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1. Introduction

In this paper we consider the risk sharing problem for capital requirements. Optimal cap-

ital and risk allocation among economic agents, or business units, has for decades been a

predominant subject in the respective academic and industrial research areas. Measuring

financial risks with capital requirements goes back to the seminal paper by Artzner et al. [5].

There, risk measures are by definition capital requirements determined by two primitives:

the acceptance set and the security market.

The acceptance set, a subset of an ambient space of losses, corresponds to a capital adequacy

test. A loss is deemed adequately capitalised if it belongs to the acceptance set, and inad-

equately capitalised otherwise. If a loss does not pass the capital adequacy test, the agent

has to take prespecified remedial actions: she can raise capital in order to buy a portfolio

of securities in the security market which, when combined with the loss profile in question,

results in an adequately capitalised secured loss.

Suppose the security market only consists of one numéraire asset, liquidly traded at arbi-

trary quantities. After discounting, one obtains a so-called monetary risk measure, which is

characterised by satisfying the cash-additivity property, that is ρ(X + a) = ρ(X) + a. Here,

ρ denotes the monetary risk measure, X is a loss, and a ∈ R is a capital amount which is

added to or withdrawn from the loss. Monetary risk measures have been widely studied, see

Föllmer & Schied [23] and the references therein. As observed in Farkas et al. [18, 19, 20]

and Munari [29], there are good reasons for revisiting the original approach to risk measures

of Artzner et al. [5]:

(1) Typically, more than one asset is available in the security market. It is also less costly

for the agent to invest in a portfolio of securities designed to secure a specific loss

rather than restricting the remedial action to investing in a single asset independent

of the loss profile.

(2) Even if securitisation is constrained to buying a single asset, discounting with this

asset may be impossible because it is not a numéraire; c.f. Farkas et al. [19]. Also, as

risk is measured after discounting, the discounting procedure is implicitly assumed not

to add additional risk, which is questionable in view of risk factors such as uncertain

future interest rates. For a thorough discussion of this issue see El Karoui & Ravenelli

[17]. Often, risk is determined purely in terms of the distribution of a risky position,

a paradigm we discuss in detail below. Therefore, instability of this crucial law-

invariance property of a risk measure under discounting is another objection. If

the security is not riskless (i.e. equals cash), losses which originally were identically

distributed may not share the same distribution any longer after discounting, while

losses that originally display different laws may become identically distributed.

(3) Without discounting, if only a single asset is available in the security market, cash-

additivity requires the security to be riskless, and it is questionable whether such a

security is realistically available, at least for longer time horizons. This is a particu-

larly nagging issue in the insurance context.
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In this paper we will follow the original ideas in [5] and study the risk sharing problem for

risk measures induced by acceptance sets and possibly multidimensional security spaces. We

consider a one-period market populated by a finite number n ≥ 2 of agents who seek to

secure losses occurring at a fixed future date, say tomorrow. We attribute to each agent

i ∈ {1, ..., n} an ordered vector space Xi of losses net of gains she may incur, an acceptance

set Ai ⊂ Xi as capital adequacy test, and a security market consisting of a subspace Si ⊂ Xi
of security portfolios as well as observable prices of these securities given by a linear functional

pi : Si → R. As the securities in Si are deemed suited for hedging, the linearity assumptions

on Si and pi reflects that they are liquidly traded and their bid-ask spread is zero. The risk

attitudes of agent i are fully reflected by the resulting risk measure

ρi(X) := inf{pi(Z) | Z ∈ Si, X − Z ∈ Ai}, X ∈ Xi, (1.1)

that is the minimal capital required to secure X with securities in Si.
The problem we consider is how to reduce the aggregated risk in the system by means of

redistribution. Formally, given a market loss X ∈
∑n

i=1Xi the system in total incurs, we

need to solve the optimisation problem

n∑
i=1

ρi(Xi)→ min subject to Xi ∈ Xi and X1 + ...+Xn = X. (1.2)

A vector X = (X1, ..., Xn), a so-called allocation of X, which solves the optimisation problem

and yields a finite optimal value is Pareto optimal. However, this resembles centralised

redistribution which attributes to each agent a certain portion of the aggregate loss in an

overall optimal way without considering individual well-being. Redistribution by agents

trading portions of losses at a certain price while adhering to individual rationality constraints

leads to the notion of equilibrium allocations and equilibrium prices, a variant of the risk

sharing problem above.

Special instances of this general problem have been extensively studied in the literature.

Borch [9], Arrow [4] and Wilson [38] consider the problem for expected utilities. More recent

are studies for convex monetary risk measures, starting with Barrieu & El Karoui [7] and

Filipović & Kupper [21]. A key assumption which allows to prove existence of optimal risk

sharing for convex monetary risk measures is law-invariance, i.e. the measured risk is the

same for all losses which share the same distribution under a benchmark probability model,

see Jouini et al. [27], Acciaio [1], Acciaio & Svindland [2], and Filipović & Svindland [22].

For a thorough discussion of the existing literature, we refer to Embrechts et al. [15].

Main contributions. In the following we summarise the four main contributions of this

paper.

First of all, we prove a representative agent formulation of the risk sharing problem: the

behaviour of the interacting agents in the market is, under mild assumptions, captured by a

market capital requirement of type (1.1), namely

Λ(X) = inf{π(Z) | Z ∈M, X − Z ∈ A+},
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where Λ(X) is the infimal level of aggregated risk realised by redistribution of X as in (1.2),

A+ is a market acceptance set, and (M, π) is a global security market.

Secondly, we study two prominent cases, mostly characterised by the involved notions of

acceptability, for which we prove that the risk sharing problem (1.2), including the quest for

equilibria, admits solutions. In the first instance, individual losses are — in the widest sense

— contingent on scenarios of the future state of the economy. A loss is deemed acceptable

if certain capital thresholds are not exceeded under a fixed finite set of linear aggregation

rules which may vary from agent to agent. The reader may think of a combination of finitely

many valuation and stress test rules as studied in Carr et al. [10], see also [23, Section 4.8].

The resulting acceptance sets will thus be polyhedral. In the second class of acceptance sets

under consideration, whether or not a loss is deemed adequately capitalised only depends on

its distributional properties under a fixed reference probability measure, not on scenariowise

considerations: acceptability is a statistical notion. More precisely, losses are modelled as

random variables on a probability space (Ω,F ,P), and the respective individual acceptance

sets Ai, i ∈ {1, ..., n}, will be law-invariant. However, in non-trivial cases the security spaces

Si will not be law-invariant, hence securitisation depends on the potentially varying joint

distribution of the loss and the security and is thus statewise rather than distributional.

This both reflects the practitioner’s reality and is mathematically interesting as the resulting

capital requirements ρi are far from law-invariant. Only if the security spaces are spanned

by the cash asset, i.e. Si = R, law-invariance of the acceptance set implies law-invariance of

the corresponding monetary risk measure. In that case the risk sharing problem has been

solved, c.f. [22, 27]. We will utilise these results, but like to emphasise that reducing the

general problem to the law-invariant cash-additive case is impossible.

As a third contribution, we not only prove the existence of solutions, i.e. of optimal risk

allocations, but carefully study continuity properties of the set-valued map assigning to an

aggregated loss its optimal risk allocations. These reflect that optimality is robust under

misspecification of the input, the aggregated loss profile. If the map is upper hemicontinuous,

a slight miscalculation of the aggregated loss does not change the set of such optimal risk

allocations drastically. It is also useful from a constructive point of view: one can solve the

risk sharing problem of a complex loss by approximating it with simpler losses and calculating

solutions of these instead. Lower hemicontinuity, on the other hand, guarantees that a given

optimal risk allocation stays close to optimal under a slight perturbation of the underlying

aggregated loss.

At last, we study optimal splitting problems in the spirit of Tsanakas [36] and Wang [37] as an

application of the general theory: Under the presence of market frictions such as transaction

costs, can a financial institution split an aggregated loss optimally by introducing subsidiaries

subject to potentially varying regulatory regimes and having access to potentially varying

security markets?

Structure of the paper. In Section 2 we rigorously introduce risk measurement in terms of

capital requirements, agent systems, optimal allocations, and equilibria. Section 3 presents

the representative agent formulation of the risk sharing problem and proves useful meta
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results. These are key to the discussion of risk sharing involving polyhedral acceptance sets

in Section 4 and law-invariant acceptance sets in Section 5, as well as optimal portfolio splits

in Section 6. Technical supplements are relegated to the appendix.

2. Agent systems and optimal allocations

2.1. Preliminaries. In a first step of modelling, we assume that the attitude of individual

agents towards risk is given by a risk measurement regime and corresponding risk measure.

Definition 2.1. Let (X ,�) be an ordered vector space, X+ := {X ∈ X | 0 � X} be its

positive cone, and X++ := X+\{0}.
• An acceptance set is a non-empty proper and convex subset A of X which is

monotone, i.e. A−X+ ⊆ A.1

• A security market is a pair (S, p) consisting of a finite-dimensional linear subspace

S ⊂ X and a positive linear functional p : S → R such that there is U ∈ S∩X++ with

p(U) = 1. The elements Z ∈ S are called security portfolios or simply securities, and

S is the security space, whereas p is called pricing functional.

• A triple R := (A,S, p) is a risk measurement regime if A is an acceptance set

and (S, p) is a security market such that the following no-arbitrage condition holds:

∀X ∈ X : sup{p(Z) | Z ∈ S, X + Z ∈ A} <∞. (2.1)

• The risk measure associated to a risk measurement regime R is the functional

ρR : X → (−∞,∞], X 7→ inf {p(Z) | Z ∈ S, X − Z ∈ A} . (2.2)

ρR is normalised if ρR(0) = 0, or equivalently supZ∈A∩S p(Z) = 0. It is lower semicon-

tinuous (l.s.c.) with respect to some vector space topology τ on X provided every lower level

set {X ∈ X | ρR(X) ≤ c}, c ∈ R, is τ -closed.

Immediate consequences of the definition of ρR are the following properties:

• ρR is a proper function2 by (2.1) and ρR(Y ) ≤ 0 for any choice of Y ∈ A. Moreover,

it is convex, i.e. ρR(λX + (1− λ)Y ) ≤ λρR(X) + (1− λ)ρR(Y ) holds for all choices

of λ ∈ [0, 1] and X,Y ∈ X ;

• �-monotonicity, i.e. X � Y implies ρR(X) ≤ ρR(Y );

• S-additivity, i.e ρR(X + Z) = ρR(X) + p(Z) for all X ∈ X and all Z ∈ S.

Note that risk measures as in (2.2) evaluate the risk of losses net of gains X ∈ X . The

positive cone X+ corresponds to pure losses. Therefore, ρR is non-decreasing with respect to

�, not non-increasing as in most of the literature on risk measures where the risk of gains net

of losses is measured. In the security market, however, we consider the usual monotonicity,

i.e. a security Z∗ ∈ S is better than Z ∈ S if Z � Z∗. This also explains positivity of

the pricing functional p : S → R. Combining these two viewpoints, the impact of a security

1 Here and in the following, given subsets A and B of a vector space X , A + B denotes their Minkowski

sum {a+ b | a ∈ A, b ∈ B}, and A−B := A+ (−B).
2 Given a non-empty set M , a function f : M → [−∞,∞] is proper if f−1({−∞}) = ∅ and f 6≡ ∞.
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Z ∈ S on a loss profile X ∈ S is given by X − Z, and ρR(X) is the infimal price that has to

be paid for a security Z in the security market with loss profile −Z in order to reduce the

risk of X to an acceptable level. The no-arbitrage condition (2.1) means that one cannot

short arbitrary valuable securities and stay acceptable.

There is a close connection between capital requirements defined by (2.2) and superhedging.

Given a risk measurement regime R = (A,S, p) on an ordered vector space (X ,�), let

ker(p) := {N ∈ S | p(N) = 0} denote the kernel of the pricing functional, i.e. the set of fully

leveraged security portfolios available at zero cost. Moreover, fix an arbitrary U ∈ S ∩ X+

such that p(U) = 1. Each Z ∈ S can be written as Z = p(Z)U + (Z − p(Z)U), and

Z − p(Z)U ∈ ker(p). Hence, X ∈ X and Z ∈ S satisfy X − Z ∈ A if, and only if, for

r := p(Z) ∈ R we can find N ∈ ker(p) such that rU +N + (−X) ∈ −A. The risk ρR(X) may

thus be expressed as

ρR(X) = inf{p(Z) | Z ∈ S, X − Z ∈ A}
= inf{r ∈ R | ∃N ∈ ker(p) : N + rU + (−X) ∈ −A},

The set −A is the set of acceptable gains net of losses, and −X is the payoff associated

to the loss profile X. The elements in ker(p) are zero cost investment opportunities. If we

conservatively choose the acceptance set A = −X+,

ρR(X) = inf{r ∈ R | ∃N ∈ ker(p) : N + rU + (−X) � 0},

that is we recover by ρR(X) the superhedging price of the payoff −X. A general risk mea-

surement regime thus leads to a superhedging functional involving the relaxed notion of

superhedging N + rU − X ∈ −A. In the terminology of superhedging theory, ρR(X) is

the infimal amount of cash that needs to be invested in the security U such that X can be

superhedged when combined with a suitable zero cost trade in the (security) market. Such

relaxed superhedging functionals have been recently studied by, e.g., Cheridito et al. [12].

The separation between U and ker(p) introduced above will be useful throughout the paper.

2.2. Agent systems. In order to introduce the risk sharing problem in precise terms, a

notion of the interplay of the individual agents and their respective capital requirements is

required; for terminology concerning ordered vector spaces, we refer to [3, Chapters 8–9]. We

consider an abstract one-period market which incurs aggregated losses net of gains modelled

by a Riesz space (X ,�). The market is comprised of n ≥ 2 agents, and throughout the paper

we identify each individual agent with a natural number i in the set {1, ..., n}, which we shall

denote by [n] for the sake of brevity. The agents might have rather heterogeneous assessments

of risks. This is firstly reflected by the assumption that each agent operates on an (order)

ideal3 Xi ⊂ X , i ∈ [n], which may be a proper subset of X . Without loss of generality we

shall impose X = X1 + ... + Xn. Within each ideal, and thus for each agent, adequately

capitalised losses are encoded by an acceptance set Ai ⊂ Xi. Agent i ∈ [n] is allowed to

3 An ideal Y of a Riesz space (X ,�) is a subspace in which the inclusion {Z ∈ X | |Z| � |Y |} ⊂ Y holds

for all Y ∈ Y.
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secure losses she may incur with securities from a security market (Si, pi), where Si ( Xi.
We shall impose that each Ri := (Ai,Si, pi) is a risk measurement regime on (Xi,� |Xi×Xi),
i ∈ [n]. In sum, the individual risk assessments are fully captured by the n-tuple of risk

measurement regimes (R1, ...,Rn).

