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Abstract— Understanding the formation of accidents is of ma-
jor importance to the automotive industry, its related businesses
and policymakers. This is not a trivial task considering the
current stream of innovations driven by the development of
autonomous vehicles. Historical accident data are inadequate
for gauging the safety of future traffic systems. To cope with
this challenge, we propose a microscopic traffic model that
introduces small errors due to random misperception as an
omnipresent cause for accidents – an issue affecting both human
drivers and control systems of autonomous vehicles. We model
errors dynamically by stochastic processes and investigate their
impact on the safety and the efficiency of traffic systems by
Monte Carlo simulations. We focus on two case studies: a simple
one-lane road segment and a t-junction with turning vehicles.

I. INTRODUCTION

Classically, the problem of determining the probability of
traffic accidents has been of statistical nature: On the basis
of empirical data, the probabilities of accidents are estimated
by the corresponding relative frequencies. However, the
automotive industry is undergoing a massive disruption with
the appearance of autonomously driving vehicles (cf., e.g.,
[1]). Traffic, as we know it, will change; in particular, in
terms of efficiency and safety – but little to no data is
available, yet! As long as operations are protected from large-
scale cyber attacks, existing studies (e.g., [2]) indicate that
the number of accidents will significantly be reduced when
vehicles are controlled by computers. To overcome the lack
of empirical accident data for future transportation systems,
we propose a simulation based approach that yields insight
into the occurrence of accidents and their effects on traffic
flow.

Both human drivers and control systems of autonomous
vehicles need to process large amounts of information about
their environment. In most theoretical traffic models, deci-
sions are based on exact information – in reality, errors may
occur when positions and velocities of other vehicles are
determined. The size of these errors depends on external
conditions (e.g., weather) and on the driving style of a
human operator or control algorithm. Another factor are
potential malfunctions of systems. This paper presents a
stylized model for potential errors and investigates the impact
on accidents and traffic flow. The key idea is to focus on
random misperception as an omnipresent cause for accidents.
Particular emphasis is put on the interplay between safety
gaps and margins of perceptional errors. On a methodological
level, the model facilitates an understanding of risks that are
associated to beneficial future developments. Ultimately, our

approach and techniques may form a basis for management
decisions on the design of safety measures for autonomous
driving systems.

We choose the Intelligent Driver Model (IDM) (cf. [3])
as the underlying model for describing the movement of
vehicles on lanes. Additionally, we incorporate adjustments
allowing for driving errors that may lead to accidents. The
IDM sets the acceleration of a vehicle based on the distance
to its preceding vehicle and the difference of their velocities,
i.e., the approaching rate. As originally proposed, this model
is accident-free since the maximal deceleration is unbounded
and, consequently, vehicles may execute unrealistic emer-
gency braking maneuvers when they encounter dangerous
situations. We modify the IDM at this point and also include
the possibility of random misperception. The consequences
of these changes are investigated in the context of two
scenarios.

In Scenario A (“One-Lane Road Segment”), traffic is con-
sidered on a segment of a one-lane road on which vehicles
drive in a consecutive order. We include two adjustments to
the IDM: First, instead of assuming that the input variables
(distance and approaching rate) are known with absolute
precision, we include stochastic deviations in order to model
random misperception; both distance and approaching rate
may be over- or underestimated. Second, we limit the decel-
eration when braking, i.e., negative acceleration is bounded
from below. With these two components, the model admits
accidents. Whenever an accident occurs, the road is blocked
and a traffic jam emerges. We assume that the collided
vehicles are removed from the road after a random time
and then traffic resumes. In this scenario, we focus on
the occurrence of rear-end collisions. By means of Monte
Carlo simulations, we study the tradeoff between safety and
efficiency in terms of the number of accidents and traffic
flow.

