing any direct constraints on the liabilities
L1. However, controlling the recovery on claims requires to deal explicitly with L1.

This failure is documented by the next proposition. To motivate it, observe that, for given
α ∈ (0, 1), the solvency test based on V@R as described in (3) guarantees that the probability
of solvency is at least 1 − α. The same is true for the solvency test based on AV@R at the
same level because AV@R dominates V@R. The question we ask is if and how the probability
P(A1 ≥ λL1) of recovering at least a fraction λ ∈ (0, 1) of claims can be made higher than the
probability of solvency. For V@R and AV@R the answer is negative: The lower bound 1− α is
sharp for any target fraction of claims payments. In other words, both V@R and AV@R impose
the same weak lower bound on recovery probabilities, and this bound cannot be improved upon,
even if the target recovery fraction is arbitrarily small.

6The second equivalence holds provided the cumulative distribution function of E1 is, e.g., continuous.
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Proposition 1. Let (Ω,F ,P) be nonatomic. For all α ∈ (0, 1) and λ ∈ (0, 1) we have

1− α = inf{P(A ≥ λL) ; A,L ∈ X+, AV@Rα(A− L) ≤ 0}
= inf{P(A ≥ λL) ; A,L ∈ X+, V@Rα(A− L) ≤ 0}.

Proof. See Section A.1.

The preceding proposition shows that, from the perspective of controlling the probability
of claims recovery (beyond the probability of solvency), there is little difference between V@R
and AV@R. This lack of control is not desirable for a financial regulator, as companies that
seek to boost the payoff to shareholders are not prevented from taking on excessive risk thereby
significantly reducing recovery payments to creditors in the case of their own default. This is
illustrated by the following stylized but insightful example.

Example 2. We consider a scenario space Ω consisting of two states, g (the good state) and b
(the bad state). The probability of the bad state is P(b) = α

2 with α close to zero, say α = 0.5%
or α = 1%. An insurance firm sells a policy that results in the following liability schedule:

L1(ω) =

{
0 if ω = g,

100 if ω = b.

The firm can manage its assets by engaging in a stylized financial contract, for instance an
internal reinsurance contract, transferring dollars from the good state to the bad state with zero
initial cost. More specifically, we assume that the firm can choose one of the following asset
profiles at time 1:

Ak1(ω) =

{
100− k if ω = g,

k if ω = b,
with k ∈ [0, 100].

Hedging its liabilities completely would require the firm to choose k = 100. However, since the
contract transforms dollars in the high probability scenario into dollars in the low probability
scenario, this is not attractive from the point of view of the firm. Indeed, for any k ∈ [0, 100],
the firm’s net asset value is given by

Ek1 (ω) =

{
100− k if ω = g,

k − 100 if ω = b.

Due to limited liability, the corresponding shareholder value is

max{Ek1 (ω), 0} =

{
100− k if ω = g,

0 if ω = b.

Hence, the choice k = 0 is optimal from the perspective of shareholders. We show that this choice
is possible under capital requirements based on V@R and AV@R. In fact, the firm is adequately
capitalized under V@R and AV@R at level α regardless of the size of k. Indeed,

V@Rα(Ek1 ) = k − 100 ≤ 0, AV@Rα(Ek1 ) =
1

α

(α
2

(100− k) +
α

2
(k − 100)

)
= 0.

At the same time, this choice is detrimental for the policyholders because it leads to no recovery
on the expected claims payment. Indeed, in the default state b, the policyholders’ recovery on
their claims is equal to k

100 and may take any value between 0 and 1, depending on the level
of k. For the optimal choice from the perspective of shareholders, namely k = 0, the recovery
fraction in state b is minimal, in fact zero.

The example shows that pursuing the interests of shareholders might trigger investment
decisions with adverse effects on creditors. A solvency framework based on V@R and AV@R
fails to disincentivize firms from taking investment decisions that increase shareholders’ value
at the price of jeopardizing their ability to cover liabilities. In the next section we show how to
mitigate this deficiency of current regulatory frameworks.
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3 Recovery Value at Risk

In this section we introduce a solvency test that controls the loss given default by imposing
suitable bounds on the recovery on creditors’ claims. The test is based on a new risk measure
called Recovery Value at Risk. The main difference with respect to standard risk measures like
V@R and AV@R is that Recovery Value at Risk is not a function of the net asset value E1 only
but also of the liabilities L1. As shown in the previous section, this extension is necessary if we
want to explicitly control the recovery on claims. Throughout the section we continue to use
the balance sheet notation introduced in Section 2.

3.1 Introducing RecV@R

Creditors receive at least a recovery fraction λ ∈ [0, 1] on their claims payments if7

A1 ≥ λL1 ⇐⇒ E1 + (1− λ)L1 ≥ 0. (5)

In this event, assets may not be sufficient to meet all obligations, but they cover at least a fraction
λ of liabilities. We control recovery by imposing lower bounds on the recovery probabilities

P(A1 ≥ λL1)

for all recovery fractions λ ∈ [0, 1].8 For this purpose, we introduce the following risk measure.

Definition 3. Let γ : [0, 1]→ [0, 1) be an increasing function. The Recovery Value at Risk

RecV@Rγ : X × X → R ∪ {∞}

with level function γ is defined by

RecV@Rγ(X,Y ) := sup
λ∈[0,1]

V@Rγ(λ)(X + (1− λ)Y ). (6)

If the random variables X and Y in Definition 3 are interpreted, respectively, as the net asset
value E1 and liabilities L1 in a company’s balance sheet,9 the risk measure RecV@R can be
used to formulate a solvency test of the form (1), namely

RecV@Rγ(∆E1, L1) ≤ E0. (7)

To better interpret the solvency test based on RecV@R, observe that

RecV@Rγ(∆E1, L1) ≤ E0 ⇐⇒ RecV@Rγ(E1, L1) ≤ 0

⇐⇒ ∀λ ∈ [0, 1] : V@Rγ(λ)(A1 − λL1) ≤ 0

⇐⇒ ∀λ ∈ [0, 1] : P(A1 < λL1) ≤ γ(λ)

⇐⇒ ∀λ ∈ [0, 1] : P(A1 ≥ λL1) ≥ 1− γ(λ).

7For simplicity, we neglect bankruptcy costs (administrative expenses, legal fees, etc.) which can substantially
impair the size of recovery. Regulators may improve the efficiency of bankruptcy procedures and thereby decrease
their costs, e.g., by requiring last wills of financial institutions.

8We can rewrite the event of recovering a fraction of λ in different ways, i.e., {A1 ≥ λL1} = {A1 − λL1 ≥
0} = {A1/L1 ≥ λ}, where in the last formulation we assume that L1 > 0. In particular, our approach can also
be interpreted in terms of target probabilities for future leverage ratios. Focusing on the modified net asset value
A1−λL1 instead of the ratio A1/L1 is more aligned with current regulation and has the mathematical advantage
to avoid divisions by zero.

9To allow for different applications, we mathematically define recovery risk measures over generic pairs (X,Y )
without any restriction on the sign of X and Y and without any specific assumptions about their relationship
and interpretation. In the relevant applications, we have X = E1 or X = ∆E1 and Y = L1.
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This shows that (7) is equivalent to requiring that the recovery probabilities satisfy

P(A1 < λL1) ≤ γ(λ) ⇐⇒ P(A1 ≥ λL1) ≥ 1− γ(λ) (8)

for every λ ∈ [0, 1]. This guarantees the desired control on the loss given default. More precisely,
the risk measure RecV@R controls the probability with which any given fraction of liabilities is
recovered: The level function γ specifies, for each recovery level λ ∈ [0, 1], an upper bound γ(λ)
on the probability that the realized recovery level turns out to be lower than λ, or equivalently
a lower bound 1 − γ(λ) on the probability that the realized recovery level is higher than λ.
In particular, the solvency test (7) can be seen as a refinement of the standard solvency test
(3) based on V@R where the probability bound α is replaced by a bound that depends on the
target recovery fraction through the function γ. The assumption that γ is increasing captures the
basic requirement that smaller recovery fractions on liabilities should be guaranteed at higher
probability levels. It should be noted that, as soon as γ(0+) := limλ→0 γ(λ) > 0, a control on
recovery probabilities does not imply that recovery fractions are controlled on all events. More
precisely, RecV@R does not impose a restriction on the ratio between assets and liabilities on
some rare event that occurs with a probability of γ(0+). While this is true, we argue that this
aspect can be safely accounted for. Indeed, the recovery function γ is a normative choice of the
regulator, and so is the choice of γ(0+). In this respect, there are two natural options. On the
one hand, the regulator may impose a normative cap on this probability, making it so small
that it is negligible in practical situations. On the other hand, by setting γ(0+) = 0, or, if γ is
continuous at 0, by setting γ(0) = 0, the occurrence of an event with no restriction on the ratio
between assets and liabilities can simply be excluded (almost surely).10

The recovery-adjusted solvency test (7) can easily be combined with a standard solvency
test based on V@R at level α. Indeed, setting γ(1) = α, it follows that

RecV@Rγ(∆E1, L1) ≥ V@Rα(∆E1), (9)

showing that recovery-based capital requirements are more stringent than the standard ones.
The standard V@R test can be reproduced by setting γ(λ) = α for all recovery fractions
λ ∈ [0, 1], in which case the inequality in (9) becomes an equality. It is worth highlighting that
the level γ(1) may also be strictly larger than a regulatory level α. In this case, the inequality
in (9) may be reversed. The recovery-based risk measure RecV@R can be viewed as a flexible
generalization of V@R that reacts to the entire loss tail as specified by the recovery function γ.

Remark 4. The solvency test (7) also controls the conditional recovery probabilities given de-
fault. Indeed, assuming that P(E1 < 0) > 0, for all fractions λ ∈ [0, 1] we have

P(A1 ≥ λL1 |E1 < 0) =
P(λL1 ≤ A1 < L1)

P(E1 < 0)
= 1− P(A1 < λL1)

P(E1 < 0)
.

This implies the following equivalent formulation of the recovery-adjusted solvency test:

RecV@Rγ(E1, L1) ≤ 0 ⇐⇒ ∀λ ∈ [0, 1] : P(A1 ≥ λL1 |A1 < L1) ≥ 1− γ(λ)

P(E1 < 0)
.

In particular, if the company’s unconditional default probability P(E1 < 0) attains γ(1), then
the lower bound on conditional recovery probabilities depends only on γ.

10We thank a referee for pointing out that one always has

RecV@Rγ(∆E1, L1) ≤ V@Rγ(0)(∆E1).

This implies that the undesirable behavior of V@R discussed in Example 2 can be in principle observed also
under RecV@R. To this effect, however, the parameter α in that example has to be taken to coincide with γ(0).
Once again, the regulatory choice of γ(0) is critical. If γ(0) = 0, the issue simply does not arise. If γ(0) > 0, the
issue is possible in theory but will hardly materialize in practice as soon as γ(0) is very close to 0.
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Remark 5. Contrary to V@R and AV@R, the risk measure RecV@R depends on the joint
distribution of the tuple (E1, L1). In particular, the marginal distributions of E1 and L1 are not
a sufficient statistic for RecV@R but knowledge of the dependence structure, as captured, e.g.,
by the copula of the pair, is additionally required.11 The evaluation of RecV@R is technically not
more complicated than the computation of standard solvency capital requirements, since it only
requires the computation of a supremum of distribution-based risk measures, namely V@R’s. In
practical situations, knowledge of the precise joint distribution between assets and liabilities is
challenging. We refer to Section 5 for a detailed numerical illustration.

3.2 Choosing the Recovery Function

The normative choice of the recovery function γ is a critical step in our model and should
reflect the risk preferences of the (external or internal) regulators. In this section we describe a
class of parametric recovery functions12 that provides an ideal compromise between flexibility
and tractability and can be successfully tailored to different applications as demonstrated in
Section 5.

We consider step-wise recovery functions13 of the form

γ(λ) =



α1 if 0 = r0 ≤ λ < r1,

α2 if r1 ≤ λ < r2,
...
αn if rn−1 ≤ λ < rn,

αn+1 if rn ≤ λ ≤ rn+1 = 1,

(10)

with 0 ≤ α1 < · · · < αn+1 < 1 and 0 < r1 < · · · < rn < 1. The parameters ri correspond to
critical target recovery fractions while the parameters αi define bounds on the corresponding
recovery probabilities for every i = 1, . . . , n + 1. This type of recovery functions requires reg-
ulators to specify a finite number of parameters only and might be used to approximate more
complicated recovery functions taking infinitely many values.

