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Abstract

Under Solvency II the computation of capital requirements is based on value at risk
(V@R). V@R is a quantile-based risk measure and neglects extreme risks in the tail. V@R
belongs to the family of distortion risk measures. A serious deficiency of V@R is that firms can
hide their total downside risk in corporate networks, unless a consolidated solvency balance
sheet is required for each economic scenario. In this case, they can largely reduce their
total capital requirements via appropriate transfer agreements within a network structure
consisting of sufficiently many entities and thereby circumvent capital regulation. We prove
several versions of such a result for general distortion risk measures of V@R-type, explicitly
construct suitable allocations of the network portfolio, and finally demonstrate how these
findings can be extended beyond distortion risk measures. We also discuss why consolidation
requirements cannot completely eliminate this problem. Capital regulation should thus be
based on coherent or convex risk measures like average value at risk or expectiles.

Keywords: Solvency II, Group Risk, Corporate Networks, Risk Sharing, Distortion Risk Mea-
sures, Value at Risk, Range Value at Risk.

1 Introduction

Capital requirements are a key instrument in the regulation of financial institutions. Their
computation is typically based on two ingredients: stochastic balance sheet projections as a de-
scription of a firm’s business, and monetary risk measures that capture the normative standards
of a regulator. The question which risk measure to use for regulation is the topic of an ongoing
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discussion between academics and practitioners that began in the mid 1990s. Different proper-
ties of monetary risk measures have been suggested, and corresponding classes of risk measures
have been identified and characterized.

Most of the scientific literature deals with convex risk measures: convex risk measures assign
a lower risk measurement to a diversified position than to the non-diversified positions from which
the diversified position is composed. If a convex risk measure is also positively homogeneous, it
is subadditive; this property facilitates the delegation of risk limits from the company level to
individual departments of the firm. Moreover, convex risk constraints are technically easier to
handle in the context of portfolio optimization than non-convex constraints.

As this paper will show, risk measures that are not convex may have additional deficiencies.
The European regulatory framework for insurance firms, Solvency II, is built on the non-convex
risk measure value at risk (V@R). In the current paper, we define a broader class of risk mea-
sures, called V@R-type risk measures, that includes V@R as a special case, and prove that
a sophisticated firm can completely circumvent capital regulation that is based on these risk
measures, if capital requirements are not also computed on the basis of a consolidated solvency
balance sheet. We discuss why such consolidation requirements might not easily be enforced for
all potentially relevant entities.

The main ideas is the following. A firm can adjust its structure over time and form a
collection of multiple legally separate entities. We assume that these entities are designed in such
a way that they are regulated individually.1 This might be achieved by designing a sophisticated
network of firms that includes suitable entities outside the European Economic Area (EEA) and
respects legislation on consolidated accounts, e.g. Directive 83/349/EEC of the Council of the
European Communities (1983). The shareholders seek to minimize the total capital required for
the operation of the whole business.2

Assuming that the future net asset value of the company is described by a random variable
E, a sophisticated firm can create a corporate network of n subentities and split E into n parts.
For this purpose, it needs to design suitable legally binding transfer agreements that produce
an allocation (E1, E2, . . . , En) of the total net asset value among the subentities, satisfying∑n

i=1E
i = E. We show that for V@R-type risk measures and sufficiently many subentities

the total capital requirement can thereby be reduced to the capital requirement of a corporate
network with a deterministic future net asset value of esssup E, corresponding to the best case
scenario. If the risk measure of one of the subentities is in addition strongly surplus sensitive – a
property that we define in this paper – and if at the same time unlimited leverage is admissible,
then the total capital requirement of the network can be reduced to levels that converge to minus
infinity as the leverage of suitable subentities approaches infinity.

The paper is structured as follows: Section 2 reviews capital regulation and then recalls
the family of distortion risk measures that includes value at risk (V@R), average value at risk
(AV@R) and range value at risk (RV@R) as special cases. In Section 3 we first explain in

1Our results can be adapted to a situation in which only a fraction of the entities is regulated individually.
2Embrechts, Liu & Wang (2017) show in the special case of Range Value at Risk that the solution to this

objective equals an equilibrium in an appropriate market. Central control is in this case not required to establish
an appropriate solution. We conjecture that this result can be generalized to larger classes of risk measures.
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detail the relationship between solvency capital minimization and optimal risk sharing. Second,
we describe in the context of distortion risk measures how the total capital requirement of
a corporate network can be reduced in order to circumvent capital regulation. Appropriate
allocations for the corporate network are constructed. In the case of distortion risk measures, we
provide explicit formulas in terms of mixtures of V@R for the total capital requirement of these
allocations. Third, we generalize the main results beyond the case of distortion risk measures.
All proofs are collected in the Appendix.

Literature

Risk sharing for V@R is considered in Galchion (2010), for convex distortion risk measures in
Jouini, Schachermayer & Touzi (2008). This paper is most closely related to Embrechts et al.
(2017) who investigate the risk sharing problem for a two-parameter class of quantile-based
risk measures, called range value at risk (RV@R). This family, introduced by Cont, Deguest &
Scandolo (2010), includes V@R and AV@R as limiting cases. Our paper, in contrast, provides
a general picture on risk sharing for V@R-type risk measures – a notion that is introduced in
the current paper – and includes the main results of Embrechts et al. (2017) as special cases.
A preliminary extension of the results of Embrechts et al. (2017) can also be found in Agirman
(2016). Risk sharing of homogenous agents that evaluate risk with a common risk measure is
studied in Wang (2016). The paper considers the self-convolution and subadditive hull of a risk
measure and categorizes risk measures according to the size of the regulatory arbitrage that
they admit. For further related references on optimal risk sharing we refer to Embrechts et al.
(2017). Our paper confirms the economic implications that are discussed in Embrechts et al.
(2017) and Wang (2016). A description and analysis of corporate groups can be found in Keller
(2007), Filipovic & Kupper (2008) and Haier, Molchanov & Schmutz (2016).

Some of our key arguments rely on the representation of distortion risk measures as mixtures
of V@R, as described in Dhaene, Kukush, Linders & Tang (2012). For reviews on the theory
of monetary risk measures, including distortion risk measures, we refer to Föllmer & Schied
(2011) and Föllmer & Weber (2015). For further results on Choquet integrals and distortion
risk measures see Choquet (1954), Dhaene, Vanduffel, Goovaerts, Kaas, Tang & Vyncke (2006),
Denneberg (1994), Greco (1982), Schmeidler (1986), Song & Yan (2006), Song & Yan (2009a),
Song & Yan (2009b), and Wang (1996). The current paper uses the same sign convention for
risk measures as Embrechts et al. (2017).