Definition 2.2. An n-tuple (R1, ...,Rn), where, for each i ∈ [n], Ri is a risk measurement

regime on Xi, is called an agent system if

(?) For all i, j ∈ [n], the pricing functionals pi and pj agree on Si ∩ Sj . Moreover, if we

set i ∼ j if i 6= j and pi is non-trivial on Si ∩ Sj , the resulting graph

G = ([n], {{i, j} ⊂ [n] | i ∼ j})
is connected.

Axiom (?) clarifies the nature of the interaction of the involved agents: prices for securities

accepted by more than one agent have to agree, and any two agents may interact and exchange

securities by potentially invoking other agents as intermediaries. Throughout this paper we

will assume that the agents [n] form an agent system. Such a situation is not too far-fetched:

Definition 2.3. The space of jointly accepted securities is Š :=
⋂n
i=1 Si, whereas

M := S1 + ...+ Sn is the global security space.

If, besides agreement of prices, Š 6= {0} and pi|Š 6= 0 for some and thus all i ∈ [n], then

assumption (?) is met. The resulting graph is the complete graph on n vertices. Moreover,

if all agents operate on one and the same space Xi = X , i ∈ [n], and the available security

markets are unanimous and given by Si = R · U , i ∈ [n], for some U ∈ X++ and pi(rU) = r,

r ∈ R, (R1, ...,Rn) is an agent system. If we further specify X to be a sufficiently rich space

of random variables and U = 1 is the constant random variable with value 1, the results for

risk sharing with convex monetary risk measures can be embedded in our setting of agent

systems; c.f. [1, 2, 22, 27].

In the following we write ρi instead of ρRi for the sake of brevity. Aggregated losses in X will

be denoted by X or W , securities by Z, U or N throughout the paper. In order to introduce

the risk sharing associated with (R1, ...,Rn), we need the notion of attainable and security

allocations:

Definition 2.4. A vector X = (X1, ..., Xn) ∈
∏n
i=1Xi is an attainable allocation of an

aggregated loss W ∈ X if W = X1 + ...+Xn. We denote the set of all attainable allocations

of W ∈ X by AW .

Given a global security Z ∈ M, we denote by AsZ := AZ ∩
∏n
i=1 Si the set of security

allocations of Z.

2.3. The risk sharing problem and its solutions. Given a set S 6= ∅ and a function

f : S → [−∞,∞], we set dom(f) := {s ∈ S | f(s) <∞} to be the effective domain of f .

We will also abbreviate its lower level sets by Lc(f) := {s ∈ S | f(s) ≤ c}, c ∈ R.

We are now prepared to introduce the risk sharing problem. Its objective is to minimise the

aggregated risk within the system. The allowed remedial action is reallocating an aggregated
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loss W ∈ X among the agents involved:

n∑
i=1

ρi(Xi)→ min subject to X ∈ AW . (2.3)

Obviously, the optimal value in (2.3) is less than +∞ if, and only if, W ∈
∑n

i=1 dom(ρi).

It is furthermore well-known that (2.3) is closely related to certain notions of economically

optimal allocations which we define in the following.

Definition 2.5. Let (R1, ...,Rn) be an agent system on an ordered vector space (X ,�), let

W ∈ X be an aggregated loss, and let W ∈
∏n
i=1Xi be a vector of initial loss endowments.

(1) An attainable allocation X ∈ AW is Pareto optimal if ρi(Xi) < ∞, i ∈ [n], and for

any Y ∈ AW with the property ρi(Yi) ≤ ρi(Xi), i ∈ [n], in fact ρi(Xi) = ρi(Yi) has to

hold for all i ∈ [n].

(2) Suppose X additionally carries a vector space topology τ such that (X ,�, τ) is a topo-

logical Riesz space. A tuple (X, φ) is an equilibrium of W if

• X ∈ AW1+...+Wn ,

• φ ∈ X ∗ is positive with φ|Si = pi, i ∈ [n],

• the budget constraints φ(−Xi) ≤ φ(−Wi), i ∈ [n], hold,4

• and ρi(Xi) = inf{ρi(Y ) | Y ∈ Xi, φ(−Y ) ≤ φ(−Wi)} for all i ∈ [n].

In that case, X is called equilibrium allocation and φ equilibrium price.

Our first result links Pareto optima, equilibria, and solutions to the risk sharing problem

(2.3). Proposition 2.6(2) is indeed the First Fundamental Theorem of Welfare Economics

adapted to our setting.

Proposition 2.6. Under the assumptions of Definition 2.5, the following holds:

(1) If W ∈
∑n

i=1 dom(ρi), then X ∈ AW is a Pareto optimal attainable allocation of W

if, and only if,
n∑
i=1

ρi(Xi) = inf
Y∈AW

n∑
i=1

ρi(Yi). (2.4)

(2) Any equilibrium allocation is Pareto optimal.

The proof requires the following well-known characterisation of Pareto optima; see, e.g., [31,

Proposition 3.2].

Lemma 2.7. Let W ∈
∑n

i=1 dom(ρi). If X is a Pareto optimal attainable allocation of W ,

there are so-called Negishi weights λi ≥ 0, i ∈ [n], not all equal to zero, such that

n∑
i=1

λiρi(Xi) = inf
Y∈AW

n∑
i=1

λiρi(Yi). (2.5)

4 Note that the minus sign in the budget constraints is due to the fact that the elements in Xi model losses,

whereas φ prices payoffs.
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Conversely, if X ∈ AX satisfies (2.5) for a set of strictly positive weights λi > 0, i ∈ [n], then

X is a Pareto optimal attainable allocation.

The proof of Proposition 2.6 shows that the agent system property (?) dictates the values of

the Negishi weights.

Proof of Proposition 2.6. (1) By Lemma 2.7 any solution to (2.4) is Pareto optimal. Con-

versely, let W ∈
∑n

i=1 dom(ρi) and let X ∈ AW be a Pareto optimal attainable allocation.

Let λ ∈ Rn++ be any vector of Negishi weights such that X is a solution to (2.5). Recall the

symmetric relation ∼ in (?) and consider j, k ∈ [n] such that j ∼ k. By definition, we may

find Z ∈ Sj ∩ Sk such that p := pj(Z) = pk(Z) 6= 0. For t ∈ R let

Xt := X + t
pZej −

t
pZek ∈ AX .

Here, Zej is the vector whose j-th entry is Z, whereas all other entries are 0. Analogously,

we define Zek. By Si-additivity of all ρi’s, we infer

−∞ <
n∑
i=1

λiρi(Xi) ≤ inf
t∈R

n∑
i=1

λiρi(X
t
i ) =

n∑
i=1

λiρi(Xi) + inf
t∈R

t(λj − λk).

This is only possible if λj = λk. Using that the graph G in (?) is connected, one inductively

shows λ1 = ... = λn. Dividing both sides of (2.5) by λ1 yields

n∑
i=1

ρi(Xi) = inf
Y∈AX

n∑
i=1

ρi(Yi).

(2) Suppose that W is an initial loss endowment with associated equilibrium (X, φ). Then

φ(Xi) = φ(Wi) holds by monotonicity. Given Zi ∈ Si such that pi(Zi) = 1 and arbitrary

Yi ∈ Xi,
φ(Yi + (φ(Xi)− φ(Yi))Zi) = φ(Xi) = φ(Wi)

holds as φ = pi on Si. Thus the budget constraint is satisfied, and hence

ρi(Xi) ≤ ρi(Yi + φ(Xi − Yi)Zi) = ρi(Yi) + φ(Xi)− φ(Yi).

If we set W := W1 + ...+Wn, for any other allocation Y ∈ AW we obtain
n∑
i=1

ρi(Xi) ≤
n∑
i=1

ρi(Yi) + φ(Xi)− φ(Yi) =

n∑
i=1

ρi(Yi)

since
∑n

i=1 φ(Xi) =
∑n

i=1 φ(Yi) = φ(W ). By (1), X is Pareto optimal. �

3. Infimal convolutions and the representative agent

This section is comprised of the formal mathematical treatment of the risk sharing problem

on ideals of a Riesz space as introduced in Section 2. We shall link risk sharing to the infimal

convolution of the individual risk measures, prove its representation as a capital requirement

for the market, i.e. a representative agent, and find powerful sufficient conditions for its

solvability.
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Beforehand, however, we need to introduce further axioms that an agent system may satisfy

in addition to (?). We shall refer to them at various stages of the paper, they are however

not assumed to be met throughout. For n ≥ 2 let (R1, ...,Rn) be an agent system.

(NSA) No security arbitrage: For some j ∈ [n] it holds that(∑
i 6=j ker(pi)

)
∩ Sj ⊂ ker(pj);

(NR) Non-redundance of the joint security market: There is Z ∈ Š and Z ∈ AsZ
such that

∑n
i=1 pi(Zi) 6= 0.

(SUP) Supportability: Given a locally convex Hausdorff topological Riesz space (X ,�, τ)

with dual space X ∗, there is some φ0 ∈ X ∗+ and a constant γ ∈ R such that

(i) for all Z ∈
∏n
i=1 Si with

∑n
i=1 pi(Zi) = 0 we have φ0(Z1 + ...+ Zn) = 0 and for

some Z̃ ∈
∏n
i=1 Si with

∑n
i=1 pi(Z̃i) 6= 0 we have φ0(Z̃1 + ...+ Z̃n) 6= 0;

(ii) for all Y ∈
∏n
i=1Ai we have φ0(Y1 + ...+ Yn) ≤ γ.

(SUP∞) Infinite supportability: (Ri)i∈N is a sequence of risk measurement regimes on

one and the same locally convex Hausdorff topological Riesz space (X ,�, τ) such that

(R1, ...,Rn) satisfies (?) for all n ∈ N and such that there is some φ0 ∈ X ∗ with∑
i∈N supY ∈Ai φ0(Y ) <∞ and φ0|Si = pi, i ∈ N.

Condition (NSA) is violated if each agent would be able to obtain arbitrarily valuable securi-

tisation from the other agents, who can provide it at zero cost. That would reveal a mismatch

of security markets leading to hypothetical infinite wealth for all agents. Non-redundance of

the joint security market is in particular satisfied if there is Z ∈ Š such that pi(Z) 6= 0 for

some i ∈ [n], and thus by the defining property (?) of an agent system for all i ∈ [n]. Hence,

under (NR) there is a jointly accepted security valuable for the market. As regards condition

(SUP), think of φ0 as a pricing functional. (i) is a consistency requirement between φ0 and

the individual prices pi. (ii) reads as the impossibility to decompose a loss X acceptably for

all agents if X is sufficiently poor, that is the value φ0(−X) of the corresponding payoff −X
under φ0 is less than a certain level −γ. (SUP∞) is a strengthening of (SUP) for all finite

subsystems of (Ri)i∈N.

3.1. The risk sharing functional and the representative agent. Proposition 2.6 mo-

tivates the definition of the risk sharing functional:

Λ : X → [−∞,∞], X 7→ inf
X∈AX

n∑
i=1

ρi(Xi).

It corresponds to the so-called infimal convolution of the risk measures ρ1, ..., ρn, and

thus inherits properties like �-monotonicity and convexity. We refer to Appendix A.2, in

particular Lemma A.3, for a brief summary of these facts.

Our next result implies that, if proper, Λ is again a risk measure of type (2.2): the shared risk

level is the minimal price the market has to pay for a cumulated security that renders market

acceptability. Thus, market behaviour may be seen as the behaviour of a representative agent
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operating on X . Recall from Definition 2.4 that AsZ denotes the set of security allocations of

Z ∈M.

Proposition 3.1. Define π(Z) := infZ∈AsZ

∑n
i=1 pi(Zi), Z ∈M.

(1) For any Z ∈M and arbitrary Z ∈ AsZ , π(Z) may be represented as

π(Z) =

n∑
i=1

pi(Zi) + π(0).

Either π(0) = 0 or π(0) = −∞. π(0) = 0 is equivalent to (NSA), and in that case π

is real-valued, linear, and satisfies π|Si = pi, i ∈ [n]. Otherwise π ≡ −∞.

(2) Λ can be represented as

Λ(X) = inf {π(Z) | Z ∈M, X − Z ∈ B} , X ∈ X ,

for any monotone and convex set B ⊂ X satisfying A+ ⊂ B ⊂ L0(Λ). Here,

A+ :=
∑n

i=1Ai.
(3) If (NSA) and (SUP) hold, Λ is proper.

(4) If Λ is proper, then (NSA) holds, i.e. π(0) = 0, and π is positive. In that case,

(A+,M, π) is a risk measurement regime on X and Λ is the associated risk measure.

Proof. (1) Let Z ∈ M and let Z ∈ AsZ be arbitrary, but fixed. The identity AsZ = Z + As0
implies

π(Z) =
n∑
i=1

pi(Zi) + inf
N∈As0

n∑
i=1

pi(Ni) =
n∑
i=1

pi(Zi) + π(0).

Consider V := {(pi(Ni))i∈[n] | N ∈ As0}, which is a subspace of Rn. In the following, we

denote by el the l-th unit vector of Rn. Note that π(0) = 0 if, and only if, dim(V) < n.

Indeed, let 1 = (1, 1, ..., 1) ∈ Rn and observe that π(0) = infx∈V〈1, x〉 which is −∞ in case

dim(V) = n. Suppose that dim(V) < n, i.e. V⊥ 6= {0}, and let 0 6= λ ∈ V⊥. As in the

proof of Proposition 2.6(1), ej − ek ∈ V holds for all j, k ∈ [n] such that j ∼ k, which implies

λj = λk. As the relation ∼ induces a connected graph, λ ∈ R ·1 = V⊥. Hence, we obtain that

〈1, x〉 = 0 for all x ∈ V which implies π(0) = 0, so we have proved equivalence of π(0) = 0

and dim(V) < n. But dim(V) < n is equivalent to the fact that there is a j ∈ [n] such that

ej /∈ V, which in turn is equivalent to (NSA): whenever Z ∈ Sj lies in the Minkowski sum∑
i 6=j ker(pi), pj(Z) = 0 has to hold.

(2) We first note that A+ is convex and monotone. Indeed, let X,Y ∈ X such that Y ∈ A+

and X � Y . Fix Y ∈ AY such that Yi ∈ Ai, i ∈ [n], and X ∈ AX arbitrary. By the

Riesz Decomposition Property (c.f. [3, Section 8.5]), there are W1, ...,Wn ∈ X+ such that

Y −X =
∑n

i=1Wi and Wi � |Yi −Xi|, which means W ∈ AY−X . Hence, for all i ∈ [n], we

obtain Yi −Wi ∈ Ai by monotonicity of Ai, and thus X =
∑n

i=1 Yi −Wi ∈ A+. Moreover,

L0(Λ) is monotone and convex as well, which follows from the corresponding properties of Λ.