As shown in the next proposition, the RecV@R induced by a piecewise linear recovery
function can be expressed as a maximum of finitely many V@R’s.

Proposition 6. Let γ be defined as in (10). Then, for all X ∈ X and Y ∈ X+

RecV@Rγ(X,Y ) = max
i=1,...,n+1

V@Rαi(X + (1− ri)Y ).

Proof. See Section A.2.

The preceding proposition shows that, under a recovery function of the form (10), the
recovery-based solvency test (7) takes the particularly simple form:

P(A1 ≥ riL1) ≥ 1− αi, i = 1, . . . , n+ 1. (11)
11The problem is akin to risk estimation in the presence of aggregate positions where a model for the joint

distribution is also needed. The structure of recovery risk measures opens up a variety of interesting technical
questions related to dependence modelling that, however, go beyond the scope of the current work. The rich and
growing literature on the topic is a good starting point to address such questions, see, e.g., Embrechts, Puccetti
& Rüschendorf (2013), Bernard, Jiang & Wang (2014), Bernard, Rüschendorf, Vanduffel & Wang (2017), Cai,
Liu & Wang (2018).

12We describe a methodology to calibrate γ to an existing regulatory framework in Section 5.3. This mirrors
a common strategy chosen by regulators when adapting a new solvency setting to replace a pre-existing one.
Another possibility to choose γ is to elicit it from the risk appetite of risk managers or customers, e.g., by way
of a questionnaire targeting recovery distributions. This would raise a number of interesting questions for future
research that are, however, beyond the scope of the paper.

13This choice is not particularly restrictive, since an increasing function can be well approximated from below
by step functions.
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In this case, a company is adequately capitalized under RecV@R if, for every i = 1, . . . , n+ 1,
assets are sufficient to cover a fraction ri of liabilities with a probability of at least 1 − αi.
The largest recovery probability αn+1 with target recovery fraction rn+1 = 1 caps the default
probability and could correspond to the level of V@R in a classical solvency test. This shows
that a solvency test of the form (11) can easily be harmonized with the solvency tests currently
used in solvency regulation.

3.3 Basic Properties of RecV@R

We ask which basic properties of V@R are inherited by its recovery counterpart RecV@R. For a
comprehensive survey on scalar monetary risk measures we refer to Föllmer & Schied (2016). A
monetary risk measure is a function ρ : X → R∪{∞} that satisfies the following two properties:

• Cash invariance: ρ(X +m) = ρ(X)−m for all X ∈ X and m ∈ R;

• Monotonicity : ρ(X1) ≤ ρ(X2) for all X1, X2 ∈ X with X1 ≥ X2 P-almost surely.

The cash invariance property formalizes that adding cash to a capital position reduces risk by
exactly the same amount and implies that risk is measured on a monetary scale. In particular,
cash invariance allows to rewrite the risk measure as a capital requirement rule:

ρ(X) = inf{m ∈ R ; ρ(X +m) ≤ 0},

i.e., the quantity ρ(X) can be interpreted as the minimal amount of cash that needs to be
injected into the position X in order to pass the solvency test in (2). If the position already
fulfills this solvency condition, then −ρ(X) corresponds to the maximal amount of capital
that can be extracted from the balance sheet without compromising capital adequacy. Cash
invariance guarantees that risk measures possess an operational interpretation in the context of
solvency tests. Monotonicity reflects that larger capital positions correspond to lower risk and
to lower capital requirements. In addition to its defining properties, a monetary risk measure
may possess the following properties:

• Convexity : ρ(aX1 + (1− a)X2) ≤ aρ(X1) + (1− a)ρ(X2) for all X1, X2 ∈ X and a ∈ [0, 1];

• Subadditivity : ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) for all X1, X2 ∈ X ;

• Positive homogeneity : ρ(aX) = aρ(X) for all X ∈ X and a ∈ (0,∞).

• Normalization: ρ(0) = 0.

The first two properties characterize the behavior of the risk measure with respect to aggre-
gation and require that diversification is not penalized. The third property specifies that risk
measurements scale with the size of positions.

The next proposition records elementary properties of RecV@R. In particular, RecV@R is
a standard monetary risk measure if the second argument is fixed. The proof follows from the
general result in Proposition 19.

Proposition 7. The risk measure RecV@Rγ has the following properties:

(a) Cash invariance in the first component: For all X,Y ∈ X and m ∈ R

RecV@Rγ(X +m,Y ) = RecV@Rγ(X,Y )−m.
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(b) Monotonicity: For all X1, X2, Y1, Y2 ∈ X with X1 ≥ X2 and Y1 ≥ Y2 P-almost surely14

RecV@Rγ(X1, Y1) ≤ RecV@Rγ(X2, Y2).

(c) Positive homogeneity: For all X,Y ∈ X and a ∈ [0,∞)

RecV@Rγ(aX, aY ) = aRecV@Rγ(X,Y ).

(d) Star-shapedness15 in the first component: For all X ∈ X , Y ∈ X+, and a ∈ [1,∞)

RecV@Rγ(aX, Y ) ≥ aRecV@Rγ(X,Y ).

(e) Normalization: For every Y ∈ X+ we have RecV@Rγ(0, Y ) = 0.

(f) Finiteness: For all X ∈ X and Y ∈ X+ we have RecV@Rγ(X,Y ) < ∞ if γ(0) > 0 or if
X is bounded from below.

The previous proposition shows that RecV@R is a standard monetary risk measure in its
first component and can conveniently be expressed as a capital requirement:

RecV@Rγ(E1, L1) = inf{m ∈ R ; RecV@Rγ(E1 +m,L1) ≤ 0}
= inf{m ∈ R ; P(A1 +m < λL1) ≤ γ(λ), ∀λ ∈ [0, 1]}
= inf{m ∈ R ; P(A1 +m ≥ λL1) ≥ 1− γ(λ), ∀λ ∈ [0, 1]}.

This leads to the following operational interpretation of RecV@R: If RecV@Rγ(E1, L1) > 0, the
company fails to pass the recovery-based solvency test (7) and RecV@Rγ(E1, L1) is the minimal
amount of cash that needs to be added to its assets in order to become adequately capitalized. If
RecV@Rγ(E1, L1) < 0, the company is adequately capitalized according to the recovery-based
solvency test (7) and −RecV@Rγ(E1, L1) is the maximal amount of cash that may be extracted
from the asset side without compromising capital adequacy.

Remark 8. From an operational perspective the interpretation of monetary risk measures as
capital requirement rules relies on the cash invariance property. RecV@R is cash invariant in the
first but not in the second argument. If one intends to modify the liabilities, e.g. by transferring
them to another institution, instead of the assets on the balance sheet, an alternative definition
of RecV@R is appropriate, namely (“L” stands for “liabilities”)

LRecV@Rγ(A1, L1) := sup
λ∈(0,1]

1

λ
·V@Rγ(λ)(A1 − λL1). (12)

In this case, the correct way to express the solvency test (7) is

LRecV@Rγ(A1, L1) ≤ 0, (13)

14Increasing leverage does not necessarily increase risk. However, this will be the case in two situations: If assets
are held constant, increasing the value of the liabilities will increase risk and, similarly, if liabilities are fixed,
decreasing the value of assets will increase risk. Monotonicity of RecV@R does, in this respect, not differ from the
standard monotonicity properties of classical monetary risk measures. Less obvious is the behavior of leverage
and risk, if asset and liability positions are modified at the same time. In these situations, their joint behavior
needs to be considered in detail. Leverage is a rather imprecise quantity to characterize risk, while recovery risk
measures have a solid foundation in terms of the notion of acceptability. At the same time, risk measures possess
a simple operational interpretation that directly links them to solvency tests.

15We refer to the recent preprint Castagnoli, Cattelan, Maccheroni, Tebaldi & Wang (2021) for a study of
star-shaped risk measures.
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which is still equivalent to condition (8). Note that LRecV@R is cash invariant (in the appro-
priate sense) with respect to its second argument, i.e., for all A1, L1 ∈ X+ and m ∈ R

LRecV@Rγ(A1, L1 +m) = LRecV@Rγ(A1, L1) +m.

This leads to the following operational interpretation: If LRecV@Rγ(A1, L1) > 0, the company
fails the solvency test (13) and LRecV@Rγ(A1, L1) is the minimal nominal amount of liabilities
that needs to be removed from the balance sheet in order to pass the test, e.g., by transfer-
ring these liabilities to suitable equity holders outside the firm. If LRecV@Rγ(A1, L1) < 0,
the company is adequately capitalized. The company may at most create an additional amount
−LRecV@Rγ(A1, L1) of liabilities, e.g., via additional debt, and immediately distribute the same
amount of cash to its shareholders.

Observe that assets A1 and liabilities L1 are used in the definition of LRecV@R instead of
the net asset value E1 and liabilities L1 in order to obtain a simple cash-invariant recovery risk
measure with a transparent operational interpretation.16

4 Recovery Risk Measures

The risk measure RecV@R allows to control the loss given default by prescribing suitable bounds
on the probability that part of the creditors’ claims can be recovered. If one replaces V@R with
other monetary risk measures, e.g., convex risk measures, one obtains recovery risk measures
of a different type. In particular, by choosing appropriate monetary risk measures as the basic
ingredients, it is possible to construct convex recovery risk measures. In this section we describe
the general structure of recovery risk measures and their main properties. We continue to use
the balance sheet notation introduced in Section 2.

4.1 Recovery Average Value at Risk

We start by focusing on the natural recovery-based version of AV@R, which is arguably the
most important convex risk measure used in practice.

Definition 9. Let γ : [0, 1]→ [0, 1) be an increasing function. The Recovery Average Value at
Risk

RecAV@Rγ : X × X → R ∪ {∞}

with level function γ is defined by

RecAV@Rγ(X,Y ) := sup
λ∈[0,1]

AV@Rγ(λ)(X + (1− λ)Y ). (14)

If the random variables X and Y in Definition 9 are interpreted, respectively, as the net asset
value E1 and liabilities L1 in a company’s balance sheet, the recovery risk measure RecAV@R
can be used to formulate the solvency test (17):

RecAV@Rγ(∆E1, L1) ≤ E0 ⇐⇒ ∀λ ∈ [0, 1] : AV@Rγ(λ)(A1 − λL1) ≤ 0. (15)

A company will thus be adequately capitalized according to RecAV@R with level function γ if
for all recovery fractions λ ∈ [0, 1] the modified net asset value A1 − λL1 is positive on average
on the lower tail beyond the γ(λ)-quantile. Since AV@R dominates V@R at the same level,
domination is inherited by their recovery-based versions, i.e., for all X,Y ∈ L1

RecAV@Rγ(X,Y ) ≥ RecV@Rγ(X,Y ).

16Combining RecV@R and LRecV@R leads to the question of how to combine asset and liability management
for capital adequacy purposes, which, however, goes beyond the scope of this paper. The literature on set-valued
risk measures may help to address this question.



14

The solvency test (15) is stricter than (7) and the recovery probabilities are still controlled as
described in equation (8).

The next proposition states some basic properties of RecAV@R, which follow from a general
result in Proposition 19 in the appendix.17

Proposition 10. The risk measure RecAV@Rγ is cash invariant in its first component, mono-
tone, convex, subadditive, positively homogeneous, star shaped in its first component, and nor-
malized. Moreover, RecAV@Rγ(X,Y ) <∞ for all integrable X ∈ X and Y ∈ X+ if γ(0) > 0 or
if X is bounded from below.

The subadditivity of RecAV@R makes it suitable to serve as a basis for limit systems that
enable decentralized risk management within firms. We consider a bank or an insurance company
that consists of N subentities. For each date t = 0, 1 their assets, liabilities, and net asset value
are denoted by Ait, Lit, and Eit , i = 1, . . . , N . The consolidated figures are denoted by

At =

N∑
i=1

Ait, Lt =

N∑
i=1

Lit, Et =

N∑
i=1

Eit .