2 Capital Regulation

2.1 Solvency II

A key instrument in the regulation of financial firms such as insurance companies and banks
are solvency capital requirements. Their main role is to provide a buffer for potential losses
that protects customers, policy holders and other counterparties. Solvency II is the regulatory
framework that applies to European insurance companies. The computation of capital require-
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ments is described in the Directive 2009/138/EC of the European Parliament and of the Council
on the taking-up and pursuit of the business of Insurance and Reinsurance – Solvency II (see
European Commission (2009)):

The Solvency Capital Requirement should be determined as the economic capital
to be held by insurance and reinsurance undertakings in order to ensure that ruin
occurs no more often than once in every 200 cases or, alternatively, that those under-
takings will still be in a position, with a probability of at least 99.5 %, to meet their
obligations to policy holders and beneficiaries over the following 12 months. That
economic capital should be calculated on the basis of the true risk profile of those
undertakings, taking account of the impact of possible risk-mitigation techniques, as
well as diversification effects.

In a stylized manner, these principles can be formalized as follows: Consider an atomless
probability space (Ω,F , P ) and a one period economy with dates t = 0, 1. Time 0 will be
interpreted as today, time 1 as the one-year time horizon of Solvency II. Suppose that the
solvency balance sheet of an insurance firm is available for t = 0, 1, e.g. computed from available
data using an internal model. The value of the assets at time t = 0, 1 is denoted by At. We set
Lt, t = 0, 1, for the value of the total liabilities to customers and other counterparties, net of the
book value of equity. The book value of equity or net asset value (NAV) is then computed as
the difference of assets and liabilities, i.e. Et = At − Lt, t = 0, 1. Observe that in this situation
quantities at time 0 are deterministic while quantities at time 1 are random. For simplicity, we
neglect the risk-less interest rates over this time horizon.3

Directive 2009/138/EC states that capital must be sufficient to prevent ruin with probability
99.5% on a one-year time horizon, i.e. P (E1 < 0) ≤ α with α = 0.5%. Setting

SCR := V@Rα(−∆E1) (1)

for ∆E1 = E1 − E0, we find conditions that are equivalent to the solvency requirement:

P (E1 < 0) ≤ α ⇔ −E1 ∈ AV@Rα ⇔ SCR ≤ E0 (2)

where AV@Rα = {X ∈ L∞ : P (X > 0) ≤ α} is the acceptance set of V@Rα and V@Rα(X) =
inf{m ∈ R : X −m ∈ AV@Rα}. Observe that – in contrast to Föllmer & Schied (2011), but con-
sistent with Embrechts et al. (2017) – we make the convention that the argument of V@R counts
losses positive and profits negative. We would like to point out that Directive 2009/138/EC pro-
vides an acceptance set for the company’s capital at time t = 1. This is equivalent to verifying
that the SCR is less than firm’s capital at time t = 0 where the SCR is computed by the risk
measure that corresponds to this acceptance set, evaluated at the random capital increment
−∆E1 (due to our sign convention).

While Solvency II limits the ruin probability at the one-year time horizon – corresponding
to the acceptance set of V@R – this specific criterion can easily be replaced by others, i.e.

3For a discussion of this issue, we refer to Christiansen & Niemeyer (2014).
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by possibly more desirable acceptance sets. Then the modified SCR must be computed as the
corresponding risk measure evaluated at the random capital increment −∆E1. Examples include
the Swiss Solvency test and Basel III. Both are based on AV@R, also called expected shortfall,
conditional value at risk, tail value at risk, or tail conditional expectation. The next section
recalls distortion risk measures that include both V@R and AV@R as special cases.

2.2 Distortion Risk Measures

To begin with, let X be the space of measurable and bounded functions on a measurable space
(Ω,F).4 A risk measure ρ : X → R is a monotone and cash-invariant function, see Föllmer &
Schied (2011), Definition 4.1:

(i) Monotonicity : X,Y ∈ X , X ≤ Y ⇒ ρ(X) ≤ ρ(Y )

(ii) Cash-Invariance: X ∈ X ,m ∈ R ⇒ ρ(X +m) = ρ(X) +m

We use the convention that losses are counted positive and gains negative. A risk measure ρ is
normalized, if ρ(0) = 0. It is distribution-based, if X is a space of random variables on some
probability space (Ω,F , P ) and ρ(X) = ρ(Y ) whenever the distributions of X and Y under P
are equal, i.e. PX = P Y , for X,Y ∈ X .

Any risk measure corresponds to its acceptance set, A = {X ∈ X : ρ(X) ≤ 0}, from which
it can be recovered as a capital requirement:

ρ(X) = inf{m ∈ R : X −m ∈ A}.

Using the notation of the previous section, solvency capital requirements are described as follows:
If a regulator requires −E1 ∈ A, this is equivalent to SCR ≤ E0 with SCR := ρ(−∆E1).

We will now focus on a specific family of risk measures: distortion risk measures. Some
results can be extended beyond this setting, see Section 3.3. Distortion risk measures form a
subset of the family of comonotonic risk measures. The latter can be expressed as Choquet
integrals with respect to capacities. Here we recall the main results that we will need.

Definition 1. Two measurable functions X,Y on (Ω,F) are comonotonic if

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0 ∀(ω, ω′) ∈ Ω× Ω.

A risk measure ρ : X → R is comonotonic if

ρ(X + Y ) = ρ(X) + ρ(Y )

for comonotonic X,Y ∈ X .

4The essential domain of risk measures, defined on larger spaces, relies on each risk measure itself. To keep
the presentation simple, we first limit our attention to bounded measurable functions, but explain later – in
Remark 15 – how larger domains may be chosen.
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Remark 2. (i) All comonotonic risk measures are positively homogeneous.

(ii) V@R and AV@R are comonotonic. Cont et al. (2010) suggest an alternative to V@R and
AV@R, called range value at risk (RV@R), which is a further example of a comonotonic
risk measure. Letting α, β > 0 with α+ β ≤ 1, they define

RV@Rα,β(X) =
1

β

∫ α+β

α
V@Rλ(X)dλ

for X ∈ X . Like V@R, this is a non convex risk measure with an index of qualitative
robustness5 (IQR) of ∞, while AV@R is convex with IQR of 1. Observe that for convex
risk measures, the IQR is at most 1. The limiting cases of RV@Rα,β correspond to V@Rα
for β → 0 and AV@Rβ for α→ 0.