For B ⊂ B′, we have

inf {π(Z) | Z ∈M, X − Z ∈ B} ≥ inf
{
π(Z) | Z ∈M, X − Z ∈ B′

}
.
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As A+ ⊂ L0(Λ), (2) is proved if for arbitrary X ∈ X we can show the two estimates

Λ(X) ≥ inf {π(Z) | Z ∈M, X − Z ∈ A+} , (3.1)

and

Λ(X) ≤ inf {π(Z) | Z ∈M, X − Z ∈ L0(Λ)} . (3.2)

The first assertion trivially holds if Λ(X) = ∞. If X ∈ dom(Λ) =
∑n

i=1 dom(ρi), choose

X ∈ AX such that ρi(Xi) < ∞, i ∈ [n], and ε > 0 arbitrary. Suppose Z ∈
∏n
i=1 Si is such

that for pi(Zi) ≤ ρi(Xi) + ε
n and Xi − Zi ∈ Ai, i ∈ [n]. Set Z∗ := Z1 + ...+ Zn and observe

X − Z∗ ∈ A+ as well as
n∑
i=1

ρi(Xi) + ε ≥
n∑
i=1

pi(Zi) ≥ π(Z∗) ≥ inf{π(Z) | Z ∈M, X − Z ∈ A+}.

This proves (3.1). We now turn to (3.2). If Λ(X) = ∞, assume for contradiction there is

some Z ∈ M such that X − Z ∈ L0(Λ) ⊂
∑n

i=1 dom(ρi). Choose Y ∈ AX−Z such that

Yi ∈ dom(ρi) for all i, and let Z ∈ AsZ be arbitrary. Then

Λ(X) ≤
n∑
i=1

ρi(Yi + Zi) =

n∑
i=1

ρi(Yi) +

n∑
i=1

pi(Zi) <∞.

This is a contradiction and no such Z ∈ M can exist. (3.2) holds in this case. Now

assume X ∈ dom(Λ) and suppose Z ∈ M satisfies X − Z ∈ L0(Λ). Hence, for arbitrary

ε > 0 there is Y ∈ AX−Z such that
∑n

i=1 ρi(Yi) ≤ ε. As Y + Z ∈ AX for all Z ∈ AsZ ,

Λ(X) ≤ inf
Z∈AsZ

n∑
i=1

ρi(Yi + Zi) =
n∑
i=1

ρi(Yi) + π(Z) ≤ ε+ π(Z).

As ε > 0 was chosen arbitrarily, we obtain (3.2).

(3) Assume (NSA) and (SUP) are fulfilled, let φ0 ∈ X ∗ as described in (SUP), and note that

π is linear by (1). We shall prove that φ0|M = κπ for some κ > 0, so by rescaling φ0|M = π

may be assumed without loss of generality. To this end, we restate requirement (SUP)(ii)

as supY ∈A+
φ0(Y ) <∞, which entails positivity of the functional φ0 by monotonicity of A+.

(SUP)(i) means in particular that φ0|ker(π) ≡ 0. For each i ∈ [n] fix Ui ∈ Si ∩X++ such that

U :=
∑n

i=1 Ui satisfies π(U) =
∑n

i=1 pi(Ui) = 1. As for all Z ∈ M, Z − π(Z)U ∈ ker(π),

we infer φ0(Z − π(Z)U) = 0, or equivalently φ0 = φ0(U)π on M. By the second part of

(SUP)(i), φ0(Z̃) 6= 0 for some Z̃ ∈ M with π(Z̃) 6= 0. Using positivity of φ0, we obtain

0 < φ0(Z̃)

π(Z̃)
= φ0(U), hence we may set κ := φ0(U). Finally, if κ = 1, X ∈ X is arbitrary, and

Z ∈M is such that X − Z ∈ A+,

π(Z) = φ0(Z) = φ0(X)− φ0(X − Z) ≥ φ0(X)− sup
Y ∈A+

φ0(Y ) > −∞.

The bound on the right-hand side is independent of Z. Using the representation of Λ in (2),

properness follows.

(4) Note that Λ is M-additive by (2). Since Λ is proper, we cannot have π ≡ −∞, hence

π(0) = 0, i.e. (NSA) holds by (1). As regards positivity of π, choose Y ∈ X with Λ(Y ) ∈ R.
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For Z ∈ M ∩ X+, monotonicity of Λ then shows Λ(Y ) ≤ Λ(Y + Z) = Λ(Y ) + π(Z), which

entails π(Z) ≥ 0. It follows that (A+,M, π) is a risk measurement regime. �

The preceding proposition offers a more geometric perspective on assumption (SUP). Suppose

the agent system operates on a a locally convex Hausdorff topological Riesz space (X ,�, τ)

and satisfies (NSA). Moreover, assume we can find a security Z∗ ∈M such that

Z∗ /∈ clτ (A+ + ker(π)), (3.3)

where here and in the the following clτ (·) denotes the closure of a set with respect to the

topology τ . Then (SUP) means Z∗ is a security which comes at a true cost for the market;

it can be strictly separated from A+ + ker(π) using a linear functional φ0 ∈ X ∗+, and this

functional is exactly as described in (SUP).

In the situation of Proposition 3.1(4), the behaviour of the representative agent is given by

the risk measurement regime (A+,M, π). The risk sharing functional is the market capital

requirement associated to the market acceptance set A+ and the global security market

(M, π).

3.2. Optimal payoffs and Pareto optima. We now turn our attention to the existence

of Pareto optimal allocations. By Proposition 2.6, W ∈ dom(Λ) admits a Pareto optimal

allocation if and only if Λ is exact at W , i.e. (2.4) holds. We will see that this problem

is closely related to the existence of a market security ZW ∈ M which renders market

acceptability W − ZW ∈ A+ at the minimal price π(ZW ) = Λ(W ). The latter problem has

been studied by Baes et al. in [6].

Definition 3.2. W ∈ X admits an optimal payoff ZW ∈ M if W − ZW ∈ A+ and

π(ZW ) = Λ(W ).

Proposition 3.3. Suppose that Λ is proper. If X ∈ X admits an optimal payoff ZX ∈ M,

then X ∈ dom(Λ) and Λ is exact at X. In particular, for any Yi ∈ Ai, i ∈ [n], and Z ∈ As
ZX

such that
∑n

i=1 Yi = X−ZX the allocation (Yi+Zi)i∈[n] ∈ AX is Pareto optimal. If moreover

L0(ρi) = Ai + ker(pi), i ∈ [n], then Λ is exact at X ∈ dom(Λ) if, and only if X admits an

optimal payoff.

Proof. As Λ is proper, we have π is linear, finite valued, and π|Si = pi, i ∈ [n], by Proposi-

tion 3.1. Assume X ∈ X and Z = ZX ∈M are such that Λ(X) = π(Z) and X−Z ∈ A+. As

π(Z) ∈ R and Λ|A+ ≤ 0, X ∈ dom(Λ). Choose Yi ∈ Ai, i ∈ [n], such that X − Z =
∑n

i=1 Yi.

For any Z ∈ AsZ we thus have X =
∑n

i=1 Yi + Zi and

Λ(X) ≤
n∑
i=1

ρi(Yi + Zi) =

n∑
i=1

ρi(Yi) +

n∑
i=1

pi(Zi) ≤ π(Z) = Λ(X),

where we have used ρi(Yi) ≤ 0 and π(Z) =
∑n

i=1 pi(Zi) (Proposition 3.1). This shows

exactness of Λ at X.

Now assume L0(ρi) = Ai + ker(pi), i ∈ [n]. Let X ∈ dom(Λ) and X ∈ AX such that

Λ(X) =
∑n

i=1 ρi(Xi). Further, let Ui ∈ Si with pi(Ui) = 1. As Xi − ρi(Xi)Ui ∈ Ai + ker(pi),
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i ∈ [n], by assumption, we may find N ∈
∏n
i=1 ker(pi) such that Xi − ρi(Xi)Ui +Ni ∈ Ai for

every i ∈ [n]. The fact that
∑n

i=1 ρi(Xi)Ui − Ni is an optimal payoff for X is immediately

verified. �

In a topological setting, the existence of optimal payoffs is intimately connected to the

Minkowski sum A+ + ker(π) being closed:

Proposition 3.4. Suppose (X ,�, τ) is a topological Riesz space and Λ is proper. Then

A+ + ker(π) is closed if, and only if, Λ is l.s.c. and every X ∈ dom(Λ) admits an optimal

payoff.

Proof. Suppose first that A++ker(π) is closed. For lower semicontinuity, we have to establish

that Lc(Λ) is closed for every c ∈ R. To this end, let Ui ∈ Si ∩X++ such that pi(Ui) > 0 and

set U :=
∑n

i=1 Ui. Without loss of generality, we may assume π(U) = 1. We will show that

Lc(Λ) = cU + A+ + ker(π), (3.4)

which is closed whenever A+ + ker(π) is closed. The right-hand set in (3.4) is included in

the left-hand set by M-additivity of Λ. For the converse inclusion, let X ∈ Lc(Λ). For

every s > c, there is a Zs ∈ M such that c ≤ π(Zs) ≤ s and X − Zs ∈ A+. Consider the

decomposition

X − sU = X − Zs + (π(Zs)− s)U + Zs − π(Zs)U.

As X − Zs + (π(Zs) − s)U � X − Zs ∈ A+ and Zs − π(Zs)U ∈ ker(π), monotonicity of

A+ shows X − sU ∈ A+ + ker(π). Thus, X − cU = lims↓cX − sU ∈ clτ (A+ + ker(π)) =

A+ + ker(π), and (3.4) is proved. Setting c = 0 in (3.4) shows L0(Λ) = A+ + ker(π). Hence,

X − Λ(X)U ∈ A+ + ker(π) for all X ∈ dom(Λ), and for a suitable N ∈ ker(π) depending

on X we have X − Λ(X)U + N ∈ A+ and π(Λ(X)U − N) = Λ(X). Therefore, an optimal

payoff for X is given by Λ(X)U −N ∈M.

Assume now that Λ is l.s.c. and that every X ∈ dom(Λ) allows for an optimal payoff.

Let (Xi)i∈I be a net in A+ + ker(π) converging to X ∈ X . Then Λ(X) ≤ 0 by lower

semicontinuity of Λ. Let Z ∈M be an optimal payoff for X, so that π(Z) = Λ(X) ≤ 0. For

U as above and Y := X −Z ∈ A+ we obtain Y + π(Z)U ∈ A+ by monotonicity of A+. Also

Z − π(Z)U ∈ ker(π). Thus X = (Y + π(Z)U) + (Z − π(Z)U) ∈ A+ + ker(π). �

Proposition 3.4 is related to [6, Proposition 4.1]. Together with Proposition 3.3, it is a

powerful sufficient condition for the existence of Pareto optima which we shall apply in

Sections 4 and 5. The only non-trivial steps will be to verify the properness of Λ and

closedness of A+ + ker(π).

3.3. Existence of equilibria. We proceed with the discussion of equilibria in the very

general case when market losses are modelled by a Fréchet lattice (X ,�, τ). As this notion

is ambiguous in the literature, we emphasise that a Fréchet lattice is a locally convex-solid

topological Riesz space whose topology is completely metrisable.
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In particular, Banach lattices are Fréchet lattices. As a more general example, one may

consider the Wiener space C([0,∞)) of all continuous functions on the non-negative half-line

with the pointwise oder ≤ and the topology τD arising from the metric

D(f, g) :=
∞∑
k=1

2−k
max0≤r≤k |f(r)− g(r)|

1 + max0≤r≤k |f(r)− g(r)|
, f, g ∈ C([0,∞)).

Clearly, (C([0,∞)),≤, τD) is not a Banach lattice, but a Fréchet lattice. Its choice as model

space is justified if the primitives in question are continuous trajectories of, e.g., the net value

of some good over time.

For the following main meta theorem proving the existence of equilibria in case the model

space is a Fréchet lattice, recall the definition of the jointly accepted securities, Š :=
⋂n
i=1 Si.

Moreover, we set here and in the following int dom(Λ) to be the τ -interior of the effective

domain of the risk sharing functional Λ. Given a proper function f : X → (−∞,∞], its dual

conjugate is the function f∗ : X ∗ → (−∞,∞] defined by f∗(φ) = supX∈X φ(X) − f(X).

Given X ∈ dom(f), φ ∈ X ∗ is a subgradient of f at X if f(X) = φ(X)− f∗(φ).

Proposition 3.5. Suppose X is a Fréchet lattice and that Λ is l.s.c. and proper. Moreover,

let (NR) be satisfied, i.e. there is a Z̃ ∈ Š with π(Z̃) 6= 0. If W ∈
∏n
i=1Xi is such that

W := W1 + ...+Wn ∈ int dom(Λ) and there exists a Pareto optimal allocation of W , there is

an equilibrium (X, φ) of W.

Proof. Fix W ∈
∏n
i=1Wi such that W := W1 + ... + Wn ∈ int dom(Λ). As a Fréchet lattice

is a barrelled space, Λ is subdifferentiable at W by [16, Corollary 2.5 & Proposition 5.2],

i.e. there is a subgradient φ ∈ X ∗ of Λ at W satisfying Λ(W ) = φ(W ) − Λ∗(φ). As Λ is

monotone, φ ∈ X ∗+ , and by Lemma A.4

Λ∗(φ) =
n∑
i=1

ρ∗i (φ|Xi), φ ∈ X ∗. (3.5)

Let Y be any Pareto optimal allocation of W . As Λ(W ) =
∑n

i=1 ρi(Yi) ∈ R, Λ(W ), Λ∗(φ)

and ρ∗i (φ|Xi), i ∈ [n], are all real numbers. Also, as

∞ > ρ∗i (φ|Xi) ≥ sup
Z∈Si

φ(Yi + Z)− ρi(Yi + Z) = φ(Yi)− ρi(Yi) + sup
Z∈Si

φ(Z)− pi(Z),

φ|Si = pi, i ∈ [n], has to hold, which in turn implies φ|M = π by linearity of π and

Proposition 3.1. By (NR), we may fix Z̃ ∈ Š such that π(Z̃) = 1 = pi(Z̃), i ∈ [n]. Let

Xi := Yi + φ(Wi − Yi)Z̃, i ∈ [n].