The firm may enforce entity-based risk constraints of the form

RecAV@Rγ(Ei1, L
i
1) ≤ ci, i = 1, . . . , N,

where c1, . . . , cN ∈ R are given risk limits. If the limits are chosen to satisfy
∑N

i=1 c
i ≤ 0, then

RecAV@Rγ(E1, L1) ≤
N∑
i=1

RecAV@Rγ(Ei1, L
i
1) ≤

N∑
i=1

ci ≤ 0

by subadditivity. This shows that imposing risk constraints at the level of subentities allows to
fulfill the “global” solvency test (15). A closely related issue is performance measurement and
adaptive management of the balance sheets of firms, as often seen in practice. This is discussed
for general recovery risk measures in Section 5.2.

If the recovery function γ is piecewise constant, then RecAV@R is the maximum of finitely
many AV@R’s. This parallels the representation of RecV@R recorded in Proposition 6.

Proposition 11. Let γ be defined as in (10). Then, for all X ∈ X and Y ∈ X+

RecAV@Rγ(X,Y ) = max
i=1,...,n+1

AV@Rαi(X + (1− ri)Y ).

Proof. See Section A.3.

Remark 12. A modified version of RecAV@R that is cash invariant with respect to its second
component can be easily constructed as in Remark 8.

4.2 General Recovery Risk Measures

To motivate the general definition of a recovery risk measure, we observe that RecV@R may
be expressed in terms of a decreasing family of monetary risk measures indexed by recovery
fractions λ ∈ [0, 1]. Indeed, for a given level function γ, the collection of monetary risk measures
ρλ : X → R given by

ρλ(X) = V@Rγ(λ)(X), λ ∈ [0, 1],

17We refer to Section A.4 in the appendix for a dual representation of RecAV@R. Duality results play an
important role in applications such as optimization problems involving risk measures.
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defines the associated RecV@R by setting

RecV@Rγ(X,Y ) = sup
λ∈[0,1]

ρλ(X + (1− λ)Y ).

The same holds for AV@R and its recovery counterpart. By construction, smaller recovery
fractions are guaranteed with higher probability, which is captured by γ being increasing. As
a consequence, the family of maps ρλ, λ ∈ [0, 1], is decreasing in the sense that ρλ1 ≥ ρλ2

whenever λ1 ≤ λ2. A smaller recovery fraction corresponds to a more conservative risk measure.
This motivates the general definition of a recovery risk measure.

Definition 13. For every λ ∈ [0, 1] consider a map ρλ : X → R ∪ {∞} and assume that
ρλ1 ≥ ρλ2 whenever λ1 ≤ λ2. The recovery risk measure

Recρ : X × X → R ∪ {∞}

is defined by
Recρ(X,Y ) := sup

λ∈[0,1]
ρλ(X + (1− λ)Y ). (16)

In line with our discussion on RecV@R, if the random variables X and Y in Definition 13 are
respectively interpreted as the net asset value E1 and liabilities L1 in a company’s balance sheet,
the recovery risk measure Recρ can be employed to formulate a solvency test of the form (1).
Indeed, similarly to what we have shown in Section 3, we have

Recρ(∆E1, L1) ≤ E0 ⇐⇒ ∀λ ∈ [0, 1] : ρλ(A1 − λL1) ≤ 0. (17)

The specific interpretation of this recovery-based solvency test will, of course, depend on the
choice of the monetary risk measures used to build Recρ. In Section A.5 in the appendix we
show how a number of standard properties of monetary risk measures are inherited by their
recovery counterparts and discuss dual representations of convex recovery risk measures.

5 Applications

We complement the foundations on recovery risk measures with detailed case studies and ap-
plications. In Section 5.1 we demonstrate that recovery-based solvency requirements may help
align the decisions of the management of firms with the interest of creditors in protecting their
claims in the case of default. In Section 5.2 we focus on performance-based management of
business divisions of firms for recovery risk measures. In Section 5.3 we address the problem
of calibrating the recovery function to pre-specified benchmarks, an issue that is relevant in
the context of regulatory regime changes. Finally, in Section 5.4 we study the impact of the
distributions of the underlying balance sheet figures on capital adjustments.

5.1 Protecting the Interests of Creditors

We demonstrated in Example 2 that capital requirements based on V@R and AV@R may fail to
provide an adequate protection to creditors. We return to this example and show that RecV@R
and RecAV@R can successfully be employed to enforce guarantees on claims recovery.18

Example 14. We consider the situation of Example 2, but with a different risk constraint in
terms of RecV@R. While solvency constraints in terms of V@R or AV@R led to recovery 0, the
recovery risk measure RecV@R is able to guarantee a pre-specified recovery level.

18For detailed calculations we refer to Section A.6 in the appendix.
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We fix a recovery function in the class described in Section 3.2 with n = 1. For a probability
level β ∈ (0, α) and a recovery level r ∈ (0, 1), we set

γ(λ) =

{
β if λ ∈ [0, r),

α if λ ∈ [r, 1].

For every choice of k ∈ [0, 100] we obtain from Proposition 6 that

RecV@Rγ(Ek1 , L1) = max{V@Rα(Ek1 ),V@Rβ(Ek1 + (1− r)L1)}.

A direct computation shows that

RecV@Rγ(Ek1 , L1) =

{
100r − k if β < α

2 , k ≤ 50(r + 1),

k − 100 otherwise.

According to (7) the company is adequately capitalized if

RecV@Rγ(Ek1 , L1) ≤ 0 ⇐⇒

{
k ≥ 100r if β < α

2 ,

k ≥ 0 if β ≥ α
2 .

A maximal shareholder value under the recovery-based solvency constraint is attained with k =
100r when β < α

2 and with k = 0 otherwise. The first case corresponds to successfully controlling
recovery. Hence, the regulator may choose a suitable recovery function such that RecV@R is
more stringent than V@R and the recovery fraction in the default state is equal to r. This is in
contrast to Example 2 with solvency constraints in terms of V@R or AV@R that led to recovery
0 when the management maximizes shareholder value.

Example 15. We consider the same situation as in Example 14, but replace RecV@R by
RecAV@R with the same recovery function. We will demonstrate that the recovery risk mea-
sure RecAV@R is also able to guarantee a pre-specified recovery level.

To be more specific, it follows from Proposition 11 for every choice of k ∈ [0, 100] that

RecAV@Rγ(Ek1 , L1) = max{AV@Rα(Ek1 ),AV@Rβ(Ek1 + (1− r)L1)}.

A direct computation shows that

RecAV@Rγ(Ek1 , L1) =


100r − k if β < α

2 , k ≤ 100r,

r − 101 + α
2β (101 + 99r) + (1− α

β )k if β ≥ α
2 , k ≤

(99α+2β)r−101(2β−α)
2(α−β) ,

0 otherwise.

Hence, the company is adequately capitalized under (15) if

RecAV@Rγ(Ek1 , L1) ≤ 0 ⇐⇒

{
k ≥ 100r if β < α

2 ,

k ≥ max
{

(99α+2β)r−101(2β−α)
2(α−β) , 0

}
if β ≥ α

2 .

If β < α
2 and the management selects the individually optimal admissible level of k, the recovery

fraction in the default state is equal to r as observed in Example 14. In this case, there is no
difference between RecAV@R and RecV@R.

Interestingly enough, contrary to RecV@R, claims recovery can be controlled under RecAV@R
even in the situation where β ≥ α

2 . In this case, under the assumption that shareholder value is
maximized, the fraction of claims recovered in the default state equals

max

{
(99α+ 2β)r − 101(2β − α)

200(α− β)
, 0

}
.

This expression is strictly positive as soon as r is strictly larger than the bound 101(2β−α)
99α+2β ∈ [0, 1).

(For example, taking β = α
2 always ensures a recovery equal to r). Solvency capital requirements

based on RecAV@R are more effective in controlling claims recovery in comparison to those
based on RecV@R in Example 14.
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5.2 Performance Measurement

An important issue that is closely related to solvency capital requirements is performance mea-
surement. We show that this task can be implemented on the basis of recovery risk measures. A
popular metric in practice is the return on risk-adjusted capital (RoRaC). Consider a recovery
risk measure Recρ that is subadditive and positively homogeneous as discussed in Section A.5.
The associated RoRaC is defined by

RoRaC(∆E1, L1) :=
E(∆E1)

Recρ(∆E1, L1)
.

This quantity measures the expected return per unit of economic capital expressed in terms of
the risk measure Recρ. We suppose that Recρ(∆E1, L1) > 0.

The goal of the firm is to improve its RoRaC. We assume that the company is composed
of different subentities labelled i = 1, . . . , n. The central management may impose risk limits
and adjust the size of different business units. A key question is which allocation of economic
capital to business units and corresponding performance measurements provide appropriate
information to improve the overall performance of the firm. We denote the net asset values and
liabilities of the subentities at time t = 0, 1 by Eit and Lit for i = 1, . . . , N , respectively. Note
that for t = 0, 1

Lt =

N∑
i=1

Lit, Et =

N∑
i=1

Eit .

The subadditivity of Recρ implies

Recρ(∆E1, L1) ≤
N∑
i=1

Recρ(∆Ei1, L
i
1).

We seek an allocation of economic capital κi := Recρ∆E1,L1(∆Ei1, L
i
1), i = 1, . . . , N , satisfying:

• Full allocation:
∑N

i=1 κ
i = Recρ(∆E1, L1);

• Diversification: κi ≤ Recρ(∆Ei1, L
i
1) for all i = 1, . . . , N ;

• RoRaC-compatibility: If for some i = 1, . . . , N we have

RoRaCi :=
E(∆Ei1)

κi
> RoRaC(∆E1, L1) (resp. <),

then there exists ε > 0 such that for every h ∈ (0, ε)

RoRaC(∆E1 + h∆Ei1, L1 + hLi1) > RoRaC(∆E1, L1) (resp. <).

The full allocation property requires that the entire solvency capital is allocated to the individual
subentities. The diversification property specifies that no more capital is allocated to the indi-
vidual subentities than their stand-alone solvency capital, taking beneficial diversification effects
into account, which is feasible due to the subadditivity of Recρ. Finally, RoRaC-compatibility
guarantees that performance measurement based on the chosen capital allocation provides the
correct information to the management of the firm to improve the overall performance of the
firm. To be more precise, if the performance of subentity i — as captured by RoRaCi — is
better than the overall RoRaC, the performance of the entire firm can be improved by growing
subentity i. An allocation fulfilling the above three properties is called a suitable allocation.

The existence of suitable allocations has been extensively studied in the literature, see, e.g.,
Tasche (2000), Tasche (2004), Kalkbrener (2005), Tasche (2008), Dhaene et al. (2012), Bauer &
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Zanjani (2013), and the general review by Guo et al. (2020). It follows from the general results
in these papers that the only suitable allocation in the above sense is the Euler allocation

κi =
d

dh
Recρ(∆E1 + h∆Ei1, L1 + hLi1)|h=0

for all i = 1, . . . , N . In the specific case of Recρ = RecAV@R with a simple piecewise constant
level function, the Euler allocation can explicitly be computed.

Proposition 16. Let γ be defined as in (10) and let j ∈ {1, . . . , N} satisfy

AV@Rαj (∆E1 + (1− rj)L1) > max
i=1,...,N, i 6=j

AV@Rαi(∆E1 + (1− ri)L1).

Under suitable assumptions on the joint distribution of ∆E1
1 +(1−rj)L1

1, . . . ,∆E
N
1 +(1−rj)LN1

(see Section A.8), the Euler allocation based on RecAV@Rγ is given for every i = 1, . . . , N by

κi = −E
(
∆Ei1 + (1− rj)Li1 |E1 + (1− rj)L1 ≤ −V@Rαj (E1 + (1− rj)L1)

)
.

Proof. See Section A.8.

In summary, performance measurement inside firms can be based on recovery risk measures.
Notions such as return on risk-adjusted capital (RoRaC) and RoRaC-compatible allocations
may be extended to solvency regimes that control the size of recovery on creditors’ claims in
the case of default.

5.3 Calibrating the Recovery Function

When regulatory solvency standards in practice are modified and improved, the old regulatory
framework is often used as a numerical benchmark for the new one. New and old requirements
will, of course, differ for many distributions of assets and liabilities at the considered time
horizon, and many companies might experience corresponding changes in solvency requirements.
For this reason, a common approach in practice is to calibrate the new standards in such a way
that they produce the same solvency requirement for a prototypical benchmark company. The
rational behind this strategy is to ensure some form of continuity in the sense that benchmark
firms are not too much affected over short time horizons. At the same time, regulatory standards
are ideally modified in such a way that their new design is more efficient in achieving key
regulatory goals in the long run. Choosing a benchmark balance sheet for calibration naturally
remains a political decision.

