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1. Introduction

In this paper we consider the risk sharing problem for capital requirements. Optimal cap-

ital and risk allocation among economic agents, or business units, has for decades been a

predominant subject in the respective academic and industrial research areas. Measuring

financial risks with capital requirements goes back to the seminal paper by Artzner et al. [6].

There, risk measures are by definition capital requirements determined by two primitives:

the acceptance set and the security market.

The acceptance set, a subset of an ambient space of losses, corresponds to a capital adequacy

test. A loss is deemed adequately capitalised if it belongs to the acceptance set, and inad-

equately capitalised otherwise. If a loss does not pass the capital adequacy test, the agent

has to take prespecified remedial actions: she can raise capital in order to buy a portfolio

of securities in the security market which, when combined with the loss profile in question,

results in an adequately capitalised secured loss.

Suppose the security market only consists of one numéraire asset, liquidly traded at arbi-

trary quantities. After discounting, one obtains a so-called monetary risk measure, which is

characterised by satisfying the cash-additivity property, that is ρ(X + a) = ρ(X) + a. Here,

ρ denotes the monetary risk measure, X is a loss, and a ∈ R is a capital amount which is

added to or withdrawn from the loss. Monetary risk measures have been widely studied,

see Föllmer & Schied [27, Chap. 4] and the references therein. As observed in Farkas et

al. [22, 23, 24] and Munari [35, Chap. 1], there are good reasons for revisiting the original

approach to risk measures of Artzner et al. [6]:

(1) Typically, more than one asset is available in the security market. It is also less costly

for the agent to invest in a portfolio of securities designed to secure a specific loss

rather than restricting the remedial action to investing in a single asset independent

of the loss profile.

(2) Even if securitisation is constrained to buying a single asset, discounting with this

asset may be impossible because it is not a numéraire; cf. Farkas et al. [23]. Also, as

risk is measured after discounting, the discounting procedure is implicitly assumed not

to add additional risk, which is questionable in view of risk factors such as uncertain

future interest rates. For a thorough discussion of this issue see El Karoui & Ravenelli

[21]. Often, risk is determined purely in terms of the distribution of a risky position,

a paradigm we discuss in detail below. Therefore, instability of this crucial law-

invariance property of a risk measure under discounting is another objection. If

the security is not riskless (i.e., is an amount of cash added or withdrawn), losses

which originally were identically distributed may not share the same distribution any

longer after discounting, while losses that originally display different laws may become

identically distributed.

(3) Without discounting, if only a single asset is available in the security market, cash-

additivity requires the security to be riskless, and it is questionable whether such a
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security is realistically available, at least for longer time horizons. This is a particu-

larly nagging issue in the insurance context.

In this paper we will follow the original ideas in [6] and study the risk sharing problem for

risk measures induced by acceptance sets and possibly multidimensional security spaces. We

consider a one-period market populated by a finite number n ≥ 2 of agents who seek to

secure losses occurring at a fixed future date, say tomorrow. We attribute to each agent

i ∈ {1, . . . , n} an ordered vector space Xi of losses net of gains she may incur, an acceptance

set Ai ⊆ Xi as capital adequacy test, and a security market consisting of a subspace Si ⊆ Xi
of security portfolios as well as observable prices of these securities given by a linear functional

pi : Si → R. As the securities in Si are deemed suited for hedging, the linearity assumptions

on Si and pi reflect that they are liquidly traded and their bid-ask spread is zero. The risk

attitudes of agent i are fully captured by the resulting risk measure

ρi(X) := inf{pi(Z) : Z ∈ Si, X − Z ∈ Ai}, X ∈ Xi, (1.1)

that is the minimal capital required to secure X with securities in Si.
The problem we consider is how to reduce the aggregated risk in the system by means of

redistribution. Formally, we assume that each individual space Xi of losses net of gains is

a subspace of a larger ambient ordered vector space X . This space models the losses the

system in total incurs if X =
∑n

i=1Xi, which we shall assume a priori. Given such a market

loss X ∈ X , we need to solve the optimisation problem

n∑
i=1

ρi(Xi)→ min subject to Xi ∈ Xi and X1 + · · ·+Xn = X. (1.2)

A vector X = (X1, . . . , Xn), a so-called allocation ofX, which solves the optimisation problem

and yields a finite optimal value is Pareto-optimal. However, this resembles centralised

redistribution which attributes to each agent a certain portion of the aggregate loss in an

overall optimal way without considering individual well-being. Redistribution by agents

trading portions of losses at a certain price while adhering to individual rationality constraints

leads to the notion of equilibrium allocations and equilibrium prices, a variant of the risk

sharing problem above.

Special instances of this general problem have been extensively studied in the literature.

Borch [10], Arrow [5] and Wilson [44] consider the problem for expected utilities. More

recent are studies for convex monetary risk measures, starting with Barrieu & El Karoui [8]

and Filipović & Kupper [25]. A key assumption which allows to prove existence of optimal

risk sharing for convex monetary risk measures is law-invariance, i.e., the measured risk is

the same for all losses which share the same distribution under a benchmark probability

model, see Jouini et al. [31], Filipović & Svindland [26], Acciaio [1], and Acciaio & Svindland

[2]. For a thorough discussion of the existing literature on risk sharing with monetary risk

measures we refer to Embrechts et al. [19].

Another related line of literature is General Equilibrium Theory in economics. For a survey

we refer to Mas Colell & Zame [34] and Aliprantis & Burkinshaw [4, Chap. 8]. A major



4 RISK SHARING WITH MULTIDIMENSIONAL SECURITY MARKETS

difference though is that the agents we consider have risk preferences over a vector space

of losses net of gains, whereas [34] considers agents with preferences over consumption sets

which are bounded from below. Hence, our methods to tackle the problem are very different

from the classical ones presented in [34]. More closely related are the contributions of Dana

& Le Van [15] and Dana et al. [16], even though they consider different classes of preferences.

In [16] consumption sets are unbounded from below like in our work, however the authors

assume a finite-dimensional economy. Dana & Le Van [15] allow an infinite dimensional

economy, but assume the consumption sets to be bounded from below. As the unbounded

infinite-dimensional case is the most relevant in finance and insurance applications, we do

not ask for any of those restrictions.

In the following we summarise our main contributions.

Representative agent formulation. We prove a representative agent formulation of the

risk sharing problem: the behaviour of the interacting agents in the market is, under mild

assumptions, captured by a market capital requirement of type (1.1), namely

Λ(X) = inf{π(Z) : Z ∈M, X − Z ∈ A+},
where Λ(X) is the infimal level of aggregated risk realised by a redistribution of X as in (1.2),

A+ is a market acceptance set, and (M, π) is a global security market. This allows deriving

useful conditions ensuring the existence of optimal risk allocations.

Existence of optimal risk allocations in two case studies. Based on the representa-

tive agent formulation, we study two prominent cases, mostly characterised by the involved

notions of acceptability, for which we prove that the risk sharing problem (1.2), including

the quest for equilibria, admits solutions. In the first instance, individual losses are — in

the widest sense — contingent on scenarios of the future state of the economy. A loss is

deemed acceptable if certain capital thresholds are not exceeded under a fixed finite set of

linear aggregation rules which may vary from agent to agent. The reader may think of a

combination of finitely many valuation and stress test rules as studied in Carr et al. [11], see

also [27, Sect. 4.8]. The resulting acceptance sets will thus be polyhedral.

In the second class of acceptance sets under consideration, whether or not a given loss is

deemed adequately capitalised only depends on its distributional properties under a fixed

reference probability measure, not on scenariowise considerations: acceptability is a sta-

tistical notion. More precisely, losses are modelled as random variables on a probability

space (Ω,F ,P), and the respective individual acceptance sets Ai, i ∈ {1, . . . , n}, will be

law-invariant : whether or not a loss X belongs to Ai only depends on its distribution under

the probabilistic reference model P. However, we will not assume that the security spaces

Si are law-invariant. Hence, securitisation depends on the potentially varying joint distribu-

tion of the loss and the security and is thus statewise rather than distributional. This both

reflects the practitioner’s reality and is mathematically interesting as the resulting capital

requirements ρi are far from law-invariant. In fact, for non-trivial law-invariant Ai, ρi is law-

invariant only if the security space is trivial in the sense of being spanned by the cash asset,

i.e., Si = R. For such risk measures, the risk sharing problem has been solved, cf. [26, 31].
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We utilise these results, but should like to emphasise that reducing the general problem for

non-trivial Si to the law-invariant cash-additive case is impossible.

Robustness of optimal allocations. As a third contribution, we carefully study continuity

properties of the set-valued map assigning to an aggregated loss its optimal risk allocations in

the mentioned polyhedral and law-invariant acceptability frameworks. These reflect different

types of robustness under misspecification of the input. If the map is upper hemicontinuous,

approximating a complex loss with simpler losses and calculating optimal risk allocations

for these will yield an optimal risk allocation for the complex loss as a limit point. It is

therefore a useful property from a numerical point of view. Lower hemicontinuity, on the

other hand, guarantees that any given optimal risk allocation stays close to optimal under a

slight perturbation of the underlying aggregated loss.

Existence of optimal portfolio splits. At last, we study optimal splitting problems in

the spirit of Tsanakas [42] and Wang [43]. The question here is whether, under the presence

of market frictions such as transaction costs, a financial institution can split an aggregated

loss optimally by introducing subsidiaries subject to potentially varying regulatory regimes

having access to potentially varying security markets. Applying our previous results, we will

show that this problem admits solutions in our framework.

Structure of the paper. In Sect. 2 we rigorously introduce risk measurement in terms of

capital requirements, agent systems, optimal allocations, and equilibria. Sect. 3 presents the

representative agent formulation of the risk sharing problem and proves useful meta results.

These are key to the discussion of risk sharing involving polyhedral acceptance sets in Sect. 4

and law-invariant acceptance sets in Sect. 5, as well as optimal portfolio splits in Sect. 6.

For the convenience of the reader and better accessibility, Sects. 3–5 first present their main

results and the discussion thereof. Ancillary results and the proofs of the main results follow

in a separate subsection. Technical supplements are relegated to the appendix.

2. Agent systems and optimal allocations

2.1. Risk measurement regimes. In a first step of modelling, we assume that the attitude

of individual agents towards risk is given by a risk measurement regime and corresponding

risk measure.

Definition 2.1. Let (X ,�) be an ordered vector space, X+ be its positive cone, i.e., X+ :=

{X ∈ X : 0 � X}, and X++ := X+\{0}.
• An acceptance set is a nonempty proper and convex subset A of X which is monotone,

i.e. A−X+ ⊆ A.1

• A security market is a pair (S, p) consisting of a finite-dimensional linear subspace

S ⊆ X and a positive linear functional p : S → R such that there is U ∈ S∩X++ with

1Here and in the following, given subsets A and B of a vector space X , A + B denotes their Minkowski

sum {a+ b : a ∈ A, b ∈ B}, and A−B := A+ (−B).
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p(U) = 1. The elements Z ∈ S are called security portfolios or simply securities, and

S is the security space, whereas p is called pricing functional.

• A triple R := (A,S, p) is a risk measurement regime if A is an acceptance set and

(S, p) is a security market such that the following no-arbitrage condition holds:

∀X ∈ X : sup{p(Z) : Z ∈ S, X + Z ∈ A} <∞. (2.1)

• The risk measure associated to a risk measurement regime R is the functional

ρR : X → (−∞,∞], X 7→ inf {p(Z) : Z ∈ S, X − Z ∈ A} . (2.2)

Risk measure ρR is normalised if ρR(0) = 0, or equivalently supZ∈A∩S p(Z) = 0. It is lower

semicontinuous (l.s.c.) with respect to some vector space topology τ on X provided every

lower level set {X ∈ X : ρR(X) ≤ c}, c ∈ R, is τ -closed.

Immediate consequences of the definition of ρR are the following properties:

• ρR is a proper function2 by (2.1) and ρR(Y ) ≤ 0 for any choice of Y ∈ A. Moreover,

it is convex, i.e., ρR(λX + (1− λ)Y ) ≤ λρR(X) + (1− λ)ρR(Y ) holds for all choices

of λ ∈ [0, 1] and X,Y ∈ X ;

• �-monotonicity, i.e., X � Y implies ρR(X) ≤ ρR(Y );

• S-additivity, i.e., ρR(X + Z) = ρR(X) + p(Z) for all X ∈ X and all Z ∈ S.

Note that risk measures as in (2.2) evaluate the risk of losses net of gains X ∈ X . The

positive cone X+ corresponds to pure losses. Therefore, ρR is nondecreasing with respect to

�, not nonincreasing as in most of the literature on risk measures where the risk of gains net

of losses is measured. The appropriate generalisation of convex risk measures in the usual

monotonicity would therefore be the functional ρ̃ defined by ρ̃(X) = ρR(−X), X ∈ X . In

the same vein, the functional U defined by U(X) = −ρR(−X), X ∈ X , generalises monetary

utility functions; cf. Delbaen [18].

In the security market, however, we consider the usual monotonicity, i.e., a security Z∗ ∈ S is

better than Z ∈ S if Z � Z∗. This also explains positivity of the pricing functional p : S → R.

Combining these two viewpoints, the impact of a security Z ∈ S on a loss profile X ∈ S is

given by X − Z, and ρR(X) is the infimal price that has to be paid for a security Z in the

security market with loss profile −Z in order to reduce the risk of X to an acceptable level.

The no-arbitrage condition (2.1) means that one cannot short arbitrarily valuable securities

and stay acceptable.

There is a close connection between capital requirements defined by (2.2) and superhedging.

Given a risk measurement regime R = (A,S, p) on an ordered vector space (X ,�), let

ker(p) := {N ∈ S : p(N) = 0} denote the kernel of the pricing functional, i.e. the set of fully

leveraged security portfolios available at zero cost. Moreover, fix an arbitrary U ∈ S ∩ X+

whose price is given by p(U) = 1. Each Z ∈ S can be written as Z = p(Z)U + (Z − p(Z)U),

and Z − p(Z)U ∈ ker(p). Hence, X ∈ X and Z ∈ S satisfy X − Z ∈ A if and only if for

2Given a nonempty set M , a function f : M → [−∞,∞] is proper if f−1({−∞}) = ∅ and f 6≡ ∞.
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r := p(Z) ∈ R we can find N ∈ ker(p) such that

rU +N + (−X) ∈ −A.

The risk ρR(X) may thus be expressed as

ρR(X) = inf{p(Z) : Z ∈ S, X − Z ∈ A}
= inf{r ∈ R : ∃N ∈ ker(p) such that N + rU + (−X) ∈ −A)},

The set −A is the set of acceptable gains net of losses, and −X is the payoff associated

to the loss profile X. The elements in ker(p) are zero cost investment opportunities. If we

conservatively choose the acceptance set A = −X+,

ρR(X) = inf{r ∈ R : ∃N ∈ ker(p) s.t. N + rU + (−X) � 0},

that is we recover by ρR(X) the superhedging price of the payoff −X. A general risk mea-

surement regime thus leads to a superhedging functional involving the relaxed notion of

superhedging N + rU + (−X) ∈ −A. In the terminology of superhedging theory, ρR(X) is

the infimal amount of cash that needs to be invested in the security U such that X can be

superhedged when combined with a suitable zero cost trade in the (security) market. Such

relaxed superhedging functionals have been recently studied by, e.g., Cheridito et al. [13].

The separation between U and ker(p) introduced above will be useful throughout the paper.

Let us give a classical example for a risk measurement regime:

Example 2.2. Consider risky future monetary losses net of gains modelled by (equivalence

classes) of integrable random variables on an atomless probability space (Ω,F ,P). In other

words, X := L1 := L1(Ω,F ,P). A classical capital adequacy test is given by the Average

Value at Risk at some level β ∈ (0, 1); that is, X ∈ L1 belongs to the acceptance set A and

thus passes the capital adequacy test if and only if

sup
Q∈Q

E[QX] ≤ 0,

where Q is the set of all densities Q ∈ L∞+ such that E[Q] = 1 and Q ≤ 1
1−β P-almost surely.

For the sake of simplicity we will assume that interest rates are trivial. The security market

may consist of a defaultable bond, i.e. 1A for some A ∈ F with 0 < P(A) < 1, a finite number

of assets X and a finite number of call and put options on these assets. For the latter, we

assume for each X ∈ X a set of strike prices KX to be given, and each of the calls (X − k)+,

and puts (k −X)−, k ∈ KX , lies in S. Suppose now that Q∗ ∈ L∞+ satisfies

0 < δ ≤ Q∗ ≤ 1−δ
1−β + δ

for some δ ∈ (0, 1) and E[Q∗] = 1. We will then see in Sect. 5 that if securities in S are priced

by p(Z) = E[Q∗Z], then (A,S, p) is a risk measurement regime.