Definition 3. (i) A mapping c : F → [0,∞) is called a monotone set function if it satisfies
the following properties:

(a) c(∅) = 0.

(b) A,B ∈ F , A ⊆ B ⇒ c(A) ≤ c(B).

If, in addition, c(Ω) = 1, i.e. c is normalized, then c is called a capacity.

(ii) Let X ∈ X . The Choquet integral of X with respect to the monotone set function c is
defined by ∫

Xdc =

∫ 0

−∞
[c(X > x)− c(Ω)]dx +

∫ ∞
0

c(X > x)dx

The Choquet integral coincides with the usual integral if c is a σ-additive probability mea-
sure. The following characterization theorem can, for example, be found in Chapter 4 of Föllmer
& Schied (2011).

Theorem 4. A monetary risk measure ρ : X → R is comonotonic, if and only if there exists a
capacity c on (Ω,F) such that

ρ(X) =

∫
Xdc.

Remark 5. An important special case are distortion risk measures. In this case, the capacity
is defined in terms of a distorted probability measure P . The resulting capacity is absolutely
continuous with respect to P , but typically not additive.

(i) An increasing function g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1 is called a distortion
function. If P is a probability measure on (Ω,F), then

cg(A) := g(P [A]), A ∈ F ,

defines a capacity.

5For a precise definition see Krätschmer, Schied & Zähle (2014).



7

(ii) The corresponding distortion risk measure ρg(X) :=
∫
Xdcg is coherent, if and only if g

is concave.

(iii) If an increasing function g : [0, 1] → [0,∞) with g(0) = 0 does not satisfy g(1) = 1, the
equation cg(A) = g(P [A]), A ∈ F , still defines a monotone set function, but cg is not
normalized.

Definition 6. Consider the class of distortion functions g such that

g(x) = 0, ∀x ∈ [0, α]
g(x) > 0, ∀x ∈ (α, 1]

for some α ∈ [0, 1). The number α is called the parameter of g, and

ĝ(x) =

{
g(x+ α), 0 ≤ x ≤ 1− α
1, 1− α < x

is the active part of g. If the parameter α > 0, then ρg is called a V@R-type distortion risk
measure.

V@R, AV@R and RV@R are distortion risk measures. V@R and RV@R are of V@R-type,
AV@R is not. This is shown in the Table 1.

Risk Measure V@Rα AV@Rβ RV@Rα,β

g (x) =

{
0, 0 ≤ x ≤ α
1, α < x

{ x
β , 0 ≤ x ≤ β
1, β < x


0, 0 ≤ x ≤ α
x−α
β , α < x ≤ α+ β

1, α+ β < x

Type V@R-type Not V@R-type V@R-type

Table 1: Distortion functions for the risk measures V@R, AV@R and RV@R for α, β > 0 with
α+ β ≤ 1.

Remark 7. Distortion risk measures can be expressed as mixtures of V@R. For arbitrary dis-
tortion functions the precise result is described in Dhaene et al. (2012). In this paper, we will
focus only on the left-continuous case. Let ρg be defined as in Remark 5 for a left-continuous
distortion function g, then

ρg(X) =

∫
[0,1]

V@Rλ(X)g(dλ).

The integral on the right hand side of this equation is a Lebesgue-Stieltjes-integral with respect
to the function g.

This representation provides an interpretation of the parameter α of the distortion function
g of a V@R-type distortion risk measure. The distortion risk measure evaluated at X ∈ X can
be written as ρg(X) =

∫
[α,1] V@Rλ(X)g(dλ) showing that this risk measurement does not depend

on any properties of the tail of X beyond its V@R at level α.
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3 Network Risk Minimization

Financial institutions are typically owned by shareholders with limited liability. The free surplus
that can be distributed as dividends to the shareholders is the NAV less the SCR. Shareholders
are thus interested in reducing the SCR via appropriate risk management techniques. Gener-
alizing the results of Embrechts et al. (2017), we show that corporate network structures with
sufficiently many entities admit a reduction of the total SCR of the network to the SCR of the
best case scenario, if capital regulation is based on V@R-type distortion risk measures. This
relies on the assumption that the individual SCRs of the entities are added up to obtain the
network’s SCR; this means in particular that the networks’s SCR is not computed on the basis
of a consolidated solvency balance sheet. We discuss this assumption in Remark 8.

We provide an upper bound for the optimal SCR for any number of entities in the corporate
network and explicitly construct a network portfolio allocation that attains this bound. If the
active parts of the considered distortion functions are concave, we show that the bound is sharp
and the corresponding allocation is optimal. We also prove that, if losses and profits are allowed
to be unbounded, the total capital requirement of the network may be reduced to any level,
provided that one of the risk measures is strongly surplus sensitive. Finally, we demonstrate
that our main results are not limited to the family of distortion risk measures. A reduction of
the total SCR to the SCR of the best case scenario is in fact possible for all V@R-type risk
measures in corporate networks that consist of sufficiently many entities; a reduction to an
arbitrarily small level is admissible under conditions that we will specify.

3.1 The risk sharing problem of the network

Consider a financial corporation that consists of n entities that are all individually subject to
capital regulation. The corporate network is, however, contractually structured in such a way
that it serves the same equity holders.6 Over short time horizons the number of entities n is
fixed, but the corporation may adjust its structure over longer time horizons. Suppose that the
total consolidated assets and liabilities at times t = 0, 1 are given by At and Lt, respectively.
The total NAV is, thus, given by Et = At − Lt. We set X = −E1 = L1 −A1.

The corporate network now uses at time t = 0 legally binding transfer agreements to modify
the NAVs at time t = 1. In contrast to Filipovic & Kupper (2008), we do not assume that these
transfers are constructed as linear portfolios of a finite family of standardized capital transfer
products. Instead we suppose that transfer agreements are contingent claims that admit any
reallocation of total capital among the n entities of the network. The resulting allocation will
be denoted by (Ei1)i=1,2,...,n. We set Xi = −Ei1, i = 1, 2, . . . , n, and observe that

X =

n∑
i=1

Xi.

We suppose that the solvency capital requirement SCRi of entity i = 1, 2, . . . , n is computed on

6As discussed before, Embrechts et al. (2017) give arguments that this assumption might not be necessary.
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the basis of a risk measure ρi, i.e.

SCRi = Ei0 + ρi(Xi),

where Ei0 refers to the NAV of entity i at time 0. It holds that
∑n

i=1E
i
0 = E0. The total solvency

capital requirement of the network is thus given by

n∑
i=1

SCRi = E0 +
n∑
i=1

ρi(Xi).