In this section, we explain in the context of an example how recovery risk measures could
be calibrated to existing regulatory standards. We begin by recalling the transition from Basel
II to Basel III. Basel II was based on V@R at level α = 1% while the new Basel III has adopted
AV@R at level β = 2.5%. The choice of β = 2.5% was justified a) by assuming in a benchmark
model that changes in net asset value ∆E1 are normally distributed and b) by requiring19

AV@Rβ(∆E1) ≈ V@Rα(∆E1).

The new regulatory level equates capital requirements of normally distributed positions for old
and new standards. In the same spirit, we describe how to calibrate the recovery level function
of RecV@R. A challenge is that we deal with a function γ instead of a single parameter β as
well as with a pair of random variables, E1 − E0 and L1, instead of just one random variable,
E1 − E0. The aim is to equate, for given α ∈ (0, 1) and for ∆E1 being normally distributed,

RecV@Rγ(∆E1, L1) = V@Rα(∆E1). (18)
19We refer to Li & Wang (2019) for a general study on calibration of V@R and AV@R.



19

The choice of a benchmark is a political decision of the regulator. In our recovery-based
setting, we consider a particularly simple choice. As discussed before, we assume that ∆E :=
E1 − E0 is normally distributed with mean µ∆E ∈ R and standard deviation σ∆E > 0. In
addition, we suppose that L := L1 is normally distributed with mean µL ∈ R and standard
deviation σL > 0 and is independent of ∆E. The latter assumption is not meant to capture
realistic balance sheets, but is simply chosen for illustration as it leads to explicit calculations.
By independence, for every λ ∈ [0, 1] the random variable ∆E + (1 − λ)L is also normal. We
denote by Φ the distribution function of a standard normal random variable.20

We seek a function γ such that (18) holds under the assumptions above. A sufficient require-
ment is that

V@Rγ(λ)(∆E + (1− λ)L) = V@Rα(∆E), for every λ ∈ [0, 1].

A direct calculations yields

γ(λ) = Φ

σ∆EΦ−1(α)− (1− λ)µL√
σ2

∆E + (1− λ)2σ2
L

 , λ ∈ [0, 1],

with γ(1) = α. This function might be inconsistent with the requirements in Definition 3, namely
with γ being increasing. A potential remedy to this problem could be to modify the choice of γ
as follows. Since our solution for γ is differentiable with respect to λ, by taking derivatives, its
increasing part can easily be characterized by

γ′(λ) ≥ 0 ⇐⇒ (1− λ)Φ−1(α)σ2
L + µLσ∆E ≥ 0, λ ∈ (0, 1).

Here, we have used that Φ−1(α) < 0 because α is assumed to be close to zero. Hence, γ is
increasing on the interval [λ∗, 1] where

λ∗ := max

{
1 +

µLσ∆E

σ2
LΦ−1(α)

, 0

}
< 1.

If λ∗ = 0, the function γ is increasing on the whole interval [0, 1]. Otherwise, we compute

γ(λ∗) = Φ

(
−

√
Φ−1(α)2 +

µ2
L

σ2
L

)
.

and redefine γ as follows:

γ(λ) :=


Φ

(
−
√

Φ−1(α)2 +
µ2
L

σ2
L

)
if λ ∈ [0, λ∗),

Φ

(
σ∆EΦ−1(α)−(1−λ)µL√

σ2
∆E+(1−λ)2σ2

L

)
if λ ∈ [λ∗, 1].

Finally, if a piecewise-constant recovery function is sought, see Section 3.2, a suitable approxi-
mation of γ may be chosen.

5.4 Numerical Case Studies

Standard solvency capital requirements based on V@R and AV@R cannot control the probability
of recovering certain pre-specified fractions of claims. Additional capital is required which needs
to be computed on the basis of recovery risk measures such as RecV@R and RecAV@R. In this

20Note that a positive random variable like L cannot have a normal distribution. In practice, this can be taken
into account by imposing the condition Φ(−µL

σL
) = P(L < 0) ≤ ε for a sufficiently small ε > 0.
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Figure 1: Probability distribution function of ∆E1 (left) and a detail of its tail (right) for ρ = 0.1
(dotted) and ρ = 0.9 (plain) and for τ = 1 (green) and τ = 5 (red).

section, we study the impact of a variation in the distribution of the underlying balance sheet
figures on the size of necessary capital adjustments. Section 5.4.1 numerically illustrates this for
standard parametric distributions. This allows to understand the influence of correlation be-
tween assets and liabilities and the tail size of liabilities. Section 5.4.2 presents a stylized example
demonstrating that under standard solvency regimes sophisticated asset-liability-management
may hide substantial tail risk. These situations correspond to high capital adjustments, if the
required capital is instead computed by recovery risk measures.

Throughout the section, we consider a financial institution with assets At, liabilities Lt, and
net asset value Et = At − Lt at dates t = 0, 1. The changes of the net asset value over the
considered time window or, equivalently, the corresponding cash flows are ∆E1 = E1 − E0.

5.4.1 Parametric Distributions

In this section, we consider parametric distributions that model the evolution of the company’s
assets and liabilities and show how the gap between standard capital requirements and those
based on recovery risk measures is influenced by the dependence between assets and liabilities
and by their marginal distributions, in particular the liability tail size. We refer to Section A.9
for further details.

Distribution of assets and liabilities. We assume that A1 possesses a lognormal distribu-
tion with log-mean µ ∈ R and log-standard deviation σ > 0. This specification for the asset
distribution is standard in the finance literature and compatible, e.g., with the Black-Scholes
setting. We fix µ = 2 and σ = 0.2. Liabilities L1 follow a mixture gamma distribution. More pre-
cisely, up to the 95% quantile L1 possesses a gamma distribution with shape parameter τ0 > 0
and rate parameter δ0 > 0; beyond the 95% quantile L1 is determined by a gamma distribution
with shape parameter τ > 0 and rate parameter δ > 0. This specification is encountered in
many applications, including insurance, and allows a flexible control on the tail distribution
(heavier tails correspond to higher levels of τ). Setting δ0 = δ = 1 and τ0 = 1, we focus on the
range τ ∈ [1, 5].

Assets and liabilities are linked by a Gaussian copula. This choice allows to capture depen-
dence by a single parameter, the correlation coefficient ρ ∈ [−1, 1]. Under positive dependence
(ρ > 0), shocks increasing the value of liabilities are more frequently accompanied by increased
asset values. In this case, the asset position may be considered a reasonable hedge of the liability
position. We focus on the range ρ ∈ [0, 1].

Simulated distribution of assets and liabilities. Our computations are implemented us-
ing the software R. We resort to standard Monte Carlo simulation based on quantile inversion
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Figure 2: The solvency capital requirement ρreg(∆E1) as a function of ρ (left) for τ = 1 (green)
and τ = 5 (red) and as a function of τ (right) for ρ = 0.1 (red) and ρ = 0.9 (green).

(for the marginal distributions) and Cholesky decomposition (for the joint distribution); see,
e.g., Glasserman (2013). The simulated cash flow distribution is displayed in Figure 1. The
choice of E0 is made to ensure a realistic probability of observing negative cash flows over the
considered period of time, i.e., P(E1 < E0); we target a value of about 50%. This constraint is
met in our case if, e.g., E0 = 6.5. As expected, increasing the correlation level between assets
and liabilities leads to a more concentrated cash flow distribution. Increasing the size of the
liability tail leads to a heavier cash flow tail. Probabilities of negative cash flows are decreas-
ing functions of the correlation level and increasing functions of the liability tail size. This is
illustrated in Figure 5 in Section A.11. The first observation is due to the fact that the more
positive the dependence, the more effective are the assets as a hedge against liabilities and the
lower the probability of negative cash flows.

Regulatory capital requirements. We focus on the two most prominent solvency regimes
in insurance, Solvency II and the Swiss Solvency Test, with regulatory capital requirements

ρreg(∆E0) =

{
V@R0.5%(∆E0) under Solvency II,
AV@R1%(∆E0) under the Swiss Solvency Test.

Figure 2 displays solvency capital requirements as functions of the correlation level between
assets and liabilities and of the liability tail size. In line with our previous discussion, the level
of regulatory capital is a decreasing function of correlation and an increasing function of tail size.
The risk measure ρreg(E1) is always negative under our specifications, indicating that we are
focusing on companies that are technically solvent with respect to the regulatory solvency tests
under consideration. In addition, the solvency ratio E0

ρreg(∆E0) lies in the interval [1, 3], which is
the relevant range in practice. This is illustrated in Figure 6 and Figure 7 in Section A.11.

Recovery-based capital requirements. We consider recovery risk measures with a simple
parametric recovery function belonging to the class described in Section 3.2 with n = 1. We fix
a regulatory level α ∈ (0, 1) and consider a piecewise constant recovery function

γ(λ) =

{
β if λ ∈ [0, r)

α if λ ∈ [r, 1]
(19)

for suitable β ∈ (0, α) and r ∈ (0, 1). In line with the Solvency II standards we take α = 0.5%.
The solvency capital requirement induced by the corresponding RecV@R is given by

RecV@Rγ(∆E1, L1) = max{V@Rα(∆E1),V@Rβ(∆E1 + (1− r)L1)},
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Figure 3: The aggregate recovery adjustment AggRecAdj as a function of ρ (left) for τ = 1
(green) and τ = 5 (red) and as a function of τ (right) for ρ = 0.1 (red) and ρ = 0.9 (green).

the solvency test (7) is equivalent to

P(A1 < L1) ≤ α and P(A1 < rL1) ≤ β.

Besides controlling the default probability P(A1 < L1) at the pre-specified regulatory level α,
the recovery risk measure additionally bounds the probability P(A1 < rL1) of covering less than
a fraction r of liabilities by a more stringent level β.

Recovery adjustments. In order to capture the extent to which the regulatory solvency
capital requirements fail to control the recovery on liabilities we define the recovery adjustment

RecAdjγ(∆E1, L1) := max

{
RecV@Rγ(∆E1, L1)

ρreg(∆E1)
, 1

}
. (20)

This quantity is the maximum of 1 and the multiplicative factor by which regulatory require-
ments would have to be adjusted to guarantee the considered recovery levels. Recovery ad-
justments may also be conveniently expressed as a function of the regulatory level β and the
recovery rate r as

RecAdj(β, r) := max

{
max{V@Rα(∆E1),V@Rβ(∆E1 + (1− r)L1)}

ρreg(∆E1)
, 1

}
.

We consider the aggregate recovery adjustment

AggRecAdj :=

∫ βmax

βmin

∫ rmax

rmin

RecAdj(β, r)dβdr

with (βmin, βmax) = (0.1%, 0.25%) and (rmin, rmax) = (80%, 90%). Apart from a normalization
constant, this quantity corresponds to the average recovery adjustment over the chosen range
of the recovery parameters β and r. Figure 3 displays the aggregate recovery adjustment as
a function of the correlation between assets and liabilities and of the size of the liability tail.
Figures 8 and 9 in Section A.11 display recovery adjustments for specific choices of β and r.

Observations. The qualitative behavior of recovery adjustments can be described as follows:

(a) Recovery adjustments are typically larger than 1, indicating that regulatory solvency
requirements are too low to fulfill the target recovery-based solvency condition.
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(b) The size of the recovery adjustment depends on the recovery-based regulatory level β
and the recovery rate r as expected: It is larger if β is lower (a tighter constraint on the
recovery probability) and if r is higher (a larger portion of liabilities to recover). This
relation holds across liability tail sizes and correlation levels but is more pronounced in
the presence of lighter liability tails and higher correlations.

(c) For sufficiently large correlation levels, recovery adjustments are increasing functions of
the correlation level between assets and liabilities, suggesting that the failure of regula-
tory capital requirements to control the recovery on liabilities is more pronounced in the
presence of large correlation levels. This relation holds across all liability tail sizes.

(d) For sufficiently light tails, recovery adjustments are decreasing functions of the liability tail
size, suggesting that the failure of regulatory capital requirements to control the recovery
on liabilities is stronger in the presence of lighter liability tails. This relation holds across
different correlation levels.