We also refer to [24] for more examples of risk measurement regimes in our sense.
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2.2. Agent systems. In order to introduce the risk sharing problem in precise terms, a

notion of the interplay of the individual agents and their respective capital requirements is

required; for terminology concerning ordered vector spaces, we refer to [3, Chaps. 8–9]. We

consider an abstract one-period market which incurs aggregated losses net of gains modelled

by a Riesz space (X ,�). The market comprises n ≥ 2 agents, and throughout the paper we

identify each individual agent with a natural number i in the set {1, . . . , n}, which we shall

denote by [n] for the sake of brevity. The agents might have rather heterogeneous assessments

of risks. This is firstly reflected by the assumption that each agent operates on an (order)

ideal3 Xi ⊆ X , i ∈ [n], which may be a proper subset of X . Without loss of generality we

shall impose X = X1 + · · · + Xn. Within each ideal, and thus for each agent, adequately

capitalised losses are encoded by an acceptance set Ai ⊆ Xi. Agent i ∈ [n] is allowed to

secure losses she may incur with securities from a security market (Si, pi), where Si ( Xi.
We shall impose that each Ri := (Ai,Si, pi) is a risk measurement regime on (Xi,� |Xi×Xi),
i ∈ [n]. In sum, the individual risk assessments are fully captured by the n-tuple of risk

measurement regimes (R1, . . . ,Rn).

Definition 2.3. An n-tuple (R1, . . . ,Rn), where, for each i ∈ [n], Ri is a risk measurement

regime on Xi, is called an agent system if

(?) For all i, j ∈ [n], the pricing functionals pi and pj agree on Si ∩ Sj . Moreover, if we

set i ∼ j if i 6= j and pi is non-trivial on Si ∩ Sj , the resulting graph

G = ([n], {{i, j} ⊆ [n] : i ∼ j})
is connected.4

Axiom (?) clarifies the nature of the interaction of the involved agents: prices for securities

accepted by more than one agent have to agree, and any two agents may interact and exchange

securities by potentially invoking other agents as intermediaries. Throughout this paper we

will assume that the agents [n] form an agent system. Such a situation is not too far-fetched:

Definition 2.4. The space of jointly accepted securities is Š :=
⋂n
i=1 Si. The global security

space is M := S1 + · · ·+ Sn.

If, besides agreement of prices, Š 6= {0} and pi|Š 6= 0 for some and thus all i ∈ [n], then

assumption (?) is met. The resulting graph is the complete graph on n vertices. Moreover,

if all agents operate on one and the same space Xi = X , i ∈ [n], and the available security

markets are identical and given by Si = R · U , i ∈ [n], for some U ∈ X++ and pi(rU) = r,

r ∈ R, (R1, . . . ,Rn) is an agent system. If we further specify X to be a sufficiently rich space

of random variables and U = 1 is the constant random variable with value 1, the results for

3An ideal Y of a Riesz space (X ,�) is a subspace in which the inclusion {Z ∈ X : |Z| � |Y |} ⊆ Y holds

for all Y ∈ Y.
4That is, between any two vertices i, j ∈ [n], i 6= j, we can find a connecting path over edges of the graph,

meaning that either i ∼ j or we can find i1, . . . , im ∈ [n] for a suitable m ∈ N such that i ∼ i1, i1 ∼ i2, . . . ,

im−1 ∼ im, and im ∼ j. This will for instance be needed in the proof of Proposition 3.6.



RISK SHARING WITH MULTIDIMENSIONAL SECURITY MARKETS 9

risk sharing with convex monetary risk measures can be embedded in our setting of agent

systems; cf. [1, 2, 26, 31].

In the following we write ρi instead of ρRi for the sake of brevity. Aggregated losses in X
will be denoted by X, Y or W , securities by Z, U or N throughout the paper.

2.3. The risk sharing problem and its solutions. In order to introduce the risk sharing

associated to an agent system (R1, . . . ,Rn), we need the notion of attainable and security

allocations:

Definition 2.5. A vector X = (X1, . . . , Xn) ∈
∏n
i=1Xi is an attainable allocation of an

aggregated loss W ∈ X if W = X1 + · · ·+Xn. We denote the set of all attainable allocations

of W by AW .

Given a global security Z ∈M, we denote by AsZ := AZ∩
∏n
i=1 Si the set of security allocations

of Z.

Given a set S 6= ∅ and a function f : S → [−∞,∞], we set

dom(f) := {s ∈ S : f(s) <∞}

to be the effective domain of f . We will also abbreviate its lower level sets by Lc(f) := {s ∈
S : f(s) ≤ c}, c ∈ R.

We are now prepared to introduce the risk sharing problem. Its objective is to minimise the

aggregated risk within the system. The allowed remedial action is reallocating an aggregated

loss W ∈ X among the agents involved; so we study
n∑
i=1

ρi(Xi)→ min subject to X ∈ AW . (2.3)

The optimal value in (2.3) is less than +∞ if and only if W ∈
∑n

i=1 dom(ρi). It is furthermore

well known that (2.3) is closely related to certain notions of economically optimal allocations

which we define in the following.

Definition 2.6. Let (R1, . . . ,Rn) be an agent system on an ordered vector space (X ,�), let

W ∈ X be an aggregated loss, and let W ∈
∏n
i=1Xi be a vector of initial loss endowments.

(1) An attainable allocation X ∈ AW is Pareto-optimal if ρi(Xi) < ∞, i ∈ [n], and for any

Y ∈ AW with the property ρi(Yi) ≤ ρi(Xi), i ∈ [n], in fact ρi(Xi) = ρi(Yi) has to hold

for all i ∈ [n].

(2) Suppose (X ,�, τ) is a topological Riesz space, i.e. X carries a vector space topology τ . A

tuple (X, φ) is an equilibrium of W if

• X ∈ AW1+···+Wn ,

• φ ∈ X ∗ is positive with φ|Si = pi, i ∈ [n],

• the budget constraints φ(−Xi) ≤ φ(−Wi), i ∈ [n], hold,5

• and ρi(Xi) = inf{ρi(Y ) : Y ∈ Xi, φ(−Y ) ≤ φ(−Wi)} for all i ∈ [n].

5Note that the minus sign in the budget constraints is due to the fact that the elements in Xi model losses,

whereas φ prices payoffs.
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In that case, X is called equilibrium allocation and φ equilibrium price.

Now that all pieces are in place, we close this section by commenting on the static nature

of the model introduced here. Indeed, we study risk sharing in a generalised one-period

framework. The very general notion of market spaces underlying our definitions provide the

possibility that loss profiles capture dynamics themselves, being, for instance, trajectories of

the evolution of the value of a good over time. However, extending capital requirements to a

dynamic multi-period framework poses some difficulties. For instance, in such an extension

finite-dimensionality of security spaces might be lost. As we will see, the finite-dimensionality

of the security spaces is crucial for important results in this paper. Generalising capital

requirements to a multi-period framework will therefore be an interesting topic for future

research.

3. Infimal convolutions and the representative agent

This section comprises the formal mathematical treatment of the risk sharing problem on

ideals of a Riesz space as introduced in Sect. 2. We shall link risk sharing to the infimal

convolution of the individual risk measures, prove its representation as a capital requirement

for the market, i.e., for a representative agent, and find powerful sufficient conditions for the

existence of optimal payoffs, Pareto-optimal allocations, and equilibria. Similar approaches

have been undertaken by, e.g., [1, 2, 8, 25, 26, 31, 32].

Beforehand, however, we need to introduce further axioms that an agent system may satisfy

in addition to (?). We shall refer to them at various stages of the paper, they are however

not assumed to be met throughout. For n ≥ 2 let (R1, . . . ,Rn) be an agent system.

(A1) No security arbitrage. For some j ∈ [n] it holds that(∑
i 6=j ker(pi)

)
∩ Sj ⊆ ker(pj);

(A2) Non-redundance of the joint security market. There is Z ∈ Š and Z ∈ AsZ such that∑n
i=1 pi(Zi) 6= 0.

(A3) Supportability. The underlying space X carries a locally convex Hausdorff topology

τ with dual space X ∗. Moreover, there is some φ0 ∈ X ∗+ and a constant γ ∈ R such

that

(i) for all Z ∈
∏n
i=1 Si with

∑n
i=1 pi(Zi) = 0 we have

φ0(Z1 + · · ·+ Zn) = 0,

and for some Z̃ ∈
∏n
i=1 Si with

∑n
i=1 pi(Z̃i) 6= 0 we have

φ0(Z̃1 + · · ·+ Z̃n) 6= 0;

(ii) for all Y ∈
∏n
i=1Ai we have φ0(Y1 + · · ·+ Yn) ≤ γ.

(A4) Infinite supportability. (Ri)i∈N is a sequence of risk measurement regimes on a com-

mon locally convex Hausdorff topological Riesz space (X ,�, τ) such that (R1, . . . ,Rn)

satisfies (?) for all n ∈ N and such that there is some φ0 ∈ X ∗ with∑
i∈N supY ∈Ai φ0(Y ) <∞ and φ0|Si = pi, i ∈ N.
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Condition (A1) is violated if each agent would be able to obtain arbitrarily valuable secu-

ritisation from the other agents, who can provide it at zero individual cost. That would

reveal a mismatch of security markets leading to hypothetical infinite wealth for all agents.

Non-redundance of the joint security market is in particular satisfied if there is Z ∈ Š such

that pi(Z) 6= 0 for some i ∈ [n] and thus for all i ∈ [n] by the defining property (?) of an

agent system and the agreement of prices. Hence, under (A2) there is a jointly accepted se-

curity valuable for the market. Regarding condition (A3), think of φ0 as a pricing functional.

(i) is a consistency requirement between φ0 and the individual prices pi. (ii) reads as the

impossibility to decompose a loss X acceptably for all agents if X is sufficiently poor, that is

the value φ0(−X) of the corresponding payoff −X under φ0 is less than a certain level −γ.

Condition (A4) is a strengthening of (A3) for all finite subsystems of (Ri)i∈N.

3.1. Main results. According to Proposition 3.6 below, an allocation X ∈ AX of X ∈ X is

Pareto-optimal if and only if the risk sharing functional

Λ : X → [−∞,∞], Y 7→ inf
Y∈AY

n∑
i=1

ρi(Yi),

is exact at X, that is, Λ(X) =
∑n

i=1 ρi(Xi) ∈ R. Λ corresponds to the so-called infimal

convolution of the risk measures ρ1, . . . , ρn, and thus inherits properties like �-monotonicity

and convexity. We refer to Appendix A.2, in particular Lemma A.3, for a brief summary of

these facts.

Our next result implies that, if proper, Λ is again a risk measure of type (2.2): the shared risk

level is the minimal price the market has to pay for a cumulated security that ensures market

acceptability. Thus, market behaviour may be seen as the behaviour of a representative agent

operating on X . Recall from Definition 2.5 that AsZ denotes the set of security allocations of

Z ∈M.

Theorem 3.1. Define π(Z) := infZ∈AsZ

∑n
i=1 pi(Zi), Z ∈M.

(1) For any Z ∈M and arbitrary Z ∈ AsZ , π(Z) may be represented as

π(Z) =

n∑
i=1

pi(Zi) + π(0).

Either π(0) = 0 or π(0) = −∞. π(0) = 0 is equivalent to (A1), and in that case π is

real-valued, linear, and satisfies π|Si = pi, i ∈ [n]. Otherwise π ≡ −∞.

(2) Λ can be represented as

Λ(X) = inf {π(Z) : Z ∈M, X − Z ∈ B} , X ∈ X ,

for any monotone and convex set B ⊆ X satisfying A+ ⊆ B ⊆ L0(Λ). Here,

A+ :=

n∑
i=1

Ai

denotes the market acceptance set.
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(3) If (A1) and (A3) hold, Λ is proper.

(4) If Λ is proper, then (A1) holds, i.e., π(0) = 0, and π is positive. In that case,

(A+,M, π) is a risk measurement regime on X and Λ is the associated risk measure.

In the situation of Theorem 3.1(4), the behaviour of the representative agent is given by

the risk measurement regime (A+,M, π). The risk sharing functional is the market capital

requirement associated to the market acceptance set A+ and the global security market

(M, π).

The preceding theorem also offers a more geometric perspective on the assumption (A3).

Suppose the agent system operates on a locally convex Hausdorff topological Riesz space

(X ,�, τ) and satisfies (A1). Moreover, assume we can find a security Z∗ ∈M such that

Z∗ /∈ clτ (A+ + ker(π)), (3.1)

where here and in the the following clτ (·) denotes the closure of a set with respect to the

topology τ . Then (A3) means Z∗ is a security which comes at a true cost for the market;

it can be strictly separated from A+ + ker(π) using a linear functional φ0 ∈ X ∗+, and this

functional is exactly as described in (A3).

We now turn our attention to Pareto-optimal allocations of a loss W ∈ X . We will see that

their existence is closely related to the existence of a market security ZW ∈M which renders

market acceptability W − ZW ∈ A+ at the minimal price π(ZW ) = Λ(W ). Such optimal

payoffs have recently been studied by Baes et al. [7].

Definition 3.2. W ∈ X admits an optimal payoff ZW ∈M if W −ZW ∈ A+ and π(ZW ) =

Λ(W ).

Theorem 3.3. Suppose that Λ is proper. If X ∈ X admits an optimal payoff ZX ∈ M,

then X ∈ dom(Λ) and Λ is exact at X. In particular, for any Yi ∈ Ai, i ∈ [n], such that∑n
i=1 Yi = X − ZX , and any Z ∈ As

ZX
, the allocation (Yi + Zi)i∈[n] ∈ AX is Pareto-optimal.

If moreover L0(ρi) = Ai + ker(pi), i ∈ [n], then Λ is exact at X ∈ dom(Λ) if, and only if X

admits an optimal payoff.

In a topological setting, the existence of optimal payoffs is intimately connected to the

Minkowski sum A+ + ker(π) being closed:

Proposition 3.4. Suppose (X ,�, τ) is a topological Riesz space and Λ is proper. Then the

following are equivalent:

(1) A+ + ker(π) is closed.

(2) Λ is l.s.c. and every X ∈ dom(Λ) admits an optimal payoff.

Proposition 3.4 is related to [7, Proposition 4.1]. Together with Theorem 3.3, it is a powerful

sufficient condition for the existence of Pareto optima which we shall apply in Sects. 4 and 5.

The only non-trivial steps will be to verify the properness of Λ and closedness of A+ +ker(π).

We proceed with the discussion of equilibria in the very general case when market losses

are modelled by a Fréchet lattice (X ,�, τ). As this notion is ambiguous in the literature,
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we emphasise that a Fréchet lattice is a locally convex-solid6 topological Riesz space whose

topology is completely metrisable.

In particular, Banach lattices are Fréchet lattices. As a more general example, one may

consider the Wiener space C([0,∞)) of all continuous functions on the non-negative half-line

with the pointwise oder ≤ and the topology τD arising from the metric

D(f, g) :=

∞∑
k=1

2−k
max0≤r≤k |f(r)− g(r)|

1 + max0≤r≤k |f(r)− g(r)|
, f, g ∈ C([0,∞)).

Clearly, (C([0,∞)),≤, τD) is not a Banach lattice, but a Fréchet lattice. Its choice as model

space is justified if the primitives in question are continuous trajectories of, e.g., the net value

of some good over time.

Recall the definition of the jointly accepted securities, Š :=
⋂n
i=1 Si. Moreover, we set here

and in the following int dom(Λ) to be the τ -interior of the effective domain of the risk sharing

functional Λ.

Theorem 3.5. Suppose X is a Fréchet lattice and that Λ is l.s.c. and proper. Moreover,

let (A2) be satisfied, i.e., there is a Z̃ ∈ Š with π(Z̃) 6= 0. If a vector of loss endowments

W ∈
∏n
i=1Xi satisfies W := W1 + · · ·+Wn ∈ int dom(Λ) and there exists a Pareto-optimal

allocation of W , there is an equilibrium (X, φ) of W.

3.2. Ancillary results and proofs. Our first result links Pareto optima, equilibria, and

solutions to the risk sharing problem (2.3). Proposition 3.6(2) is indeed the first fundamental

theorem of welfare economics adapted to our setting.

Proposition 3.6. Let (R1, . . . ,Rn) be an agent system on an ordered vector space (X ,�),

let W ∈ X be an aggregated loss, and let W ∈
∏n
i=1Xi be a vector of initial loss endowments.

The following statements hold true:

(1) If W ∈
∑n

i=1 dom(ρi), then X ∈ AW is a Pareto-optimal attainable allocation of W

if and only if
n∑
i=1

ρi(Xi) = inf
Y∈AW

n∑
i=1

ρi(Yi). (3.2)

(2) If (X ,�, τ) is a topological Riesz space and W satisfies W1+· · ·+Wn ∈
∑n

i=1 dom(ρi),

any equilibrium allocation of W is Pareto-optimal.

The proof requires the following well-known characterisation of Pareto optima; see, e.g., [37,

Proposition 3.2].