Note that X ∈ AW holds because
∑n

i=1Wi =
∑n

i=1 Yi = W and thus
∑n

i=1Xi = W . More-

over, X is Pareto optimal:

n∑
i=1

ρi(Xi) =

n∑
i=1

ρi(Yi) + φ(Wi − Yi)π(Z̃) =

n∑
i=1

ρi(Yi) + φ(W −W ) =
n∑
i=1

ρi(Yi) = Λ(W ).
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Also, as φ(Xi)− ρ∗i (φ|Xi) ≤ ρi(Xi) for all i ∈ [n] and

n∑
i=1

ρi(Xi) = Λ(W ) = φ(W )− Λ∗(W ) =
n∑
i=1

φ(Xi)− ρ∗i (φ|Xi),

ρi(Xi) = φ(Xi)− ρ∗i (φ|Xi) has to hold for all i ∈ [n]. We claim that (X, φ) is an equilibrium.

Indeed, as φ(−Xi) = φ(−Wi) holds for all i ∈ [n], the budget constraints are satisfied.

Moreover, if i ∈ [n] and Y ∈ Xi satisfies φ(−Y ) ≤ φ(−Wi) = φ(−Xi), we obtain

ρi(Y ) ≥ φ(Y )− ρ∗i (φ|Xi) ≥ φ(Xi)− ρ∗i (φ|Xi) = ρi(Xi).

�

4. Polyhedral agent systems

In this section we assume that the agent system (R1, ...,Rn) operates on a market space

X given by a Fréchet lattice. Each agent i ∈ [n] operates on a closed ideal Xi ⊂ X , and

X1 + ... + Xn = X . The assumption of closedness implies that (Xi,�, τ ∩ Xi) is a Fréchet

lattice in its own right. We will assume that each acceptance set Ai ⊂ Xi is polyhedral.

Definition 4.1. Let (X ,�, τ) be a Fréchet lattice. A convex set C ⊂ X is called polyhedral

if there is a finite set J ⊂ X ∗ and β ∈ RJ such that

A = {X ∈ X | ∀φ ∈ J : φ(X) ≤ βφ}.
An agent system (R1, ...,Rn) is polyhedral if it has properties (NSA) and (SUP), and each

acceptance set Ai, i ∈ [n], is polyhedral.

Polyhedrality of a set C is equivalent to the existence of some m ∈ N, a continuous linear

operator T : X → Rm, and β ∈ Rm such that C = {X ∈ X | T (X) ≤ β}, where the defining

inequality is understood coordinatewise. In case of an acceptance set, the representing linear

operator can be chosen to be positive. Risk measures with polyhedral acceptance sets play

a prominent role in Baes et al. [6], where the set of optimal payoffs for a single such risk

measure is studied.

Example 4.2. For the sake of simplicity, we consider a finite-dimensional setting. Let A, B

and C be three finite and disjoint sets of scenarios for the future state of the economy, either

suggested by the internal risk management or a regulatory authority. We set Ω1 = A ∪ B,

Ω2 := B ∪ C, which are the scenarios relevant for agent i ∈ {1, 2}. B can be seen as a

non-trivial set of jointly relevant scenarios, and Ω := A ∪ B ∪ C is the set of scenarios that

are relevant to the whole system. However, as the relevant scenarios for agent i are ω ∈ Ωi, it

is both individually and systemically rational of her to demand that her stake in the sharing

of a market loss is neutral in scenarios ω ∈ Ω\Ωi. The canonical choice of the model spaces

is in consequence

X := {X : Ω→ R}, Xi := {X ∈ X | X|Ω\Ωi ≡ 0}, i = 1, 2.
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For illustration, we assume individual acceptability is defined in terms of scenariowise loss

constraints: let K1 ∈ X1 and K2 ∈ X2 be two arbitrary, but fixed vectors of individual loss

tolerances. Consider the risk measurement regimes

A1 := {X ∈ X1 | X ≤ K1}, S1 = span{1A,1B}, p1(x1A + y1B) = x+ y,

A2 := {X ∈ X2 | X ≤ K2}, S2 = span{1B,1C}, p2(x1B + y1C) = x+ y.

The (Arrow-Debreu type) securities 1A, 1B and 1C , respectively, pay off a unit amount in

case one of the scenarios of A, B, and C, respectively, realises. The objective is not to exceed

the loss tolerances K1 and K2 at minimal cost.

4.1. Existence of optimal payoffs, Pareto optima and equilibria. We turn to the

existence of optimal allocations in the setting introduced above. By definition, a polyhedral

agent system satisfies (NSA) and (SUP). The resulting risk sharing functional Λ is proper by

Proposition 3.1(3). By Propositions 3.3 and 3.4, the existence of Pareto optimal allocations

would be proved if closedness of A+ + ker(π) can be established.

For the following lemma, recall that a Fréchet space is a completely metrisable locally convex

topological vector space. In particular, every Fréchet lattice is a Fréchet space.

Lemma 4.3. Let X be a Fréchet space.

(1) A subset C ⊂ X is a polyhedron if, and only if, there are closed subspaces X 1,X 2 ⊂ X
such that X = X 1 ⊕X 2, dim(X 2) <∞, and C = X 1 + C′ for a polyhedron C′ ⊂ X 2.

(2) Suppose Y and X are Fréchet spaces, C ⊂ Y is polyhedral, and T : Y → X is a

surjective linear operator. Then T (C) is polyhedral in X .

Proof. (1) Combine the proof of [40, Corollary 2.1] with the Closed Graph Theorem [26,

Theorem 5].

(2) By (1), there are two closed subspaces Y1,Y2 ⊂ Y such that Y = Y1⊕Y2, dim(Y2) <∞,

and C = Y1 + C′ for a polyhedron C′ in the finite-dimensional subspace Y2. Define X 2 :=

T (Y2), which is finite-dimensional. Every finite-dimensional subspace of a Fréchet space is

complemented by a closed subspace. Thus X = X 1 ⊕ X 2 for a closed subspace X 1. Clearly,

T (C′) ⊂ X 2 is a polyhedron. Moreover, denoting by γi : X → X i the projection in X onto

the linear subspaces X i, surjectivity of T implies X 1 = γ1(X ) = γ1(T (Y1)) + γ1(T (Y2) =

γ1(T (Y1)). Moreover,

T (C) = T (Y1) + T (C′) = X 1 + γ2(T (Y1)) + T (C′).

γ2(T (Y1)) is as subspace of the finite-dimensional space X 2 a polyhedron, and so is the sum

γ2(T (Y1)) + T (C′) of two finite-dimensional polyhedra. Conclude with (1). �

Theorem 4.4. Let (R1, ...,Rn) be a polyhedral agent system on a Fréchet lattice X . Then

the set A++ker(π) is proper, polyhedral, and closed, Λ is ls.c., and every X ∈ dom(Λ) admits

an optimal payoff ZX ∈M, and can thus be allocated Pareto optimally as in Proposition 3.3.

Proof. The set A+ + ker(π) is proper by assumption (SUP). Moreover, it is polyhedral:

consider the Fréchet space Y := (
∏n
i=1Xi)×ker(π).5 By assumption, the set C := (

∏n
i=1Ai)×

5 Y is not a Fréchet lattice, hence the necessity for the above formulation of Lemma 4.3.
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ker(π) is polyhedral, and T : Y → X defined by T (X1, ..., Xn, N) =
∑n

i=1Xi+N is surjective

and linear. As X is a Fréchet space, Lemma 4.3(2) yields the polyhedrality of T (C) =

A+ + ker(π). As a polyhedron, it is automatically closed. Since Λ is proper, it is l.s.c. and

optimal payoffs exist for every X ∈ dom(Λ) by Proposition 3.4. �

Theorem 4.4 in conjunction with Proposition 3.5 imply the existence of equilibria:

Corollary 4.5. If a polyhedral agent system (R1, ...,Rn) on a Fréchet lattice X satisfies

(NR), for every W ∈
∏n
i=1Xi such that W1 + ...+Wn ∈ int dom(Λ) there is an equilibrium

(X, φ).

4.2. Lower hemicontinuity of the Pareto optima correspondence. In this section

we consider the correspondence P mapping X ∈ dom(Λ) to its Pareto optimal allocations

X ∈ AX . Invoking Proposition 2.6, we can represent

P(X) =

{
X ∈ AX

∣∣∣Λ(X) =
n∑
i=1

ρi(Xi)

}
. (4.1)

For a brief summary of terminology concerning and properties of correspondences (or set-

valued maps), we refer to Appendix A.3. The following theorem asserts that P is lower

hemicontinuous under mild conditions.

Theorem 4.6. Assume that for a polyhedral agent system the market space X is finite-

dimensional or Xi = X for all i ∈ [n]. Then the correspondence P is lower hemicontinuous

on dom(Λ), and admits a continuous selection on dom(Λ).

Its proof requires the following highly technical Lemmas 4.7 and 4.8 whose proofs imitate in

parts a technique from Baes et al. [6]. Note that in analogy with Theorem 4.4, A+ is closed.

Lemma 4.7. If Ai ⊂ Xi, i ∈ [n], are polyhedral acceptance sets and X is finite-dimensional,

the correspondence Γ : A+ 3 X → AX ∩
∏n
i=1Ai is lower hemicontinuous.

Proof. Each subspace Xi is polyhedral, as well. As in Definition 4.1, for each i ∈ [n] we fix

mi ∈ N, a positive linear and continuous operator Ti : X → Rmi , and vectors βi ∈ Rmi , such

that

Ai = {X ∈ X | Ti(X) ≤ βi}.
Step 1: For fixed X ∈ A+ we decompose Γ(X) as the sum of a universal and an X-dependent

component. Recall from Appendix A.1 that the recession cone of Γ(X) is given by 0+Γ(X) :=

{Y | ∀X ∈ Γ(X) ∀ k > 0 : X + kY ∈ Γ(X)}. The lineality space of Γ(X) is 0+Γ(X) ∩
(−0+Γ(X)) = {Y ∈ A0 | ∀ i ∈ [n] : Ti(Yi) = 0}, a subspace independent of X. By virtue of

Lemma A.2, there is a X-independent subspace V ⊂
∏n
i=1Xi such that

Γ(X) = α(X) + 0+Γ(X), α(X) := co(ext(Γ(X) ∩ V)),

where co(·) denotes the convex hull operator and ext(Γ(X)∩ V) the set of extreme points of

Γ(X) ∩ V.
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Step 2: In this step, we prove that the correspondence α : A+ →
∏n
i=1Ai maps bounded

sets to bounded sets. To this end, let D := dim(X ) = dim(X ∗) and choose a basis ψ1, ..., ψD
of X ∗. Note that X ∈ Γ(X) ∩ V if, and only if,

• X is an allocation of X, i.e. ψj(X1 + ...+Xn) = ψj(X) for all j ∈ [D], or equivalently

ψj(X1 + ...+Xn) ≤ ψj(X) and (−ψj)(X1 + ...+Xn) ≤ (−ψj)(X);

• each Xi lies in Ai, i.e. Ti(Xi) ≤ βi;
• X ∈ V.

Clearly, the properties listed above describe a polyhedral set; more precisely, for m :=∑n
i=1mi + 2D, mi defined above, we may find a continuous linear operator S : V → Rm

and a continuous function f : X → Rm such that

Γ(X) ∩ V = {X ∈ V | S(X) ≤ f(X)}.

Every “row” Si of S corresponds to an element of V∗. By [8, Theorem II.4.2], for every

extreme point X ∈ α(X) ∩ V the set I(X) = {i ∈ [m] | Si(X) = fi(X)}, which contains at

least dim(V) elements, satisfies that span{Si | i ∈ I(X)} = V∗. Let F(X) := {I(X) | X ∈
ext(Γ(X) ∩ V)} be the collection of all such I(X) corresponding to an extreme point. Its

cardinality is bounded by the finite number of extreme points, the latter depending on dim(V)

and m only. Moreover, for each I ∈ F(X), the linear operator SI : V 3 Y 7→ (Si(Y))i∈I is

injective and thus invertible on its image. Keeping [8, Corollary II.4.3] in mind, we have shown

(SI)I∈F(X) is a finite family of invertible operators whose cardinality depends on dim(V) and

m only. Let B ⊂ X be a bounded set. For each I ∈ F(X), fI is continuous and thus maps B
to a bounded set. Also, S−1

I is continuous by the Closed Graph Theorem [26, Theorem 5],

whence boundedness of {S−1
I (fI(X)) | X ∈ A} follows. Recall that {F(X) | X ∈ B} is finite.

Using Carathéodory’s Theorem [32, Theorem 17.1], co{S−1
I (fI(X)) | X ∈ B, I ∈ F(X)} is

bounded. As⋃
X∈B

α(X) =
⋃
X∈B

co{S−1
I (fI(X)) | I ∈ F(X)} ⊂ co{S−1

I (fI(X)) | X ∈ B, I ∈ F(X)},

it has to be bounded as well and Step 2 is proved.

Step 3: Γ is lower hemicontinuous. Let (Xk)k∈N ⊂ A+ be convergent to X ∈ A+ and let

X ∈ Γ(X). We have to show that there is a subsequence (kλ)λ∈N and Xλ ∈ Γ(Xkλ) such

that Xλ → X; c.f. Appendix A.3. To this end, let first Yk ∈ α(Xk), k ∈ N, which is

a bounded sequence by Step 2. After passing to a subsequence (kλ)λ∈N, we may assume

Ykλ → Y ∈ Γ(X) (as Ai is closed, i ∈ [n]). If Γ(X) is a singleton, Y = X has to hold and

we may choose Xλ := Ykλ . Otherwise, suppose first that X lies in the relative interior of

Γ(X), i.e. there is an ε > 0 such that X + ε(X −Y) ∈ Γ(X), as well. Recall the definition

of the linear operators Ti, i ∈ [n] above and fix i ∈ [n]. Let 1 ≤ j ≤ mi be arbitrary. We

denote by T ji (W ) the j-th entry of Ti(W ).

Case 1: T ji (Xi) = βj . From Yi ∈ Ai, we infer

0 ≥ T ji (Xi + ε(Xi − Yi))− βj = ε(βj − T ji (Yi)) ≥ 0,
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which means T ji (Yi) = βj , as well. Set λ(i, j) = 1.

Case 2: T ji (Xi) < βj . As Y kλ
i → Yi for λ→∞, there must be a λ(i, j) ∈ N such that for all

λ ≥ λ(i, j)

T ji (Y kλ
i − Yi +Xi) ≤ βj .

Hence for all λ ≥ maxi∈[n],1≤j≤mi λ(i, j), one obtains

Xλ := Ykλ −Y + X ∈
n∏
i=1

Ai ∩ AXkλ = Γ(Xkλ),

and Xλ → X. It remains to notice that each X ∈ Γ(X) may be approximated with a sequence

in the relative interior of Γ(X), c.f. [32, Theorem 6.3]. The assertion is proved. �

Lemma 4.8. If Ai ⊂ Xi, i ∈ [n], are polyhedral acceptance sets and Xi = X for all i ∈ [n],

the correspondence Γ : A+ 3 X → AX ∩
∏n
i=1Ai is lower hemicontinuous.