(e) These observations hold for both regulatory frameworks under investigation. In compar-
ison, recovery adjustments in the Swiss Solvency Test are lower than those induced in
Solvency II under our distributional specifications.

Our observations demonstrate the importance of recovery risk measures from a risk management
perspective. First, we observe that, under standard distributional assumptions, there may exist a
considerable gap between the standard risk measures used in practice and our reference recovery
risk measure. Second, this gap tends to be wider in the presence of lighter liability tails and
higher levels of correlation between assets and liabilities. In situations when assets appear to
better hedge liability claims, standard risk measures show lower ability to control recovery rates.

5.4.2 Sophisticated Asset-Liability Management

In this section we consider a firm with a stylized balance sheet. Assets are deterministic, but
the firm is capable of controlling the shape of the liability distribution in a sophisticated way.
Our case study provides another perspective on the failure of standard solvency regulation to
control recovery and highlights that this deficiency might be associated with large recovery
adjustments. For detailed calculations we refer to Section A.10.

Distribution of assets and liabilities. We assume that assets evolve in a deterministic way
with A1 being equal to a constant k > 0. The future value of liabilities L1 follows a probability
density function with two peaks as displayed in Figure 4. The probability of falling in the light
tail peak is equal to 99.5% and that of falling in the heavy tail peak is equal to 0.5%.21

Regulatory capital requirements. In line with Solvency II and the Swiss Solvency Test,
we focus on VaR at level 0.5% and AVaR at level 1%. The chosen regulatory risk measure is
denoted by ρreg. The corresponding solvency capital requirements admit analytic solutions:

ρreg(∆E1) =

V@R0.5%(∆E1) = a− k + E0,

AV@R1%(∆E1) =
(

1
2 −

1
3

√
α

2(1−α)

)
a+ b+c

4 − k + E0.

The capital requirements based on V@R are blind to all liability payments beyond the first peak
while capital requirements based on AV@R react to the entire distribution of liabilities.

21The explicit expression of the density function is provided in Section A.10.
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0 a b c

Figure 4: Qualitative plot of the probability density function of L1. The area below the left peak
equals 99.5% while the area below the right peak equals 0.5%.

Recovery-based capital requirements. Fixing a regulatory level α ∈ (0, 1), consider a
piecewise constant recovery function belonging to the class described in Section 3.2 with n = 1:

γ(λ) =

{
β if λ ∈ [0, r)

α if λ ∈ [r, 1]
(21)

with β ∈ (0, α), r ∈ (0, 1), and α = 0.5%. The choice of α is motivated by the standards
implemented in Solvency II. The solvency capital requirement corresponding to RecV@R is

RecV@Rγ(∆E1, L1) = max{V@Rα(∆E1),V@Rβ(∆E1+(1−r)L1)} = max

{
a, r

b+ c

2

}
−k+E0

and depends on the entire distribution of liabilities. This paralles AV@R, but tail risk is captured
in a more sophisticated way: The recovery level r determines the relative importance of the peaks
of the liability distribution.

Recovery adjustments. As in Section 5.4.1 we consider recovery adjustments as introduced
in (20). We will answer the question how large the recovery adjustments may become, if a firm’s
asset-liability-management is constrained by the following conditions:

(1) Solvent profile under ρreg ρreg(E1) ≤ 0

(2) Capital requirement under ρreg ρreg(∆E1) > 0

(3) Solvent profile under RecV@Rγ RecV@Rγ(E1, L1) ≤ 0

(4) Capital requirement under RecV@Rγ RecV@Rγ(∆E1, L1) > 0

(5) V@Rα insufficient to control claims recovery RecV@Rγ(E1, L1) > V@Rα(E1)

(6) Range of admissible regulatory solvency ratios smin ≤ E0
ρreg(∆E1) ≤ smax

More precisely, we focus on the optimization problem

max RecAdjγ(∆E1, L1) over A1 and L1 as specified above (22)

under the constraints (1) to (6). The solvency ratios in (6) are in practice typically in the
range between 1.2 and 3.22 It turns out that in many cases the highest admissible recovery
adjustment coincides with smax, i.e., capital requirements under RecV@R can be as large as
smax times the capital requirements under V@R or AV@R. This implies that the difference
between the current capital requirements and their recovery-based versions in our asset-liability
setting may be substantial. The next proposition states this in detail.

22In general, we assume that 1 < smin < smax.
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Proposition 17. The optimal value of (22) is bounded from above by smax. If ρreg = V@R0.5%,
this upper bound is attained for every choice of γ. If ρreg = AV@R1%, this upper bound is attained
for special choices of γ, e.g., when β ≥ α

2 and 1
4

√
2α
α−β < r ≤ 1

4

√
2α√

2α−
√
α−β

1
1
2

+ 1
3

√
α

2(1−α)

.23

Proof. See Section A.7.

The preceding result suggests that companies subject to capital requirements based on V@R
and AV@R may be far from guaranteeing acceptable recovery rates on their creditors’ claims. In
the V@R case, this is a consequence of tail blindness, which, in the absence of external controls,
allows companies to accumulate tail risk without any regulatory cost. Also in the AV@R case this
problem does not disappear because increased tail risk may often be compensated by a suitable
shift in the asset distribution or in the body of the liability distribution. In our example, a more
dispersed distribution beyond the 99.5% quantile may leave the AV@R unchanged provided the
distribution within the same quantile level shrinks.24

6 Conclusion

Risk measures used in solvency regulation specify guard rails for financial firms such as banks
or insurance companies. Within their legal boundaries firms can otherwise freely choose their
actions, e.g., in order to maximize shareholder value. As a consequence, an axiomatic theory of
risk measures for solvency regulation should carefully formulate and capture the goals of regula-
tion, and determine and investigate suitable instruments to meet them. The issue of recovery on
creditors’ claims has not yet been considered in sufficient detail, and the existing literature lacks
solvency requirements that provide adequate protection of customers and counterparties in the
case of default. In this paper, we propose the novel concept of recovery risk measures to resolve
this issue. We analyze the properties of these risk measures and describe how to apply them in
the context of solvency regulation, performance measurement, and portfolio optimization. Our
findings suggest that recovery risk measures add value to the current risk management toolkit.
They are tractable tools for both internal risk management and solvency regulation and can be
employed to provide a more comprehensive picture on tail risk with a focus on safeguarding the
interests of creditors and policyholders.

Various extensions of the suggested framework are possible. Our framework focuses on a
static setting as common in solvency regulation where relevant time horizons are fixed. Dynamic
or conditional solvency risk measures would be an interesting extension; see Bielecki, Cialenco &
Pitera (2017) for a survey on previous research on this topic. Recovery risk measures are applied
to single firms in this paper. From this perspective, another natural extension is the regulation of
financial systems. As outlined in the literature, systemic risk measures should capture the local
and global interaction of economic agents and operationalize the emerging risk at the level of the
entire system; see, e.g., Chen, Iyengar & Moallemi (2013), Kromer, Overbeck & Zilch (2016),
Feinstein et al. (2017), Biagini et al. (2019). A related issue is the study of optimal investment
under risk constraints in the spirit of Markowitz (1952), where the variance is replaced by a
recovery risk measure. Our approach to model firms’ balance sheets offers a natural and flexible
starting point to address optimal asset-liability problems of this type.

23For instance, if β = α
2
, then we can take 50% < r ≤ 95%.

24This phenomenon refers to the lack of surplus invariance and was studied in Koch-Medina & Munari (2016).
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A Appendix

A.1 Proof of Proposition 1

Proof. Fix λ ∈ (0, 1). By nonatomicity, for every p ∈ (0, α) we find an event Fp ∈ F such that
P(Fp) = p. Set Ap = p

α−p1F cp and Lp = 1Fp and note that Ap − Lp = −1Fp + p
α−p1F cp . Note also

that both Ap and Lp belong to X . A simple computation shows that

V@Rα(Ap − Lp) ≤ AV@Rα(Ap − Lp) =
1

α

(
p− (α− p) p

α− p

)
= 0.

Moreover, we have P(Ap ≥ λLp) = P(F cp ) = 1− p. As a result,

1− α ≤ inf{P(A ≥ L) ; A,L ∈ X+, V@Rα(A− L) ≤ 0}
≤ inf{P(A ≥ λL) ; A,L ∈ X+, V@Rα(A− L) ≤ 0}
≤ inf{P(A ≥ λL) ; A,L ∈ X+, AV@Rα(A− L) ≤ 0}
≤ inf{P(Ap ≥ λLp) ; 0 < p < α}
= inf{1− p ; 0 < p < α} = 1− α.

This yields the desired statements.

A.2 Proof of Proposition 6

Proof. Fix i = 1, . . . , n and observe that γ is constant and equal to αi on the interval [ri−1, ri).
Hence, we get

V@Rγ(λ)(X + (1− λ)Y ) = V@Rαi(X + (1− λ)Y ) ≤ V@Rαi(X + (1− ri)Y )

for every λ ∈ [ri−1, ri) by positivity of Y and monotonicity of V@R. As a result,

sup
λ∈[ri−1,ri)

V@Rγ(λ)(X + (1− λ)Y ) = V@Rαi(X + (1− ri)Y ).

Similarly, observe that γ is constant and equal to αn+1 on the interval [rn, 1]. Hence, we get

V@Rγ(λ)(X + (1− λ)Y ) = V@Rαn+1(X + (1− λ)Y ) ≤ V@Rαn+1(X)

for every λ ∈ [rn, 1] by positivity of Y and monotonicity of V@R. As a result,

sup
λ∈[rn,1]

V@Rγ(λ)(X + (1− λ)Y ) = V@Rαn+1(X).

The desired assertion is a direct consequence of the above identities.

A.3 Proof of Proposition 11

Proof. Fix i = 1, . . . , n and observe that γ is equal to αi on the interval [ri−1, ri). Hence,

AV@Rγ(λ)(X + (1− λ)Y ) = AV@Rαi(X + (1− λ)Y ) ≤ AV@Rαi(X + (1− ri)Y )

for every λ ∈ [ri−1, ri) by positivity of Y and monotonicity of AV@R. As a result,

sup
λ∈[ri−1,ri)

AV@Rγ(λ)(X + (1− λ)Y ) = AV@Rαi(X + (1− ri)Y ).

Similarly, observe that γ is constant and equal to αn+1 on the interval [rn, 1]. Hence, we get

AV@Rγ(λ)(X + (1− λ)Y ) = AV@Rαn+1(X + (1− λ)Y ) ≤ AV@Rαn+1(X)

for every λ ∈ [rn, 1] by positivity of Y and monotonicity of AV@R. As a result,

sup
λ∈[rn,1]

AV@Rγ(λ)(X + (1− λ)Y ) = AV@Rαn+1(X).

The desired assertion is a direct consequence of the above identities.
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A.4 Dual Representation for Recovery Average Value at Risk

We establish a dual representation of RecAV@R in terms of probability measures as in the
classical framework of monetary risk measures. Here, we denote byM∞1 (P) the set of all prob-
ability measures Q over (Ω,F) that are absolutely continuous with respect to P and such that
the Radon-Nikodym derivative dQ

dP belongs to L∞.

Proposition 18. For all X,Y ∈ L1 the following representation holds:

RecAV@Rγ(X,Y ) = sup
Q∈M∞1 (P)

(
EQ(−X)− (1− λ(Q))EQ(Y )

)
where for each Q ∈M∞1 (P) we set

λ(Q) = sup

{
λ ∈ [0, 1] ; γ(λ) ≤

∥∥∥∥dQdP
∥∥∥∥−1

∞

}
.

Proof. It is well-known, see e.g. Theorem 4.52 in Föllmer & Schied (2016) for the classical
statement in L∞, that for all λ ∈ [0, 1] and X ∈ L1

AV@Rγ(λ)(X) = sup
Q∈M∞1 (P)

(
EQ(−X)− αλ(Q)

)
where

αλ(Q) =

{
0 if dQdP ≤

1
γ(λ) ,

∞ otherwise.

Exchanging the supremum in the definition of RecAV@R with that in the dual representation
of AV@R yields

RecAV@Rγ(X,Y ) = sup
Q∈M∞1 (P)

(
EQ(−X)− αY (Q)

)
where

αY (Q) = EQ(Y ) + inf
λ∈[0,1]

(
αλ(Q)− λEQ(Y )

)
.