Lemma 3.7. Let W ∈
∑n

i=1 dom(ρi). If X is a Pareto-optimal attainable allocation of W ,

there are so-called Negishi weights λi ≥ 0, i ∈ [n], not all equal to zero, such that
n∑
i=1

λiρi(Xi) = inf
Y∈AW

n∑
i=1

λiρi(Yi). (3.3)

6This means that the topology has a neighbourhood base at 0 consisting of convex and solid sets; cf. [4,

Sect. 2.3].
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Conversely, if X ∈ AX satisfies (3.3) for a set of strictly positive weights λi > 0, i ∈ [n], then

X is a Pareto-optimal attainable allocation.

The proof of Proposition 3.6 shows that the agent system property (?) dictates the values of

the Negishi weights.

Proof of Proposition 3.6. (1) By Lemma 3.7 any solution to (3.2) is Pareto-optimal. Con-

versely, let W ∈
∑n

i=1 dom(ρi) and let X ∈ AW be a Pareto-optimal attainable allocation.

Let λ ∈ Rn++ be any vector of Negishi weights such that X is a solution to (3.3). Recall the

symmetric relation ∼ in (?) and consider j, k ∈ [n] such that j ∼ k. By definition, we find

Z ∈ Sj ∩ Sk such that p := pj(Z) = pk(Z) 6= 0. For t ∈ R let

Xt := X + t
pZej −

t
pZek ∈ AX .

Here, Zej is the vector whose jth entry is Z, whereas all other entries are 0. Analogously,

we define Zek. By the Si-additivity of all the ρi, we infer

−∞ <
n∑
i=1

λiρi(Xi) ≤ inf
t∈R

n∑
i=1

λiρi(X
t
i ) =

n∑
i=1

λiρi(Xi) + inf
t∈R

t(λj − λk).

This is only possible if λj = λk. Using that the graph G in (?) is connected, one inductively

shows λ1 = · · · = λn. As not all the λi equal 0, this implies that they all have to be positive.

Dividing both sides of (3.3) by λ1 yields

n∑
i=1

ρi(Xi) = inf
Y∈AX

n∑
i=1

ρi(Yi).

(2) Suppose that W is an initial loss endowment with associated equilibrium (X, φ). The

equality φ(Xi) = φ(Wi) holds for all i ∈ [n] because
∑n

i=1Xi =
∑n

i=1Wi, φ is linear, and

φ(−Xi) ≤ φ(−Wi) holds for all i ∈ [n]. Given Zi ∈ Si such that pi(Zi) = 1 and arbitrary

Yi ∈ Xi,
φ(Yi + (φ(Xi)− φ(Yi))Zi) = φ(Xi) = φ(Wi)

holds as φ = pi on Si. Thus the budget constraint is satisfied, and hence

ρi(Xi) ≤ ρi(Yi + φ(Xi − Yi)Zi) = ρi(Yi) + φ(Xi)− φ(Yi).

If we set W := W1 + · · ·+Wn, for any other allocation Y ∈ AW we obtain
n∑
i=1

ρi(Xi) ≤
n∑
i=1

ρi(Yi) + φ(Xi)− φ(Yi) =
n∑
i=1

ρi(Yi)

since
∑n

i=1 φ(Xi) =
∑n

i=1 φ(Yi) = φ(W ). By (1), X is Pareto-optimal. �

Proof of Theorem 3.1. (1) Let Z ∈ M and let Z ∈ AsZ be arbitrary, but fixed. The identity

AsZ = Z + As0 implies

π(Z) =

n∑
i=1

pi(Zi) + inf
N∈As0

n∑
i=1

pi(Ni) =

n∑
i=1

pi(Zi) + π(0).
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Consider V := {(pi(Ni))i∈[n] : N ∈ As0}, which is a subspace of Rn. In the following, we

denote by el the lth unit vector of Rn. We claim π(0) = 0 if and only if dim(V) < n.

Indeed, let 1 = (1, 1, . . . , 1) ∈ Rn and observe that π(0) = infx∈V〈1, x〉 which is −∞ in case

dim(V) = n. Suppose that dim(V) < n, i.e. V⊥ 6= {0}, and let 0 6= λ ∈ V⊥. As in the

proof of Proposition 3.6(1), ej − ek ∈ V holds for all j, k ∈ [n] such that j ∼ k, which implies

λj = λk. As the relation ∼ induces a connected graph, λ ∈ span{1} = V⊥. Hence, we

obtain that 〈1, x〉 = 0 for all x ∈ V which implies π(0) = 0, so we have proved equivalence

of π(0) = 0 and dim(V) < n. But dim(V) < n is equivalent to the fact that there is a j ∈ [n]

such that ej /∈ V, which in turn is equivalent to (A1): whenever Z ∈ Sj lies in the Minkowski

sum
∑

i 6=j ker(pi), pj(Z) = 0 has to hold.

(2) We first note that A+ is convex and monotone. Indeed, let X,Y ∈ X such that Y ∈ A+

and X � Y . Fix Y ∈ AY such that Yi ∈ Ai, i ∈ [n], and X ∈ AX arbitrary. By the

Riesz Decomposition Property (cf. [3, Sect. 8.5]), there are W1, . . . ,Wn ∈ X+ such that

Y −X =
∑n

i=1Wi and Wi � |Yi −Xi|, which means W ∈ AY−X . Hence, for all i ∈ [n], we

obtain Yi−Wi ∈ Ai by the monotonicity of Ai, and thus X =
∑n

i=1 Yi−Wi ∈ A+. Moreover,

L0(Λ) is monotone and convex as well, which follows from the corresponding properties of Λ.

For B ⊆ B′, we have

inf {π(Z) : Z ∈M, X − Z ∈ B} ≥ inf
{
π(Z) : Z ∈M, X − Z ∈ B′

}
.

As A+ ⊆ L0(Λ), (2) is proved if for arbitrary X ∈ X we can show the two estimates

Λ(X) ≥ inf {π(Z) : Z ∈M, X − Z ∈ A+} , (3.4)

and

Λ(X) ≤ inf {π(Z) : Z ∈M, X − Z ∈ L0(Λ)} . (3.5)

The first assertion trivially holds if Λ(X) = ∞. If X ∈ dom(Λ) =
∑n

i=1 dom(ρi), choose

X ∈ AX such that ρi(Xi) < ∞, i ∈ [n], and ε > 0 arbitrary. Suppose Z ∈
∏n
i=1 Si is such

that pi(Zi) ≤ ρi(Xi) + ε
n and Xi − Zi ∈ Ai, i ∈ [n]. Set Z∗ := Z1 + · · · + Zn and observe

X − Z∗ ∈ A+ as well as

n∑
i=1

ρi(Xi) + ε ≥
n∑
i=1

pi(Zi) ≥ π(Z∗) ≥ inf{π(Z) : Z ∈M, X − Z ∈ A+}.

This proves (3.4). We now turn to (3.5). If Λ(X) = ∞, assume for contradiction there is

some Z ∈ M such that X − Z ∈ L0(Λ) ⊆
∑n

i=1 dom(ρi). Choose Y ∈ AX−Z such that

Yi ∈ dom(ρi) for all i, and let Z ∈ AsZ be arbitrary. Then

Λ(X) ≤
n∑
i=1

ρi(Yi + Zi) =

n∑
i=1

ρi(Yi) +

n∑
i=1

pi(Zi) <∞.

This is a contradiction and no such Z ∈ M can exist. (3.5) holds in this case. Now assume

X ∈ dom(Λ) and suppose Z ∈ M satisfies X − Z ∈ L0(Λ). Hence, for arbitrary ε > 0 there
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is Y ∈ AX−Z such that
∑n

i=1 ρi(Yi) ≤ ε. As Y + Z ∈ AX for all Z ∈ AsZ ,

Λ(X) ≤ inf
Z∈AsZ

n∑
i=1

ρi(Yi + Zi) =

n∑
i=1

ρi(Yi) + π(Z) ≤ ε+ π(Z).

As ε > 0 was chosen arbitrarily, we obtain (3.5).

(3) Assume (A1) and (A3) are fulfilled, let φ0 ∈ X ∗+ as described in (A3), and note that π

is linear by (1). We shall prove that φ0|M = κπ for some κ > 0, so by rescaling φ0|M = π

may be assumed without loss of generality. To this end, we restate requirement (A3)(ii) as

supY ∈A+
φ0(Y ) < ∞. Condition (A3)(i) means in particular that φ0|ker(π) ≡ 0. For each

i ∈ [n] fix Ui ∈ Si ∩ X++ such that U :=
∑n

i=1 Ui satisfies

π(U) =

n∑
i=1

pi(Ui) = 1.

As Z − π(Z)U ∈ ker(π) holds for all Z ∈ M we infer φ0(Z − π(Z)U) = 0, or equivalently

φ0 = φ0(U)π on M. By the second part of (A3)(i), φ0(Z̃) 6= 0 for some Z̃ ∈ M with

π(Z̃) 6= 0. Using positivity of φ0, we obtain

0 <
φ0(Z̃)

π(Z̃)
= φ0(U),

hence we may set κ := φ0(U). Finally, if κ = 1, X ∈ X is arbitrary, and Z ∈M is such that

X − Z ∈ A+,

π(Z) = φ0(Z) = φ0(X)− φ0(X − Z) ≥ φ0(X)− sup
Y ∈A+

φ0(Y ) > −∞.

The bound on the right-hand side is independent of Z. Using the representation of Λ in (2),

properness follows.

(4) Note that Λ is M-additive by (2). Since Λ is proper, we cannot have π ≡ −∞, hence

π(0) = 0, i.e., (A1) holds by (1). As regards the positivity of π, choose Y ∈ X with Λ(Y ) ∈ R.

For Z ∈M∩X+, the monotonicity of Λ then shows Λ(Y ) ≤ Λ(Y +Z) = Λ(Y )+π(Z), which

entails π(Z) ≥ 0. It follows that (A+,M, π) is a risk measurement regime. �

Proof of Theorem 3.3. As Λ is proper, we have that π is linear, finite valued, and π|Si = pi,

i ∈ [n], by Theorem 3.1. Assume X ∈ X and Z = ZX ∈M are such that Λ(X) = π(Z) and

X − Z ∈ A+. As π(Z) ∈ R and Λ|A+ ≤ 0, X ∈ dom(Λ). Choose Yi ∈ Ai, i ∈ [n], such that

X − Z =
∑n

i=1 Yi. For any Z ∈ AsZ we thus have X =
∑n

i=1 Yi + Zi and

Λ(X) ≤
n∑
i=1

ρi(Yi + Zi) =
n∑
i=1

ρi(Yi) +
n∑
i=1

pi(Zi) ≤ π(Z) = Λ(X),

where we have used ρi(Yi) ≤ 0 and π(Z) =
∑n

i=1 pi(Zi) (Theorem 3.1). This shows the

exactness of Λ at X.

Now assume L0(ρi) = Ai + ker(pi), i ∈ [n]. Let X ∈ dom(Λ) and X ∈ AX such that Λ(X) =∑n
i=1 ρi(Xi). Further, let Ui ∈ Si with pi(Ui) = 1. As Xi − ρi(Xi)Ui ∈ Ai + ker(pi), i ∈ [n],

by assumption, we may find a vector N ∈
∏n
i=1 ker(pi) such that Xi − ρi(Xi)Ui + Ni ∈ Ai
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for every i ∈ [n]. The fact that
∑n

i=1 ρi(Xi)Ui−Ni is an optimal payoff for X is immediately

verified. �

Proof of Proposition 3.4. Suppose first that A+ + ker(π) is closed. For lower semicontinuity,

we have to establish that Lc(Λ) is closed for every c ∈ R. To this end, let Ui ∈ Si ∩X++ such

that pi(Ui) > 0 and set U :=
∑n

i=1 Ui. Without loss of generality, we may assume π(U) = 1.

We will show that

Lc(Λ) = {cU}+ A+ + ker(π), (3.6)

which is closed whenever A+ + ker(π) is closed. The right-hand set in (3.6) is included in

the left-hand set by the M-additivity of Λ. For the converse inclusion, let X ∈ Lc(Λ). For

every s > c, there is a Zs ∈ M such that c ≤ π(Zs) ≤ s and X − Zs ∈ A+. Consider the

decomposition

X − sU = X − Zs + (π(Zs)− s)U + Zs − π(Zs)U.

As X − Zs + (π(Zs)− s)U � X − Zs ∈ A+ and Zs − π(Zs)U ∈ ker(π), the monotonicity of

A+ shows X − sU ∈ A+ + ker(π). Thus,

X − cU = lim
s↓c

X − sU ∈ clτ (A+ + ker(π)) = A+ + ker(π),

and (3.6) is proved. Setting c = 0 in (3.6) shows L0(Λ) = A+ +ker(π). Hence, X−Λ(X)U ∈
A+ + ker(π) for all X ∈ dom(Λ), and for a suitable N ∈ ker(π) depending on X we have

X − Λ(X)U + N ∈ A+ and π(Λ(X)U −N) = Λ(X). Therefore, an optimal payoff for X is

given by Λ(X)U −N ∈M.

Assume now that Λ is l.s.c. and that every X ∈ dom(Λ) allows for an optimal payoff. Let

(Xi)i∈I be a net in A+ + ker(π) converging to X ∈ X . Then Λ(X) ≤ 0 by the lower

semicontinuity of Λ. Let ZX ∈ M be an optimal payoff for X, so that π(ZX) = Λ(X) ≤ 0.

For U as above and Y := X − ZX ∈ A+ we obtain Y + π(ZX)U ∈ A+ by the monotonicity

of A+. Also ZX − π(ZX)U ∈ ker(π). Thus X =
(
Y + π(ZX)U

)
+
(
ZX − π(ZX)U

)
∈

A+ + ker(π). �

For the proof of Theorem 3.5, we need the notion of the convex conjugate of a proper function

f : X → (−∞,∞] on a locally convex Hausdorff topological vector space, which is the

function f∗ : X ∗ → (−∞,∞] defined by

f∗(φ) = sup
X∈X

φ(X)− f(X).

Given X ∈ dom(f), φ ∈ X ∗ is a subgradient of f at X if f(X) = φ(X)− f∗(φ).

Proof of Theorem 3.5. Fix a vector W ∈
∏n
i=1Wi with the property

W := W1 + · · ·+Wn ∈ int dom(Λ).

As a Fréchet lattice is a barrelled space, Λ is subdifferentiable at W by [20, Corollary 2.5 &

Proposition 5.2], i.e. there is a subgradient φ ∈ X ∗ of Λ at W satisfying Λ(W ) = φ(W ) −
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Λ∗(φ). As Λ is monotone, φ ∈ X ∗+ , and by Lemma A.4

Λ∗(φ) =

n∑
i=1

ρ∗i (φ|Xi).

Let Y be any Pareto-optimal allocation of W . As Λ(W ) =
∑n

i=1 ρi(Yi) ∈ R, Λ(W ), Λ∗(φ)

and ρ∗i (φ|Xi), i ∈ [n], are all real numbers. Also, as

∞ > ρ∗i (φ|Xi) ≥ sup
Z∈Si

φ(Yi + Z)− ρi(Yi + Z) = φ(Yi)− ρi(Yi) + sup
Z∈Si

φ(Z)− pi(Z),

φ|Si = pi, i ∈ [n], has to hold. This in turn implies φ|M = π by the linearity of π and

Theorem 3.1. By (A2), we may fix Z̃ ∈ Š such that π(Z̃) = 1 = pi(Z̃), i ∈ [n]. Let

Xi := Yi + φ(Wi − Yi)Z̃, i ∈ [n].

As
∑n

i=1Wi =
∑n

i=1 Yi = W ,
∑n

i=1Xi = W holds and X ∈ AW . Moreover, X is Pareto-

optimal:

n∑
i=1

ρi(Xi) =

n∑
i=1

ρi(Yi) + φ(Wi − Yi)π(Z̃) =

n∑
i=1

ρi(Yi) + φ(W −W )

=

n∑
i=1

ρi(Yi) = Λ(W ).

Also, as φ(Xi)− ρ∗i (φ|Xi) ≤ ρi(Xi) for all i ∈ [n] and

n∑
i=1

ρi(Xi) = Λ(W ) = φ(W )− Λ∗(W ) =
n∑
i=1

φ(Xi)− ρ∗i (φ|Xi),

ρi(Xi) = φ(Xi)− ρ∗i (φ|Xi) has to hold for all i ∈ [n]. We claim that (X, φ) is an equilibrium.

Indeed, as φ(−Xi) = φ(−Wi) holds for all i ∈ [n], the budget constraints are satisfied.

Moreover, if i ∈ [n] and Y ∈ Xi satisfies φ(−Y ) ≤ φ(−Wi) = φ(−Xi), we obtain

ρi(Y ) ≥ φ(Y )− ρ∗i (φ|Xi) ≥ φ(Xi)− ρ∗i (φ|Xi) = ρi(Xi).