For a fixed number n of entities the problem of the corporate network consists in the design of
optimal transfers that minimize

∑n
i=1 ρ

i(Xi). We will, in particular, show that for V@R-type
risk measures and sufficiently large n, the corporate network can find a capital allocation such
that

n∑
i=1

ρi(Xi) = essinf X = − esssup E1,

corresponding to the best case scenario. If one of the risk measures is surplus sensitive (a property
that we will define later) and if entities may hold arbitrarily large liabilities, then the total risk
can even be made arbitrarily small.

Remark 8. Capital regulation, such as Solvency II, may require the computation of a group
SCR on the basis of consolidated data. For example, if a full internal model for the group exists,
a solvency balance sheet on the group level is required (see Title III: Supervision of Insurance
and Reinsurance Undertakings in a Group, European Commission (2009)). Although the entities
of the group are legally separate, regulation takes place at the level of the group; this is often
referred to as the legal entity fiction of group regulation.

This artificial entity is unproblematic, if capital regulation is based on a coherent risk mea-
sure. In this case, the sum of the individual SCRs is always at least as large as the group SCR
computed from consolidated data. As a consequence, coherent risk measures provide corporate
groups with an intrinsic incentive to base their analysis on consolidated balance sheets. In con-
trast, V@R-type risk measures create the opposite incentives. Solvency II is an example where
the SCR is computed by such a risk measure, i.e. V@R. V@R-type risk measures result in a mis-
alignment of regulatory objectives and rational behavior of corporations. They entice insurance
firms to explore alternative network structures, not classified as groups.

Sophisticated corporations could e.g. set up a complex network of companies owned by mul-
tiple other entities that are partially located outside the EEA. If well designed, regulation of parts
of these networks might be out of reach for EEA supervisory authorities. If legal obligations re-
garding consolidation (see Council of the European Communities (1983)) are properly reflected
in the construction of the structures, an application of Article 262 (2) of Directive 2009/138/EC
(European Commission (2009)) might not be viable.

But the problems of V@R-type risk measures reach beyond centrally controlled networks. An
analysis of market equilibria in the special case of RV@R in Embrechts et al. (2017) indicates
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that central governance is not required to produce suitable allocations.7 In summary, the belief
that current Solvency II group regulation suffices for general corporate networks does not seem
to be well justified.

3.2 Risk sharing for V@R-type distortion risk measures

To simplify the technical arguments, we work on an atomless probability space (Ω,F , P ). This
means that a uniform random variable is defined on this space.

We now consider the optimal risk sharing problem

�n
i=1ρ

i (X) := inf

{
n∑
i=1

ρi(Xi) :
n∑
i=1

Xi = X, X1, X2, . . . , Xn ∈ L∞
}
. (3)

The following theorem provides an upper bound to the solution and an allocation that attains
this bound.

Theorem 9. Let X ∈ L∞ and n ∈ N. By g1, g2, . . . , gn we denote left-continuous distortion
functions with parameters α1, α2, . . . , αn ∈ [0, 1) and define d =

∑n
i=1 αi. We set ρi = ρgi, i.e.

ρi is the distortion risk measure associated with the distortion function gi, i = 1, 2, . . . , n. Define
the left-continuous functions

f = min{ĝ1, ĝ2, . . . , ĝn}, g(x) =

{
0, 0 ≤ x ≤ d ∧ 1,
f(x− d), d ∧ 1 < x ≤ 1

Note that g ≡ 0, if d ≥ 1. In particular, g is not necessarily a distortion function with g(1) = 1.
We set V@Rλ := V@R1 = essinf for λ ≥ 1.

(i) There exist X1, X2, . . . , Xn ∈ L∞ such that
∑n

i=1X
i = X and

n∑
i=1

ρi(Xi) =

∫
[0,1]

V@Rλ(X − essinf X)g(dλ) + essinf X.

If d ≥ 1, this equation can be simplified and we obtain

n∑
i=1

ρi(Xi) = essinf X.

(ii) The allocation (Xi)i=1,2,...,n can be constructed as follows. Let

Y := X − essinf X ≥ 0.

7Future research might attempt to investigate market equilibria for the classes of risk measures that we consider
in this paper, i.e. V@R-type distortion risk measures and general V@R-type risk measures.
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There exists a random variable U , uniformly distributed on [0, 1], such that Y = V@RU (Y ).
For i = 1, 2, . . . , n, we set

ri(λ) =

{
1, i = inf{j : ĝj(1− λ) = f(1− λ)},
0, else,

(λ ∈ [0, 1]) and Ri(y) =
∫ y
0 ri(λ)dλ. We define Ỹ = Y · 1{U≥d} and X̃ = Ri(Ỹ ). For

i = 1, 2, . . . , n, we set

Xi = Y · 1{∑i−1
l=1 αl ≤ U <

∑i
l=1 αl}

+ X̃i +
essinf X

n
(4)

If d ≥ 1, this equation can be simplified and we obtain

Xi = Y · 1{∑i−1
l=1 αl ≤ U <

∑i
l=1 αl}

+
essinf X

n
(5)

Proof. See Section A.1.

Corollary 10. Suppose that the conditions of Theorem 9 hold. The solution to the optimal risk
sharing problem (3) is bounded by

�n
i=1ρ

i (X) ≤
∫
[0,1]

V@Rλ(X − essinf X)g(dλ) + essinf X.

In particular, if d ≥ 1, this bound is equal to the total risk of the best case scenario essinf X of
X evaluated by an arbitrary normalized risk measure, i.e.

�n
i=1ρ

i (X) ≤ essinf X.

Proof. See Section A.2.

Let us now specify additional assumptions such that the upper bound of Corollary 10 is at
the same time a lower bound and thus equal to the value of the optimal risk sharing problem.

Theorem 11. Suppose that the conditions of Theorem 9 hold. In addition, assume that d < 1
and gi(1 − d + αi) = 1 for i = 1, 2, . . . , n, and that the active parts of the distortion functions
g1, g2, . . . , gn are concave. Then the allocation defined in eq. (4) provides a solution to the optimal
risk sharing problem (3) and

�n
i=1ρ

i (X) =

∫
[0,1]

V@Rλ(X)g(dλ).

Proof. See Section A.3.