Now, for every Q ∈M∞1 (P) define

Λ(Q) =

{
λ ∈ [0, 1] ;

∥∥∥∥dQdP
∥∥∥∥
∞
≤ 1

γ(λ)

}
and set λ(Q) = sup Λ(Q). Since Y is positive, it is easy to see that

inf
λ∈[0,1]

(
αλ(Q)− λEQ(Y )

)
= inf

λ∈Λ(Q)

(
− λEQ(Y )

)
= −λ(Q)EQ(Y )

for every Q ∈M∞1 (P). This implies that

RecAV@Rγ(X,Y ) = sup
Q∈M∞1 (P)

(
EQ(−X)− (1− λ(Q))EQ(Y )

)
.

As discussed in (5), the term E1 + (1 − λ)L1 represents the available resources of the firm
at time 1 beyond a recovery level λ. For a fixed probability measure Q ∈ M∞1 (P), we can
thus interpret EQ(−E1) − (1 − λ)EQ(L1) as the expected shortfall below the recovery level λ
with respect to the measure Q. Proposition 18 thus represents RecAV@Rγ as a supremum over
expected shortfalls below different recovery levels over the collection of absolutely continuous
probability measures with bounded Radon-Nikodym density: The recovery levels depend on Q
and are given by the generalized inverse of γ evaluated at the inverse of the supremum norm
of the Radon-Nikodym derivative of Q with respect to the reference measure P. The robust
representation in Proposition 18 can thus be interpreted as a worst-case approach in the face
of Knightian uncertainty: The recovery risk measure RecAV@Rγ is the worst-case expected
shortfall beyond different recovery levels over a class of probability measures. The size of the
recovery level encodes to what extent different probability measures contribute to the worst-case.
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A.5 Properties of Recovery Risk Measures

The next result collects some basic properties of recovery risk measures. In particular, we analyze
how a recovery risk measure inherits the key properties of its underlying building blocks.

Proposition 19. A recovery risk measure Recρ : X×X → R∪{∞} has the following properties:

(a) Cash invariance in the first component: If ρλ is cash invariant for every λ ∈ [0, 1], then
for all X,Y ∈ X and m ∈ R

Recρ(X +m,Y ) = Recρ(X,Y )−m.

(b) Monotonicity: If ρλ is monotone for every λ ∈ [0, 1], then for all X1, X2, Y1, Y2 ∈ X such
that X1 ≥ X2 and Y1 ≥ Y2 P-almost surely

Recρ(X1, Y1) ≤ Recρ(X2, Y2).

(c) Convexity: If ρλ is convex for every λ ∈ [0, 1], then for all X1, X2, Y1, Y2 ∈ X and a ∈ [0, 1]

Recρ(aX1 + (1− a)X2, aY1 + (1− a)Y2) ≤ aRecρ(X1, Y1) + (1− a) Recρ(X2, Y2).

(d) Subadditivity: If ρλ is subadditive for every λ ∈ [0, 1], then for all X1, X2, Y1, Y2 ∈ X

Recρ(X1 +X2, Y1 + Y2) ≤ Recρ(X1, Y1) + Recρ(X2, Y2).

(e) Positive homogeneity: If ρλ is positively homogeneous for every λ ∈ [0, 1], then for all
X,Y ∈ X and a ∈ [0,∞)

Recρ(aX, aY ) = aRecρ(X,Y ).

(f) Star-shapedness in the first component: If ρλ is monotone and positively homogeneous for
every λ ∈ [0, 1], then for all X ∈ X , Y ∈ X+, and a ∈ [1,∞)

Recρ(aX, Y ) ≥ aRecρ(X,Y ).

(g) Normalization: If ρλ is monotone and ρλ(0) = 0 for every λ ∈ [0, 1], then Recρ(0, Y ) = 0
for every Y ∈ X+.

(h) Finiteness: If ρλ is monotone for every λ ∈ [0, 1], then for every X ∈ X with ρ0(X) <∞
and for every Y ∈ X+ we have Recρ(X,Y ) <∞.

Proof. (a) For every X ∈ X and m ∈ R the cash invariance of ρλ readily implies

Recρ(X+m,Y ) = sup
λ∈[0,1]

ρλ(X+m+(1−λ)Y ) = sup
λ∈[0,1]

ρλ(X+(1−λ)Y )−m = Recρ(X,Y )−m.

(b) Since X1 + (1− λ)Y1 ≥ X2 + (1− λ)Y2 for every λ ∈ [0, 1], the monotonicity of ρλ yields

Recρ(X1, Y1) = sup
λ∈[0,1]

ρλ(X1 + (1− λ)Y1) ≤ sup
λ∈[0,1]

ρλ(X2 + (1− λ)Y2) = Recρ(X2, Y2).

(c) It follows from the convexity of ρλ that

Recρ(aX1 + (1− a)X2, aY1 + (1− a)Y2) = sup
λ∈[0,1]

ρλ(a(X1 + (1− λ)Y1) + (1− a)(X2 + (1− λ)Y2))

≤ sup
λ∈[0,1]

(
aρλ(X1 + (1− λ)Y1) + (1− a)ρλ(X2 + (1− λ)Y2)

)
≤ a sup

λ∈[0,1]

ρλ(X1 + (1− λ)Y1) + (1− a) sup
λ∈[0,1]

ρλ(X2 + (1− λ)Y2)

= aRecρ(X1, Y1) + (1− a) Recρ(X2, Y2).
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(d) Similarly, we can use the subadditivity of ρλ to get

Recρ(X1 +X2, Y1 + Y2) = sup
λ∈[0,1]

ρλ(X1 + (1− λ)Y1 +X2 + (1− λ)Y2)

≤ sup
λ∈[0,1]

{ρλ(X1 + (1− λ)Y1) + ρλ(X2 + (1− λ)Y2))}

≤ sup
λ∈[0,1]

ρλ(X1 + (1− λ)Y1) + sup
λ∈[0,1]

ρλ(X2 + (1− λ)Y2))

= Recρ(X1, Y1) + Recρ(X2, Y2).

(e) Using the positive homogeneity of ρλ, we easily see that

Recρ(aX, aY ) = sup
λ∈[0,1]

ρλ(aX + (1− λ)aY ) = sup
λ∈[0,1]

aρλ(X + (1− λ)Y ) = aRecρ(X,Y ).

(f) Observe that a(1− λ)Y ≥ (1− λ)Y for every λ ∈ [0, 1]. This is because Y is positive. Then,
it follows from the monotonicity and positive homogeneity of ρλ that

Recρ(aX, Y ) = sup
λ∈[0,1]

ρλ(aX + (1− λ)Y ) ≥ sup
λ∈[0,1]

ρλ(a(X + (1− λ)Y )) = aRecρ(X,Y ).

(g) It follows from monotonicity that ρλ((1− λ)Y ) ≤ ρλ(0) for every λ ∈ [0, 1]. This is because
Y is positive. Then, normalization yields

0 = ρ1(0) ≤ Recρ(0, Y ) = sup
λ∈[0,1]

ρλ((1− λ)Y ) ≤ sup
λ∈[0,1]

ρλ(0) = 0.

(h) Take X ∈ X such that ρ0(X) <∞ and observe that X + (1− λ)Y ≥ X for every λ ∈ [0, 1].
This is because Y is positive. Then, monotonicity implies

Recρ(X,Y ) = sup
λ∈[0,1]

ρλ(X + (1− λ)Y ) ≤ sup
λ∈[0,1]

ρλ(X) = ρ0(X) <∞,

where we used that ρ0(X) ≥ ρλ(X) for every λ ∈ [0, 1] by assumption.

If the risk measures ρλ’s are convex, the recovery risk measure Recρ admits a dual repre-
sentation similar to the classical representations discussed in Föllmer & Schied (2016). Suppose
X = Lp for some p ∈ [1,∞]. For every q ∈ [1,∞] we denote by Mq

1(P) the set of probability
measures Q over (Ω,F) that are absolutely continuous with respect to P and satisfy dQ

dP ∈ L
q.

Recall that a map ρ : X → R∪{∞} satisfies the Fatou property if for every sequence (Xn) ⊂ X
and every X ∈ X we have

Xn → X P-almost surely, sup
n∈N
|Xn| ∈ X =⇒ ρ(X) ≤ lim inf

n→∞
ρ(Xn).

The Fatou property corresponds to a weak form of continuity, namely lower semicontinuity, with
respect to dominated almost-sure convergence. A well-known result by Jouini, Schachermayer &
Touzi (2006) shows that every distribution-based monetary risk measure defined on L∞ has the
Fatou property. We refer to Gao, Leung, Munari & Xanthos (2018) for a general result beyond
bounded random variables. It follows at once from Theorem 4.33 in Föllmer & Schied (2016)
(if p = ∞) or from Corollary 7 in Frittelli & Gianin (2002) (if p < ∞) that, if ρλ is a convex
monetary risk measure with the Fatou property for every λ ∈ [0, 1], then for all X,Y ∈ X

Recρ(X,Y ) = sup
Q∈Mq

1(P)

(
EQ(−X)− αY (Q)

)
where q = p

1−p and for every Q ∈Mq
1(P) we set

αY (Q) = EQ(Y ) + inf
λ∈[0,1]

(
sup
X∈Aλ

EQ(−X)− λEQ(Y )

)
where Aλ = {X ∈ Lp ; ρλ(X) ≤ 0}. The proof is similar to that of Proposition 18 and is thus
omitted.
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A.6 Complementary Material for Section 5.1

Fix k ∈ [1, 100]. We know from Example 2 that V@Rα(Ek1 ) = k − 100. Moreover,

V@Rβ(Ek1 + (1− r)L1) =

{
100r − k if β < α

2 , k ≤
101+99r

2 ,

k + r − 101 otherwise.

It follows from Proposition 6 that

RecV@Rγ(Ek1 , L1) = max{V@Rα(Ek1 ),V@Rβ(Ek1 + (1− r)L1).

As a result, a direct calculation yields

RecV@Rγ(Ek1 , L1) =

{
100r − k if β < α

2 , k ≤ 50(r + 1),

k − 100 otherwise.

This shows that

RecV@Rγ(Ek1 , L1) ≤ 0 ⇐⇒

{
k ≥ 100r if β < α

2 ,

k ≥ 0 if β ≥ α
2 .

We turn to RecAV@R. We know from Example 2 that AV@Rα(Ek1 ) = 0. Moreover,

AV@Rβ(Ek1 + (1− r)L1) =


100r − k if β < α

2 , k ≤
101+99r

2 ,

r − 101 + α
2β (101 + 99r) + (1− α

β )k if β ≥ α
2 , k ≤

101+99r
2 ,

k + r − 101 otherwise.

It follows from Proposition 11 that

RecAV@Rγ(Ek1 , L1) = max{AV@Rα(Ek1 ),AV@Rβ(Ek1 + (1− r)L1)}.

As a result, we obtain

RecAV@Rγ(Ek1 , L1) =


100r − k if β < α

2 , k ≤ 100r,

r − 101 + α
2β (101 + 99r) + (1− α

β )k if β ≥ α
2 , k ≤

(99α+2β)r−101(2β−α)
2(α−β) ,

0 otherwise.

We infer that

RecAV@Rγ(Ek1 , L1) ≤ 0 ⇐⇒

{
k ≥ 100r if β < α

2 ,

k ≥ max
{

(99α+2β)r−101(2β−α)
2(α−β) , 0

}
if β ≥ α

2 .

A.7 Proof of Proposition 17

Proof. Throughout the proof we use the notation from Section A.10. In the V@R case, the
optimization problem can be reformulated in explicit terms as

max
rqβ(b, c)− k + E0

a− k + E0

s.t. (1) k ≥ a,
(2) k < a+ E0,

(3) k ≥ rqβ(b, c),

(4) k < rqβ(b, c) + E0,

(5) rqβ(b, c) > a,

(6) smin ≤
E0

a− k + E0
≤ smax,

over k > 0 and 0 < a < b < c.
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It is clear that, due to (5), both conditions (1) and (4) can be dropped as they are implied
by conditions (3) and (2), respectively. Moreover, (6) clearly implies (2). Since the objective
function is increasing in the term qβ(b, c), the maximum is achieved by taking rqβ(b, c) = k in
(3). In this case, condition (5) is implied by (6). By conveniently rewriting condition (6), we
thus obtain the equivalent problem

max
E0

a− k + E0

s.t. a+
smin − 1

smin
E0 ≤ k ≤ a+

smax − 1

smax
E0,

over k > 0 and a > 0.