�

4. Polyhedral agent systems

In the next two sections, we will study two instances of the model introduced in Sect. 2

and employ the methodology discussed in Sect. 3 to find optimal payoffs for the market,

Pareto-optimal allocations, and equilibria. Additionally, we will study their robustness. In

this section, we shall focus on polyhedral agent systems.
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4.1. The setting. Throughout this section we assume that the agent system (R1, . . . ,Rn)

operates on a market space X given by a Fréchet lattice. Each agent i ∈ [n] operates on a

closed ideal Xi ⊆ X , and X1 + · · · + Xn = X . The assumption of closedness implies that

(Xi,�, τ ∩ Xi) is a Fréchet lattice in its own right. We will assume that each acceptance set

Ai ⊆ Xi is polyhedral.

Definition 4.1. Let (X , τ) be a locally convex topological vector space. A convex set C ⊆ X
is called polyhedral if there is a finite set J ⊆ X ∗ and β ∈ RJ such that

A = {X ∈ X : φ(X) ≤ β(φ), ∀φ ∈ J }.
If (X ,�, τ) is a Fréchet lattice, an agent system (R1, . . . ,Rn) on X is polyhedral if it has

properties (A1) and (A3), and each acceptance set Ai, i ∈ [n], is polyhedral. That is, for

each i ∈ [n] there is a finite set Ji ⊆ X ∗i and βi ∈ RJi such that

Ai = {X ∈ Xi : ∀φ ∈ Ji (φ(X) ≤ βi(φ))}.

The polyhedrality of a set C is equivalent to the existence of some m ∈ N, a continuous linear

operator T : X → Rm, and β ∈ Rm such that

C = {X ∈ X : T (X) ≤ β},

where the defining inequality is understood coordinatewise. In case of an acceptance set, the

representing linear operator can be chosen to be positive. Risk measures with polyhedral

acceptance sets play a prominent role in Baes et al. [7], where the set of optimal payoffs for

a single such risk measure is studied.

Example 4.2. Suppose Ω 6= ∅ is a nonempty set of scenarios for the future state of the econ-

omy, either suggested by the internal risk management or a regulatory authority. Moreover,

suppose ∅ 6= Ωi ( Ω, i ∈ [n], are such that Ω =
⋃n
i=1 Ωi. Ωi denotes the set of scenarios

relevant for agent i ∈ [n], whereas Ωi ∩ Ωj is the (possibly empty) set of jointly relevant

scenarios for agents i and j. Note that we do not assume the Ωi to be pairwise disjoint.

While Ω collects the scenarios relevant to the whole system, it is both individually and sys-

temically rational of an agent to demand that her stake in the sharing of a market loss is

neutral in scenarios ω ∈ Ω\Ωi. The canonical choice of the model spaces is in consequence

X := {X ∈ RΩ : supω∈Ω |X(ω)| <∞} endowed with the supremum norm and

Xi := {X ∈ X : X(ω) = 0, ω /∈ Ωi}, i ∈ [n].

Consider individual capital adequacy tests defined in terms of scenariowise loss constraints

on a prespecified finite set of test scenarios Ω∗ ⊆ Ω. We need to assume Ω∗ ∩ Ωi ∩ Ωj 6= ∅
whenever Ωi ∩ Ωj 6= ∅, and that Ω∗i := Ω∗ ∩ Ωi, i ∈ [n], is not empty either. The polyhedral

acceptance set of agent i ∈ [n] is then defined by

Ai := {X ∈ Xi : ∀ω ∈ Ω∗i (X(ω) ≤ βi(ω))}, i ∈ [n],

where βi ∈ RΩ∗i is an arbitrary, but fixed vector of individual loss constraints.
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Concerning the individual security spaces, let Π be the set of all subsets A ⊆ Ω which have

the shape A = Ωi ∩ Ωj or A = Ωi\Ωj for some i 6= j and are nonempty. The security space

of agent i ∈ [n] is then set to be

Si := span{1A : A ∈ Π, A ⊆ Ωi}.

At last, for a collection (σω)ω∈Ω∗ of positive weights we define the linear functional

π :M→ R, Z 7→
∑
ω∈Ω∗

σωZ(ω),

and the individual prices pi := π|Si , i ∈ [n]. We additionally assume that the family of

intersections Ωi ∩ Ωj , i, j ∈ [n], i 6= j, which are nonempty is rich enough such that the

family (Ri)i∈[n] := ((Ai,Si, pi))i∈[n] of risk measurement regimes satisfies (?).

In total, if the situation is as described, (Ri)i∈[n] is a polyhedral agent system.

4.2. Main results. We first turn to the existence of optimal risk allocations in polyhedral

agent systems. By definition, such an agent system satisfies (A1) and (A3). The resulting

risk sharing functional Λ is proper by Theorem 3.1(3). By Theorem 3.3 and Proposition 3.4,

the existence of Pareto-optimal allocations would be proved if the closedness of A+ + ker(π)

can be established.

The two main results on optimal risk allocations are the following:

Theorem 4.3. Let (R1, . . . ,Rn) be a polyhedral agent system on a Fréchet lattice X . Then

the set A++ker(π) is proper, polyhedral, and closed, Λ is l.s.c., and every X ∈ dom(Λ) admits

an optimal payoff ZX ∈M, and can thus be allocated Pareto-optimally as in Theorem 3.3.

Theorem 4.3 is illustrated by an example in Sect. 4.4.

Remark 4.4. The proof of the preceding theorem shows that for each agent i ∈ [n], the

Minkowski sum Ai+ker(pi) is proper, polyhedral, and closed. Moreover, for all Xi ∈ dom(ρi)

we can find an optimal payoff ZXi ∈ Si, i.e., pi(Z
Xi) = ρi(Xi) and Xi − ZXi ∈ Ai.

Corollary 4.5. If a polyhedral agent system (R1, . . . ,Rn) on a Fréchet lattice X satisfies

(A2), for every W ∈
∏n
i=1Xi such that W1 + · · ·+Wn ∈ int dom(Λ) there is an equilibrium

(X, φ).

By Theorem 4.3, the correspondence P mapping X ∈ dom(Λ) to the set of its Pareto-optimal

allocations X ∈ AX takes nonempty subsets of AX as values. Invoking Proposition 3.6, we

can represent

P(X) =

{
X ∈ AX : Λ(X) =

n∑
i=1

ρi(Xi)

}
. (4.1)

For a brief summary of the terminology concerning correspondences (or set-valued maps) and

their properties, we refer to Appendix A.3. Theorem 4.9, the main result on the robustness

of P in the case of a polyhedral agent system, asserts that P can be shown to be lower

hemicontinuous. This requires some technical assumptions though.
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Suppose (Ri)i∈[n] is a polyhedral agent system on a market space X . Then for each i ∈ [n],

there is a positive continuous linear operator Ti : Xi → Rmi for suitable mi ∈ R and a vector

βi ∈ Rmi such that

Ai := {Y ∈ Xi : Ti(Y ) ≤ βi}.
In case X is infinite-dimensional, we will need the following assumptions:

Assumption 4.6. For each i ∈ [n], Xi is complemented in X by a closed subspace Yi, that

is X = Xi ⊕ Yi, where ⊕ denotes the direct sum of two vector spaces.

Hence, for each X ∈ X there is a unique decomposition X = X̃ + Ỹ , where X̃ ∈ Xi and

Ỹ ∈ Yi. Moreover, by the closed graph theorem [30, Chap. 3, Theorem 5], the projection

δi : X 7→ X̃ is continuous and Yi = ker(δi).

Let us define T̃i := Ti ◦ δi and Y :=
⋂n
i=1 ker(T̃i). Hence, Y is complemented in X by a

finite-dimensional closed subspace Z, i.e., X = Y ⊕ Z. The projections γ1 : X → Y and

γ2 : X → Z are continuous.

Assumption 4.7. For each i ∈ [n], we have γ1(Xi) ⊆ Xi.

At last, we will assume

Assumption 4.8. For each i ∈ [n] there is a continuous linear Pi : Y → γ1(Xi) such that∑n
i=1 Pi = idY .

Theorem 4.9. Consider a polyhedral agent system (Ri)i∈[n] on a market space X . Suppose

that Assumptions 4.6–4.8 hold in case X is infinite-dimensional. Then the correspondence

P is lower hemicontinuous on dom(Λ) and admits a continuous selection on dom(Λ).

Example 4.10. (1) Assumptions 4.6–4.8 are automatically satisfied if all individual ideals

Xi agree with the market space X . Indeed, Yi = {0} can be chosen in Assumption 4.6,

γ1(Xi) = γ1(X ) ⊆ X = Xi gives Assumption 4.7, and Pi := 1
n idX is possible in Assump-

tion 4.8.

(2) In the situation described by Example 4.2 Assumptions 4.6–4.8 are satisfied. Indeed, the

complementing subspaces Yi of Xi in Assumption 4.6 are given by

Yi := {X ∈ X : X(ω) = 0, ∀ω ∈ Ωi}.

Recall that Ω∗ is the set of scenarios relevant for market acceptability and note that

Y = {X ∈ X : X(ω) = 0, ∀ω ∈ Ω∗},
Z = {X ∈ X : X(ω) = 0, ∀ω ∈ Ω\Ω∗}.

As γ1(X) := X1Ω\Ω∗ and γ2(X) = X1Ω∗ , X ∈ X , we verify easily that γ1(Xi) ⊆ Xi,
i ∈ [n], i.e., Assumption 4.7 is met. Regarding the existence of the mappings (Pi)i∈[n]

satisfying Assumption 4.8, we can define them consecutively by

P1(X) := X1Ω1 , Pi+1(X) := X1Ωi+1\
⋃i
j=1 Ωj

, i ∈ [n− 1], X ∈ Y.
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Similar examples can be constructed for other function spaces such as the Hilbert space

L2(Ω,F ,P), the space of all equivalence classes with respect to almost sure equality of

square-integrable random variables on a probability space (Ω,F ,P).

One may wonder whether the correspondence E :
∏n
i=1Xi �

∏n
i=1Xi×X ∗ mapping an initial

loss endowment W to all its equilibrium allocations such that X ∈ P(W1 + · · · + Wn) and

φ is a subgradient of Λ at W1 + · · · + Wn — as in the proof of Theorem 3.5 — is lower

hemicontinuous under suitable conditions. This, however, is not the case. Suppose X admits

two positive functionals φ, ψ ∈ X ∗+ such that ker(φ)\ ker(ψ) 6= ∅. We assume n = 1 and

consider an agent system R = (A,S, p) such that ρR(X) = max{φ(X), ψ(X)}, X ∈ X . Let

W ∈ X such that φ(W ) = 0 < ψ(W ). Thus, for all n ∈ N, the equilibrium price at 1
nW

would be ψ, whereas any element of the convex hull of {φ, ψ} could be chosen as equilibrium

price at 0. E is not lower hemicontinuous in this case.

4.3. Ancillary results and proofs. For the following lemma, recall that a Fréchet space is

a completely metrisable locally convex topological vector space. In particular, every Fréchet

lattice is a Fréchet space.

Lemma 4.11. Let X be a Fréchet space.

(1) A subset C ⊆ X is polyhedral if and only if there are closed subspaces X 1,X 2 ⊆ X
such that X = X 1 ⊕ X 2, dim(X 2) < ∞, and C = X 1 + C′ for a polyhedral subset

C′ ⊆ X 2.

(2) Suppose Y and X are Fréchet spaces, C ⊆ Y is polyhedral, and T : Y → X is a

surjective linear operator. Then T (C) is polyhedral in X .

Proof. (1) Combine the proof of [46, Corollary 2.1] with the closed graph theorem [30, Chap.

3, Theorem 5].

(2) By (1), there are two closed subspaces Y1,Y2 ⊆ Y such that dim(Y2) is finite, Y = Y1⊕Y2,

and C = Y1 + C′ for a polyhedral subset C′ of Y2. Define X 2 := T (Y2), which is finite-

dimensional. Every finite-dimensional subspace of a Fréchet space is complemented by a

closed subspace. Thus X = X 1 ⊕ X 2 for a closed subspace X 1. Clearly, T (C′) ⊆ X 2 is

polyhedral; see [38, Theorem 19.3]. Moreover, denoting by γi : X → X i the projection in X
onto the linear subspaces X i, surjectivity of T implies X 1 = γ1(X ) = γ1(T (Y1))+γ1(T (Y2) =

γ1(T (Y1)). Moreover,

T (C) = T (Y1) + T (C′) = X 1 + γ2(T (Y1)) + T (C′).

γ2(T (Y1)) is polyhedral as subspace of the finite-dimensional space X 2, and so is the sum

γ2(T (Y1)) + T (C′) of two polyhedral sets. Conclude with (1). �

The preceding lemma enables us to prove Theorem 4.3.

Proof of Theorem 4.3. The set A+ + ker(π) is proper by assumption (A3). Moreover, it is

polyhedral: consider the Fréchet space Y := (
∏n
i=1Xi)×ker(π).7 By assumption, the set C :=

7Space Y is not a Fréchet lattice, hence the necessity for the above formulation of Lemma 4.11.



RISK SHARING WITH MULTIDIMENSIONAL SECURITY MARKETS 23

(
∏n
i=1Ai)×ker(π) is polyhedral, and T : Y → X defined by T (X1, . . . , Xn, N) =

∑n
i=1Xi+N

is surjective and linear. As X is a Fréchet space, Lemma 4.11(2) yields the polyhedrality of

T (C) = A+ + ker(π). Being a polyhedral set, it is automatically closed. Since Λ is proper, it

is l.s.c. and optimal payoffs exist for every X ∈ dom(Λ) by Proposition 3.4. �

Proof of Corollary 4.5. Combine Theorems 3.5 and 4.3. �

We now turn our attention to the lower hemicontinuity of the correspondence P as stated in

Theorem 4.9. Its proof requires the following highly technical Lemmas 4.12 and 4.13 whose

proofs imitate in parts a technique from Baes et al. [7]. Note that in analogy with Theorem

4.3, A+ is closed.

Lemma 4.12. Suppose X is a finite-dimensional locally convex Hausdorff topological vector

space, Xi ⊆ X , i ∈ [n], are finite-dimensional subspaces such that
∑n

i=1Xi = X , and Ai ⊆ Xi,
i ∈ [n], are polyhedral sets. Set A+ :=

∑n
i=1Ai and define the correspondence

Γ : A+ 3 X →

{
X ∈

n∏
i=1

Ai : X1 + · · ·+Xn = X

}
.

Then Γ is lower hemicontinuous.

Proof. As in Definition 4.1, for each i ∈ [n] we fix mi ∈ N, a linear and continuous operator

Ti : X → Rmi , and vectors βi ∈ Rmi , such that

Ai = {Y ∈ Xi : Ti(Y ) ≤ βi}.

Step 1. For fixed X ∈ A+ we decompose Γ(X) as the sum of a universal and an X-dependent

component. Recall from Appendix A.1 that the recession cone of Γ(X) is given by

0+Γ(X) := {Y ∈
∏n
i=1Xi : X + kY ∈ Γ(X), ∀X ∈ Γ(X), ∀ k > 0}.

The lineality space of Γ(X) is

0+Γ(X) ∩ (−0+Γ(X)) = {Y ∈ A0 : Ti(Yi) = 0, ∀ i ∈ [n]},

a subspace independent of X. By virtue of Lemma A.2, there is a X-independent subspace

V ⊆
∏n
i=1Xi such that

Γ(X) = α(X) + 0+Γ(X), α(X) := co(ext(Γ(X) ∩ V)),

where co(·) denotes the convex hull operator and ext(Γ(X)∩ V) the set of extreme points of

Γ(X) ∩ V.

Step 2. In this step, we prove that the correspondence α : A+ →
∏n
i=1Ai maps sets which

are bounded with respect to some norm on X to sets which are bounded with respect to

some norm on V. To this end, let D := dim(X ) = dim(X ∗) and choose a basis ψ1, . . . , ψD of

X ∗. Note that X ∈ Γ(X) ∩ V if and only if

• X is an allocation of X, i.e. ψj(X1 + · · ·+Xn) = ψj(X) for all j ∈ [D], or equivalently

ψj(X1 + · · ·+Xn) ≤ ψj(X) and (−ψj)(X1 + · · ·+Xn) ≤ (−ψj)(X);

• each Xi lies in Ai, i.e. Ti(Xi) ≤ βi;
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• X ∈ V.

Clearly, the properties listed above describe a polyhedral subset of V; more precisely, for

m :=
∑n

i=1mi+2D, mi defined above, we may find a continuous linear operator S : V → Rm

and an affine function f : X → Rm such that

Γ(X) ∩ V = {X ∈ V : S(X) ≤ f(X)}.

Every “row” Si of S corresponds to an element of V∗. By [9, Theorem II.4.2], for every

extreme point X ∈ Γ(X) ∩ V the set

I(X) = {i ∈ [m] : Si(X) = fi(X)},

whose cardinality is at least dim(V), satisfies span{Si : i ∈ I(X)} = V∗. Let F(X) :=

{I(X) : X ∈ ext(Γ(X) ∩ V)} be the collection of all such I(X) corresponding to an extreme

point. Its cardinality is bounded by the number of subsets of [m] with cardinality at least

dim(V). Moreover, for each I ∈ F(X), the linear operator SI : V 3 Y 7→ (Si(Y))i∈I is

injective and thus invertible on its image. We have shown that (SI)I∈F(X) is a finite family

of operators with full rank whose cardinality depends on dim(V) and m only. Let B ⊆ A+

be a bounded set. For each X ∈ B and I ∈ F(X), fI is affine and thus maps B to a bounded

set. Also, S−1
I is continuous by the closed graph theorem [30, Chap. 3, Theorem 5], whence

boundedness of {S−1
I (fI(Y )) : Y ∈ B, I ∈ F(Y )} follows. Recall that

⋃
X∈B F(X) is finite.