Remark 12. Distortion risk measures with concave active parts and parameter α > 0 were
discussed in Example 3.3 in Wang, Bignozzi & Tsanakas (2015) in the context of robust modi-
fications of coherent risk measures.
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Theorem 9, Corollary 10 and Theorem 11 provide an important perspective on capital
regulation based on V@R-type distortion risk measures. They show that (if risk is measured
by a normalized risk measure and the network consists of sufficiently many entities) the total
capital requirement can be made equal to the capital requirement of the best case scenario of
the network, i.e. essinf X = −esssup E1. This quantity is an upper bound to the solution of the
optimal risk sharing problem. Downside risk can thus completely be hidden within corporate
network structures. V@R is a special case of a V@R-type distortion risk measure, and our
observations apply to Solvency II. In contrast, they do not apply to the Swiss Solvency Test
that uses the coherent risk measure AV@R as the basis for capital regulation.

Observe that the allocation (Xi) in equation (5) is bounded from below by essinf X
n and from

above by esssup Y + essinf X
n . We could thus restrict the admissible allocations to those that are

bounded by suitable fixed constants and still obtain the results stated above. If no bounds are
imposed, the situation can even be more serious from the point of view of capital regulation.
We will show in Example 13, Theorem 14, and Remark 15 that the total capital requirement of
the network can be further reduced, if no bounds are imposed on admissible profits and losses
of network entities. In these cases, risk sharing can be used to make the total risk

∑n
i=1 ρ

i(Xi)
arbitrarily small for appropriately chosen allocations, i.e. smaller than −m for any m ∈ N. In
Example 13 and Theorem 14 very large losses of one entity may occur due to transfer agreements
with an other entity that experiences large profits in the corresponding scenarios. Remark 15,
in contrast, parallels the results of Theorem 9 and Corollary 10, but in the case where X itself
is unbounded.

Example 13. Let (Ω,F , P ) be a probability space without atoms. Consider a corporate network
of n = 2 entities with risk measures ρ1 = ρ2 = RV@R 1

4
, 3
4
. We will show8 that �2

i=1ρ
i (0) = −∞.

To this end, let A1, A2 ⊆ Ω be a partition of Ω such that P (A1) = 1
8 , P (A2) = 7

8 . Let m ∈ N
be arbitrary, and set X1 := 6m · 1A1, X2 := −6m · 1A1. Then X1 + X2 = 0, ρ1(X1) = 0,
ρ2(X2) = −6m · 18 ·

4
3 = −m. Thus, �2

i=1ρ
i (0) ≤ −m for any m ∈ N.

We now provide a theorem that characterizes the situation of the previous example on a
general level.

Theorem 14. Suppose that the conditions of Theorem 9 hold and assume that there exists
i ∈ {1, 2, . . . , n} such that gi(1− d+ αi) < 1. Then

�n
i=1ρ

i (X) = −∞.

Proof. See Section A.4.

From a regulatory point of view, under the conditions of the last theorem, capital regulation
can completely be circumvented in corporate networks: the total downside risk measurements
are not bounded from below anymore. One should, however, note that network allocations with

8General results on inf-convolutions of RV@R are given in Embrechts et al. (2017) that imply the results given
in the example.
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arbitrarily small total risk are associated with arbitrarily large losses and profits of some of
the entities of the network. For insurance networks, the implementation of the required transfer
agreements might not be realistic, if the admissible leverage is bounded for each entity. This
means that in practice Theorem 14 is less relevant for capital regulation than Theorem 9, Corol-
lary 10 and Theorem 11. It stresses, however, potential problems that might occur if significant
leverage and V@R-type distortion risk measures are used together.

Remark 15. We have been considering the risk sharing problem for bounded X ∈ L∞, but
this restriction is not necessary. Suppose now that X is an arbitrary random variable. If X is
bounded from below, i.e. essinf X > −∞, it is not difficult to verify that the results of Theorem
9 are still valid. This is due to the fact that in Theorem 9 total losses X beyond V@Rd(X) are
allocated to the positions (Xi)i=1,2,...,n such that they do not influence the risk measurements
(ρi(Xi))i=1,2,...,n.

Next, let us assume that X is not bounded from below anymore, i.e. essinf X = −∞.
Consider the case: n large enough and d ≥ 1. Then essinf (X ∨ (−k)) = −k for k ≥ 0. By the
monotonicity of risk measures,

�n
i=1ρ

i(X) ≤ �n
i=1ρ

i(X ∨ (−k)) = −k k→∞−→ −∞.

We thus obtain a result that is analogous to the situation of Theorem 14: the total downside risk
measurement is not bounded from below, if the best case is unbounded.

3.3 Risk sharing for V@R-type risk measures

So far, we have been focussing on distortion risk measures. For d < 1 we do, indeed, need this
particular structure to compute the exact total risk of the allocation defined in eq. (4). This
allocation provides firstly an upper bound for the total risk of the optimal risk sharing problem
and secondly a solution in the case of concave active parts. In the case of d ≥ 1 the allocation
defined in eq. (5) provides a bound, and it turns out that this result is not limited to the family
of distortion risk measures. The next theorem provides a precise statement. In addition, we will
also be able to generalize Theorem 14 beyond the case of distortion risk measures.

Definition 16. A distribution-based risk measure ρ : L∞ → R is a V@R-type risk measure with
parameter α > 0, if

ρ(X) = ρ
(
X · 1{V@Rα(X)≥X} + V@Rα(X) · 1{V@Rα(X)<X}

)
(X ∈ L∞).

Remark 17. Obviously, any V@R-type distortion risk measure with parameter α > 0 is a V@R-
type risk measure with the same parameter. This follows immediately from Remark 7. Moreover,
any V@R-type risk measure with parameter α > 0 is dominated by ρ(0) + V@Rα, since ρ is
monotone and X · 1{V@Rα(X)≥X} + V@Rα(X) · 1{V@Rα(X)<X} ≤ V@Rα(X) for X ∈ L∞.
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Theorem 18. Let X ∈ L∞, ρ1, ρ2, . . . , ρn be V@R-type risk measures with parameters α1, α2, . . . , αn,
and the allocation (Xi)i=1,2,...,n be given according to equation (5). If d =

∑n
i=1 αi ≥ 1, then

�n
i=1ρ

i (X) ≤
n∑
i=1

ρi(Xi) =
n∑
i=1

ρi(0) + essinf X.

In particular, if the risk measures ρi are normalized, i.e. ρi(0) = 0, i = 1, 2, . . . , n, then the
minimal total risk is bounded by the risk of the best case scenario essinf X of X evaluated by
an arbitrary normalized risk measure.

Proof. See Section A.5.

Remark 19. Arguments analogous to those in Remark 15 show that the result of Theorem 18
is not limited to positions in the space L∞, but holds for larger spaces of random variables.
If essinf X = −∞, the total risk measurement can be made arbitrarily small for suitable risk
sharing allocations.