Scenario B (“Left-Turning on T-Junction”) is an extension
that builds on the first scenario. We consider a more complex
element of a road system: a simplified t-junction. We capture
this by considering two one-lane road segments which inter-
sect. On each lane, the movement of vehicles is modeled
as before; moreover, a conflict detection and reaction is
implemented for vehicles which turn left. Turning vehicles
extrapolate trajectories of conflicting vehicles on the basis
of several observations. If the analysis of these trajectories
suggests a collision, the turning vehicle will decelerate to
allow conflicting vehicles to pass. We implement random



misperception in the conflict detection and reaction behavior
and use Monte Carlo simulations to analyze traffic at t-
junctions, focusing again on the number of accidents and
traffic flow.

The paper is organized as follows: Section II reviews
mathematical prerequisites. Section III presents the traffic
model. Section IV describes numerical case studies and
analyzes the tradeoff between safety and efficiency. Section
V concludes and discusses further research.

Literature. The analysis of the tradeoff between safety
and efficiency of autonomous vehicles is a novel area of
research. Most closely related to our approach is [4] who
analyze emergency braking scenarios on the basis of a
deterministic IDM. This paper also observes the necessity to
bound deceleration in order to observe accidents. The focus
lies on the impact of inter-vehicle communication on safety,
and the computation terminates whenever an accident occurs.
Similar ideas can also be found in [5]. Stochastic extensions
of the IDM are introduced in [6]. Random misperceptions
provide a rationale for the empirical behavior of human
drivers that is characterized by fluctuating accelerations.
Such an approach is also studied in [7], [8], and [9]. These
papers add white noise to the acceleration terms of car-
following models. Accidents are, however, not investigated.

II. MATHEMATICAL FOUNDATIONS

In this section, we review random ordinary differential
equations and Ornstein-Uhlenbeck processes. These are in-
gredients to our traffic model with random misperception.

A. Random Ordinary Differential Equations

The classical IDM is described by ordinary differential
equations (ODEs). Random misperception leads to a stochas-
tic analogue of the equations, random ordinary differential
equations (RODEs). We briefly describe RODEs and how to
solve them; a comprehensive presentation of RODEs can be
found in [10].

Definition 1 (Random Ordinary Differential Equation).
Let (εt)t≥0 be a stochastic process on some probability space
(Ω,F , P ) with values in Rm and continuous paths. Suppose
that f : Rd × Rm → Rd is continuous. A random ordinary
differential equation in Rd for some function y : [0,∞)→ Rd
is given by

dy

dt
= f(y, εt).

For each scenario ω ∈ Ω, a RODE defines a non-
autonomous ordinary differential equation via

dy

dt
= Fω(t, y) := f(y, εt(ω)).

Given y(0) = y0 ∈ R, this is a standard initial value problem
and classical ODE-theory (e.g., Theorem of Picard-Lindelöf)
applies when characterizing existence and uniqueness of
solutions. Pathwise RODEs are ODEs which also allows to
use standard numerical methods for ODEs in order to solve
RODEs. This approach can be applied whenever sufficiently

many realizations of the paths of the underlying stochastic
process (εt) are available.

B. Ornstein-Uhlenbeck Process

In the extended IDM we model misperceptions as random
deviations from the true values. This can be captured by a
mean-reverting process in continuous time. A well-known
Gaussian process of this type is the Ornstein-Uhlenbeck
process.

Definition 2 (Ornstein-Uhlenbeck Process). Let β ∈ R and
α, σ > 0. A stochastic process (εt)t≥0 is called an Ornstein-
Uhlenbeck process, if ε0 = a ∈ R and (εt)t≥0 solves the
following stochastic differential equation:

dεt = α(β − εt)dt + σdWt,

where (Wt)t≥0 denotes a one-dimensional standard Brown-
ian motion.

Following [11], an Ornstein-Uhlenbeck process can it-
eratively be simulated exactly on an equidistant time grid
0 = t0 < t1 < · · · < tN with ti+1 − ti = ∆t > 0 for all
i ∈ {0, 1, . . . , N − 1} by

εti+1
= hεti + β (1− h) + σ

√
1− h2

2α
Zi+1

where h := e−α∆t and (Zi) is a sequence of i.i.d. standard
normal random variables. In Fig. 1, we show typical simu-
lated paths of the Ornstein-Uhlenbeck process for different
values of σ. The parameter σ is the volatility of the process
and captures both its tendency to fluctuate as well as the size
of the infinitesimal random innovations.
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Fig. 1. Simulated paths of an Ornstein-Uhlenbeck process (εt) for different
values of σ with α = 1, ε0 = 1, β = 1.