Using Carathéodory’s theorem [38, Theorem 17.1], co{S−1
I (fI(X)) : X ∈ B, I ∈ F(X)} is

bounded. As ⋃
X∈B

α(X) =
⋃
X∈B

co{S−1
I (fI(X)) : I ∈ F(X)}

⊆ co{S−1
I (fI(X)) : X ∈ B, I ∈ F(X)},

it has to be bounded as well and Step 2 is proved.

Step 3. Γ is lower hemicontinuous. Let (Xk)k∈N ⊆ A+ be convergent to X ∈ A+ and let

X ∈ Γ(X). We have to show that there is a subsequence (kλ)λ∈N and Xλ ∈ Γ(Xkλ) such

that Xλ → X; cf. Appendix A.3. To this end, let first Yk ∈ α(Xk), k ∈ N, which is

a bounded sequence by Step 2. After passing to a subsequence (kλ)λ∈N, we may assume

Ykλ → Y ∈ Γ(X) (as Ai is closed, i ∈ [n]). If Γ(X) is a singleton, Y = X has to hold and

we may choose Xλ := Ykλ . Otherwise, suppose first that X lies in the relative interior of

Γ(X), i.e., there is an ε > 0 such that X + ε(X−Y) ∈ Γ(X), as well. Recall the definition

of the linear operators Ti, i ∈ [n], above and fix i ∈ [n]. Let 1 ≤ j ≤ mi be arbitrary. We

denote by T ji (W ) the jth entry of Ti(W ).

Case 1. T ji (Xi) = βj . From Yi ∈ Ai, we infer

0 ≥ T ji (Xi + ε(Xi − Yi))− βj = ε(βj − T ji (Yi)) ≥ 0,

which means T ji (Yi) = βj , as well. Set λ(i, j) = 1.
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Case 2. T ji (Xi) < βj . As Y kλ
i → Yi for λ→∞, there must be a λ(i, j) ∈ N such that for all

λ ≥ λ(i, j)

T ji (Y kλ
i − Yi +Xi) ≤ βj .

Hence for all λ ≥ maxi∈[n],1≤j≤mi λ(i, j), one obtains

Xλ := Ykλ −Y + X ∈
n∏
i=1

Ai ∩ AXkλ = Γ(Xkλ),

and Xλ → X. It remains to notice that each X ∈ Γ(X) may be approximated with a sequence

in the relative interior of Γ(X), cf. [38, Theorem 6.3]. The assertion is proved. �

Lemma 4.13. Suppose the polyhedral agent system (Ri)i∈[n] and the infinite-dimensional

market space X conform to Assumptions 4.6–4.8. Then the correspondence Γ : A+ 3 X 7→
AX ∩

∏n
i=1Ai is lower hemicontinuous.

Proof. We will use the terminology introduced in Assumptions 4.6–4.8. In particular,

Y :=
n⋂
i=1

ker(Ti ◦ δi),

which is complemented in X by a finite-dimensional closed subspace Z, and the projections

γ1 : X → Y and γ2 : X → Z are continuous.

We now consider the ambient space Z which may be written as

Z = γ2(X ) =
n∑
i=1

γ2(Xi).

We will apply Lemma 4.12 to the sets

Bi := {Y ∈ γ2(Xi) : T̃i(Y ) ≤ βi}, i ∈ [n].

Suppose (Xk)k∈N ⊆ A+ is a sequence which converges to X ∈ A+. Let X ∈ Γ(X). We

need to find a subsequence (kλ)λ∈N and a sequence of allocations Xkλ ∈ Γ(Xkλ) such that

Xkλ → X.

To this end note that γ2(Xk) → γ2(X) in Z as k → ∞. Moreover, (γ2(Xi))i∈[n] satisfies

γ2(Xi) ∈ γ2(Xi), i ∈ [n],
∑n

i=1 γ2(Xi) = γ2(X), and by construction of Z, T̃i(γ2(Xi)) =

T̃i(Xi) ≤ βi. Hence, we may apply Lemma 4.12 to obtain a subsequence (kλ)λ∈N and

Ykλ ∈
∏n
i=1 Bi such that the identity

∑n
i=1 Y

kλ
i = γ2(Xkλ) holds for all λ ∈ N and Ykλ →

(γ2(Xi))i∈[n], λ→∞.

Note that by Assumption 4.7, γ1(Xi) ∈ Xi for each i ∈ [n]. Let Pi be the continuous linear

operators defined in Assumption 4.8. Consider

Xkλ
i := γ1(Xi) + Pi

(
γ1(Xkλ −X)

)
+ Y kλ

i ∈ γ1(Xi) + γ2(Xi) = Xi, i ∈ [n], λ ∈ N.

Then
n∑
i=1

Xkλ
i = γ1(Xkλ) + γ2(Xkλ) = Xkλ .
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Moreover, for each i ∈ [n], we have

Ti(X
kλ
i ) = Ti(γ2(Xkλ

i )) = Ti(Y
kλ
i ) ≤ βi.

Hence, Xkλ
i ∈ Ai for each i ∈ [n]. These observations combined yield that Xkλ ∈ Γ(Xkλ).

By the continuity of Pi and γ1, we obtain

∀ i ∈ [n] : Xkλ
i → γ1(Xi) + γ2(Xi) = Xi.

This finishes the proof. �

At last we can prove Theorem 4.9.

Proof of Theorem 4.9. In addition to the correspondence P defined by (4.1) consider the

following three correspondences:

• Γ1 : dom(Λ) � A+ ×M, X 7→ {(X −Z,Z) : Z ∈M, X −Z ∈ A+, Λ(X) = π(Z)},
which is lower hemicontinuous on dom(Λ) by virtue of the polyhedrality of A+ and

[7, Theorem 5.11].

• Γ2 : A+ �
∏n
i=1Ai, X 7→ AX∩

∏n
i=1Ai, which is lower hemicontinuous by Lemma 4.12,

if X is finite-dimensional, or Lemma 4.13, in case X is infinite-dimensional.

• Γ3 :M�
∏n
i=1 Si, Z 7→ AsZ , which is lower hemicontinuous by Lemma A.5.

Applying [3, Theorem 17.23],

Γ : dom(Λ) 3 X 7→
⋃

(X−Z,Z)∈Γ1(X)

(Γ2(X − Z) + Γ3(Z))

is lower hemicontinuous as well.

In fact, Γ = P holds. To see this, let X ∈ dom(Λ) be arbitrary. From the proof of The-

orem 3.3, Γ(X) ⊆ P(X) follows. For the converse inclusion, let X ∈ P(X) be arbitrary.

Choose Zi ∈ Si, i ∈ [n], such that Xi − Zi ∈ Ai and ρi(Xi) = pi(Zi), which is possible by

Theorem 4.3 in the case n = 1; see Remark 4.4. Let Z = Z1 + · · ·+ Zn and note that

π(Z) =
∑n

i=1 pi(Zi) =
∑n

i=1 ρi(Xi) = Λ(X),

i.e. (X − Z,Z) ∈ Γ1(X). Moreover, as X − Z ∈ Γ2(X − Z), it only remains to note that

X = (X− Z) + Z ∈ Γ2(X − Z) + Γ3(Z). Equality of sets is established.

Finally, dom(Λ) is metrisable and therefore paracompact; cf. [39]. Moreover,
∏n
i=1Xi is

a Fréchet space, and as P : dom(Λ) �
∏n
i=1Xi has nonempty closed convex values, a

continuous selection for P exists by the Michael selection theorem [3, Theorem 17.66]. �

4.4. An example. We close this section by showing how Pareto optima can be computed

in the situation of Example 4.2. For the sake of simplicity, we assume that n = 2, Ω is

a finite set, and A := Ω1\Ω2, B := Ω1 ∩ Ω2 and C := Ω2\Ω1 are all nonempty. The

specifications of Example 4.2 lead to the individual security spaces S1 = span{1A,1B} and

S2 = span{1B,1C}. Let us assume that Ω∗ = Ω. Hence, the individual acceptance sets are

of the shape

Ai := {X ∈ Xi : ∀ω ∈ Ωi (X(ω) ≤ βi(ω))}, i = 1, 2,
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where βi ∈ RΩi is arbitrary, but fixed. For convenience, we assume the set of weights

(σω)ω∈Ω∗ appearing in the definition of the pricing functionals π and pi, i ∈ [n], to be such

that π(1A) = π(1B) = π(1C) = 1.

Note that for x, y ∈ R, we have

X − x1A − y1B ∈ A1 ⇐⇒ max
a∈A

X(a)− β1(a) ≤ x and max
b∈B

X(b)− β1(b) ≤ y.

Consequently,

ρ1(X) := ρR1(X) = max
a∈A

X(a)− β1(a) + max
b∈B

X(b)− β1(b), X ∈ X1,

and it only takes finite values. An analogous computation shows

ρ2(X) := ρR2(X) = max
b∈B

X(b)− β2(b) + max
c∈C

X(c)− β2(c), X ∈ X2.

which also takes only finite values. Set β̃ := β11A + (β1 + β2)1B + β21C . The representative

agent of this polyhedral agent system is given by

A+ = A1 +A2 = {X ∈ X : X ≤ β̃}, M = span{1A,1B,1C},
π(x1A + y1B + z1C) = x+ y + z, x, y, z ∈ R.

Furthermore

ker(π) = {Nx,y := x1A − (x+ y)1B + y1C : x, y ∈ R}.
We now aim to compute the associated risk sharing functional Λ and Pareto-optimal alloca-

tions. To this end, for X ∈ X , we introduce the notation

ρA(X) := max
a∈A

X(a)− β1(a), ρB(X) := max
b∈B

X(b)− β̃(b),

ρC(X) := max
c∈C

X(c)− β2(c).

Using the characterisation of A+, one obtains

A+ + ker(π) = {X ∈ X : ρB(X) ≤ −ρA(X)− ρC(X)}.

A straightforward computation yields

Λ(X) = inf{r ∈ R : X − r1B ∈ A+ + ker(π)} = ρA(X) + ρB(X) + ρC(X).

Note that X − Λ(X)1B −NρA(X), ρC(X) ∈ A+, since(
(X − ρA(X))1A + β11B, (X − ρB(X)− β1)1B + (X − ρC(X))1C

)
is an allocation of X − Λ(X)1B −NρA(X), ρC(X) which lies in A1 ×A2. For every ζ ∈ R, the

allocation (X1(ζ), X2(ζ)) given by

X1(ζ) = X1A + (β1 − ρA(X) + ζΛ(X))1B,

X2(ζ) = (X − ρB(X)− ρC(X)− β1 − (ζ − 1)Λ(X))1B +X1C ,

is Pareto-optimal. Last, we note that an optimal payoff for X is given by ρA(X)1A+(Λ(X)−
ρA(X)− ρC(X))1B + ρC(X)1C ∈M.
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5. Law-invariant acceptance sets

In this section we discuss the risk sharing problem for agent systems with law-invariant

acceptance sets, the second case study exemplifying the results in Sects. 2 and 3.

5.1. The setting. Throughout we fix an atomless probability space (Ω,F ,P), i.e., there is a

random variable U : Ω→ R such that the cumulative distribution function R 3 x 7→ P(U ≤ x)

of U under P is continuous. By L1 := L1(Ω,F ,P) and L∞ := L∞(Ω,F ,P) we denote the

spaces of (equivalence classes of) P-integrable and bounded random variables, respectively.

They are Banach lattices when equipped with the usual P-almost sure (a.s.) order and the

topologies arising from their natural norms ‖ · ‖1 : X 7→ E[|X|] and

‖ · ‖∞ : X 7→ inf{m > 0 : P(|X| ≤ m) = 1}.

All appearing (in)equalities between random variables are understood in the a.s. sense.

Definition 5.1. A subset C ⊆ L1 is P-law-invariant if X ∈ C whenever there is Y ∈ C which

is equal to X in law under P, i.e. the two Borel probability measures P ◦X−1 and P ◦ Y −1

on (R,B(R)) agree. Given a P-law-invariant set ∅ 6= C ⊆ L1 and some other set S 6= ∅, a

function f : C → S is called P-law-invariant if P ◦X−1 = P ◦ Y −1 implies f(X) = f(Y ).

Let us first specify the setting in the case of the ambient market space X agreeing with

the space L1 of all integrable random variables. This allows a better grasp of its respective

aspects. We will consider a more general setting later.

Model space assumptions. Throughout this section, all agents i ∈ [n] operate on the same

model space Xi = X = L1 consisting of equivalence classes of integrable random variables. In

Sect. 5.2, the results will be generalised to a wide class of model spaces L∞ ⊆ X ⊆ L1, always

under the assumption that the model spaces coincide, i.e., Xi = X , i ∈ [n]. The reason for

this is that, in principle, the individual model spaces Xi should be law-invariant and closed

ideals in X . This has strong implications however. In fact, if X is a law-invariant Banach

lattice of random variables which carries a law-invariant lattice norm like we assume below,

and Xi is supposed to be a non-trivial closed and law-invariant ideal in X , then Xi = X .

Acceptance sets. Each agent i ∈ [n] deems a loss profile adequately capitalised if it belongs

to a closed P-law-invariant acceptance set Ai ⊆ L1 which contains a riskless payoff, i.e.,

R ∩ Ai 6= ∅. (5.1)

As the dual space of L1 may be identified with L∞, we may see the respective support

functions σAi , i ∈ [n], as law-invariant mappings

σAi : L∞ → (−∞,∞], Q 7→ sup
Y ∈Ai

E[QY ];

cf. Appendix A.1. Due to monotonicity of the sets Ai, dom(σAi) ⊆ L∞+ holds. The reader

may think of acceptance sets arising, for instance, from the Average Value at Risk (Expected

Shortfall) or distortion risk measures.
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Security markets. Regarding the security markets, we require there is a linear functional

π :M→ R on the global security space M such that the individual pricing functionals are

given by pi = π|Si , i ∈ [n]; the agents operate on different sub-markets (Si, π|Si) of (M, π).

In particular, conditions (?) and (A1) are satisfied. Moreover, we assume

Assumption 5.2. π is of the shape π(Z) = E[(Q+ δ)Z], Z ∈M, where δ > 0 is a constant

and Q ∈
⋂
i∈[n] dom(σAi) ⊆ L∞+ .

Our assumption on the pricing functionals is very flexible as illustrated by Example 5.14

below; the pricing functional given in Example 2.2 also conforms to Assumption 5.2. Note

that the constant function 1 = 1Ω is an element of dom(σAi), i ∈ [n]; cf. (5.4) below. As the

intersection
⋂
i∈[n] dom(σAi) is a cone, Q+δ ∈

⋂
i∈[n] dom(σAi) for every Q ∈

⋂
i∈[n] dom(σAi)

and every δ > 0. In particular, any jointly relevant density with arbitrarily small constant

perturbation can be used for pricing.

Recall from the introduction that assuming the individual acceptance sets Ai to be law-

invariant means that being acceptable or not is merely a statistical property of the loss profile.

Mathematically, this intuition necessitates introducing the hypothetical physical measure P.

Prices in the security market can, e.g., be determined by a suitable equivalent martingale

measure Q though. For the remainder of this section we assume that Assumption 5.2 is

satisfied.

Let us at last introduce the notion of comonotone partitions of the identity, or comonotone

functions, i.e., functions in the set

C := {f = (f1, . . . , fn) : R→ Rn : fi nondecreasing,
∑n

i=1 fi = idR}.

5.2. Main results. We will first formulate the main results concerning the existence of

Pareto-optimal allocations in the case of X = Xi = L1, i ∈ [n].

Theorem 5.3. Suppose the assumptions of this section are met.

(1) The set A+ + ker(π) is a closed and proper subset of L1, and Λ is proper and l.s.c.

(2) All X ∈ dom(Λ) admit an optimal payoff ZX ∈ M. In particular, for any X ∈
dom(Λ), there exists a Pareto-optimal allocation X of the shape

Xi = Ai −Ni + Λ(X)Ui, Ai := fi(X − Λ(X)U +N) ∈ Ai, i ∈ [n], (5.2)

where N ∈ ker(π) is an X-dependent zero cost global security and f ∈ C is X-

dependent, whereas N ∈ AsN is arbitrary and Ui ∈ Si ∩ L1
++, i ∈ [n], are chosen such

that U :=
∑n

i=1 Ui satisfies π(U) = 1.