Note that the new objective function is increasing in k. As a result, the maximum is achieved
by taking k = a+ smax−1

smax
E0, which yields a recovery adjustment equal to

E0

a−
(
a+ smax−1

smax
E0

)
+ E0

= smax.

(The parameter a can be selected to ensure a realistic loss probability. Indeed, we have

P(E1 < E0) = P

(
L1 > a− 1

smax
E0

)
.

It is then clear that we can always choose a so as to ensure a loss probability around 50%. To
this effect, it suffices to have a− 1

smax
E0 ≈ a

2 ). To deal with the AV@R case, it is first convenient
to define the quantity

ξ =
1

2
− 1

3

√
α

2(1− α)
= 0.47 . . . .

The corresponding optimization problem can be rewritten in explicit terms as

max
rqβ(b, c)− k + E0

ξa+ b+c
4 − k + E0

s.t. (1) k ≥ ξa+
b+ c

4
,

(2) k < ξa+
b+ c

4
+ E0,

(3) k ≥ rqβ(b, c),

(4) k < rqβ(b, c) + E0,

(5) rqβ(b, c) > a,

(6) smin ≤
E0

ξa+ b+c
4 − k + E0

≤ smax,

over k > 0 and 0 < a < b < c.

Observe that we cannot proceed as in the V@R case because of a more complex dependence on
the parameters b and c. As a first step, note that condition (6) implies both conditions (1) and
(2). The objective function is decreasing in a. As a result, the maximum is achieved by taking
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a = 1
ξ

(
k − b+c

4 −
smax−1
smax

E0

)
in (6). We thus obtain the equivalent problem

max
rqβ(b, c)− k + E0

E0
smax

s.t. (1′) k ≥ rqβ(b, c),

(2′) k < rqβ(b, c) + E0,

(3′) rqβ(b, c) >
1

ξ

(
k − b+ c

4
− smax − 1

smax
E0

)
,

(4′) 0 <
1

ξ

(
k − b+ c

4
− smax − 1

smax
E0

)
< b,

over k > 0 and 0 < b < c.

The new objective function is decreasing in k. This implies that the maximum is achieved by
taking k = rqβ(b, c) in (1’), which entails a recovery adjustment equal to

rqβ(b, c)− rqβ(b, c) + E0

E0
smax

= smax.

In this case, condition (2’) is automatically satisfied. We need to show when there exist 0 < b < c
satisfying all the remaining conditions, namely (3’) and (4’), under k = rqβ(b, c). We focus on

the case β ≥ α
2 . In this case, setting λ =

√
α−β
2α ∈ (0, 1

2 ], we can write qβ(b, c) = (1− λ)b+ λc.
Condition (3’) can equivalently be written as(

(1− ξ)r(1− λ)− 1

4

)
b+

(
(1− ξ)rλ− 1

4

)
c <

smax − 1

smax
E0.

This holds for all 0 < b < c provided that the two expressions multiplying b and c are both
negative, i.e.

r ≤ 1

4

1

(1− λ)(1− ξ)
. (23)

Similarly, condition (4’) is equivalent to

smax − 1

smax
E0 −

(
r(1− λ)− 1

4

)
b <

(
rλ− 1

4

)
c <

smax − 1

smax
E0.

For every b > 0, this holds for a suitable c > 0 provided that the expression in parenthesis
multiplying b and the expression multiplying c are both strictly positive, i.e.

r >
1

4λ
. (24)

To ensure that c can be taken to satisfy c > b, it suffices to impose the bound b < 1
rλ− 1

4

smax−1
smax

E0.

This shows that we can indeed find 0 < b < c satisfying (3’) and (4’) under k = rqβ(b, c) provided
that (23) and (24) hold.

A.8 Proof of Proposition 16

Proof. We rely on Lemma 5.6 in Tasche (2000). To this effect, the random variables

X1 = −(∆E1
1 + (1− rj)L1

1), . . . , XN = −(∆EN1 + (1− rj)LN1 )

have to satisfy the so-called (S)-Assumption in that paper. This stipulates some requirements
on the joint distribution of the above random variables, namely:
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• X1, . . . , XN are integrable and continuously distributed;

• the conditional distribution of X1 given X2, . . . , XN has a density φ;

• x1 7→ φ(x1, x2, . . . , xN ) is continuous for all x2, . . . , xN ∈ R;

• the maps Φ1, . . . ,ΦN : R× R \ {0} × RN−1 → R defined by

Φ1(x1, u1, . . . , uN ) = EP

(
φ

(
u−1

1

(
x1 −

N∑
i=2

uiX
i

)
, X2, . . . , XN

))
,

Ψl(x
1, u1, . . . , uN ) = EP

(
X lφ

(
u−1

1

(
x1 −

N∑
i=2

uiX
i

)
, X2, . . . , XN

))
, l = 2, . . . , N,

are finite valued and continuous;

• for every u = (u1, . . . , uN ) ∈ R \ {0} × RN−1 we have

EP

(
φ

(
u−1

1

(
qαj (u)−

N∑
i=2

uiX
i

)
, X2, . . . , XN

))
> 0,

where qαj (u) = inf{x ∈ R ; P(
∑N

i=1 uiX
i ≤ x) ≥ 1− αj}.

Now, fix i = 1, . . . , N and for every k = 1, . . . , n + 1 consider the convex (hence, continuous)
function f i,k : R→ R defined by setting

f i,k(h) = AV@Rαk(∆E1 + (1− rk)L1 + h(∆Ei1 + (1− rk)Li1)).

By assumption we have that

f i,j(0) > max
k=1,...,n+1, k 6=j

f i,k(0).

It follows from continuity that there exists ε > 0 such that

f i,j(h) > max
k=1,...,n+1, k 6=j

f i,k(h).

for every h ∈ (−ε, ε). As a result,

RecAV@Rγ(∆E1 + h∆Ei1, L1 + hLi1) = max
k=1,...,n+1

f i,k(h) = f i,j(h)

for every h ∈ (−ε, ε). This immediately yields

d

dh
RecAV@Rγ(∆E1 + h∆Ei1, L1 + hLi1)|h=0

=
df i,j

dh
(0).

Since the (S)-Assumption holds, we infer from Theorem 4.4 in Tasche (2000) that

df i,j

dh
(0) = −E

(
∆Ei1 + (1− rj)Li1 |∆E1 + (1− rj)L1 ≤ −V@Rαj (∆E1 + (1− rj)L1)

)
.

This delivers the desired statement.



34

A.9 Complementary Material for Section 5.4.1

The probability distribution function of A1 is specified by

P(A1 ≤ x) =

{
Φ
(

log(x)−µ
σ

)
if x > 0,

0 if x ≤ 0,

where Φ is the distribution function of a standard normal random variable. To define the proba-
bility distribution function of L1, recall that the gamma distribution with rate a > 0 and shape
b > 0 is given by

Ga,b(x) :=

{
ab

Γ(b)

∫ x
0 y

b−1e−aydy if x > 0,

0 if x ≤ 0,

where Γ is the gamma function. For every p ∈ (0, 1) set

qp(Ga,b) := inf{x ∈ R ; Ga,b(x) ≥ p}.

The probability distribution function of L1 is then specified by

P(L1 ≤ x) =

{
Gδ0,τ0(x) if x < q97.5%(Gδ0,τ0),

Gδ,τ (x+ q97.5%(Gδ,τ )− q97.5%(Gδ0,τ0)) if x ≥ q97.5%(Gδ0,τ0).

Recall that, by Sklar’s Theorem, see, e.g., Theorem 2.3.3 in Nelsen (2007), the joint distribu-
tion of A1 and L1 can be expressed through a suitable copula function C : [0, 1]× [0, 1]→ [0, 1]
as

P(A1 ≤ x, L1 ≤ y) = C(P(A1 ≤ x),P(L1 ≤ y)).

The assets and liabilities are linked through the Gaussian copula

C(p, q) =
1

2π
√

1− ρ2

∫ Φ−1(p)

−∞

∫ Φ−1(q)

−∞
e
−u

2−2ρuv+v2

2(1−ρ2) dudv

where ρ ∈ (−1, 1) is the correlation coefficient.

A.10 Complementary Material for Section 5.4.2

Distribution of assets and liabilities. The probability density function of L1 is explicitly
given by

f(x) =



4(1−α)
a2 x if 0 ≤ x ≤ a

2 ,

−4(1−α)
a2 x+ 4(1−α)

a if a2 < x ≤ a,
4α

(c−b)2x− 4αb
(c−b)2 if b ≤ x ≤ b+c

2 ,

− 4α
(c−b)2x+ 4αc

(c−b)2 if b+c2 < x ≤ c,
0 otherwise,

for α = 0.5% and for fixed parameters 0 < a < b < c.
Regulatory benchmarks. Note that P(L1 ≤ a) = 1 − α and P(L1 ≤ x) < 1 − α for every
x < a. This yields

V@R0.5%(E1) = V@Rα(−L1)− k = inf{x ∈ R ; P(−L1 + x < 0) ≤ α} − k
= inf{x ∈ R ; P(L1 ≤ x) ≥ 1− α} − k = a− k.

The computation of AV@R1%(E1) requires a bit more effort. First of all, define

q = V@R2α(−L1) = inf{x ∈ R ; P(L1 ≤ x) ≥ 1− 2α.
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Note that q must satisfy

1

2
(a− q)

(
−4(1− α)

a2
q +

4(1− α)

a

)
= α.

This gives q = a
(
1±

√
α

2(1−α)

)
. Since q < a must hold, we obtain

q = a

(
1−

√
α

2(1− α)

)
.

As a next step, observe that

AV@R2α(−L1) = E(L1|L1 ≥ V@R2α(−L1)) = E(L1|L1 ≥ q) =
E(L11{L1≥q})

P(L ≥ q)
.

We clearly have P(L1 ≥ q) = 2α. Moreover, noting that q > a
2 , we get

E(L11{L1≥q}) =

∫ ∞
q

xf(x)dx =

∫ a

q
xf(x)dx+

∫ b+c
2

b
xf(x)dx+

∫ c

b+c
2

xf(x)dx

=
4(1− α)

a2

∫ a

q
(ax− x2)dx+

4α

(b− c)2

(∫ b+c
2

b
(x2 − bx)dx+

∫
b+c

2

c
(cx− x2)dx

)

=
4(1− α)

a2

(
1

6
a3 +

1

3
q3 − 1

2
aq2

)
+

4α

(b− c)2

(
1

6
(b3 + c3)− 1

24
(b+ c)3

)
=

4(1− α)

a2

α

2(1− α)

(
1

2
− 1

3

√
α

2(1− α)

)
a3 +

4α

(b− c)2

1

8
(b+ c)(b− c)2

= 2α

(
1

2
− 1

3

√
α

2(1− α)

)
a+ α

b+ c

2
.

As a result, it follows that

AV@R1%(E1) = AV@R2α(−L1)− k =

(
1

2
− 1

3

√
α

2(1− α)

)
a+

b+ c

4
− k.

Recovery-based capital requirements. We turn to the computation of RecV@Rγ(E1, L1).
To this effect, define

qβ = V@Rβ(−L1) = inf{x ∈ R ; P(L1 ≤ x) ≥ 1− β.

If β < 0.25%, then qβ must satisfy

1

2
(c− qβ)

(
− 4α

(b− c)2
qβ +

4αc

(b− c)2

)
= β.

This gives qβ = c±
√

β
2α(c− b). Since qβ < c must hold, we obtain

qβ =

√
β

2α
b+

(
1−

√
β

2α

)
c.

Similarly, if β ≥ 0.25%, then qβ must satisfy

1

2
(qβ − b)

(
4α

(b− c)2
qβ −

4αb

(b− c)2

)
= α− β.
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This gives qβ = b±
√

α−β
2α (c− b). Since qβ > b must hold, we obtain

qβ =

(
1−

√
α− β

2α

)
b+

√
α− β

2α
c.

For convenience, we set

qβ(b, c) =


√

β
2αb+

(
1−

√
β
2α

)
c if β < 0.25%,(

1−
√

α−β
2α

)
b+

√
α−β
2α c if β ≥ 0.25%.