III. THE TRAFFIC MODEL

The traffic models we consider are car-following models:
cars react to preceding vehicles in order to maintain a
minimum safety distance and to avoid crashes. Among car-
following models, the IDM has attracted a lot of attention.

In this section, we extend the IDM and define the novel
Intelligent Driver Model with Random Misperception: first
by bounding the maximal deceleration, and second by intro-
ducing random misperception. As a consequence, accidents
may occur.

A. Movement of Vehicles

We denote byM := {1, 2, . . . } the collection of vehicles.
Each vehicle i ∈ M drives on a one-lane road modeled by
a one-dimensional line [0, L] of length L > 0; it enters the
road at a time ti0 ≥ 0. The time sequence is increasing, i.e.,
t10 < t20 < . . . .

The velocity of each vehicle is determined according to
the Intelligent Driver Model with Random Misperception
(IDMrm): Let (εi,1t )t≥0, (ε

i,2
t )t≥0, (ε

i,3
t )t≥0, i ∈ M, be

independent stochastic processes with continuous paths. The
IDMrm sets the velocity vi(t) and the position xi(t) of
vehicle i ∈M at time t ≥ 0 according to the following initial
value problem composed of a system of coupled random
ordinary differential equations

d
dtx

i(t) = max{vi(t), 0},

d
dtv

i(t) = max

{
aimax ·

(
1−

(
εi,1t vi(t)

vid

)δ
−
(
s∗(εi,1t vi(t),∆perv

i(t))
∆perxi(t)

)2
)
, aimin

}
,

xi(ti0) = 0, vi(ti0) = vi0, t ≥ ti0, i ∈M

where s∗(s1, s2) = s0 + s1T + s1s2
2
√
aimaxb

and

∆perv
i(t) = εi,1t vi(t)− εi,2t vi−1(t),

∆perx
i(t) = εi,3t ∆xi(t) = εi,3t (xi−1(t)− xi(t)− li−1)

where li is the length of vehicle i ∈ M. Moreover,
aimax > 0 is the maximal acceleration, and aimin < 0 the
minimal acceleration (i.e., maximal deceleration) of the i-
th vehicle. The other parameters originate from the classic
IDM model, and we refer to [3] for a detailed explanation.
For the first vehicle i = 1, we set the interaction term
s∗(ε1,1

t vt(t),∆perv
1(t)) · (∆perx

1(t))−1 := 0 as there is no
preceding vehicle.

B. Accidents

The stochastic processes (εi,1t ), (εi,2t ) and (εi,3t ), i ∈ M,
may be interpreted as different sources of errors. The classic
IDM determines the velocity on the basis of the distance to
the preceding vehicle and the approaching rate. In contrast,
the IDMrm assumes that all these quantities are subject to
perceptional errors. The perceived quantities are inputs to
the calculation of the acceleration of each vehicle. Vehicle
i uses for this computation instead of the true velocities

(vi(t), vi−1(t)) of itself and the preceding vehicle the dis-
torted values (εi,1t vi(t), εi,2t vi−1(t)); in addition, instead of
the true distance to the preceding car ∆xi(t) the randomly
distorted value εi,3t ∆xi(t) is the third input to the calculation.
There are no errors, as long as εi,1t = εi,2t = εi,3t = 1. Our
model is sufficiently flexible to admit many stochastic error
processes. In our numerical case studies, we will assume that
(εi,1t ), (εi,2t ) and (εi,3t ), i ∈ M, are independent Ornstein-
Uhlenbeck processes that randomly fluctuate around 1. This
can be interpreted as noisy perception of the true values.
Misperception can cause accidents.

An accident occurs when vehicles collide. Up to this point,
their movement is described by the RODEs above. However,
we assume that this is not the case anymore after a collision.
If an accident occurs, collided vehicles will remain at their
position for some time. Then they will be removed from the
system. In the following, we will make this precise.