We finally show how Theorem 14 may be generalized beyond the case of distortion risk
measures.

Definition 20. A distribution-based risk measure ρ : L∞ → R is surplus sensitive at level
α > 0, if

ρ(X) > ρ(X −m · 1{V@R1−α(X)≥X}) =: hx(m)

for any m > 0.

If, in addition, hX(m) → −∞ as m → ∞, then ρ is strongly surplus sensitive at level
α > 0.

Remark 21. (i) A risk measure that is surplus sensitive is not necessarily strongly surplus
sensitive at the same level. An example is the entropic risk measure. We consider the special
case ρ(X) = logE(eX). Setting α = 1/5, we compute hX for a random variable X with

P (X = log 10) = 1/10 and P (X = 0) = 9/10. Then hX(m) = logE(e
X−m·1V@R4/5(X)≥X ) =

log( 1
10e

log 10 + 9
10e
−m) = log(1 + 9

10e
−m)

m→∞−→ 0 > −∞.

(ii) In contrast, any distortion risk measure ρg with distortion function g such that g(x) < 1
for x < 1 is strongly surplus sensitive at any level d > 0. Another example are expectiles

with acceptance set
{
X ∈ L∞ : E(X−)

E(X+)
≥ γ

}
for γ > 0.

Theorem 22. Let X ∈ L∞ and ρ1, ρ2, . . . , ρn be V@R-type risk measures with parameters
α1, α2, . . . , αn. Set d =

∑n
i=1 αi. If ρn+1 is strongly surplus sensitive at level d, then

�n+1
i=1 ρ

i(X) = −∞.

Proof. See Section A.6.



15

Remark 23. Theorem 14 can be seen as a corollary to Theorem 22. But the direct proof of
Theorem 14 in Section A.4 computes in addition explicitly the exact total risk of the allocations
that were considered to bound the value of the risk sharing problem (3) from above.

In contrast to Theorem 18, the practical relevance of Theorem 22 might be limited by the fact
that the required allocations are associated with arbitrarily large losses and profits, i.e. leverage is
unbounded. Nevertheless, like Theorem 14, it highlights the problems that arise when V@R-type
risk measures and leverage are combined.

4 Conclusion

Non-coherent risk measures have frequently been criticized during the last twenty years. The
present paper presents another challenge to capital regulation with non-coherent risk measures
of V@R-type: sophisticated firms might be able to hide their downside risk within corporate
networks by designing suitable intra-network transfers. In this paper, these network transfers
are specified as derivatives on the stochastic balance sheet of the network. Future research needs
to express these as contingent claims on tradeable securities (or, at least, on quantities that
cannot easily be manipulated by the managers of the firm).

The feasibility of the discovered capital reduction strategy relies on the fact that capital re-
quirements are charged separately for each entity of the network. Intra-network transfers would
not reduce the total capital requirement, if the latter was defined on the basis of a consolidated
balance sheet. Solvency II essentially requires such an approach for corporate groups, but it
seems to be difficult to define a universal legal framework that reaches beyond the EEA. At the
same time, results by Embrechts et al. (2017) indicate that central control is not necessary. How-
ever, even if a consolidated approach to multinational corporate networks could be successfully
implemented globally, serious problems would remain. Networks consist of legally separate firms
with limited liability. If capital requirements are computed on the basis of a consolidated balance
sheet, groups could exploit multiple limited liability options associated with their subentities via
appropriate strategic defaults at the expense of third parties, optimizing their own gains with
prior intra-group transfers. Consolidated balance sheets do not reflect these possibilities. Our
argument indicates that consolidated balance sheets should be accompanied by joint liability of
the group and not be combined with limited liability of subentities.

In summary, from a regulatory point of view V@R-type risk measures and corporate net-
works of legally separate entities are not fully compatible. If one recalls other well-known defi-
ciencies of non-coherent risk measures, V@R-type risk measures do not seem to be an optimal
ingredient to the regulation of insurance companies.
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A Proofs

A.1 Proof of Theorem 9

The methodology of the proof is primarily based on Dhaene et al. (2012). The allocation of the
downside risk to different positions such that it ‘can be swept under the carpet’ relies on the
same strategy as in Embrechts et al. (2017). The allocation of the remaining part is inspired
by Proposition 5 in Embrechts et al. (2017) which focuses on comonotone allocations and is
originally due to Cui, Yang & Wu (2013).

Proof. The existence of a random variable U , uniformly distributed on [0, 1], such that Y =
V@RU (Y ) is a version of the inverse transform method, see e.g. Section 2.2.1 in Glasserman
(2004).
We note that

∑n
i=1 ri(λ) = 1 and

n∑
i=1

ri(λ)ĝi(1− λ) = f(1− λ) (6)

for λ ∈ [0, 1].
First, we observe that

n∑
i=1

Xi = Y ·
n∑
i=1

1{
∑i−1
l=1 αl≤U<

∑i
l=1 αl}

+
n∑
i=1

X̃i + essinf X

= Y · 1{U<d} +

∫ Ỹ

0

n∑
i=1

ri(λ)dλ + essinf X

= Y · 1{U<d} + Y · 1{U≥d} + essinf X = X.

For any i = 1, 2, . . . , n,

Y · 1{∑i−1
l=1 αl≤U<

∑i
l=1 αl}

≥ V@Rd(Y ) ≥ X̃i, P

({
i−1∑
l=1

αl ≤ U <

i∑
l=1

αl

})
= αi.

Thus, for λ ≥ αi we obtain that

V@Rλ(Xi) = V@Rλ−αi(X̃
i) +

essinf X

n
. (7)

Similarly, for λ ≥ d we have

V@Rλ(Y ) = V@Rλ−d(Y · 1{U≥d}), (8)

and for λ ≥ 1− d,
V@Rλ(Y · 1{U≥d}) = 0. (9)
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Next, we recall some facts from Dhaene et al. (2012). Let Z ≥ 0 be a non-negative random
variable. We denote the distribution function of Z by FZ . The caglad quantile function of Z is
given by

[0, 1]→ [0,∞], λ 7→ F−1Z (λ) = inf{z : FZ(z) ≥ λ},

its cadlag value at risk function by

[0, 1]→ [0,∞], λ 7→ V@Rλ(Z) = F−1Z (1− λ).

For any left-continuous distortion function g we obtain from Definition 3 in Dhaene et al. (2012):

ρg(Z) =

∫ ∞
0

g(1− FZ(s))ds. (10)

Recall from Remark 7 that ρg(Z) =
∫ 1
0 V@Rλ(Z)g(dλ), even if Z is not non-negative.