Proof. We shall derive the assertion from Lemma 4.7. For i ∈ [n] fixed, Lemma 4.3(1)

allows to find closed subspaces X 1
i ,X 2

i ⊂ X , the latter of finite dimensions, and polyhedral

acceptance sets Ãi ⊂ X 2
i such that X = X 1

i ⊕ X 2
i and Ai = X 1

i + Ãi. The space X 2 :=∑n
i=1X 2

i is finite-dimensional and thus complemented in X by a closed subspace X 1, and

the projections γi : X → X i are continuous linear operators. Hence, we may rewrite Ai =

X 1 + Bi and A+ = X 1 + B+, where Bi = Ãi + γ2(X 1
i ) and B+ :=

∑n
i=1 Bi. Furthermore,

A+ = {X ∈ X | γ2(X) ∈ B+} and Γ̃ : B+ 3 Y →
∏n
i=1 Bi ∩ {Y ∈ (X 2)n |

∑n
i=1 Yi = Y } is

lower hemicontinuous by Lemma 4.7.

Let now (Xk)k∈N ⊂ A+ be a sequence converging to X ∈ A+, which implies γ2(Xk)→ γ2(X)

for k → ∞. Let X ∈ Γ(X), whence Y := (γ2(X1), ..., γ2(Xn)) ∈ Γ̃(γ2(X)) follows. As Γ̃

is lower hemicontinuous, there is a subsequence (kλ)λ∈N and Yλ ∈ Γ̃(γ2(Xkλ)) such that

Yλ → Y. Now we define Xλ ∈ X n by setting Xλ
i := γ1(Xi) + 1

nγ1(Xkλ −X) and note that∑n
i=1X

λ
i = γ1(Xkλ). Lower hemicontinuity of Γ follows once we observe Xλ + Yλ ∈ Γ(Xkλ)

and Xλ + Yλ → X. �

Proof of Theorem 4.6. In addition to the correspondence P defined by (4.1) consider the

following three correspondences:

• Γ1 : dom(Λ) � M, X 7→ {Z ∈ M | X − Z ∈ A+, Λ(X) = π(Z)}, which is lower

hemicontinuous on dom(Λ) by virtue of the polyhedrality of A+ and [6, Theorem

5.11].

• Γ2 : A+ �
∏n
i=1Ai, X 7→ AX ∩

∏n
i=1Ai, which is lower hemicontinuous by Lemmas

4.7 and 4.8, respectively.

• Γ3 :M�
∏n
i=1 Si, Z 7→ AsZ , which is lower hemicontinuous by Lemma A.5.

Applying [3, Theorem 17.23], Γ : dom(Λ) 3 X 7→ Γ2({X} − Γ1(X)) + Γ3(Γ1(X)) is lower

hemicontinuous as well.

In fact, Γ = P holds. To see this, let X ∈ dom(Λ) be arbitrary. Γ2({X} − Γ1(X)) +

Γ3(Γ1(X)) ⊂ P(X) follows from the proof of Proposition 3.3. For the converse inclusion, let
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X ∈ P(X) be arbitrary. Choose Zi ∈ Si, i ∈ [n], such that Xi−Zi ∈ Ai and ρi(Xi) = pi(Zi),

which is possible by Theorem 4.4 in the case n = 1. Let Z = Z1 + ...+ Zn and note that

π(Z) =
∑n

i=1 pi(Zi) =
∑n

i=1 ρi(Xi) = Λ(X),

i.e. Z ∈ Γ1(X). Moreover, as X − Z ∈ Γ2(X − Z) ⊂ Γ2({X} − Γ1(X)), it only remains to

note X = (X− Z) + Z ∈ Γ2({X} − Γ1(X)) + Γ3(Γ1(X)). Equality of sets is established.

Finally, dom(Λ) is metrisable and therefore paracompact; c.f. [33]. Moreover, X n is a Fréchet

space, and as P : dom(Λ) �
∏n
i=1Xi has non-empty closed convex values, a continuous

selection for P exists by the Michael Selection Theorem [3, Theorem 17.66]. �

One may wonder whether the correspondence E :
∏n
i=1Xi �

∏n
i=1Xi×X ∗ mapping an initial

loss endowment W to all its equilibrium allocations such that X ∈ P(W1 + ...+Wn) and φ is

a subgradient of Λ at W1 + ...+Wn, as in the proof of Proposition 3.5 is lower hemicontinuous

under suitable conditions. This, however, is not the case. Suppose X admits two positive

functionals φ, ψ ∈ X ∗+ such that ker(φ)\ ker(ψ) 6= ∅. We assume n = 1 and consider an agent

system R = (A,S, p) such that ρR(X) = max{φ(X), ψ(X)}, X ∈ X . Let W ∈ X such

that φ(W ) = 0 < ψ(W ). Thus, for all n ∈ N, the equilibrium price at 1
nW would be ψ,

whereas any element of co({φ, ψ}) could be chosen as equilibrium price at 0. E is not lower

hemicontinuous in this case.

4.3. An example. We close this section by showing how Pareto optima can be computed

in the situation of Example 4.2. Note that for x, y ∈ R, we have

X − x1A − y1B ∈ A1 ⇐⇒ max
a∈A

X(a)−K1(a) ≤ x and max
b∈B

X(b)−K1(b) ≤ y.

Consequently,

ρ1(X) := ρR1(X) = max
a∈A

X(a)−K1(a) + max
b∈B

X(b)−K1(b), X ∈ X1,

and it only takes finite values. An analogous computation shows

ρ2(X) := ρR2(X) = max
b∈B

X(b)−K2(b) + max
c∈C

X(c)−K2(c), X ∈ X2.

which also takes only finite values. One easily proves that (R1,R2) is a polyhedral agent

system and that the representative agent for it is given by

A+ = A1 +A2 = {X ∈ X | X ≤ K̃ := K1 +K2}, M = span{1A,1B,1C},
π(x1A + y1B + z1C) = x+ y + z, x, y, z ∈ R.

Furthermore

ker(π) = {Nx,y := x1A − (x+ y)1B + y1C | x, y ∈ R}.
We now aim to compute the associated risk sharing functional Λ and Pareto optimal alloca-

tions. To this end, for X ∈ X , we introduce the notation ρA(X) := maxa∈AX(a) −K1(a),

ρB(X) := maxb∈BX(b) − K̃(b), and ρC(X) := maxc∈C X(c) −K2(c). Using the characteri-

sation of A+, one obtains

A+ + ker(π) = {X ∈ X | ρB(X) ≤ −ρA(X)− ρC(X)}.
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A straightforward computation yields

Λ(X) = inf{r ∈ R | X − r1B ∈ A+ + ker(π)} = ρA(X) + ρB(X) + ρC(X).

Note that X − Λ(X)1B −NρA(X), ρC(X) ∈ A+, since(
(X − ρA(X))1A +K11B, (X − ρB(X)−K1)1B + (X − ρC(X))1C

)
is an allocation of X − Λ(X)1B −NρA(X), ρC(X) which lies in A1 ×A2. For every ζ ∈ R, the

allocation (X1(ζ), X2(ζ)) given by

X1(ζ) = X1A + (K1 − ρA(X) + ζΛ(X))1B

and

X2(ζ) = (X − ρB(X)− ρC(X)−K1 − (ζ − 1)Λ(X))1B +X1C

is Pareto optimal. Last, we note that an optimal payoff for X is given by ρA(X)1A+(Λ(X)−
ρA(X)− ρC(X))1B + ρC(X)1C ∈M.

5. Law-invariant acceptance sets

In this section we discuss the risk sharing problem for law-invariant acceptance sets. Through-

out we fix an atomless probability space (Ω,F ,P). By L∞ := L∞(Ω,F ,P) and L1 :=

L1(Ω,F ,P) we denote the spaces of equivalence classes of bounded and P-integrable random

variables, respectively. They are Banach lattices when equipped with the usual P-almost

sure (a.s.) order and their natural norms ‖ · ‖∞ : X 7→ inf{m > 0 | P(|X| ≤ m) = 1} and

‖ · ‖1 : X 7→ E[|X|]. All appearing (in)equalities between random variables are understood in

the a.s. sense.

Definition 5.1. A subset C ⊂ L1 is P-law-invariant if X ∈ C whenever there is Y ∈ C
which is equal to X in law under P, i.e. the two Borel probability measures P ◦ X−1 and

P◦Y −1 on (R,B(R)) agree. Given a P-law-invariant set ∅ 6= C ⊂ L1 and some other set S 6= ∅,
a function f : C → S is called P-law-invariant if P ◦X−1 = P ◦ Y −1 implies f(X) = f(Y ).

5.1. Existence of optimal payoffs, Pareto optima, and equilibria. Let us specify the

setting.

Model space assumptions: Throughout this section, all agents i ∈ [n] operate on the same

model space Xi = X ⊂ L1 consisting of equivalence classes of integrable random variables.

For the sake of clarity, we will first discuss the results in the maximal case X = L1. In Section

5.3, the results will be generalised to a wide class of model spaces L∞ ⊂ X ⊂ L1.

Acceptance sets: Each agent i ∈ [n] deems a loss profile adequately capitalised if it belongs

to a closed P-law-invariant acceptance set Ai ⊂ L1 which contains a riskless payoff, i.e.

R ∩ Ai 6= ∅. (5.1)

As the dual space of L1 may be identified with L∞, we may see the respective support

functions as mappings

σAi : L∞ → (−∞,∞], Q 7→ sup
Y ∈Ai

E[QY ];
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c.f. Appendix A.1. Due to monotonicity of the sets Ai, dom(σAi) ⊂ L∞+ holds. The reader

may think of acceptance sets arising, for instance, from the Average Value at Risk (Expected

Shortfall) or distortion risk measures.

Security markets: Regarding the security markets, we require there is a linear functional

π :M→ R on the global security space M such that the individual pricing functionals are

given by pi = π|Si , i ∈ [n]; the agents operate on different sub-markets (Si, π|Si) of (M, π).

In particular, conditions (?) and (NSA) are satisfied. Moreover, we assume

Assumption 5.2. π is of the shape π(Z) = pEQ[Z], Z ∈M, where p > 0 is a fixed constant

and Q = QdP, Q ∈ L∞+ , is a probability measure such that either

(1) Q = 1, i.e. Q = P, or

(2) Q ∈
⋂n
i=1 dom(σAi) and for all 0 6= N ∈ M such that EQ[N ] = 0 there exists

QN ∈
⋂n
i=1 dom(σAi) such that E[QNN ] > 0.

Our assumption on the pricing functionals is quite flexible as illustrated by Example 5.14

below. Assumption 5.2(2) means the agent’s view on acceptability is risk averse with respect

to pricing, and that a fully leveraged security N with non-trivial variance and price 0 cannot

be market acceptable at all quantities. Recall from the introduction that assuming the

individual acceptance sets Ai to be law-invariant means that being acceptable or not is

merely a statistical property of the loss profile. Mathematically, this intuition necessitates

introducing the hypothetical physical measure P. Prices in the security market can, e.g., be

determined by a suitable martingale measure Q though. For the remainder of this section we

assume that Assumption 5.2 is satisfied.

In order to deduce the existence of optimal payoffs and Pareto optimal allocations from

Proposition 3.4 in the case X = L1, properness of Λ and closedness of A+ + ker(π) must be

verified. In a first step we characterise the recession cone 0+C of a convex law-invariant set

C, which is also of independent interest. For the definition of a recession cone, we refer to

Appendix A.1.

Proposition 5.3. Suppose ∅ 6= C ( L1 is law-invariant, convex, and closed. Then 0+C is

law-invariant. If furthermore C does not agree with one of the sets

{X ∈ L1 | c− ≤ E[X] ≤ c+}
where −∞ ≤ c− ≤ c+ ≤ ∞, then U ∈ 0+C and E[U ] = 0 imply U = 0.

Proof. As C is norm closed and convex, the Hahn-Banach Separation Theorem gives the

representation

C = {X ∈ L1 | ∀Q ∈ dom(σC) : E[QX] ≤ σC(Q)},
where σC is the support function of C. It is well-known that dom(σC) is a law-invariant,

closed and convex cone in L∞. The law-invariance of dom(σC) combined with Lemma A.1

shows that the recession cone 0+C is law-invariant as well. Consequently, by [34, Lemma

1.3], for any U ∈ 0+C, Q ∈ dom(σC), and sub-σ-algebra H ⊂ F , we have

E[U |H] ∈ 0+C and E[Q|H] ∈ dom(σC). (5.2)
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Now suppose that C does not equal some set of type {X ∈ L1 | c− ≤ E[X] ≤ c+}. Then there

is a non-constant Q ∈ dom(σC). Further, suppose U ∈ 0+C is not constant. As (Ω,F ,P) is

non-atomic, for k ≥ 2 large enough there is a finite measurable partition6 Π := (A1, ..., Ak)

of Ω such that P(Aj) = 1
k , j ∈ [k], and U∗ = E[U |σ(Π)] =

∑k
i=1 ui1Ai and Q∗ = E[Q|σ(Π)] =∑k

i=1 qi1Ai are both non-constant. As for any permutation τ : [k]→ [k] the random variable

U∗τ :=
∑k

i=1 uτ(i)1Ai has the same distribution under P as U∗, U∗τ ∈ 0+C follows. Similarly,

Q∗τ :=
∑k

i=1 qτ(i)1Ai ∈ dom(σC). For our argument we will hence assume without loss of

generality that the vectors u and q satisfy u1 ≤ ... ≤ uk and q1 ≤ ... ≤ qk. In both chains of

ineqalities, at least one inequality has to be strict. We estimate

E[Q]E[U ] = E[Q∗]E[U∗] =

(
1

k

k∑
i=1

qi

)
·

(
1

k

k∑
i=1

ui

)
<

1

k

k∑
i=1

qiui = E[Q∗U∗] ≤ 0,

where the first strict inequality is due to Chebyshev’s sum inequality [25, Theorem 43] and

u and q being non-constant, and the last inequality is due to U∗ ∈ 0+C, Q∗ ∈ dom(σC), and

Lemma A.1. E[U ] = 0 is hence impossible. �

In order to apply the preceding proposition to acceptance sets, note that they have the shape

{X ∈ L1 | c− ≤ E[X] ≤ c+} if, and only if, −∞ = c− < c+ <∞. We also need the notion of

comonotone partitions of the identity, or comonotone functions, i.e. functions

in the set

C := {f = (f1, ..., fn) : R→ Rn | fi non-decreasing,
∑n

i=1 fi = idR}.
For γ > 0, we set Cγ := {f ∈ C | f(0) ∈ [−γ, γ]n}. One easily verifies that for f ∈ C and

i ∈ [n] the coordinate function fi is Lipschitz continuous with Lipschitz constant 1. From

[22, Lemma B.1] we recall the following compactness result:

Lemma 5.4. For every γ > 0, Cγ ⊂ (Rn)R is sequentially compact in the topology of

pointwise convergence.