For i ∈ M, let Ai(t) denote the area of the road
which is occupied by vehicle i at time t > 0. In the one-
dimensional case this corresponds to the interval Ai(t) =
[xi(t) − li/2, x

i(t) + li/2] where li denotes the vehicle’s
length and xi(t) is the position of the vehicle’s midpoint.
Formally, an accident occurs, if

∃ i, j ∈M, i 6= j, ∃ t > 0: Ai(t) ∩Aj(t) 6= ∅.

Now, if two vehicles collide, their velocities are immediately
set to 0. Depending on the traffic constellation, further
vehicles may crash into an existing collision or perform a
safe emergency braking maneuver. We assume that at the
time of the first collision, an exponentially distributed waiting
time tremoval ∼ Exp(γ), γ > 0, is triggered; as this time has
passed, all vehicles that collided disappear from the model.
The expected waiting time until vehicles are removed is
E (tremoval) = γ−1 > 0. We note that other accidents may
occur at different locations in the system; the removal time
at different locations is triggered independently in each case.

In summary, if an accident occurs, the one-lane road is
blocked and a traffic jam emerges. Later – after a random
time tremoval – vehicles that collided are removed from the
road; remaining vehicles will continue their journey, and the
traffic jam dissipates.

IV. CASE STUDIES

In this section, our approach will be illustrated in the
context of two traffic scenarios: In the first scenario, a
one-dimensional road segment is considered. The vehicles
enter at the beginning of the road segment, the origin, and
disappear at its other end. We analyze the evolution of traffic
over a fixed period of time and focus on safety and efficiency.
The second scenario describes a more complex situation:
a t-junction composed of two intersecting one-lane road
segments.

Our traffic model is capable of capturing heterogeneous
vehicles. Note that each vehicle is endowed with its own
set of parameters and associated stochastic processes. This
allows to model individual driving behavior and correspond-
ing error patterns. In this paper, we focus on a simplified



version of the model with homogeneous traffic participants,
highlighting the effects of varying parameters. Misperception
is captured by the processes (εi,1t ), (εi,2t ), . . . , (εi,5t ), i ∈
M, which we assume to be Ornstein-Uhlenbeck processes
fluctuating around 1.

We fix a terminal time Tsim > 0 for the traffic simulation.
Vehicles are consecutively enumerated by 1, 2, 3, . . . and
enter each lane-segment at its origin paying attention to
existing traffic. The exact procedure will be described below,
but we already stress at this point that due to the randomness
of traffic flow also the collection of vehicles M that are
generated until terminal time Tsim is random. We simulate
the traffic system and compute statistics characterizing safety
and efficiency from m ∈ N independent simulation runs.

Measure of Efficiency. As a measure of efficiency for the
traffic system we choose traffic flow per time unit, measured
at position d (in our simulations, we choose d as the end of
the road):

Q =
card{j ∈M : ∃ t ≤ Tsim : xj(t) = d}

Tsim
.

Here, card denotes cardinality. In the following, we denote
sample averages that we compute from our simulation runs
by a circumflex. For example, the sample average of the flow
is Q̂.

Measure of Safety. A measure of traffic safety is the
number of accidents per time unit. The term accident refers
to an event where at least two vehicles collide. If more
vehicles crash into an existing collision, this does not create
a new accident according to our convention.

Recall that the area occupied by vehicle i ∈ M at time
t ≥ 0 is denoted by Ai(t); additionally, for M ⊆ M we
define AM (t) :=

⋃
i∈M Ai(t). The number of accidents per

time unit, denoted by facc, is given by

facc =
1

Tsim
· card{∅ 6= M ⊆M :

∃ t ≤ Tsim ∀ i ∈M : Ai(t) ∩AM\{i}(t) 6= ∅
and ∀ t ≤ Tsim : AM (t) ∩AM

c

(t) = ∅}

where M c denotes the complement of M . The first condition
ensures that all vehicles in M collide, the second that
all vehicles involved in the accident are identified. The
corresponding sample average is denoted by f̂acc.