Equation (2) in Dhaene et al. (2012) implies

s < V@Rλ(Z) ⇔ FZ(s) < 1− λ. (11)

Finally, we obtain

n∑
i=1

ρi(Xi) =
n∑
i=1

∫ 1

0
V@Rλ(Xi)dgi(λ)

eq. (7)
= essinf X +

n∑
i=1

∫
[αi,1]

V@Rλ−αi(X̃
i)dgi(λ)

= essinf X +

n∑
i=1

∫
[0,1−αi]

V@Rλ(X̃i)dĝi(λ)

= essinf X +
n∑
i=1

∫ 1

0
V@Rλ(X̃i)dĝi(λ) (since ĝi(λ) = 1 for λ ≥ 1− αi)

= essinf X +
n∑
i=1

∫ 1

0
V@Rλ(Ri(Ỹ ))dĝi(λ)

= essinf X +

n∑
i=1

∫ 1

0
Ri[V@Rλ(Ỹ )]dĝi(λ) (since Ri monotone increasing)

= essinf X +

n∑
i=1

∫ 1

0

∫ ∞
0

1[0,V@Rλ(Ỹ ))(s)ri(s)dsdĝ
i(λ)

= essinf X +

n∑
i=1

∫ ∞
0

∫ 1

0
1[0,V@Rλ(Ỹ ))(s)dĝ

i(λ)ri(s)ds (by Fubini’s theorem)
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eq. (11)
= essinf X +

n∑
i=1

∫ ∞
0

gi[(1− FỸ (s))−]ri(s)ds

= essinf X +

∫ ∞
0

n∑
i=1

gi(1− FỸ (s))ri(s)ds (since gi left-continuous)

eq. (6)
= essinf X +

∫ ∞
0

f(1− FỸ (s))ds

eq. (10) & Rem. 7
= essinf X +

∫ 1

0
V@Rλ(Y · 1{U≥d})df(λ)

eq. (9)
= essinf X +

∫ 1−d

0
V@Rλ(Y · 1{U≥d})df(λ)

eq. (8)
= essinf X +

∫ 1

0
V@Rλ(Y )dg(λ)

= essinf X +

∫ 1

0
V@Rλ(X − essinf X)dg(λ)

A.2 Proof of Corollary 10

Proof. Obviously,

�n
i=1ρ

i (X) ≤
n∑
i=1

ρi(Xi)

for the allocation defined in equation (4). Thus, both claims follow from Theorem 9.

A.3 Proof of Theorem 11

Proof. Note first that 1 = gi(1− d+ αi) = ĝi(1− d) for i = 1, 2, . . . , n, thus g(1) = f(1− d) =

min{ĝ1(1− d), ĝ2(1− d), . . . , ĝn(1− d)} = 1.

Observe that the inequality “≤” follows from Corollary 10, since g(1) = 1 and V@R is
cash-invariant. We present a proof for the inequality “≥”.9 We prove the statement by induction
over the number n of distortion functions g1, g2, . . . , gn.

Consider first two distortion functions gi, i = 1, 2, i.e. n = 2. In this case, d = α1 + α2.
Given any X1, X2 ∈ L∞ with X1 +X2 = X we construct Y 1, Y 2 ∈ L∞ such that

ρ1(X1) + ρ2(X2)
(12)
= ρĝ

1
(Y 1) + ρĝ

2
(Y 2)

(13)

≥ ρf (Y 1) + ρf (Y 2)

9A preliminary draft version of this proof can be found in the B.Sc. thesis Agirman (2016) that was supervised
by the author of this paper.
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(14)

≥ ρf (Y 1 + Y 2)
(15)

≥
∫
[0,1]

V@Rλ(X1 +X2)g(dλ).

Observe that by Theorem 6 in Dhaene et al. (2012) we have that
∫
V@Rλ(X1 + X2)g(dλ) =

ρg(X1 +X2), since g(1) = 1.
We will first specify Y 1, Y 2 and then verify the inequalities (12) – (15).

To begin with, observe that X̃1 = X1 − essinf X1 ≥ 0, X̃2 = X2 − essinf X2 ≥ 0. If
ρ1(X̃1) + ρ2(X̃2) ≥ ρg(X̃1 + X̃2), we add essinf X1 + essinf X2 to both sides in order to
obtain by cash-invariance that ρ1(X1) + ρ2(X2) ≥ ρg(X1 + X2). We may thus assume w.l.og.
that X1, X2 ≥ 0 and will do so henceforth. Let U1 and U2 be random variables, uniformly
distributed on [0, 1] such that X1 = V@RU1(X1) and X2 = V@RU2(X2).

Set Y 1 = X1 · 1{α1≤U1}, Y
2 = X2 · 1{α2≤U2}. Then

V@Rλ(Y i) =

{
V@Rαi+λ(Xi), λ < 1− αi,
0, 1− αi ≤ λ.

This implies by Theorem 6 in Dhaene et al. (2012) that

ρ1(X1) + ρ2(X2) =

∫
V@Rλ(X1)dg1(λ) +

∫
V@Rλ(X2)dg2(λ)

=

∫
V@Rα1+λ(X1)dĝ1(λ) +

∫
V@Rα2+λ(X2)dĝ2(λ) =

∫
V@Rλ(Y 1)dĝ1(λ) +

∫
V@Rλ(Y 2)dĝ2(λ)

= ρĝ
1
(Y 1) + ρĝ

2
(Y 2), i.e. equation (12).

Now observe that by definition ĝi ≥ f , i = 1, 2. Thus, ρĝ
1
(Y 1) +ρĝ

2
(Y 2) ≥ ρf (Y 1) +ρf (Y 2), i.e.

inequality (13). Since f is concave, it follows moreover that ρf (Y 1) + ρf (Y 2) ≥ ρf (Y 1 + Y 2),
i.e. inequality (14).

Let Ai := {αi > U i}, i = 1, 2. Then P (Ai) = αi, i = 1, 2. Observe that Y i = Xi on the
complement Aci of Ai, i = 1, 2. For x ∈ R we get

P{Y 1 + Y 2 > x} ≥ P ({Y 1 + Y 2 > x} ∩ (A1 ∪A2)
c)

= P ({X1 +X2 > x} ∩ (A1 ∪A2)
c) ≥ P{X1 +X2 > x} − P (A1 ∪A2)

≥ P{X1 +X2 > x} − (α1 + α2) = P{X1 +X2 > x} − d.

Since P{Y 1 + Y 2 > x} ≥ 0, we get

P{Y 1 + Y 2 > x} ≥ (P{X1 +X2 > x} − d) ∨ 0 = (P{X1 +X2 > x} ∨ d)− d.