Remark 5.4. If n = 1, Λ = ρR and Theorem 5.3 in fact solves the optimal payoff problem

studied in [7]. The proof of Theorem 5.3(1) shows that for every single agent i ∈ [n], the

Minkowski sum Ai + ker(pi) is a closed and proper subset of L1, and ρi is l.s.c.

Corollary 5.5. In the situation of Theorem 5.3, suppose that the agent system checks (A2).

Then for every W ∈ (L1)n such that W =
∑n

i=1Wi ∈ int dom(Λ) there is an equilibrium

(X, φ).
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Remark 5.6. Finding elements in the interior of dom(Λ) usually requires stronger continuity

properties of the involved risk measures and is an important motivation for studying the risk

sharing problem on general model spaces endowed with a stronger topology than ‖ · ‖1. We

will do this shortly in Theorem 5.8 and Lemma 5.12. Given a loss W ∈ L1, the trick is to

find a suitable model space (X , ‖ · ‖) such that W ∈ int‖·‖dom(Λ|X ); see, e.g., [17, 33, 36, 41].

By Lemma A.5 there is a continuous selection Ψ : M →
∏n
i=1 Si of M 3 Z 7→ AsZ . Hence,

the correspondence P̂ : L1 � (L1)n mapping X to Pareto-optimal allocations of shape (5.2)

such that, additionally, the security allocation of N ∈ ker(π) is given by N = Ψ(N)8 has

nonempty values on dom(Λ) by Theorem 5.3. Although it might be the case that not all

Pareto-optimal allocations of X ∈ dom(Λ) are elements of P̂(X), P̂ has the advantage of

being upper hemicontinuous on the interior of the domain of Λ.

Theorem 5.7. In the situation of Theorem 5.3 suppose A+ does not agree with one of the

level sets {X ∈ L1 : E[X] ≤ c}, c ∈ R. Then P̂ is upper hemicontinuous at every continuity

point X ∈ dom(Λ) of Λ and, a fortiori, on int dom(Λ).

We already advertised that the assumption that all agents operate on the space X = L1 does

not restrict the generality of Theorems 5.3 and 5.7 and Corollary 5.5. Indeed, the market

space X may be chosen to be any law-invariant ideal within L1 with respect to the P-a.s.

order falling in one of the following two categories:

(BC) Bounded case: X = L∞ equipped with the supremum norm ‖ · ‖∞.

(UC) Unbounded case: L∞ ⊆ X ⊆ L1 is a P-law invariant Banach lattice endowed with an

order continuous law-invariant lattice norm ‖ · ‖.9

In the unbounded case, one can show that the identity embeddings

L∞ ↪→ X ↪→ L1

are continuous, i.e. there are constants κ,K > 0 such that

∀X ∈ L∞ ∀Y ∈ X : ‖X‖ ≤ κ‖X‖∞ and ‖Y ‖1 ≤ K‖Y ‖. (5.3)

Moreover, for all φ ∈ X ∗ there is a unique Q ∈ L1 such that QX ∈ L1 and φ(X) = E[QX]

hold for all X ∈ X . The reader may think here of Lp-spaces with 1 < p < ∞, or more

generally Orlicz hearts equipped with a Luxemburg norm as for instance in [14, 17, 28].

In view of Lemma 5.12 we will assume that

• each individual acceptance set Ai ⊆ X is closed, law-invariant and satisfies Ai∩R 6= ∅;
• the security markets (Si, pi) agree with Assumption 5.2.

Our main result is

Theorem 5.8. Let X be a Banach lattice satisfying (BC) or (UC). Assume the agent system

(R1, . . . ,Rn) is such that each individual acceptance set Ai ⊆ X is closed, law-invariant and

8Recall that N in (5.2) can be chosen arbitrarily.
9As X will be a super Dedekind complete Riesz space, this translates as the fact that whenever Xn ↓ 0 in

order, ‖Xn‖ ↓ 0 holds as well; cf. [4, Definition 1.43] and [27, Theorem A.33].
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satisfies Ai ∩ R 6= ∅, and the security markets (Si, pi) agree with Assumption 5.2. Then

Theorems 5.3 and 5.7 and Corollary 5.5 hold verbatim when X replaces L1 and ‖ · ‖ replaces

‖ · ‖1.

For the final result on upper hemicontinuity of the equilibrium correspondence, recall that

the finite risk measure ρR : L∞ → R resulting from a risk measurement regime R on L∞ is

continuous from above if ρR(Xn) ↓ ρR(X) whenever (Xn)n∈N ⊆ L∞ and X ∈ L∞ are such

that Xn ↓ X a.s.

Theorem 5.9. Assume that (A2) is satisfied and that in case (BC) ρ1 is continuous from

above, whereas in case (UC) X is reflexive. Suppose furthermore that A+ does not agree

with a level set Lc (E[·]) and consider the correspondence E : X n � X n ×X ∗ mapping W to

equilibrium allocations (X, φ) of shape

Xi = Yi +
φ(Wi − Yi)

φ(Z̃)
Z̃, i ∈ [n],

where Y ∈ P̂(W1 + · · · + Wn), Z̃ ∈ Š with π(Z̃) 6= 0, and φ is a subgradient of Λ at

W1 + · · ·+Wn. Then E is upper hemicontinuous in the following sense: whenever (Wk)k∈N ⊆∏n
i=1 int dom(ρi) and Wk →W ∈

∏n
i=1 int dom(ρi) as k →∞ and (Xk, φk) ∈ E(Wk) is cho-

sen arbitrarily, k ∈ N, there is a subsequence (kλ)λ∈N such that (X, φ) := limλ→∞(Xkλ , φkλ) ∈
E(W).

5.3. Ancillary results and proofs. We begin with the existence of optimal payoffs and

Pareto-optimal allocations. This is a direct consequence of Proposition 3.4 in the case X =

L1, provided we can prove the properness of Λ and closedness of A+ + ker(π). First, we

characterise the recession cone 0+A of a convex law-invariant acceptance set A, a result

of independent interest. For the definition of a recession cone and of the support function

σA, we refer to Appendix A.1. With slight modifications, Proposition 5.10 also holds true

for general closed, convex and law-invariant sets C which do not agree with one of the sets

{X ∈ L1 : c− ≤ E[X] ≤ c+}, where −∞ ≤ c− ≤ c+ ≤ ∞.

Proposition 5.10. Suppose ∅ 6= A ( L1 is a law-invariant and closed acceptance set.

(1) 0+A is law-invariant.

(2) Suppose furthermore that A does not agree with one of the level sets Lc(E[·]) for some

c ∈ R. Let Q ∈ dom(σA) and δ > 0 be arbitrary. If U ∈ 0+A satisfies E[(Q+δ)U ] = 0,

then U = 0.

Proof. (1) As A is norm closed and convex, we may apply the Hahn-Banach separation

theorem to obtain the representation

A = {X ∈ L1 : E[QX] ≤ σA(Q), ∀Q ∈ dom(σA)},

where σA is the support function of A. It is well-known that dom(σA) is a law-invariant and

convex cone in L∞+ . The law-invariance of dom(σA) combined with Lemma A.1 shows that

the recession cone 0+A is law-invariant and closed as well.
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(2) By (1) and [40, Lemma 1.3], for any U ∈ 0+A, Q ∈ dom(σA), and sub-σ-algebra H ⊆ F ,

we have

E[U |H] ∈ 0+A and E[Q|H] ∈ dom(σA). (5.4)

Choosing H = {∅,Ω}, we obtain that E[Q] ∈ dom(σA) for all Q ∈ dom(σA). Moreover, by

choosing Q ∈ dom(σA) ⊆ L∞+ appropriately, we obtain that 1 ∈ dom(σA).

Now suppose there is no c ∈ R such that A = Lc(E[·]), and assume a direction U ∈ 0+A is

not constant. In a first step, we will exclude the possibility that E[U ] = 0. To this end let

Q ∈ dom(σA) be non-constant. Such a Q exists because A does not agree with one of the

lower level sets of E[·]. As (Ω,F ,P) is non-atomic, for k ≥ 2 large enough there is a finite

measurable partition10 Π := (A1, . . . , Ak) of Ω such that P(Aj) = 1
k , j ∈ [k], and

Û = E[U |σ(Π)] =
∑k

i=1 ui1Ai and Q̂ = E[Q|σ(Π)] =
∑k

i=1 qi1Ai

are both non-constant. For any permutation τ : [k] → [k] the random variable given by

Ûτ :=
∑k

i=1 uτ(i)1Ai has the same distribution under P as Û . Hence, by (5.4) and (1),

Ûτ ∈ 0+A follows. Similarly, Q̂τ :=
∑k

i=1 qτ(i)1Ai ∈ dom(σA). For our argument we will

hence assume without loss of generality that the vectors u and q satisfy u1 ≤ · · · ≤ uk and

q1 ≤ · · · ≤ qk. In both chains of inequalities, at least one inequality has to be strict. We

estimate

E[Q̂]E[Û ] =

(
1

k

k∑
i=1

qi

)
·

(
1

k

k∑
i=1

ui

)
<

1

k

k∑
i=1

qiui = E[Q̂ · Û ] ≤ 0.

Here, the first strict inequality is due to Chebyshev’s sum inequality [29, Theorem 43] and u

and q being non-constant. The last inequality is due to Û ∈ 0+A, Q̂ ∈ dom(σA), and Lemma

A.1. E[Û ] = E[U ] = 0 is hence impossible.

In a second step, let Q ∈ dom(σA) and δ > 0 be arbitrary. Suppose U ∈ 0+A satisfies

E[(Q + δ)U ] = E[QU ] + δE[U ] = 0. As Q, δ ∈ dom(σA), Lemma A.1 yields E[QU ] ≤ 0 and

δE[U ] ≤ 0. Combining these facts leads to the identities E[U ] = E[QU ] = 0, whence U = 0

follows with the first step. �

We continue with a result for comonotone functions. One easily verifies that for f ∈ C and

i ∈ [n] the coordinate function fi is Lipschitz continuous with Lipschitz constant 1. Moreover,

for γ > 0, we set

Cγ := {f ∈ C : f(0) ∈ [−γ, γ]n}.
From [26, Lemma B.1] we recall the following compactness result:

Lemma 5.11. For every γ > 0, Cγ ⊆ (Rn)R is sequentially compact in the topology of

pointwise convergence: for any sequence (fk)k∈N ⊆ Cγ there is a subsequence (kλ)λ∈N and

f ∈ Cγ such that

∀x ∈ R : fkλ(x)→ f(x), λ→∞.

We are now ready to prove Theorem 5.3.

10That is the sets are pairwise disjoint, measurable, and their union is Ω.
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Proof of Theorem 5.3. (1) The individual acceptance sets Ai may be used to define P-law-

invariant l.s.c. monetary base risk measures ξi by

ξi(X) := inf{m ∈ R : X −m ∈ Ai} ∈ (−∞,∞], X ∈ L1.

By (5.1), ξi(Y ) ∈ R holds for all bounded random variables Y ∈ L∞. The lower level sets

Lc(ξi), c ∈ R, may be written as Lc(ξi) = c + Ai. The risk measures ξi admit a dual

representation

ξi(X) = sup
Q∈dom(ξ∗i )

E[QX]− ξ∗i (Q), X ∈ L1, (5.5)

where cash-additivity implies that

dom(ξ∗i ) ⊆ {Q ∈ L∞+ : E[Q] = 1} and ξ∗i (Q) = σAi(Q), Q ∈ dom(ξ∗i ). (5.6)

Moreover, the infimal convolution ξ := �n
i=1ξi > −∞ is a P-law-invariant monetary risk

measure on L1 as well and ξ∗ =
∑n

i=1 ξ
∗
i by Lemma A.4. Now, by [26, Corollary 2.7], ξ is

l.s.c., and for each X ∈ dom(ξ) there is f ∈ C such that

ξ(X) =

n∑
i=1

ξi(fi(X)). (5.7)

Suppose now X ∈ L1 satisfies ξ(X) ≤ 0 and let f as in (5.7). For all i ∈ [n] we may choose

ci ∈ R such that ξi(fi(X) − ci) = ξi(fi(X)) − ci ≤ 0 and
∑n

i=1 ci = 0. If gi := fi − ci,

gi(X) ∈ L0(ξi) = Ai, i ∈ [n]. Hence,

X =
n∑
i=1

gi(X) ∈
n∑
i=1

Ai = A+.

We have thus shown that

L0(ξ) = A+.

As ξ is l.s.c. the left-hand set (and thus also the right-hand set) is norm closed.

Let π(·) = E[(Q+δ)·] as in Assumption 5.2. Suppose first that, for some c ∈ R, A+ = Lc(E[·]).
Then Q ∈ R+ holds and π = pE[·] for a suitable p > 0. We obtain that 0+A+∩ker(π) = ker(π)

is a subspace. By Dieudonné’s theorem [45, Theorem 1.1.8], A+ + ker(π) is closed.

If A+ does not agree with one of the lower level sets of E[·], Proposition 5.10(2) allows us

to infer that 0+A+ ∩ ker(π) = {0}, a subspace. Again, Dieudonné’s theorem yields the

closedness of A+ + ker(π).

For properness of Λ, let X ∈ L1 be arbitrary. Suppose Z ∈M is such that X −Z ∈ A+, i.e.

ξ(X − Z) ≤ 0. Let Q ∈ L∞+ and δ > 0 be chosen as in Assumption 5.2. By (5.6),

Q∗ :=
Q+ δ

E[Q] + δ
∈ dom(ξ∗).

Moreover,

0 ≥ E [Q∗(X − Z)]− ξ∗ (Q∗) = E [Q∗X]− ξ∗ (Q∗)− (E[Q] + δ)π(Z),
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which implies

π(Z) ≥ E [Q∗X]− ξ∗ (Q∗)

E[Q] + δ
> −∞.

The properness follows with the representation of Λ given in Theorem 3.1(2). The lower

semicontinuity of Λ is due to Proposition 3.4.

(2) By (1), Λ is proper and A+ + ker(π) is closed. By Proposition 3.4, every X ∈ dom(Λ)

admits an optimal payoff ZX and thus a Pareto-optimal allocation by Theorem 3.3. For

the concrete shape of ZX and the Pareto-optimal allocation, let U ∈
∏n
i=1 Si be as in the

assertion. As in the proof of (1), we may find f ∈ C such that fi(X − ZX) ∈ Ai, i ∈ [n].

As π(ZX) = Λ(X), we have N := Λ(X)U − ZX ∈ ker(π). For any N ∈ AsN , the security

allocation ZX := Λ(X)U−N lies in As
ZX

. According to Theorem 3.3,

f(X − ZX) + ZX = f(X − Λ(X)U +N) + Λ(X)U−N

is a Pareto-optimal allocation of X with f(X−Λ(X)U+N) ∈
∏n
i=1Ai. This proves (5.2). �

Proof of Corollary 5.5. Combine Theorem 5.3 and Theorem 3.5. �

Proof of Theorem 5.7. We start with any sequence (Xk)k∈N ⊆ int dom(Λ) that converges to

X ∈ int dom(Λ). For all k ∈ N let Xk = (Xk
i )i∈[n] ∈ P̂(Xk). By Appendix A.3, it is enough

to show that there is a subsequence (kλ)λ∈N and an allocation X ∈ P̂(X) such that Xkλ → X

coordinatewise for λ → ∞. To this end, we first recall the construction of Xk, k ∈ N, from

Theorem 5.3: There are sequences (Nk)k∈N ⊆ ker(π) and (fk)k∈N ⊆ C such that

• Aki := fki (Xk − Λ(Xk)U +Nk) ∈ Ai, i ∈ [n];

• Xk = Ak + Λ(Xk)U−Nk, where Nk = Ψ(Nk).

We will establish in three steps that (Nk)k∈N and (fk)k∈N lie in suitable relatively sequentially

compact sets, which will allow us to choose a convergent subsequence.

First, as Λ is continuous on int dom(Λ) by [20, Corollary 2.5], the sequence (Xk−Λ(Xk)U)k∈N

is bounded.

The second step is to prove that (Nk)k∈N is a norm bounded sequence as well. We assume

for contradiction we can select a subsequence (kλ)λ∈N such that 1 ≤ ‖Nkλ‖1 ↑ ∞. Using

compactness of the unit sphere in the finite-dimensional space ker(π) and potentially passing

to another subsequence, we may furthermore assume

1

‖Nkλ‖1
Nkλ → N∗ ∈ ker(π)\{0}, λ→∞,

Let Y ∈ A+ be arbitrary and note that

Y +N∗ = lim
λ→∞

(1− ‖Nkλ‖−1
1 )Y + ‖Nkλ‖−1

1

(
Xkλ − Λ(Xkλ)U +Nkλ

)
∈ A+,

as the latter set is closed and convex and the sequence
(
Xkλ − Λ(Xkλ)U

)
λ∈N is norm bounded.

Hence, N∗ ∈ 0+A+∩ker(π) which is trivial by Assumption 5.2 and Proposition 5.10(2), lead-

ing to the desired contradiction. (Nk)k∈N has to be bounded and {Nk : k ∈ N} ⊆ ker(π) is

relatively (sequentially) compact by the finite dimension of the latter space.
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In a third step, we establish relative sequential compactness for the set {fk : k ∈ N}. To

this end, recall the definition of the monetary risk measures ξi in the proof of Theorem 5.3.