A. One-Lane Road Segment

This scenario consists of a segment of a one-lane road, a
one-dimensional line [0, L] of length L = 2, 000 m. Vehicles
are generated at the origin and are removed when they reach
the end of the road. Their generation is defined by the
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Fig. 2. Averaged flow and number of accidents for varying T and fixed
σ with 1, 000 independent simulations for each parameter combination:
Dashed lines correspond to number of accidents, solid lines to flows.

following algorithm: Vehicles are created deterministically
with a constant demand (here, 1, 500 veh/h), if there is enough
space available at the beginning of the road. More precisely,
a vehicle i ∈M may be generated according to the desired
demand, if there is no other vehicle in the first 7.5 m of
the road (which equals the vehicle length plus an additional
safety margin of 1.5 m); otherwise, the generation of the
new vehicle is delayed until this condition is satisfied. The
initial velocity of any new vehicle matches the velocity of
the preceding vehicle. In summary, the initial generation of
vehicles avoids artificial accidents; instead, accidents may
be caused by random misperception at a later point in time
somewhere on the lane.

The remaining parameters used for our simulation are
given in Table I. Traffic is simulated for a duration of
Tsim = 600 s according to IDMrm. The error processes
(εi,1t ), (εi,2t ),(ε

i,3
t ) are independent and identically distributed

copies of an Ornstein-Uhlenbeck process with α = β =
1 and different values of σ; in order to guarantee that
we may observe sufficiently many accidents in our small-
scale example, we choose relatively high volatilities. Smaller
volatilities require longer simulations and larger roads to
observe a sufficient number of accidents which increases the
computational effort. This does not alter the methodology,
and the corresponding case studies may be analyzed in the
future.

In the analysis of the model we focus on the effect of
a varying error volatility σ and a varying time headway T .
The volatility σ is a measure for the size of the random

TABLE I
PARAMETER CHOICE FOR THE SCENARIOS

Scenario amax vd δ amin s0 T b l α β σ γ

A 2.0 15 4 −3.5 1.2 · 1.67 6 1 1 · 1/60

B 2.0 10 4 −3.5 2.0 1.5 1.67 6 1 1 · 1/300
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Fig. 3. Averaged flow and number of accidents for varying σ and fixed
T with 1, 000 independent simulations for each parameter combination:
Dashed lines correspond to number of accidents, solid lines to flows.

misperception in the model. The time headway T is a
parameter in the IDMrm that influences the safety distances.
In the absence of random misperception, the bigger the time
headway, the greater is the distance between vehicles and
the lower the traffic flow. If errors are present, a larger time
headway will decrease the number of accidents. Since a large
number of traffic accidents may also decrease flow, we expect
that the dependence of flow on time headway is not always
monotone anymore.

We analyze the behavior of the system after the first
vehicle has reached the end of the road. Both flow and the
number of accidents are random. We display their sample
averages (approximating their expectations) in Fig. 2 for
varying T and different fixed values of σ. The case σ = 0
corresponds to no misperception with no accidents. As a
consequence, minimizing T leads to the maximal flow –
almost equal to the demand of 1, 500 veh/h. With increasing
σ, we observe decreasing flow. The rational is that accidents
lead to traffic congestion which decreases flow. If we fix
σ but vary the time headway T , we can find a T that
maximizes the flow. This shows the interplay between safety
and efficiency: Accidents decrease the traffic flow. A larger
time headway T decreases the number of accidents, but, if
there are only few accidents, also decreases flow. Thus, for
small T , flow increases with increasing T due to a decreasing
number of accidents, but for large T flow decreases with
increasing T .

This tradeoff can also be observed in Fig. 3. The figure
displays the sample averages of both flow and the number of
accidents for varying σ and different fixed values of T . Of
course, with increasing σ, f̂acc increases and Q̂ decreases.
The key point is to observe that the flow curves intersect!
At a certain level of misperception (with too many accidents
occurring), it becomes more efficient to select a larger time
headway T that decreases the number of accidents and
increases efficiency.