We have Y 1 + Y 2 ≥ 0 by construction, thus

ρf (Y 1 + Y 2) =

∫ ∞
0

f(P{Y 1 + Y 2 > x})dx ≥
∫ ∞
0

f([P{X1 +X2 > x} ∨ d]− d)dx
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(16)
=

∫ ∞
0

g(P{X1 +X2 > x})dx (17)
= ρg(X1 +X2),

where we observe for (16) that f((y∨d)−d) = g(y) and for (17) that X1+X2 ≥ 0 by assumption.
This shows (15).

Next, we show that the claim holds for n + 1 distortion functions, if it holds for up to n
distortion functions. Assume that the induction hypothesis is true, and let g1, g2, . . . , gn+1 be dis-
tortion functions with parameters α1, α2, . . . , αn+1 ∈ [0, 1) and concave active parts. In this case,
d =

∑n+1
i=1 αi. The corresponding distortion risk measures are again denoted by ρ1, ρ2, . . . , ρn+1.

Define

f (j) = min{ĝ1, ĝ2, . . . , ĝj}, d(j) =

j∑
i=1

αi, g(j)(x) =

{
0, 0 ≤ x ≤ d(j),
f (j)(x− d(j)), d(j) < x ≤ 1

(j = n, n+ 1)

Let X1, X2, . . . , Xn+1 ∈ L∞ such that
∑n+1

i=1 X
i = X. Set

h(x) =

{
0, 0 ≤ x ≤ d,
f(x− d), d < x ≤ 1,

with f = min{ĝ(n), ĝn+1}. Then, using the induction hypothesis twice, we get that

ρh(X) ≤ ρg(n)(
n∑
i=1

Xi) + ρn+1(Xn+1) ≤
n+1∑
i=1

ρi(Xi). (18)

Finally note that d = d(n) + αn+1 =
∑n+1

i=1 αi and f = min{ĝ(n), ĝn+1} = min{ĝ1, ĝ2, . . . , ĝn+1},
thus h = g(n+1). By Theorem 6 in Dhaene et al. (2012) we finally rewrite the left-hand side of
equation (18) as

ρh(X) = ρg
(n+1)

(X) =

∫
[0,1]

V@Rλ(X)g(n+1)(dλ).

This proves the claim.

A.4 Proof of Theorem 14

Proof. Due to the cash-invariance of risk measures, we may w.l.o.g suppose that X ≥ 0. Let U
a random variable, uniformly distributed on [0, 1] such that V@RU (X) = X. Renumbering the
distortion functions and risk measures, we assume that g1(1− d+ α1) < 1. For m ∈ N we set

X1,m := X · 1{U<α1} +X · 1{d≤U} −m · 1{α1≤U<d},

Xi,m := (X +m) · 1{∑i−1
l=1 αl≤U<

∑i
l=1 αl}

(i = 2, 3, . . . , n).

Obviously, by construction
∑n

i=1X
i,m = X.
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Since gi is a distortion function with parameter αi > 0 and X ≥ 0, thus X +m > 0, we get

ρi(Xi,m) = 0, i = 2, 3, . . . , n.

We compute that

V@Rλ(X1,m) =


V@Rλ(X), λ < α1,
V@Rλ+d−α1(X), α1 ≤ λ < 1− d+ α1,
−m, 1− d+ α1 ≤ λ.

By Theorem 6 in Dhaene et al. (2012) we obtain

ρ1(X1,m) =

∫
[0,1]

V@Rλ(X1,m)g1(dλ) = c−m · (1− g1(1− d+ α1))

where the constant c ≥ 0 is given by

c =

∫
[0,1]

V@Rλ(X) · 1[0,α1)(λ) + V@Rλ+d−α1(X) · 1[α1,1−d+α1)(λ)g1(dλ) <∞.

By assumption, 1− g1(1− d+ α1) > 0 , thus ρ1(X1,m)→ −∞ as m→∞.

A.5 Proof of Theorem 18

Proof. Using the notation of Theorem 9, we define for i = 1, 2, . . . , n the random variables
Zi = Y · 1{∑i−1

l=1 αl≤U<
∑i
l=1 αl}

. Then Zi ≡ 0 on the set {V@Rαi(Z
i) ≥ Zi} and V@Rαi(Z

i) = 0.

Thus,

ρi(Xi) = ρi
(
Zi +

essinf X

n

)
= ρi(Zi) +

essinf X

n

= ρi
(
Zi · 1{V@Rαi (Z

i)≥Zi} + V@Rαi(Z
i) · 1{V@Rαi (Z

i)<Zi}

)
+

essinf X

n

= ρi(0) +
essinf X

n

This implies that
∑n

i=1 ρ
i(Xi) =

∑n
i=1 ρ

i(0) + essinf X.

Remark 24. Instead of proving Theorem 18 directly, we could also observe that ρi ≤ ρi(0) +
V@Rαi and that the inf-convolution is montone increasing with respect to risk measures, and
finally apply the corresponding results for V@Rαi, i = 1, 2, . . . , n, as given in Embrechts et al.
(2017).
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A.6 Proof of Theorem 22

Proof. Using the notation of Theorem 9, we define for i = 1, 2, . . . , n− 1 and m > 0 the random
variables

Xi,m = (Y +m) · 1{∑i−1
l=1 αl≤U<

∑i
l=1 αl}

+
essinf X

n

and

Xn,m = (Y +m) · 1{∑n−1
l=1 αl≤U<d} + Y · 1{d≤U} +

essinf X

n

Xn+1,m = −m · 1{d>U}.

Since ρ1, ρ2, . . . , ρn are V@R-type risk measures with parameters α1, α2, . . . , αn, we compute

ρi(Xi,m) = ρi(0) +
essinf X

n
, i = 1, 2, . . . , n− 1,

ρn(Xn,m) = ρn
(
V@Rd(Y ) · 1{∑n−1

l=1 αl≤U<d} + Y · 1{d≤U} +
essinf X

n

)
≤ ρn(0) + V@Rd(Y ) +

essinf X

n

Since ρn+1 is strongly surplus sensitive at level d, we obtain that

ρn+1(Xn+1,m) ≤ ρn+1(U −m · 1{V@R1−d(U)≥U})
m→∞−→ −∞.

Thus,

n+1∑
i=1

ρi(Xi,m) ≤
n∑
i=1

ρi(0) + V@Rd(Y ) + essinf X + ρn+1(Xn+1,m)
m→∞−→ −∞.
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