Proposition 5.5. Under the assumptions of this section A+ + ker(π) is a closed and proper

subset of L1, and Λ is proper and l.s.c.

Proof. The individual acceptance sets Ai may be used to define P-law-invariant l.s.c. mone-

tary base risk measures ξi by

ξi(X) := inf{m ∈ R | X −m ∈ Ai} ∈ (−∞,∞], X ∈ L1.

By (5.1), ξi(Y ) ∈ R holds for all bounded random variables Y ∈ L∞. Recall that we set

Lc(f) := {s ∈ S | f(s) ≤ c} for a function f : S → [−∞,∞] and a level c ∈ R. The identity

Lc(ξi) = c+Ai for c ∈ R is easily verified. The risk measures ξi admit a dual representation

ξi(X) = sup
Q∈dom(ξ∗i )

E[QX]− ξ∗i (Q), X ∈ L1, (5.3)

6 That is the sets are pairwisely disjoint, measurable, and their union is Ω.
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where cash-additivity implies that

dom(ξ∗i ) ⊂ {Q ∈ (L∞)+ | E[Q] = 1} and ξ∗i (Q) = σAi(Q), Q ∈ dom(ξ∗i ). (5.4)

Moreover, the infimal convolution ξ := �n
i=1ξi > −∞ is a P-law-invariant monetary risk

measure on L1 as well and ξ∗ =
∑n

i=1 ξ
∗
i by Lemma A.4. Now, by [22, Corollary 2.7], ξ is

l.s.c., and for each X ∈ dom(ξ) there is f ∈ C such that

ξ(X) =
n∑
i=1

ξi(fi(X)). (5.5)

Suppose now X ∈ L1 satisfies ξ(X) ≤ 0 and let f as in (5.5). For all i ∈ [n] we may choose

ci ∈ R such that ξi(fi(X) − ci) = ξi(fi(X)) − ci ≤ 0 and
∑n

i=1 ci = 0. If gi := fi − ci,

gi(X) ∈ L0(ξi) = Ai, i ∈ [n]. Hence, X =
∑n

i=1 gi(X) ∈
∑n

i=1Ai = A+. We have thus

shown that

L0(ξ) = A+.

As ξ is l.s.c. the left-hand set (and thus also the right-hand set) is norm closed.

If Assumption 5.2(1) holds, i.e. π(·) = pE[·], in view of Proposition 5.3 either 0+A+∩ker(π) =

{0} or A+ = Lc(E[·]) for some c ∈ R. In the latter case, 0+A+∩ker(π) = ker(π) is a subspace

as well. By Dieudonné’s Theorem [39, Theorem 1.1.8], A+ + ker(π) is closed.

Suppose Assumption 5.2(2) holds. For N ∈ 0+A+ ∩ ker(π) we have EQ[N ] = 0. If N 6= 0,

by assumption and (5.4) there is QN ∈ dom(ξ∗) such that E[QNN ] > 0. Hence, Lemma A.1

implies 0+A+∩ker(π) = {0}. Again, Dieudonné’s Theorem yields closedness of A+ +ker(π).

For properness of Λ, let X ∈ L1 be arbitrary. Suppose Z ∈M is such that X −Z ∈ A+, i.e.

ξ(X − Z) ≤ 0. If p > 0 and Q� P are chosen as in Assumption 5.2, we infer from (5.4)

0 ≥ EQ [X − Z]− ξ∗(Q) = EQ[X]− ξ∗(Q)− 1

p
π(Z),

which implies π(Z) ≥ p(EQ[X] − ξ∗(Q)) > −∞. Properness follows with the representation

of Λ given in Proposition 3.1(2). Lower semicontinuity of Λ is due to Proposition 3.4. �

We are ready to prove the existence of Pareto optimal allocations.

Theorem 5.6. Under the assumptions of this section all X ∈ dom(Λ) admit an optimal

payoff ZX ∈M. In particular, for any X ∈ dom(Λ), there exists a Pareto optimal allocation

X of the shape

Xi = Ai −Ni + Λ(X)Ui, Ai := fi(X − Λ(X)U +N) ∈ Ai, i ∈ [n], (5.6)

where Ui ∈ Si ∩ L1
++ are such that U :=

∑n
i=1 Ui satisfies π(U) = 1, N ∈ ker(π) is an

X-dependent zero cost global security, N ∈ AsN is arbitrary and f ∈ C is X-dependent.

Proof. By Proposition 5.5, Λ is proper and A+ + ker(π) is closed. By Proposition 3.4,

every X ∈ dom(Λ) admits an optimal payoff ZX and thus a Pareto optimal allocation

by Proposition 3.3. For the concrete shape of ZX and the Pareto optimal allocation, let

U ∈
∏n
i=1 Si be as in the assertion. As in the proof of Proposition 5.5, we may find f ∈ C
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such that fi(X − ZX) ∈ Ai, i ∈ [n]. As π(ZX) = Λ(X), N := Λ(X)U − ZX ∈ ker(π). For

any N ∈ AsN we have ZX := Λ(X)U−N ∈ As
ZX

. According to Proposition 3.3,

f(X − ZX) + ZX = f(X − Λ(X)U +N) + Λ(X)U−N

is a Pareto optimal allocation of X with f(X − Λ(X)U +N) ∈
∏n
i=1Ai. �

Remark 5.7. If n = 1, Λ = ρR and Theorem 5.6 in fact solves the optimal payoff problem

studied in [6].

We now turn our attention to the existence of equilibria. Proposition 3.5 in conjunction with

Theorem 5.6 proves

Corollary 5.8. In the situation of Theorem 5.6, suppose that the agent system checks (NR).

Then for every W ∈ (L1)n such that W =
∑n

i=1Wi ∈ int dom(Λ) there is an equilibrium

(X, φ).

Finding elements in the interior of dom(Λ) usually requires stronger continuity properties

of the involved risk measures and is an important motivation for studying the risk sharing

problem on general model spaces in Section 5.3 endowed with a stronger topology than

‖ · ‖1. Given a loss W ∈ L1, the trick is to find a suitable model space (X , ‖ · ‖) such that

W ∈ int‖·‖dom(Λ|X ); see, e.g., [14, 28, 30, 35].

5.2. Upper hemicontinuity of Pareto optima and equilibrium allocations. By Lemma

A.5 there is a continuous selection Ψ : M →
∏n
i=1 Si of M 3 Z 7→ AsZ . Hence, the corre-

spondence P̂ : L1 � (L1)n mapping X to Pareto optimal allocations of shape (5.6) such

that, additionally, the security allocation of N ∈ ker(π) is given by Ψ(N)7 has non-empty

values on dom(Λ) by Theorem 5.6. Although it might be the case that not all Pareto opti-

mal allocations of X ∈ dom(Λ) are elements of P̂(X), P̂ has the advantage of being upper

hemicontinuous on the interior of the domain of Λ.

Theorem 5.9. In the situation of Theorem 5.6 suppose A+ does not agree with one of the

level sets {X ∈ L1 | E[X] ≤ c}, c ∈ R. Then P̂ is upper hemicontinuous at every continuity

point X ∈ dom(Λ) of Λ and, a fortiori, on int dom(Λ).

Proof. We start with any sequence (Xk)k∈N ⊂ int dom(Λ) that converges to X ∈ int dom(Λ).

For all k ∈ N let Xk = (Xk
i )i∈[n] ∈ P̂(Xk). By Appendix A.3, it is enough to show that there

is a subsequence (kλ)λ∈N and an allocation X ∈ P̂(X) such that Xkλ → X coordinatewise

for λ → ∞. To this end, we first recall the construction of Xk, k ∈ N: There are sequences

(Nk)k∈N ⊂ ker(π) and (fk)k∈N ⊂ C such that

• Aki := fki (Xk − Λ(Xk)U +Nk) ∈ Ai, i ∈ [n];

• Xk = Ak + Λ(Xk)U−Nk, where Nk = Ψ(Nk).

7 Recall that the N in (5.6) can be chosen arbitrarily.
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We will establish in three steps that (Nk)k∈N and (fk)k∈N lie in suitable relatively sequentially

compact sets, which will allow us to choose the convergent subsequence.

First, as Λ is continuous on int dom(Λ) by [16, Corollary 2.5], (Xk−Λ(Xk)U)k∈N is a bounded

sequence.

The second step is to prove that (Nk)k∈N is a norm bounded sequence as well. We assume

for contradiction we can select a subsequence (kλ)λ∈N such that 1 ≤ ‖Nkλ‖1 ↑ ∞. Using

compactness of the unit sphere in the finite-dimensional space ker(π) and potentially passing

to another subsequence, we may furthermore assume

1

‖Nkλ‖1
Nkλ → N∗ ∈ ker(π)\{0}, λ→∞,

Let Y ∈ A+ be arbitrary and note that

Y +N∗ = lim
λ→∞

(1− ‖Nkλ‖−1
1 )Y + ‖Nkλ‖−1

1

(
Xkλ − Λ(Xkλ)U +Nkλ

)
∈ A+,

as the latter set is closed and convex and the sequence
(
Xkλ − Λ(Xkλ)U

)
λ∈N is norm bounded.

Hence, N∗ ∈ 0+A+ ∩ ker(π) which is trivial by Assumption 5.2 and Proposition 5.3, leading

to the desired contradiction. (Nk)k∈N has to be bounded and {Nk | k ∈ N} ⊂ ker(π) is

relatively (sequentially) compact by the finite dimension of the latter space.

In a third step, we establish relative sequential compactness for {fk | k ∈ N}. To this end,

recall the definition of the monetary risk measures ξi in the proof of Proposition 5.5. We

assert that ξ∗i (1) < ∞ holds for all i ∈ [n]. Indeed, the dual conjugate ξ∗i is law-invariant

function and thus dilatation monotone: for all Q ∈ L∞ and every sub-σ-algebra H ⊂ F , we

have ξ∗i (E[Q|H]) ≤ ξ∗i (Q). By choosing H := {∅,Ω}, ξ∗i (1) = infQ∈dom(ξ∗i ) ξ
∗(Q) = −ξi(0) ∈ R

follows. Now fix k ∈ N and let I := {i ∈ [n] | fki (0) > 0} and J := [n]\I. If I is empty,

fki (0) = 0 has to hold for all i ∈ [n]. Now suppose we can choose i ∈ I. We abbreviate

W k := Xk − Λ(Xk)U +Nk and estimate

−E[|W k|] ≤ −E[|fki (W )− fki (0)|] ≤ E[fki (W k)− fki (0)]

≤ ξi(fki (W k)) + ξ∗i (1)− fki (0) ≤ ξ∗i (1)− fki (0),

where we used that Aki = fki (W k) ∈ Ai. Hence,

∀i ∈ I : |fki (0)| ≤ ξ∗i (1) + ‖W k‖1. (5.7)

If j ∈ J , we obtain from the requirement fk1 + ...+ fkn = idR

|fkj (0)| = −fkj (0) ≤ −
∑
i∈J

fki (0) =
∑
i∈I

fki (0) ≤
∑
i∈[n]

ξ∗i (1) + n‖W k‖1 =: γk.

Thus, fk ∈ Cγk . As the bound γk depends on k only in terms of ‖W k‖1 which is uniformly

bounded in k by the first and the second step, γ := supk∈N γk <∞ and (fk)k∈N ⊂ Cγ .

After passing to subsequences two times, we can find a subsequence (kλ)λ∈N such that

• ker(π) 3 N := limλ→∞N
kλ exists and thus Ψ(Nkλ)→ Ψ(N) for λ→∞.
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• for a suitable f ∈ Cγ it holds that maxi∈[n] |fkλ − f | → 0 pointwise for λ → ∞, c.f.

Lemma 5.4.

It remains to show that
(
f i(X − Λ(X)U +N) + Λ(X)Ui + Ψ(N)i

)
i∈[n]

∈ P̂(X) and that it

is the limit of the subsequence of the Pareto optimal allocations chosen initially. To this end,

we set A := f(X − Λ(X)U +N) and g
(kλ)
i := f

(kλ)
i − f (kλ)

i (0). P-a.s., the estimate∣∣∣Ai −Akλi ∣∣∣ ≤ ∣∣∣(gi − gkλi )(X − Λ(X)U +N)
∣∣∣

+
∣∣∣fkλi (X − Λ(X)U +N)− fkλi (Xkλ − Λ(Xkλ)U +Nkλ)

∣∣∣
+
∣∣∣fi(0)− fkλi (0)

∣∣∣
(5.8)

holds. The third term vanishes for λ→∞. The first tirm vanishes in norm due to dominated

convergence. From the estimate∥∥∥∣∣∣fkλi (X − Λ(X)U +N)− fkλi (Xkλ − Λ(Xkλ)U +Nkλ)
∣∣∣∥∥∥

1

≤
∥∥∥X −Xkλ − (Λ(X)− Λ(Xkλ))U +N −Nkλ

∥∥∥
1
,

we infer the second term vanishes in norm, as well. Set N := Ψ(N). Lower semicontinuity

of ρi — which follows from Theorem 5.6 applied in the case n = 1 — yields

n∑
i=1

ρi(Ai + Λ(X)Ui −Ni) ≤ lim inf
λ→∞

n∑
i=1

ρi(A
kλ
i + Λ(Xkλ)Ui −Nkλ

i ) = lim inf
λ→∞

Λ(Xkλ) = Λ(X).

The definition of Λ eventually yields that the inequality is actually an equality, i.e.

n∑
i=1

ρi(Ai + Λ(X)Ui −Ni) = Λ(X).

We have proved that (Ai + Λ(X)Ui − Ni)i∈[n] ∈ P̂(X) and thus upper hemicontinuity, c.f.

Appendix A.3.

The same proof applies if X ∈ dom(Λ) is such that Λ is continuous at X. �

5.3. General model spaces. The aim of this section is to demonstrate that assuming the

agents to operate on the space X = L1 does not restrict the generality of Theorems 5.6 and

5.9 and Corollary 5.8. Indeed X may be chosen to be any law-invariant ideal within L1 with

respect to the P-a.s. order falling in one of the following two categories:

(BC) Bounded case: X = L∞ equipped with the supremum norm ‖ · ‖∞.

(UC) Unbounded case: L∞ ⊂ X ⊂ L1 is a P-law invariant Banach lattice endowed with an

order continuous law-invariant lattice norm ‖ · ‖.8

8 As X will be a super Dedekind complete Riesz space, this translates as the fact that whenever Xn ↓ 0 in

order, ‖Xn‖ ↓ 0 holds as well.
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In the unbounded case, one can show that the identity embeddings L∞ ↪→ X ↪→ L1 are

continuous, i.e. there are constants κ,K > 0 such that ‖X‖ ≤ κ‖X‖∞ and ‖Y ‖1 ≤ K‖Y ‖
holds for all X ∈ L∞ and Y ∈ X . Moreover, for all φ ∈ X ∗ there is a unique Q ∈ L1

such that QX ∈ L1 and φ(X) = E[QX] hold for all X ∈ X . The reader may think here of

Lp-spaces, 1 < p <∞, or more generally Orlicz hearts equipped with a Luxemburg norm as

for instance in [13, 14, 24].