B. Left-Turning on T-Junction

In Scenario B, we analyze traffic at a t-junction with
vehicles that turn left. We focus on the simplified setting
shown in Fig. 4: Vehicles on the bottom lane always turn
left, following the green path – while vehicles on the top lane
never turn, following the black path. On an abstract level,
this scenario can be decomposed into two one-lane road
segments with the additional property that these segments
intersect. By creating an intersection, we introduce conflicts:
vehicles can collide at the t-junction. We assume that left-
turning vehicles give way to oncoming vehicles on the upper
lane. For example, they might need to stop at a certain point
(denoted by xstop; cf. Fig. 4) in order to let the conflicting
vehicles pass the junction (i.e., reach xexit; cf. Fig. 4). We
assume that vehicles on the upper lane insist on their right
of way and are oblivious to oncoming traffic, i.e., they do
not react.

In this case study, the horizontal lane has a length of 300 m
with the junction placed at 97.5 m. Green and black path in-
tersect at 94.5 m and xstop is located at 85.0 m. We generate
vehicles similarly to Scenario A, but instead of assuming a
fixed rate we create them with an exponentially distributed
headway with mean 500 veh/h on the upper lane and mean
200 veh/h on the lower lane. This stochastic generation of
vehicles yields interesting dynamics with vehicles on the
lower lane reacting to the upper lane: vehicles need to wait
for emerging gaps in order to turn; gaps occur at random
times.

We implement IDM on the upper lane with the same
adjustments as for IDMrm, i.e., we implement IDMrm with
perfect perception. We do the same on the lower lane,
but introduce as an additional feature conflict detection
and reaction. Random misperception could be introduced at
different points of the model, but we focus in this paper only
on errors in the conflict detection and reaction which may
create accidents in the context of left-turning maneuvers.

We heuristically describe the implementation of the con-
flict detection and reaction for a turning vehicle i and
one oncoming vehicle j. Vehicle i follows the green path
according to the implemented car-following model. Addi-
tionally, as a turning vehicle it can detect conflicts. Turning
vehicles are aware of oncoming vehicles and extrapolate
the trajectories of potentially conflicting vehicles based on
observations of their movement. They also extrapolate their
own trajectories. Vehicle i checks if braking is necessary
in order to turn safely. For this purpose, a distance d̂ij(t)
of vehicle i to the approaching vehicle j is estimated. The
situation is classified as a conflict, if the estimate d̂ij(t) is
smaller than a given safety threshold ds at some point in
time. We refer to [12] for a detailed description of conflict
detection. If no conflict arises, the vehicle turns. Otherwise, it
decelerates according to the following algorithm. To simplify
the notation, we omit dependency on t. First, we compute a
naive deceleration anaive such that vehicle i stops at xstop

with a constant (negative) acceleration given by anaive =
−(vi)2/

(
2
(
xstop − xi

))
. For this, the vehicle needs a time



of tnaive = −vi/anaive. We let t̂j be the time vehicle j needs
to reach xexit which is computed by numerically inverting
the extrapolated trajectory. If t̂j > tnaive, vehicle i sets anaive

as its acceleration, stops at xstop and waits until it can turn
safely. If t̂j ≤ tnaive (i.e., vehicle i does not need to stop
since vehicle j will have passed the junction by that time),
we choose the following acceleration

ai,jsmooth =

(
xstop − xi

t̂j
− vi

)
2

t̂j

which is determined such that vehicle i reaches xstop when
vehicle j arrives at xexit. Stopping is not necessary in this
situation. These computations are carried out for all possibly
conflicting vehicles, and the minimal resulting acceleration is
chosen, while also taking into account possible car-following
behavior.

Random misperception is implemented as follows: For
the conflict detection, vehicle i extrapolates trajectories and
computes an estimated distance d̂ij(t) from the conflicting
vehicle. Only this distance measure is the quantity that
triggers i’s reaction as described above. The extrapolation of
i’s own trajectory is based on its velocity vi(t). We assume
that both vi(t) and d̂ij(t) are subject to misperception:
We implement two independent and identically distributed
Ornstein-Uhlenbeck processes (εi,4t )t≥0 and (εi,5t )t≥0 (as in
Scenario A) to distort these values, i.e., replacing them with
εi,4t vi(t) and εi,5t d̂ij(t) where d̂ij(t) is already computed
on the basis of the misperceived velocity εi,4t vi(t). As a
consequence, both the conflict detection and the conflict
reaction may be erroneous.