As 1 ∈ dom(σAi) by the proof of Proposition 5.10 and E[1] = 1, (5.6) implies ξ∗i (1) <∞ for

all i ∈ [n]. Now fix k ∈ N and let I := {i ∈ [n] : fki (0) > 0} and J := [n]\I. If I is empty,

fki (0) = 0 has to hold for all i ∈ [n]. Now suppose we can choose i ∈ I. We abbreviate

W k := Xk − Λ(Xk)U +Nk and estimate

−E[|W k|] ≤ −E[|fki (W k)− fki (0)|] ≤ E[fki (W k)− fki (0)]

≤ ξi(fki (W k)) + ξ∗i (1)− fki (0) ≤ ξ∗i (1)− fki (0),

where we used that Aki = fki (W k) ∈ Ai. Hence,

∀i ∈ I : |fki (0)| ≤ ξ∗i (1) + ‖W k‖1. (5.8)

If j ∈ J , we obtain from the requirement fk1 + · · ·+ fkn = idR

|fkj (0)| = −fkj (0) ≤ −
∑
i∈J

fki (0) =
∑
i∈I

fki (0) ≤
∑
i∈[n]

ξ∗i (1) + n‖W k‖1 =: γk.

Thus, fk ∈ Cγk . As the bound γk depends on k only in terms of ‖W k‖1 which is uniformly

bounded in k by the first and the second step, γ := supk∈N γk <∞ and (fk)k∈N ⊆ Cγ .

After passing to subsequences two times, we can find a subsequence (kλ)λ∈N such that

• ker(π) 3 N := limλ→∞N
kλ exists and thus Ψ(Nkλ)→ Ψ(N) for λ→∞.

• for a suitable f ∈ Cγ it holds that maxi∈[n] |fkλi − fi| → 0 pointwise for λ → ∞, cf.

Lemma 5.11.

It remains to show that (fi(X − Λ(X)U +N) + Λ(X)Ui + Ψ(N)i)i∈[n] ∈ P̂(X) and that it is

the limit of the subsequence of the Pareto-optimal allocations chosen initially. To this end,

we set A := f(X − Λ(X)U +N) and g
(kλ)
i := f

(kλ)
i − f (kλ)

i (0). P-a.s., the estimate∣∣∣Ai −Akλi ∣∣∣ ≤ ∣∣∣(gi − gkλi )(X − Λ(X)U +N)
∣∣∣

+
∣∣∣fkλi (X − Λ(X)U +N)− fkλi (Xkλ − Λ(Xkλ)U +Nkλ)

∣∣∣
+
∣∣∣fi(0)− fkλi (0)

∣∣∣
(5.9)

holds. The third term vanishes for λ→∞. The first term vanishes in norm due to dominated

convergence. From the estimate∥∥∥∣∣∣fkλi (X − Λ(X)U +N)− fkλi (Xkλ − Λ(Xkλ)U +Nkλ)
∣∣∣∥∥∥

1

≤
∥∥∥X −Xkλ − (Λ(X)− Λ(Xkλ))U +N −Nkλ

∥∥∥
1
,
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we infer the second term vanishes in norm, as well. Set N := Ψ(N). Lower semicontinuity

of ρi — which follows from Theorem 5.3 applied in the case n = 1, see Remark 5.4 — yields

n∑
i=1

ρi(Ai + Λ(X)Ui −Ni) ≤ lim inf
λ→∞

n∑
i=1

ρi(A
kλ
i + Λ(Xkλ)Ui −Nkλ

i )

= lim inf
λ→∞

Λ(Xkλ) = Λ(X).

The definition of Λ eventually yields that the inequality is actually an equality, i.e.

n∑
i=1

ρi(Ai + Λ(X)Ui −Ni) = Λ(X).

We have proved that (Ai + Λ(X)Ui − Ni)i∈[n] ∈ P̂(X) and thus upper hemicontinuity, cf.

Appendix A.3.

The same proof applies if X ∈ dom(Λ) is such that Λ is continuous at X. �

We now turn our attention to localising the results to the case when for all i ∈ [n], X = Xi
and the space X conforms with one of the cases (BC) or (UC). As a first step, we need the

following crucial extension result:

Lemma 5.12. Let R := (A,S, p) be a risk measurement regime on a Banach lattice X
satisfying (BC) or (UC). Suppose that A is ‖·‖-closed, law-invariant and satisfies A∩R 6= ∅,
and p(Z) = E[QZ] for some Q ∈ dom(σA) ∩ L∞. If we set B := cl‖·‖1(A), R := (B,S, p) is

a risk measurement regime on L1 and ρR|X = ρR.

Proof. We first prove that

A = {Y ∈ X : ∀Q ∈ dom(σA) ∩ L∞ (E[QY ] ≤ σA(Q))}. (5.10)

In case (BC) this follows from A being closed in the σ(L∞, L∞)-topology, the weak topology

associated to the dual pairing 〈L∞, L∞〉; cf. [40, Proposition 1.2]. Now consider the case

(UC) and define the convex indicator of A to be

δA : X 3 X 7→

{
∞, X /∈ A,
0, X ∈ A.

This is a convex and law-invariant function. Without loss of generality we may assume

X 6= L1. As δA has the Fatou property in the sense of [12], δA is l.s.c. in the σ(X , L∞)-

topology by [12, Proposition 2.11]. This directly implies (5.10).

Furthermore, the identities dom(σB) = dom(σA) ∩ L∞ and σB = σA|L∞ are easily verified.

By Lemma A.1,

B = {Y ∈ L1 : E[QY ] ≤ σB(Q), ∀Q ∈ dom(σB)}

= {Y ∈ L1 : E[QY ] ≤ σA(Q), ∀Q ∈ dom(σA) ∩ L∞}.

This shows that B is an acceptance set and that A = B ∩ X .
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In order to verify (2.1), suppose X ∈ L1 and Z ∈ S satisfy X + Z ∈ B. Then

p(Z) = E[QZ] = E[Q(X + Z)]− E[QX] ≤ σB(Q)− E[QX] <∞.

Hence, R is a risk measurement regime on L1. For the identity ρR|X = ρR, note that for

X ∈ X and for Z ∈ S, X−Z ∈ B if and only if X−Z ∈ B∩X = A. We infer ρR(X) = ρR(X),

X ∈ X . �

For f ∈ C, i ∈ [n] and X ∈ X , 1-Lipschitz continuity of the function fi yields |fi(X)| ≤
|X| + |fi(0)| ∈ X P-a.s. As X is an ideal, fi(X) ∈ X holds as well; hence, f(X ) ⊆ X n,

and if we plug in X ∈ X in (5.2), the resulting Pareto-optimal allocation lies in X n because

U,N ∈ X n as Si ⊆ X for all i ∈ [n]. We can now give the proof of Theorem 5.8.

Proof of Theorem 5.8. Let Ri denote the extension of the risk measurement regime Ri to

L1 as in Lemma 5.12. Apply Theorem 5.3 to ρR1 , . . . , ρRn and X ∈ X to obtain generalised

versions of Theorem 5.3(2) and Corollary 5.5. This in conjunction with Proposition 3.4

generalises Theorem 5.3(1). The proof of Theorem 5.7 only needs to be altered at (5.8) and

(5.9). We may replace ‖W k‖1 by K‖W k‖ in the first and use the order continuity of ‖ · ‖ in

the second instance, where the constant K is chosen as in (5.3). �

Finally we turn to the upper hemicontinuity of the equilibrium correspondence E as formu-

lated in Theorem 5.9, and we prove this theorem.

Proof of Theorem 5.9. Let W be such that W :=
∑n

i=1Wi ∈ int dom(Λ). From the proof

of Theorem 3.5 we infer that, indeed, every (X, φ) ∈ E(W) is an equilibrium of W. For

upper hemicontinuity, we shall first establish that the equilibrium prices of an approximating

sequence lie in a sequentially relatively compact set in the dual X ∗. We shall hence prove

that there is ε > 0 and constants c1 and c2 only depending on W such that, given any X ∈ X
with ‖X −W‖ ≤ ε and any subgradient φ of Λ at X, it holds that

‖φ‖∗ ≤ c1 and Λ∗(φ) =
∑n

i=1 ρ
∗
i (φ) ≤ c2.

As we shall elaborate later, these bound imply that all subgradients of Λ at vectors in a

closed ball around W lie in a σ(X ∗,X )-sequentially compact set.

In order to prove the assertion, continuity of Λ on int dom(Λ) (see [20, Corollary 2.5]) allows

us to choose ε > 0 such that |Λ(W + Y )−Λ(W )| ≤ 1 whenever ‖Y ‖ ≤ 2ε. Let now δ > 0 be

such that δε+ δ‖W‖ ≤ ε and fix X such that ‖X −W‖ ≤ ε and a subgradient φ of Λ at X.

Moreover, suppose Y ∈ X is such that ‖Y ‖ ≤ 1. We obtain from the subgradient inequality

Λ(X) + εφ(Y ) ≤ Λ(X + εY ) ≤ Λ(W ) + 1.

Rearranging this inequality yields

‖φ‖∗ = sup
‖Y ‖≤1

φ(Y ) ≤ Λ(W ) + 1− Λ(X)

ε
≤ 2

ε
=: c2.
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Moreover,

Λ(X) = φ(X)− Λ∗(φ) =
1

1 + δ
(φ((1 + δ)X)− Λ∗(φ))− δ

1 + δ
Λ∗(φ)

≤ 1

1 + δ
Λ((1 + δ)X)− δ

1 + δ
Λ∗(φ).

By rearranging this inequality we obtain

n∑
i=1

ρ∗i (φ) = Λ∗(φ) ≤ 1

δ
Λ((1 + δ)X)− 1 + δ

δ
Λ(X) ≤ 2 + δ

δ
− Λ(W ) =: c1,

where we have used ‖(1 + δ)X −W‖ ≤ 2ε following from the choice of δ.

Now consider a sequence (Wk)k∈N ⊆
∏n
i=1 int dom(ρi) such that, for all i ∈ [n], W k

i → Wi,

k → ∞, holds. Without loss of generality, we may assume that W k := W k
1 + · · · + W k

n lies

in the ball around W with radius ε. For each k ∈ N assume that (Xk, φk) ∈ E(Wk), k ∈ N.

We set

Xk
i = Y k

i +
φk(W

k
i − Y k

i )

φ(Z̃)
Z̃, i ∈ [n].

As Yk ∈ P̂(W k) and W k → W , k → ∞, we may assume, after passing to a subsequence,

that Yk → Y ∈ P̂(W ) by Theorem 5.7.

We shall now select a convergent subsequence (φk)k∈N. In case (BC), we conclude from [33,

Proposition 3.1(iii)] and Lemma A.4 that

dom(Λ∗) ⊆ dom(ρ∗1) ⊆ L1,

which implies that all subgradients ψ of Λ have the shape ψ = E[Q̄ ·] for a unique Q̄ ∈ L1
+.

Hence, the equilibrium prices are given by φk = E[Qk·] for a unique Qk ∈ L1
+. Moreover,

all subgradients Qk lie in the σ(L1, L∞)-compact set Lc1(ρ∗1). We may invoke the Eberlein-

Šmulian theorem [3, Theorem 6.34] to find a subsequence (kλ)λ∈N such that Qkλ → Q ∈ L1

weakly, or equivalently φkλ → φ = E[Q ·] in σ(X ∗,X ). In case (UC), reflexivity of X ,

the Banach-Alaoglu theorem and the bounds above imply the existence of a sequentially

relatively compact set Γ such that φ ∈ Γ whenever ‖X −W‖ ≤ ε and φ is a subgradient of

Λ at X. Hence there is a σ(X ∗,X )-convergent subsequence (φkλ)λ∈N.

Consequently, in both cases,

φkλ(W kλ
i − Y

kλ
i )→ φ(Wi − Yi), λ→∞.

It remains to prove that φ is a subgradient of Λ at W . But as Λ∗ is l.s.c. in the σ(X ∗,X )-

topology and φkλ(W kλ)→ φ(W ), we obtain

Λ(W ) = lim sup
λ→∞

φkλ(W kλ)− Λ∗(φkλ) = φ(W )− lim inf
λ→∞

Λ∗(φkλ)

≤ φ(W )− Λ∗(φ),

which implies that, necessarily, Λ(W ) = φ(W )−Λ∗(φ) and φ is a subgradient of Λ at W . �
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5.4. Examples. We conclude with two examples.

Example 5.13. We consider the model space X := L1 on which two agents operate with

acceptability criteria given by the entropic risk measure. More precisely, we choose 0 < β ≤ γ
arbitrary and define

A1 := {X ∈ L1 : ξβ(X) ≤ 0}, A2 := {X ∈ L1 : ξγ(X) ≤ 0},

where, for α > 0, ξα(X) := 1
α log

(
E[eαX ]

)
, X ∈ L1. It is well-known, cf. [26, Example 2.9],

that

ξ := ξβ�ξγ = ξ βγ
β+γ

.

The convex conjugate ξ∗α of ξα is given in terms of the relative entropy: for all Q ∈ L∞+ such

that E[Q] = 1, we have

ξ∗α(Q) = 1
αE[Q log(Q)] <∞.

In order to satisfy Assumption 5.2, we may hence choose any pricing density Q∗ ∈ L∞+
such that Q∗ ≥ δ > 0 for some δ > 0. The pricing functionals are given by pi = E[Q∗·].
Moreover, we choose A ∈ F such that E[Q∗1A] = E[Q∗1Ac ], S1 =M = span{1A,1Ac}, and

S2 = span{1A}. Given these specifications, (R1,R2) is an agent system.

Note that ker(π) = {Nr := r1A − r1Ac : r ∈ R}. We will now characterise A+ + ker(π) and

set, for the sake of brevity,

α :=
βγ

β + γ
.

Given the characterisation of A+, X − Nr ∈ A+ for some r ∈ R if and only if E[eαX1A] ·
E[eαX1Ac ] ≤ 1

4 , as there is then a solution r ∈ R to

0 ≥ 1

α
log
(

E[eα(X−Nr)]
)

=
1

α
log
(
e−αrE[eαX1A] + eαrE[eαX1Ac ]

)
.

Now, for arbitrary X ∈ dom(Λ) = dom(ξα), we note that

Λ(X) = inf{π(r1) : r ∈ R, X − r1 ∈ A+ + ker(π)}

= inf

{
rE[Q∗] : r ∈ R, e−αrE[eαX1A] · E[eαX1Ac ] ≤

1

4

}
=

E[Q∗]

α

(
log E[eαX1A] + log E[eαX1Ac ] + 2 log(2)

)
.

Hereafter, we choose a solution r∗ of

e−αrE[eα(X−Λ(X))1A] + eαrE[eα(X−Λ(X))1Ac ] = 1,

e.g.

r∗ := log

(
2E[eα(X−Λ(X))1A]√

1− 4E[eα(X−Λ(X))1A] · E[eα(X−Λ(X))1Ac ] + 1

)
.

Using the results from [26, Example 2.9],

(
γ

β + γ
(X − Λ(X)1−Nr∗),

β

β + γ
(X − Λ(X)1−Nr∗)) ∈ A1 ×A2.
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Consequently, the following is a Pareto-optimal allocation of X:(
γ

β + γ
(X − Λ(X)1−Nr∗) + Λ(X)1 +Nr∗ ,

β

β + γ
(X − Λ(X)1−Nr∗)

)
Example 5.14. Here, we choose the model space X = L∞ and illustrate the existence of

Pareto-optimal allocations for two agents with acceptance sets less similar than in Example

5.13. To this end, we fix two parameters β ∈ (0, 1) and γ > 0 and suppose that acceptability

for agent 1 is based on the Average Value at Risk, i.e.

A1 = {X ∈ L∞ : ξ1(X) := AVaRβ(X) ≤ 0}
= {X ∈ L∞ : ∀Q ∈ Q (E[QX] ≤ 0)},

where Q = {Q ∈ L∞+ : 0 ≤ Q ≤ 1
1−β P-a.s., E[Q] = 1}. The acceptance set of agent 2 is, as

in Example 5.13, given by an entropic risk measure, i.e.

A2 := {X ∈ L∞ : ξ2(X) := 1
γ log

(
E[eγX ]

)
≤ 0}.

By [27, Example 4.34 & Theorem 4.52], the support function of A+ = A1 +A2 is given for

Q ∈ L∞+ by

σA+(Q) = (σA1 + σA2)(Q) =


0, Q = 0
1
γE
[
Q log

(
Q

E[Q]

)]
, if Q 6= 0 and Q

E[Q] ∈ Q,

∞ otherwise.

As in Example 2.2, we choose a pricing density Q∗ ∈ L∞+ such that, for some δ ∈ (0, 1),

δ ≤ Q∗ ≤ 1−δ
1−β + δ holds and such that E[Q∗] = 1. In this case, Q∗ = δ + (1 − δ)Q, where

Q = Q∗−δ
1−δ ∈ Q, hence Q∗ satisfies Assumption 5.2.