The following extension result is crucial for this generalisation:

Lemma 5.10. Let R := (A,S, p) be a risk measurement regime on a Banach lattice X
satisfying (BC) or (UC). Suppose that A is ‖·‖-closed, law-invariant and satisfies A∩R 6= ∅,
and p(Z) = E[QZ] for some Q ∈ dom(σA) ∩ L∞. If we set B := cl‖·‖1(A), R := (B,S, p) is

a risk measurement regime on L1 and ρR|X = ρR.

Proof. As Q ∈ dom(σA) ∩ L∞, σB(Q) = supY ∈B E[QY ] = σA(Q) holds and σB(Q) < ∞. In

order to verify (2.1) suppose X ∈ L1 and Z ∈ S are such that X + Z ∈ B. Then

p(Z) = E[QZ] = E[Q(X + Z)]− E[QX] ≤ σB(Q)− E[QX] <∞.

R is a risk measurement regime on L1. For the identity ρR|X = ρR, it suffices to show

A = B ∩ X . The set A ∩ L∞ is not empty by assumption and σ(L∞, L∞)-closed by [34,

Lemma 1.3]. This settles case (BC). In case (UC), fix X ∈ A. By [11, Propositions

2 & 4(2)], there is a sequence (Πn)n∈N of finite measurable partitions Πn of Ω such that

A∩L∞ 3 E[X|σ(Πn)]→ X in norm. We infer A = cl‖·‖(A∩L∞). Together with σ(L∞, L∞)-

closedness of A ∩ L∞, we obtain that A is σ(X , L∞)-closed. A = B ∩ X follows. �

In view of the preceding lemma, we will assume that

• each individual acceptance set Ai ⊂ X is closed, law-invariant and satisfies Ai∩R 6= ∅;
• the security markets (Si, pi) agree with Assumption 5.2.

For f ∈ C, i ∈ [n] and X ∈ X , 1-Lipschitz continuity of fi yields |fi(X)| ≤ |X|+ |fi(0)| ∈ X
P-a.s. As X is an ideal, fi(X) ∈ X holds as well; hence, f(X ) ⊂ X n, and if we plug in X ∈ X
in (5.6), the resulting Pareto optimal allocation lies in X n because U,N ∈ X n as Si ⊂ X for

all i ∈ [n].

Theorem 5.11. Let X be a Banach lattice satisfying (BC) or (UC) and assume the agent

system (R1, ...,Rn) is as described. Then Proposition 5.5, Theorems 5.6 and 5.9 and Corol-

lary 5.8 hold verbatim when X replaces L1 and ‖ · ‖ replaces ‖ · ‖1.

Proof. Let Ri denote the extension of the risk measurement regime Ri to L1 as in Lemma

5.10. Apply Theorem 5.6 to ρR1 , ..., ρRn and X ∈ X to obtain generalised versions of Theorem

5.6 and Corollary 5.8. This in conjunction with Proposition 3.4 generalises Proposition 5.5.

The proof of Theorem 5.9 only needs to be altered at (5.7) and (5.8). We may replace ‖W k‖1
by K‖W k‖ in the first and use the order continuity of ‖ · ‖ in the second instance. �

For the final theorem on upper hemicontinuity of the equilibrium correspondence, recall that

the finite risk measure ρR : L∞ → R resulting from a risk measurement regime R on L∞ is
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continuous from above if ρR(Xn) ↓ ρR(X) whenever (Xn)n∈N ⊂ L∞ and X ∈ L∞ are

such that Xn ↓ X a.s.

Theorem 5.12. Assume that (NR) is satisfied and that in case (BC) ρ1 is continuous from

above, whereas in case (UC) X is reflexive. Suppose furthermore that A+ does not agree

with a level set Lc (E[·]) and consider the correspondence E : X n � X n ×X ∗ mapping W to

equilibrium allocations (X, φ) of shape

Xi = Yi +
φ(Wi − Yi)

φ(Z̃)
Z̃, i ∈ [n],

where Y ∈ P̂(W1 + ... + Wn), Z̃ ∈ Š with π(Z̃) 6= 0, and φ is a subgradient of Λ at

W1 + ... + Wn. Then E is upper hemicontinuous in that Wk → W ∈
∏n
i=1 int dom(ρi),

k → ∞, and (Xk, φk) ∈ E(Wk) implies the existence of a subsequence (kλ)λ∈N such that

(X, φ) := limλ→∞(Xkλ , φkλ) ∈ E(W).

Proof. Let W be such that W :=
∑n

i=1Wi ∈ int dom(Λ). From the proof of Proposition 3.5

we infer that, indeed, every (X, φ) ∈ E(W) is an equilibrium of W. For upper hemicontinuity,

we shall first establish that the equilibrium prices of an approximating sequence lie in a

sequentially relatively compact set in the dual X ∗. We shall hence prove that there is ε > 0

and constants c1 and c2 only depending on W such that, given any X ∈ X with ‖X−W‖ ≤ ε
and any subgradient φ of Λ at X, it holds that

‖φ‖∗ ≤ c1 and Λ∗(φ) =
∑n

i=1 ρ
∗
i (φ) ≤ c2.

As we shall elaborate later, these bound imply that all subgradients of Λ at vectors in a

closed ball around W lie in a σ(X ∗,X )-sequentially compact set.

In order to prove the assertion, continuity of Λ on int dom(Λ) ([16, Corollary 2.5]) allows us

to choose ε > 0 such that |Λ(W + Y ) − Λ(W )| ≤ 1 whenever ‖Y ‖ ≤ 2ε. Let now δ > 0 be

such that δε+ δ‖W‖ ≤ ε and fix X such that ‖X −W‖ ≤ ε and a subgradient φ of Λ at X.

Moreover, suppose Y ∈ X is such that ‖Y ‖ ≤ 1. We obtain from the subgradient inequality

Λ(X) + εφ(Y ) ≤ Λ(X + εY ) ≤ Λ(W ) + 1.

Rearranging this inequality yields

‖φ‖∗ = sup
‖Y ‖≤1

φ(Y ) ≤ Λ(W ) + 1− Λ(X)

ε
≤ 2

ε
=: c2.

Moreover,

Λ(X) = φ(X)− Λ∗(φ) =
1

1 + δ
(φ((1 + δ)X)− Λ∗(φ))− δ

1 + δ
Λ∗(φ)

≤ 1

1 + δ
Λ((1 + δ)X)− δ

1 + δ
Λ∗(φ).

By rearranging this inequality we obtain
n∑
i=1

ρ∗i (φ) = Λ∗(φ) ≤ 1

δ
Λ((1 + δ)X) +

1 + δ

δ
Λ(X) ≤ 2 + δ

δ
− Λ(W ) =: c1,
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where we have used ‖(1 + δ)X −W‖ ≤ 2ε following from the choice of δ.

Now consider a sequence (Wk)k∈N ⊂
∏n
i=1 int dom(ρi) such that W k

i → Wi, k → ∞, holds

for all i ∈ [n]. Without loss of generality, we may assume that W k := W k
1 + ...+W k

n lies in

the ball around W with radius ε. For each k ∈ N assume that (Xk, φk) ∈ E(Wk), k ∈ N. We

set

Xk
i = Y k

i +
φk(W

k
i − Y k

i )

φ(Z̃)
Z̃, i ∈ [n].

As Yk ∈ P̂(W k) and W k → W , k → ∞, we may assume, after passing to a subsequence,

that Yk → Y ∈ P̂(W ) by Theorem 5.9.

We shall now select a convergent subsequence (φk)k∈N. In case (BC), we conclude from

[28, Proposition 3.1(iii)] and Lemma A.4 that dom(Λ∗) ⊂ dom(ρ∗1) ⊂ L1, which implies

that all subgradients ψ of Λ have the shape ψ = E[Q̄ ·] for a unique Q̄ ∈ L1
+. Hence, the

equilibrium prices are given by φk = E[Qk·] for a unique Qk ∈ L1(Ω,F ,P)+. Moreover,

all subgradients Qk lie in the σ(L1, L∞)-compact set Lc1(ρ∗1). We may invoke the Eberlein-

Šmulian Theorem [3, Theorem 6.34] to find a subsequence (kλ)λ∈N such that Qkλ → Q ∈ L1

weakly, or equivalently φkλ → φ = E[Q ·] in σ(X ∗,X ). In case (UC), reflexivity of X ,

the Banach-Alaoglu Theorem and the bounds above imply the existence of a sequentially

relatively compact set Γ such that φ ∈ Γ whenever ‖X −W‖ ≤ ε and φ is a subgradient of

Λ at X. Hence there is a σ(X ∗,X )-convergent subsequence (φkλ)λ∈N.

Consequently, in both cases,

φkλ(W kλ
i − Y

kλ
i )→ φ(Wi − Yi), λ→∞.

It remains to prove that φ is a subgradient of Λ at W . But as Λ∗ is weakly* l.s.c. and

φkλ(W kλ)→ φ(W ), we obtain

Λ(W ) = lim sup
λ→∞

φkλ(W kλ)− Λ∗(φkλ) = φ(W )− lim inf
λ→∞

Λ∗(φkλ) ≤ φ(W )− Λ∗(φ),

which implies that, necessarily, Λ(W ) = φ(W )−Λ∗(φ) and φ is a subgradient of Λ at W . �

5.4. Examples. We conclude with two examples.

Example 5.13. We consider the model space X := L1 on which two agents operate with

acceptability criteria given by the entropic risk measure. More precisely, we choose 0 < β ≤ γ
arbitrary and define

A1 := {X ∈ L1 | ξβ(X) ≤ 0}, A2 := {X ∈ L1 | ξγ(X) ≤ 0},

where, for α > 0, ξα(X) := 1
α log

(
E[eαX ]

)
, X ∈ L1. It is well-known, c.f. [22, Example 2.9],

that

ξ := ξβ�ξγ = ξ βγ
β+γ

.

It can be shown that for any α > 0 the set of directions of L0(ξα) is given by 0+L0(ξα) = −L1
+.

Any probability measure Q ≈ P with bounded Radon-Nikodym derivative Q with respect to
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P thus satisfies Assumption 5.2 and may be used as pricing measure for securities,9 i.e. the

pricing functionals are given by pi = pEQ[·], Q� P as described and p > 0 fixed. Moreover,

we choose A ∈ F such that Q(A) = 1
2 and S1 =M = span{1A,1Ac}, and S2 = R · 1A. Given

these specifications, (R1,R2) is an agent system.

Note that ker(π) = {Nr := r1A − r1Ac | r ∈ R}. We will now characterise A+ + ker(π) and

set, for the sake of brevity, α := βγ
β+γ . Given the characterisation of A+, X − Nr ∈ A+ if,

and only if, E[eαX1A] · E[eαX1Ac ] ≤ 1
4 , as then, there is a solution r ∈ R to

0 ≥ 1

α
log
(

E[eα(X−Nr)]
)

=
1

α
log
(
e−αrE[eαX1A] + eαrE[eαX1Ac ]

)
.

Now, for arbitrary X ∈ dom(Λ) = dom(ξα), we note that

Λ(X) = inf{π(r1) | r ∈ R, X − r1 ∈ A+ + ker(π)}

= inf

{
rp
∣∣∣ r ∈ R, e−αrE[eαX1A] · E[eαX1Ac ] ≤

1

4

}
=
p

α

(
log E[eαX1A] + log E[eαX1Ac ] + 2 log(2)

)
.

Hereafter, we choose a solution r∗ of

e−αrE[eα(X−Λ(X))1A] + eαrE[eα(X−Λ(X))1Ac ] = 1,

e.g.

r∗ := log

(
2E[eα(X−Λ(X))1A]√

1− 4E[eα(X−Λ(X))1A] · E[eα(X−Λ(X))1Ac ] + 1

)
.

Using the results from [22, Example 2.9], ( γ
β+γ (X−Λ(X)1−Nr∗),

β
β+γ (X−Λ(X)1−Nr∗)) ∈

A1 ×A2. Consequently, the following is a Pareto optimal allocation of X:(
γ

β + γ
(X − Λ(X)1−Nr∗) + Λ(X)1 +Nr∗ ,

β

β + γ
(X − Λ(X)1−Nr∗)

)
Example 5.14. Here, we choose the model space X = L∞ and illustrate the existence of

Pareto optimal allocations for two agents with acceptance sets less similar than in Example

5.13. To this end, we fix two parameters β ∈ (0, 1) and γ > 0 and suppose that acceptability

for agent 1 is based on the Average Value at Risk, i.e.

A1 = {X ∈ L∞ | ξ1(X) := AVaRβ(X) ≤ 0} = {X ∈ L∞ | ∀Q ∈ Q : EQ[X] ≤ 0},

where Q = {Q = QdP | 0 ≤ Q ≤ 1
1−β P-a.s., E[Q] = 1}. The acceptance set of agent 2 is, as

in Example 5.13, given by an entropic risk measure, i.e.

A2 := {X ∈ L∞ | ξ2(X) :=
1

γ
log
(
E[eγX ]

)
≤ 0}.

9 The dual conjugate ξ∗α of ξα is given in terms of the relative entropy of a Q� P with respect to P, which

is finite whenever dQ
dP ∈ L

∞.



RISK SHARING WITH MULTIDIMENSIONAL SECURITY MARKETS 33

By [23, Example 4.34 & Theorem 4.52], the support function of A+ = A1 +A2 is given by

σA+(Q) = σA1(Q) + σA2(Q) =

{
1
γH(Q|P), if Q := QdP ∈ Q,
∞ otherwise,

Q ∈ L∞,

where H(Q|P) := EQ[log(dQ
dP )] denotes the relative entropy of Q with respect to P. Suppose

the security spaces Si, i = 1, 2, are given as in Example 5.13 for some A ∈ F with P(A) ∈
(0, 1− β). As pricing measure, we choose any Q∗ ∈ Q which satisfies

min
Q∈Q

Q(A) < Q∗(A) < max
Q∈Q

Q(A) =
P(A)

1− β
. (5.9)

As pricing rules we set pi := EQ∗ [·], i = 1, 2, which results in

ker(π) = span{N := 1A − r∗1Ac}, r∗ =
Q∗(A)

1− Q∗(A)
.