We begin with our measurement when the first vehicles
reach the ends of both lanes. As before, we simulate traffic
for 600 s and implement an exponentially distributed removal
time tremoval for vehicles that collided. We evaluate the de-
pendency of flow and number of accidents on safety distance
ds and volatility σ of the Ornstein-Uhlenbeck processes.

In Fig. 5 we fix ds = 1.5 m and present the effect of
increasing volatility on number of accidents and traffic flow
for both lanes. The figure displays similar phenomena as
Fig. 3, confirming our expectation that random misperception
causes accidents. Compared to Scenario A, we observe
fewer accidents which is due to more conservative parameter
choices in the implementation of the turning maneuver (cf.
Table I). However, one can still see that with higher volatility
more accidents occur, causing a decline of traffic flow.

Next, we investigate the impact of ds for fixed volatilities
σ. We analyze the traffic flow on the lower lane (see Fig.
6) and on the upper lane (see Fig. 7) separately. The case
σ = 0 corresponds to no misperception; accidents may still
occur in this case due to extrapolation errors for ds too small.
For different values of σ, traffic on the lower lane exhibits
a similar behavior as in Scenario A, see Fig. 2: If ds is too
small, many accidents occur such that traffic flow is impaired.
With increasing ds, the number of accidents decreases. This
initially improves the traffic flow, but if ds becomes too large,
traffic flow again decreases. In this situation, vehicles cannot
easily find gaps in the oncoming traffic that permit turns. On
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Fig. 4. Simplified left-turning scenario on t-junction.
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Fig. 5. Averaged traffic flow (turn and straight) and number of accidents
for varying σ and ds = 1.5m with 10, 000 independent simulations.

the upper lane, in contrast, flow is strictly increasing with
increasing ds. This is not surprising, since the traffic flow
on the upper lane is only distorted, if turning vehicles cause
accidents.

V. CONCLUSION & FUTURE RESEARCH

We introduced a traffic model that admits accidents. The
accidents are caused by random misperception, a type of
error that affects both human drivers and autonomous ve-
hicles. The simulation model admits a characterization of
the tradeoff between safety and efficiency of traffic systems.
While empirical data on the traffic systems of the future
are not available yet, our causal stochastic model produces
simulated data that provide guidance to the design and risk
management of future traffic systems.

In our case studies, we studied homogeneous traffic partic-
ipants and one particular error pattern, modeled by indepen-
dent Ornstein-Uhlenbeck processes. However, our approach
can also capture heterogeneity, i.e., multiple driving styles
and error types. In particular, the model can be used to ana-
lyze effects of systems that include both human drivers and
autonomous vehicles. Such traffic systems will be relevant
in the near future. Moreover, one could try to generalize
the model to include the effects of V2V-communication that
might be subject to random errors.

We have demonstrated that optimality in terms of traffic
flow does typically not imply that accidents are absent; acci-
dents cause harm to the society. Future research should define



2 4 6 8 10 12 14 16

100

120

140

160

180

200

ds [m]

Q̂
tu

rn
[v

e
h /

h
]

σ = 0.0 σ = 0.25 σ = 0.5 σ = 0.75

2 4 6 8 10 12 14 16

0

5

10

15

f̂ a
cc

[a
c
c /

h
]

Fig. 6. Averaged turn flow (lower lane) and number of accidents for varying
ds and fixed σ with 10, 000 independent simulations for each parameter
combination: Dashed lines correspond to number of accidents, solid lines
to flows.
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Fig. 7. Averaged straight flow (upper lane) and number of accidents for
varying ds and fixed σ with 10, 000 independent simulations for each
parameter combination: Dashed lines correspond to number of accidents,
solid lines to flows.

and include the cost of accidents to the analysis. This requires
a model of the severity of accidents, an issue that was
neglected in the current paper. From a computational point of
view, the efficiency of the simulation might be improved by
applying well-designed variance reduction techniques. Since
accidents are rare events, variance reduction techniques for
rare-event simulation, such as importance sampling, might
be promising.
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