It follows that
V@Rβ(A1 − rL1) = rV@Rβ(−L1)− k = rqβ(b, c)− k.

As a result, we conclude that

RecV@Rγ(E1, L1) = max{V@Rα(E1),V@Rβ(A1 − rL1)} = max{a, rqβ(b, c)} − k.

A.11 Additional Plots for Section 5.4.1
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Figure 5: The loss probability P(∆E1 < 0) as a function of ρ (left) for τ = 1 (green) and τ = 5
(red) and as a function of τ (right) for ρ = 0.1 (red) and ρ = 0.9 (green).
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Figure 6: The regulatory risk measure ρreg(E1) as a function of ρ (left) for τ = 1 (green) and
τ = 5 (red) and as a function of τ (right) for ρ = 0.1 (red) and ρ = 0.9 (green).
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Figure 7: The solvency ratio E0
ρreg(∆E1) as a function of ρ (left) for τ = 1 (green) and τ = 5 (red)

and as a function of τ (right) for ρ = 0.1 (red) and ρ = 0.9 (green).
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Figure 8: The recovery adjustment RecAdj(β, r) for β = βmax = 0.25% and r = rmin = 50% as
a function of ρ (left) for τ = 1 (green) and τ = 5 (red) and as a function of τ (right) for ρ = 0.1
(red) and ρ = 0.9 (green).
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Figure 9: The recovery adjustment RecAdj(β, r) for β = βmin = 0.1% and r = rmax = 90% as a
function of ρ (left) for τ = 1 (green) and τ = 5 (red) and as a function of τ (right) for ρ = 0.1
(red) and ρ = 0.9 (green).

References

Acerbi, Carlo & Dirk Tasche (2002), ‘On the coherence of expected shortfall’, Journal of Banking
& Finance 26(7), 1487–1503.



38

Altman, Edward I, Brooks Brady, Andrea Resti & Andrea Sironi (2005), ‘The link between
default and recovery rates: Theory, empirical evidence, and implications’, The Journal of
Business 78(6), 2203–2228.

Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber & David Heath (1999), ‘Coherent measures
of risk’, Mathematical Finance 9(3), 203–228.

Artzner, Philippe, Freddy Delbaen & Pablo Koch-Medina (2009), ‘Risk measures and efficient
use of capital’, ASTIN Bulletin 39(1), 101–116.

Aumann, Robert J & Roberto Serrano (2008), ‘An economic index of riskiness’, Journal of
Political Economy 116(5), 810–836.

Basel Committee on Banking Supervision (1988), ‘International convergence of capital mea-
surement and capital standards’. Available on the webpage of the Bank of International
Settlement: https://www.bis.org.

Bauer, Daniel & George H. Zanjani (2013), Capital allocation and its discontents, in ‘Handbook
of Insurance’, Springer, pp. 863–880.

Bauer, Daniel & George H. Zanjani (2016), ‘The marginal cost of risk, risk measures, and capital
allocation’, Management Science 62(5), 1431–1457.

Bernard, Carole, Ludger Rüschendorf, Steven Vanduffel & Ruodu Wang (2017), ‘Risk bounds
for factor models’, Finance and Stochastics 21(3), 631–659.

Bernard, Carole, Xiao Jiang & Ruodu Wang (2014), ‘Risk aggregation with dependence uncer-
tainty’, Insurance: Mathematics and Economics 54, 93–108.

Biagini, Francesca, Jean-Pierre Fouque, Marco Frittelli & Thilo Meyer-Brandis (2019), ‘A unified
approach to systemic risk measures via acceptance sets’, Mathematical Finance 29(1), 329–
367.

Bielecki, Tomasz R., Igor Cialenco & Marcin Pitera (2017), ‘A survey of time consistency of
dynamic risk measures and dynamic performance measures in discrete time’, Probability,
Uncertainty and Quantitative Risk 2(1), 1–52.

Bielecki, Tomasz R, Igor Cialenco & Zhao Zhang (2014), ‘Dynamic coherent acceptability indices
and their applications to finance’, Mathematical Finance 24(3), 411–441.

Bignozzi, Valeria, Matteo Burzoni & Cosimo Munari (2020), ‘Risk measures based on benchmark
loss distributions’, Journal of Risk and Insurance 87(2), 437–475.

Brown, David B, Enrico De Giorgi & Melvyn Sim (2012), ‘Aspirational preferences and their
representation by risk measures’, Management Science 58(11), 2095–2113.

Cai, Jun, Haiyan Liu & Ruodu Wang (2018), ‘Asymptotic equivalence of risk measures under
dependence uncertainty’, Mathematical Finance 28(1), 29–49.

Castagnoli, Erio, Giacomo Cattelan, Fabio Maccheroni, Claudio Tebaldi & Ruodu Wang (2021),
‘Star-shaped risk measures’, arXiv preprint arXiv:2103.15790 .

Chen, Chen, Garud Iyengar & Ciamac C. Moallemi (2013), ‘An axiomatic approach to systemic
risk’, Management Science 59(6), 1373–1388.

Cherny, Alexander & Dilip Madan (2009), ‘New measures for performance evaluation’, The
Review of Financial Studies 22(7), 2571–2606.



39

Christiansen, Marcus C. & Andreas Niemeyer (2014), ‘Fundamental definition of the solvency
capital requirement in Solvency II’, ASTIN Bulletin 44(3), 501–533.

Dhaene, Jan, Andreas Tsanakas, Emiliano A Valdez & Steven Vanduffel (2012), ‘Optimal capital
allocation principles’, Journal of Risk and Insurance 79(1), 1–28.

Drapeau, Samuel & Michael Kupper (2013), ‘Risk preferences and their robust representation’,
Mathematics of Operations Research 38(1), 28–62.

Duffie, Darrell & Kenneth J Singleton (1999), ‘Modeling term structures of defaultable bonds’,
The review of financial studies 12(4), 687–720.

Embrechts, Paul, Giovanni Puccetti & Ludger Rüschendorf (2013), ‘Model uncertainty and var
aggregation’, Journal of Banking & Finance 37(8), 2750–2764.

Embrechts, Paul, Haiyan Liu & Ruodu Wang (2018), ‘Quantile-based risk sharing’, Operations
Research 66(4), 936–949.

Farkas, Walter, Pablo Koch-Medina & Cosimo Munari (2014), ‘Beyond cash-additive risk mea-
sures: when changing the numéraire fails’, Finance and Stochastics 18(1), 145–173.

Feinstein, Zachary, Birgit Rudloff & Stefan Weber (2017), ‘Measures of systemic risk’, SIAM
Journal on Financial Mathematics 8(1), 672–708.

Filipović, Damir & Gregor Svindland (2008), ‘Optimal capital and risk allocations for law-and
cash-invariant convex functions’, Finance and Stochastics 12(3), 423–439.

Föllmer, Hans & Alexander Schied (2002), ‘Convex measures of risk and trading constraints’,
Finance and Stochastics 6(4), 429 – 447.

Föllmer, Hans & Alexander Schied (2016), Stochastic finance – An introduction in discrete time,
Graduate Textbook Series, 4th edn, De Gruyter, Berlin.

Föllmer, Hans, Alexander Schied & Stefan Weber (2009), Robust preferences and robust port-
folio choice, in ‘Handbook of Numerical Analysis’, Springer, pp. 29–89.

Föllmer, Hans & Stefan Weber (2015), ‘The axiomatic approach to risk measurement for capital
determination’, Annual Review of Financial Economics 7, 301–337.

Foster, Dean P & Sergiu Hart (2009), ‘An operational measure of riskiness’, Journal of Political
Economy 117(5), 785–814.

Frittelli, Marco & Emanuela Rosazza Gianin (2002), ‘Putting order in risk measures’, Journal
of Banking & Finance 26(7), 1473–1486.

Gao, Niushan, Denny Leung, Cosimo Munari & Foivos Xanthos (2018), ‘Fatou property, repre-
sentations, and extensions of law-invariant risk measures on general Orlicz spaces’, Finance
and Stochastics 22(2), 395–415.

Glasserman, Paul (2013), Monte Carlo methods in financial engineering, Vol. 53, Springer Sci-
ence & Business Media.

Guo, Qiheng, Daniel Bauer & George H. Zanjani (2020), ‘Capital allocation techniques: Review
and comparison’, Variance . To appear.

Guo, Xin, Robert A Jarrow & Yan Zeng (2009), ‘Modeling the recovery rate in a reduced form
model’, Mathematical Finance: An International Journal of Mathematics, Statistics and
Financial Economics 19(1), 73–97.



40

Hamm, Anna-Maria, Thomas Knispel & Stefan Weber (2020), ‘Optimal risk sharing in insurance
networks’, European Actuarial Journal 10(1), 203–234.

Ivashina, Victoria, Benjamin Iverson & David C Smith (2016), ‘The ownership and trading of
debt claims in chapter 11 restructurings’, Journal of Financial Economics 119(2), 316–335.

Jankowitsch, Rainer, Florian Nagler & Marti G Subrahmanyam (2014), ‘The determinants of re-
covery rates in the us corporate bond market’, Journal of Financial Economics 114(1), 155–
177.

Jones, David (2000), ‘Emerging problems with the Basel Capital Accord: Regulatory capital
arbitrage and related issues’, Journal of Banking & Finance 24(1), 35 – 58.

Jouini, Elyès, Walter Schachermayer & Nizar Touzi (2006), Law invariant risk measures have the
Fatou property, in S.Kusuoka & A.Yamazaki, eds, ‘Advances in Mathematical Economics’,
Springer Japan, Tokyo, pp. 49–71.

Kalkbrener, Michael (2005), ‘An axiomatic approach to capital allocation’, Mathematical Fi-
nance: An International Journal of Mathematics, Statistics and Financial Economics
15(3), 425–437.

Khieu, Hinh D, Donald J Mullineaux & Ha-Chin Yi (2012), ‘The determinants of bank loan
recovery rates’, Journal of Banking & Finance 36(4), 923–933.

Koch-Medina, Pablo & Cosimo Munari (2016), ‘Unexpected shortfalls of expected shortfall:
Extreme default profiles and regulatory arbitrage’, Journal of Banking & Finance 62, 141–
151.

Kromer, Eduard, Ludger Overbeck & Katrin Zilch (2016), ‘Systemic risk measures on general
measurable spaces’, Mathematical Methods of Operations Research 84(2), 323–357.

Li, Hanson & Ruodu Wang (2019), ‘Pelve: Probability equivalent level of var and es’, SSRN
preprint SSRN:3489566 .

Markowitz, Harry Max (1952), ‘Portfolio selection’, The Journal of Finance 7(1), 77–91.

Nelsen, Roger B. (2007), An introduction to copulas, Springer Science & Business Media.

Rosazza Gianin, Emanuela & Carlo Sgarra (2013), ‘Acceptability indexes via g-expectations:
an application to liquidity risk’, Mathematics and financial economics 7(4), 457–475.

Tasche, Dirk (2000), ‘Risk contributions and performance measurement’, Report – Lehrstuhl für
mathematische Statistik, TU München pp. 1–26.

Tasche, Dirk (2004), Allocating portfolio economic capital to sub-portfolios, in A.Dev, ed.,
‘Economic capital: a practitioner guide’, Risk Books London, pp. 275–302.

Tasche, Dirk (2008), Capital allocation to business units and sub-portfolios: the Euler principle,
in A.Resti, ed., ‘Pillar II in the New Basel Accord: The Challenge of Economic Capital’,
Risk Books London, pp. 423–453.

The European Parliament and the Council of the European Union (2002a), ‘Directive
2002/13/EC of the European Parliament and of the Council of 5 March 2002 amending
Council Directive 73/239/EEC as regards the solvency margin requirements for non-life
insurance undertakings’.



41

The European Parliament and the Council of the European Union (2002b), ‘Directive
2002/83/EC of the European Parliament and of the Council of 5 November 2002 con-
cerning life assurance’.

Wang, Ruodu & Ričardas Zitikis (2020), ‘An axiomatic foundation for the expected shortfall’,
Management Science .

Weber, Stefan (2018), ‘Solvency II, or How to Sweep the Downside Risk Under the Carpet’,
Insurance: Mathematics and Economics 82, 191–200.