Assumption 5.2 is met because of (5.9). Let X ∈ L∞ be any aggregated loss. Using [20,

Theorem 3], we obtain the dual representation

Λ(X) = max
Q∈Q̃

EQ[X]− 1

γ
H(Q|P),

where Q̃ = {Q ∈ Q | Q(A) = Q∗(A)}. We will now compute the right scaling factor s ∈ R
such that X − Λ(X)− sN ∈ A+. This is the case if, and only if, we have for all Q ∈ Q\Q̃

EQ[X]− 1

γ
H(Q|P)− Λ(X) ≤ sEQ[N ].

We obtain

s

≥ supQ∈Q\Q̃: Q(A)>Q∗(A)

EQ[X]− 1
γ
H(Q|P)+Λ(X)

EQ[N ]

≤ infQ∈Q\Q̃: Q(A)<Q∗(A)

1
γ
H(Q|P)+Λ(X)−EQ[X]

|EQ[N ]| ,

and the bounds describe an a priori non-empty interval. Choose any s∗ in this interval.

Combining [27, Proposition 3.2 & Section 3.5], we obtain that(
(X − Λ(X)− s∗N − ζ)+, (X − Λ(X)− s∗N) ∧ ζ

)
∈ A1 ×A2.

for a suitable ζ ∈ R. Thus (X1, X2) given by

X1(ζ) = (X − Λ(X)− s∗N − ζ)+ − s∗r∗1Ac + Λ(X)

and

X2(ζ) = (X − Λ(X)− s∗N) ∧ ζ + s∗1A

is a Pareto optimal allocation of X.
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6. Optimal portfolio splits

In this section we study the existence of optimal portfolio splits. For a thorough discussion

of this problem, we refer to Tsanakas [36], although the problem we consider is rather akin to

Wang [37]. A financial institution holds a portfolio which yields the future loss W . In order

to diversify the risk posed by W , it may consider dividing the portfolio into n subportfolios

X1, ..., Xn ∈ X , X1 + ... + Xn = W , and transfer these subportfolios to, e.g., distinct legal

entities such as subsidiaries which operate under potentially varying regulatory regimes. As

observed by Tsanakas, for convex, but not positively homogeneous risk measures, without

market frictions like transaction costs risk can usually be reduced arbitrarily by introducing

more subsidiaries, and hence, there is no incentive to stop this splitting procedure. However,

since n can be arbitrarily large, transaction costs should not be neglected in this setting, and

we will study the problem of finding cost-optimal portfolio splits under market frictions.

To be more precise, we model the subsidiaries as a family (ρi)i∈N of normalised risk measures

on a Fréchet lattice (X ,�, τ) – which entails ρ∗i ≥ 0 for all i ∈ N – such that the associated

risk measurement regimes (Ri)i∈N check infinite supportability (SUP∞): as one and the

same parent company splits the losses into n subportfolios, assuming that, for each n ∈
N, the set of subsidiaries (ρi)i∈[n] forms an agent system satisfying (SUP) seems natural.

Let further c : N → [0,∞) be a non-decreasing cost function. The transaction costs of

introducing subsidiaries i ∈ [n] and splitting a portfolio among them are given by c(n).

The condition limn→∞ c(n) = ∞ prevents infinite splitting. At last we introduce Λn(X) :=

infX∈AX

∑n
i=1 ρi(Xi), X ∈ X , the usual risk sharing functional associated to (R1, ...,Rn).

Note that for all X ∈ X , n ∈ N, and every X ∈ X n with
∑n

i=1Xi = X, the estimate∑n
i=1 ρi(Xi) =

∑n
i=1 ρi(Xi) + ρn+1(0) ≥ Λn+1(X) holds, which entails Λn(X) ≥ Λn+1(X),

n ∈ N. In this setting, optimal portfolio splits exist if each Λn is exact on dom(Λn):

Theorem 6.1. Suppose (Ri)i∈N is a sequence of risk measurement regimes on a Fréchet

lattice X which checks (SUP∞) and results in all ρi being normalised. Moreover, assume

that Λn is exact on dom(Λn) for all n ∈ N and let W ∈
∑m

i=1 dom(ρi) for some m ∈ N. Then

there is (n∗, X1, ..., Xn∗), where n∗ ∈ N and X1 + ...+Xn∗ = W which is a solution of
n∑
i=1

ρi(Xi) + c(n)→ min subject to X1 + ...+Xn = W, n ∈ N. (6.1)

Proof. Note that (SUP∞) can be rewritten as

∃φ0 ∈
∞⋂
i=1

dom(ρ∗i ) :

∞∑
i=1

ρ∗i (φ0) <∞. (6.2)

Let m∗ := min{m ∈ N | Λm(W ) < ∞} = min{m ∈ N | W ∈
∑m

i=1 dom(ρi)} < ∞. By (6.2),

we have Λn(W ) ≥ φ0(W ) −
∑∞

i=1 ρ
∗
i (φ0) > −∞ for all n ≥ m∗. Thus, Λn(W ) + c(n) = ∞

whenever n < m∗ and

lim inf
n→∞

Λn(W ) + c(n) ≥ φ0(W )−
∞∑
i=1

ρ∗i (φ0) + lim
n→∞

c(n) =∞.
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Therefore, we can find n∗ ∈ N such that Λn∗(W ) + c(n∗) = infn∈N Λn(W ) + c(n) ∈ R. Now

choose an attainable allocation X ∈ X n∗ of X such that Λn∗(X) =
∑n∗

i=1 ρi(Xi) to obtain a

solution to (6.1). �

Corollary 6.2. Suppose (Ri)i∈N is a sequence of risk measurement regimes on a Fréchet

lattice X such that all ρi are normalised. Then the assertion of Theorem 6.1 holds under

both of the following conditions:

(1) The risk measures (ρ1, ..., ρn) comply with Theorem 5.11 for each n ∈ N and the

pricing functionals are given by pi = pEQ[·]|Si for a p > 0 and a probability measure

Q� P with supY ∈Ai EQ[Y ] ≤ 0, i ∈ N. In particular, this is satisfied by Q = P.

(2) (SUP∞) is satisfied, and for each n ∈ N, (R1, ...,Rn) is a polyhedral agent system.

Proof. (1) Let Q = QdP, Q ∈ L∞+ , be as described in the assertion. Let i ∈ N be arbitrary

and recall the definition of the cash-additive risk measures ξi in the proof of Proposition 5.3.

By (5.4), ξ∗i (Q) ≤ 0. Theorem 5.11 in the case n = 1 yields that each X ∈ dom(ρi) admits

an optimal payoff ZX ∈ Si, i.e. X − ZX ∈ Ai and pEQ[ZX ] = pi(Z
X) = ρi(X). Hence,

ρ∗i (pQ) = sup
X∈dom(ρi)

pEQ[X]− ρi(X) = sup
X∈dom(ρi)

pEQ[X − ZX ] ≤ pξ∗i (Q) ≤ 0.

Conversely, as ρi is normalised, we have ρ∗i (pQ) ≥ 0. Hence, (SUP∞) holds and φ0 in (6.2)

may be chosen as φ0 = pEQ[·]. As in the proof of Theorem 5.9, ξ∗i (1) ≤ 0 holds for all i ∈ N.

The solvability of (6.1) under (1) follows from Theorems 5.11 and 6.1.

(2) By Theorem 4.4 Λn is exact on dom(Λn) for every n ∈ N.

�

Appendix A. Technical supplements

A.1. The geometry of convex sets. Fix a non-empty convex subset C of a locally convex

Hausdorff topological Riesz space (X ,�, τ) with dual space X ∗. The support function of

C is the functional

σC : X ∗ → (−∞,∞], φ 7→ sup
Y ∈C

φ(Y ).

The recession cone of C is the set

0+C := {U ∈ X | ∀Y ∈ C ∀ k ≥ 0 : Y + kU ∈ C}.

A vector U lies in 0+C if, and only if, Y + U ∈ C holds for all Y ∈ C. U is then called a

direction of C. The lineality space of C is the vector space lin(C) := 0+C ∩ (−0+C). In

the case of an acceptance set A, monotonicity implies dom(σA) ⊂ X ∗+. If C is closed, the

Hahn-Banach Separation Theorem shows that

C = {Y ∈ X | ∀φ ∈ dom(σC) : φ(Y ) ≤ σC(φ)}.
Combining this identity with the definition of the recession cone and the lineality space yields

Lemma A.1. If C ⊂ X is closed and convex and J ⊂ dom(σC) is such that

C = {X ∈ X | ∀φ ∈ J : φ(X) ≤ σC(φ)},
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then

0+C =
⋂
φ∈J
L0(φ) = {U ∈ X | ∀φ ∈ J : φ(U) ≤ 0} and lin(A) =

⋂
φ∈J

ker(φ)

Last we state a decomposition result for closed convex sets specific to finite-dimensional

spaces. It follows from arguments in the proofs of [8, Lemmas II.16.2 and II.16.3].

Lemma A.2. Let C ⊂ Rd be convex and closed and V := lin(C)⊥. If ext(C ∩ V) denotes the

set of extreme points of C ∩ V and co(·) is the convex hull operator, C can be written as

C = co(ext(C ∩ V)) + 0+C.

A.2. Infimal convolution. Let (X ,�) be a Riesz space and suppose that functions gi :

X → (−∞,∞], i ∈ [n], are given. The infimal convolution or epi-sum of g1, ..., gn is the

function

�n
i=1gi : X → [−∞,∞], X 7→ inf {

∑n
i=1 gi(Xi) | X1, ..., Xn ∈ X ,

∑n
i=1Xi = X}.

The convolution is said to be exact at X ∈ X if there is X1, ..., Xn ∈ X with
∑n

i=1Xi = X

such that
n∑
i=1

gi(Xi) = (�n
i=1gi)(X).

Lemma A.3. Suppose Xi ⊂ X , i ∈ [n], are ideals in a Riesz space (X ,�) such that X =∑n
i=1Xi. If all gi : X → (−∞,∞] are convex, then �n

i=1gi is convex. If gi is monotone on

Xi with respect to � for all i ∈ [n], i.e. X,Y ∈ Xi, X � Y implies gi(X) ≤ gi(Y ), and

gi|X\Xi ≡ ∞, then �n
i=1gi is monotone on X .

Proof. We only prove monotonicity. Let X,Y ∈ X , X � Y , and let X,Y ∈
∏n
i=1Xi with∑n

i=1Xi = X and
∑n

i=1 Yi = Y . We thus have 0 � Y −X = |Y −X| �
∑n

i=1 |Yi −Xi|. By

the Riesz space property of X and the Riesz Decomposition Property (c.f. [3, Section 8.5]),

there is a vector Z ∈ (X+)n such that Y −X =
∑n

i=1 Zi and such that Zi = |Zi| � |Yi−Xi|,
i ∈ [n]. Xi being an ideal yields that in fact Z ∈

∏n
i=1Xi. By monotonicity of gi on Xi,

i ∈ [n], we obtain

(�n
i=1gi)(X) ≤

n∑
i=1

gi(Yi − Zi) ≤
n∑
i=1

gi(Yi).

As (�n
i=1gi)(Y ) = inf{

∑n
i=1 gi(Yi) | Y ∈

∏n
i=1Xi} by the assumption gi|X\Xi ≡ ∞, infimising

over suitable Y on the right-hand side proves the assertion. �

Note that the risk sharing functional satisfies Λ = �n
i=1gi, where gi(X) = ρi(X) if X ∈ Xi and

gi(X) = ∞ otherwise, X ∈ X . These functions gi inherit convexity on X and monotonicity

on Xi from ρi.

Lemma A.4. Given a topological Riesz space (X ,�, τ) and proper functions gi : X →
(−∞,∞], i ∈ [n], the following identities hold:

(�n
i=1gi)

∗ =
∑n

i=1 g
∗
i and dom((�n

i=1gi)
∗) =

⋂n
i=1 dom(g∗i ).
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A.3. Correspondences. Given two non-empty sets A and B, a map Γ : A → 2B mapping

elements of A to subsets of B is called a correspondence and will be denoted by Γ : A�
B. Assume now that (X , τ) and (Y, σ) are topological spaces, and let Γ : X � Y be a

correspondence.

A continuous function Ψ : X → Y is a continuous selection for Γ if Ψ(x) ∈ Γ(x) holds

for all x ∈ X .

If (X , σ) is first countable, Γ is upper hemicontinuous at x ∈ X if, whenever (xk)k∈N

is a sequence σ-convergent to x and (yk)k∈N ⊂ Y is such that yk ∈ Γ(xk), k ∈ N, there

is a limit point y ∈ Γ(x) of (yk)k∈N. If both topological spaces are first countable, Γ is

lower hemicontinuous at x ∈ X if, whenever (xk)k∈N is a sequence σ-convergent to x

and y ∈ Γ(x), there is a subsequence (kλ)λ∈N and yλ ∈ Γ(xkλ), λ ∈ N, such that yλ → y with

respect to τ as λ→∞.10 An example of a lower hemicontinuous correspondence relevant for

our investigations is the security allocation map As· :M3 Z 7→ AZ ∩
∏n
i=1 Si.

Lemma A.5. The correspondence As· is lower hemicontinuous on the global security market

M and admits a continuous selection Ψ :M→
∏n
i=1 Si with respect to any norm on M.

Proof. Let 〈·, ·〉 be an inner product on M. Set S0 := {0}. We claim that there are natural

numbers 0 = m0 < m1 ≤ ... ≤ mn and Z1, ..., Zmn ∈
⋃n
i=1 Si such that for all i ∈ [n], it holds

that {Zmi−1+1, ..., Zmi} is an orthonormal basis of
{
X ∈ Si | X ⊥ span{Z1, ..., Zmi−1}

}
. Note

that every Z ∈ M can be expressed as Z =
∑mn

i=1〈Zi, Z〉Zi, hence the mapping Ψ : Z 7→ AsZ
defined by

Ψ(Z)i :=
∑mi

i=mi−1+1〈Zi, Z〉Zi, i ∈ [n],

is a selection of As· and continuous with respect to any norm on M. Lower hemicontinuity

follows immediately. �
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numéraire fails. Finance and Stochastics, 18(1):145-173.

[19] Farkas, E. W., P. Koch Medina, and C. Munari (2014), Capital requirements with defaultable securities. Insur-

ance: Mathematics and Economics, 55:58-67.

[20] Farkas, E. W., P. Koch Medina, and C. Munari (2015), Measuring risk with multiple eligible assets. Mathematics

and Financial Economics, 9(1):3-27.
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[23] Föllmer, H., and A. Schied (2011), Stochastic Finance: An Introduction in Discrete Time. 3rd edition, De

Gruyter.

[24] Gao, N., D. Leung, C. Munari, and F. Xanthos (2018), Fatou property, representations, and extensions of law-

invariant risk measures on general Orlicz spaces. Finance and Stochastics, 22(2):395-415.
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