Suppose the security spaces Si, i = 1, 2, are given as in Example 5.13 for some nonempty

A ∈ F . As pricing rules we set pi := E[Q∗·], i = 1, 2, which results in

ker(π) = span{N := 1A − r∗1Ac}, r∗ =
E[Q∗1A]

1− E[Q∗1A]
.

Let X ∈ L∞ be any aggregated loss. Using [24, Theorem 3], we obtain the dual representation

Λ(X) = max
Q∈Q̃

E[QX]− 1

γ
E[Q log(Q)],

where Q̃ = {Q ∈ Q : E[Q1A] = E[Q∗1A]}. We will now compute the right scaling factor

s ∈ R such that X−Λ(X)−sN ∈ A+. This is the case if and only if we have for all Q ∈ Q\Q̃

E[QX]− 1

γ
E[Q log(Q)]− Λ(X) ≤ sE[QN ].

We obtain

s ≥ sup
Q∈Q\Q̃: E[Q1A]>E[Q∗1A]

E[QX]− 1
γE[Q log(Q)] + Λ(X)

E[QN ]
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and

s ≤ inf
Q∈Q\Q̃: E[Q1A]<E[Q∗1A]

1
γE[Q log(Q)] + Λ(X)− E[QX]

|E[QN ]|
,

and the bounds describe an a priori nonempty interval. Choose any s∗ in this interval.

Combining [31, Proposition 3.2 & Sect. 3.5], we obtain that(
(X − Λ(X)− s∗N − ζ)+, (X − Λ(X)− s∗N) ∧ ζ

)
∈ A1 ×A2.

for a suitable ζ ∈ R. Thus (X1, X2) given by

X1(ζ) = (X − Λ(X)− s∗N − ζ)+ − s∗r∗1Ac + Λ(X),

X2(ζ) = (X − Λ(X)− s∗N) ∧ ζ + s∗1A,

is a Pareto-optimal allocation of X.

6. Optimal portfolio splits

In this section we study the existence of optimal portfolio splits. For a thorough discussion

of this problem, we refer to Tsanakas [42], although the problem we consider is rather akin to

Wang [43]. A financial institution holds a portfolio which yields the future loss W . In order

to diversify the risk posed by W , it may consider dividing the portfolio into n sub-portfolios

X1, . . . , Xn ∈ X , X1 + · · ·+Xn = W , and transfer these sub-portfolios to, e.g., distinct legal

entities such as subsidiaries which operate under potentially varying regulatory regimes. As

observed by Tsanakas, for convex, but not positively homogeneous risk measures, without

market frictions like transaction costs risk can usually be reduced arbitrarily by introducing

more subsidiaries, and hence, there is no incentive to stop this splitting procedure. However,

since n can be arbitrarily large, transaction costs should not be neglected in this setting, and

we will study the problem of finding cost-optimal portfolio splits under market frictions.

To be more precise, we model the subsidiaries as a family (ρi)i∈N of normalised risk measures

on one and the same Fréchet lattice (X ,�, τ) – which entails ρ∗i ≥ 0 for all i ∈ N – such

that the associated risk measurement regimes (Ri)i∈N check infinite supportability (A4): as

one and the same parent company splits the losses into n sub-portfolios, assuming that, for

each n ∈ N, the set of subsidiaries (ρi)i∈[n] forms an agent system satisfying (A3) seems

natural. Let further c : N→ [0,∞) be a nondecreasing cost function. The transaction costs

of introducing subsidiaries i ∈ [n] and splitting a portfolio among them are given by c(n).

The condition limn→∞ c(n) = ∞ prevents infinite splitting. At last we introduce Λn(X) :=

infX∈AX

∑n
i=1 ρi(Xi), X ∈ X , the usual risk sharing functional associated to (R1, . . . ,Rn).

Note that for all X ∈ X , n ∈ N, and every X ∈ X n with
∑n

i=1Xi = X, the estimate∑n
i=1 ρi(Xi) =

∑n
i=1 ρi(Xi) + ρn+1(0) ≥ Λn+1(X) holds, which entails Λn(X) ≥ Λn+1(X),

n ∈ N. In this setting, optimal portfolio splits exist if each Λn is exact on dom(Λn):

Theorem 6.1. Suppose (Ri)i∈N is a sequence of risk measurement regimes on a Fréchet

lattice X which checks (A4) and results in all ρi being normalised. Moreover, assume that
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the cost function satisfies

lim
n→∞

c(n) =∞

and that Λn is exact on dom(Λn) for all n ∈ N and let W ∈
∑m

i=1 dom(ρi) for some m ∈ N.

Then there is (n∗, X1, . . . , Xn∗), where n∗ ∈ N and (X1, . . . , Xn∗) is an attainable allocation

of W , which is a solution of

n∑
i=1

ρi(Xi) + c(n)→ min subject to n ∈ N and X ∈ X n with
n∑
i=1

Xi = W. (6.1)

Proof. Note that (A4) can be rewritten as

∃φ0 ∈
∞⋂
i=1

dom(ρ∗i ) :
∞∑
i=1

ρ∗i (φ0) <∞. (6.2)

Let

m∗ := min{m ∈ N : Λm(W ) <∞} = min{m ∈ N : W ∈
m∑
i=1

dom(ρi)} <∞.

By (6.2), we have Λn(W ) ≥ φ0(W ) −
∑∞

i=1 ρ
∗
i (φ0) > −∞ for all n ≥ m∗. Thus, Λn(W ) +

c(n) =∞ whenever n < m∗ and

lim inf
n→∞

Λn(W ) + c(n) ≥ φ0(W )−
∞∑
i=1

ρ∗i (φ0) + lim
n→∞

c(n) =∞.

Therefore, we can find n∗ ∈ N such that

Λn∗(W ) + c(n∗) = inf
n∈N

Λn(W ) + c(n) ∈ R.

In order to obtain a solution to (6.1), choose an attainable allocation X ∈ X n∗ of X such

that Λn∗(X) =
∑n∗

i=1 ρi(Xi). �

Corollary 6.2. Suppose (Ri)i∈N is a sequence of risk measurement regimes on a Fréchet

lattice X such that all ρi are normalised. Then the assertion of Theorem 6.1 holds under

each of the following conditions:

(1) The risk measures (ρ1, . . . , ρn) comply with Theorem 5.8 for each n ∈ N and the

pricing functionals are given by pi = E[(Q+ δ)·]|Si for a fixed δ > 0 and Q ∈ L∞+ with

supY ∈Ai E[(Q+ δ)Y ] ≤ 0, i ∈ N.

(2) (A4) is satisfied, and for each n ∈ N, (R1, . . . ,Rn) is a polyhedral agent system.

Proof. (1) Let Q ∈ L∞+ and δ > 0 be as described in the assertion and set Q∗ := Q + δ.

Assumption 5.2 is satisfied. Let i ∈ N be arbitrary and recall the definition of the cash-

additive risk measures ξi in the proof of Theorem 5.3. By (5.6), ξ∗i ( Q∗

E[Q∗]) ≤ 0. Theorem 5.8

in the case n = 1 (see Remark 5.4) yields that each X ∈ dom(ρi) admits an optimal payoff



RISK SHARING WITH MULTIDIMENSIONAL SECURITY MARKETS 43

ZX ∈ Si, i.e. X − ZX ∈ Ai and E[Q∗ZX ] = pi(Z
X) = ρi(X). Hence,

ρ∗i (Q
∗) = sup

X∈dom(ρi)
E[Q∗X]− ρi(X) = sup

X∈dom(ρi)
E[Q∗(X − ZX)]

≤ E[Q∗]ξ∗i ( Q∗

E[Q∗]) ≤ 0.

Conversely, as ρi is normalised, we have ρ∗i (Q
∗) ≥ 0. Hence, (A4) holds and φ0 in (6.2) may

be chosen as φ0 = E[Q∗·]. The solvability of (6.1) under (1) follows from Theorems 5.8 and

6.1.

(2) By Theorem 4.3 Λn is exact on dom(Λn) for every n ∈ N. Apply Theorem 6.1. �

Remark 6.3. Suppose that in the situation of Corollary 6.2(1) each of the monetary base

risk measures ξi(X) := inf{m ∈ R : X − m ∈ Ai}, X ∈ X , is normalised. Then each

δ > 0 and each Q ∈ R+ satisfy the assumptions of part (1). This follows from the fact that

ξ∗i (1) = 0 holds for every i ∈ N. Indeed, by arguments similar to the proof of Proposition 5.10,

ξ∗i (E[Q|H]) ≤ ξ∗i (Q) holds for all Q ∈ dom(ξ∗i ) and all sub-σ-algebras H ⊆ F . Hence,

ξ∗i (1) = inf
Q∈dom(ξ∗i )

ξ∗i (Q) = − sup
Q∈dom(ξ∗i )

−ξ∗i (Q) = −ξi(0) = 0, i ∈ N.

Appendix A. Technical supplements

A.1. The geometry of convex sets. Fix a nonempty convex subset C of a locally convex

Hausdorff topological Riesz space (X ,�, τ) with dual space X ∗. The support function of C
is the functional

σC : X ∗ → (−∞,∞], φ 7→ sup
Y ∈C

φ(Y ).

The recession cone of C is the set

0+C := {U ∈ X : Y + kU ∈ C, ∀Y ∈ C, ∀ k ≥ 0}.

A vector U lies in 0+C if and only if Y +U ∈ C holds for all Y ∈ C. U is then called a direction

of C. The lineality space of C is the vector space lin(C) := 0+C ∩ (−0+C). In the case of

an acceptance set A, monotonicity implies dom(σA) ⊆ X ∗+. If C is closed, the Hahn-Banach

separation theorem shows that

C = {Y ∈ X : φ(Y ) ≤ σC(φ), ∀φ ∈ dom(σC)}.
Combining this identity with the definition of the recession cone and the lineality space yields

Lemma A.1. If C ⊆ X is closed and convex and J ⊆ dom(σC) is such that

C = {X ∈ X : φ(X) ≤ σC(φ), ∀φ ∈ J },
then

0+C =
⋂
φ∈J
L0(φ) = {U ∈ X : φ(U) ≤ 0, ∀φ ∈ J } and lin(A) =

⋂
φ∈J

ker(φ).

Last we state a decomposition result for closed convex sets specific to finite-dimensional

spaces. It follows from arguments in the proofs of [9, Lemmas II.16.2 and II.16.3].
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Lemma A.2. Let C ⊆ Rd be convex and closed and V := lin(C)⊥. If ext(C ∩ V) denotes the

set of extreme points of C ∩ V and co(·) is the convex hull operator, C can be written as

C = co(ext(C ∩ V)) + 0+C.

A.2. Infimal convolution. Let (X ,�) be a Riesz space and suppose that functions gi :

X → (−∞,∞], i ∈ [n], are given. The infimal convolution or epi-sum of g1, . . . , gn is the

function �n
i=1gi : X → [−∞,∞] defined by

�n
i=1gi(X) := inf

{
n∑
i=1

gi(Xi) : X1, . . . , Xn ∈ X ,
n∑
i=1

Xi = X

}
, X ∈ X .

The convolution is said to be exact at X ∈ X if (�n
i=1gi)(X) ∈ R and there is X1, . . . , Xn ∈ X

with
∑n

i=1Xi = X such that

n∑
i=1

gi(Xi) = (�n
i=1gi)(X).

Lemma A.3. Suppose Xi ⊆ X , i ∈ [n], are ideals in a Riesz space (X ,�) such that X =∑n
i=1Xi.
(1) If all gi : X → (−∞,∞] are convex, then �n

i=1gi is convex.

(2) If gi is monotone on Xi with respect to � for all i ∈ [n], i.e., X,Y ∈ Xi, X � Y ,

implies gi(X) ≤ gi(Y ), and gi|X\Xi ≡ ∞, then �n
i=1gi is monotone on X .

Proof. We only prove (2). Let X,Y ∈ X , X � Y , and let X,Y ∈
∏n
i=1Xi with

∑n
i=1Xi = X

and
∑n

i=1 Yi = Y . We thus have

0 � Y −X = |Y −X| �
∑n

i=1 |Yi −Xi|.

By the Riesz space property of X and the Riesz Decomposition Property (cf. [3, Sect. 8.5]),

there is a vector Z ∈ (X+)n such that Y −X =
∑n

i=1 Zi and such that Zi = |Zi| � |Yi−Xi|,
i ∈ [n]. Xi being an ideal yields that in fact Z ∈

∏n
i=1Xi. By monotonicity of gi on Xi,

i ∈ [n], we obtain

(�n
i=1gi)(X) ≤

n∑
i=1

gi(Yi − Zi) ≤
n∑
i=1

gi(Yi).

As (�n
i=1gi)(Y ) = inf{

∑n
i=1 gi(Yi) : Y ∈

∏n
i=1Xi} by the assumption that gi|X\Xi ≡ ∞,

taking the infimum over suitable Y on the right-hand side proves the assertion. �

Note that the risk sharing functional satisfies Λ = �n
i=1gi, where the functions gi are defined

by gi(X) = ρi(X) if X ∈ Xi and gi(X) = ∞ otherwise, X ∈ X , i ∈ [n]. These functions gi
inherit convexity on X and monotonicity on Xi from ρi.

Lemma A.4. Given a locally convex Hausdorff topological Riesz space (X ,�, τ) and proper

functions gi : X → (−∞,∞], i ∈ [n], the following identities hold:

(�n
i=1gi)

∗ =
n∑
i=1

g∗i and dom((�n
i=1gi)

∗) =
n⋂
i=1

dom(g∗i ).
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A.3. Correspondences. Given two nonempty sets A and B, a map Γ : A → 2B mapping

elements of A to subsets of B is called a correspondence and will be denoted by Γ : A �
B. Assume now that (X , τ) and (Y, σ) are topological spaces, and let Γ : X � Y be a

correspondence.

A continuous function Ψ : X → Y is a continuous selection for the correspondence Γ if

Ψ(x) ∈ Γ(x) holds for all x ∈ X .

If (X , σ) is first countable, Γ is upper hemicontinuous at x ∈ X if, whenever (xk)k∈N is a

sequence σ-convergent to x and (yk)k∈N ⊆ Y is such that, for each k ∈ N, yk ∈ Γ(xk), there

is a limit point y ∈ Γ(x) of (yk)k∈N. If both topological spaces are first countable, Γ is lower

hemicontinuous at x ∈ X if, whenever (xk)k∈N is a sequence σ-convergent to x and y ∈ Γ(x),

there is a subsequence (kλ)λ∈N and yλ ∈ Γ(xkλ), λ ∈ N, such that yλ → y with respect

to τ as λ → ∞.11 An example of a lower hemicontinuous correspondence relevant for our

investigations is the security allocation map

As· :M3 Z 7→ AZ ∩
n∏
i=1

Si.

Lemma A.5. The correspondence As· is lower hemicontinuous on the global security market

M and admits a continuous selection Ψ :M→
∏n
i=1 Si with respect to any norm on M.

Proof. Let 〈·, ·〉 be an inner product on M. Set S0 := {0}. We claim that there are natural

numbers 0 = m0 < m1 ≤ · · · ≤ mn and Z1, . . . , Zmn ∈
⋃n
i=1 Si such that for all i ∈ [n], it

holds that {Zmi−1+1, . . . , Zmi} is an orthonormal basis of
{
X ∈ Si : X ⊥ span{Z1, . . . , Zmi−1}

}
.

Note that every Z ∈ M can be expressed as Z =
∑mn

i=1〈Zi, Z〉Zi, hence the mapping

Ψ : Z 7→ AsZ defined by

Ψ(Z)i :=
∑mi

i=mi−1+1〈Zi, Z〉Zi, i ∈ [n],

is a selection of As· and continuous with respect to the unique locally convex Hausdorff

topology on M. Lower hemicontinuity follows immediately. �
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[45] Zălinsecu, C. (2002), Convex Analysis in General Vector Spaces. World Scientific.

[46] Zheng, X. Y. (2009), Pareto Solutions of Polyhedral-valued Vector Optimization Problems in Banach Spaces.

Set-Valued Analysis, 17:389-408.


	1. Introduction
	2. Agent systems and optimal allocations
	2.1. Risk measurement regimes
	2.2. Agent systems
	2.3. The risk sharing problem and its solutions

	3. Infimal convolutions and the representative agent
	3.1. Main results
	3.2. Ancillary results and proofs

	4. Polyhedral agent systems
	4.1. The setting
	4.2. Main results
	4.3. Ancillary results and proofs
	4.4. An example

	5. Law-invariant acceptance sets
	5.1. The setting
	5.2. Main results
	5.3. Ancillary results and proofs
	5.4. Examples

	6. Optimal portfolio splits
	Appendix A. Technical supplements
	A.1. The geometry of convex sets
	A.2. Infimal convolution
	A.3. Correspondences

	References

