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Abstract

We consider families of strongly consistent multivariate conditional risk
measures. We show that under strong consistency these families admit a
decomposition into a conditional aggregation function and a univariate
conditional risk measure as introduced Hoffmann et al. (2016). Further,
in analogy to the univariate case in Föllmer (2014), we prove that under
law-invariance strong consistency implies that multivariate conditional risk
measures are necessarily multivariate conditional certainty equivalents.
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1 Introduction

Over the recent years the study of multivariate risk measures

ρ : L∞d (F)→ R, (1.1)

that associate a risk level ρ(X) to a d-dimensional vector X = (X1, ..., Xd) of
random risk factors at a given future time horizon T has increasingly gained
importance. Here, L∞d (F) denotes the space of d-dimensional bounded random
vectors on a probability space (Ω,F ,P).

A natural extension of the static viewpoint of deterministic risk measurement
in (1.1) is to consider conditional risk measures which allow for risk measurement
under varying information. A conditional multivariate risk measure is a map

ρG : L∞d (F)→ L∞(G), (1.2)
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that associates to a d-dimensional risk factor a G-measurable bounded random
variable, where G ⊆ F is a sub-σ-algebra. We interpret ρG(X) as the risk of X
given the information G. In the present literature, conditional risk measures have
mostly been studied within the framework of univariate dynamic risk measures,
where one adjusts the risk measurement in response to the flow of information
that is revealed when time elapses. For a good overview on univariate dynamic
risk measures we refer the reader to Acciaio and Penner (2011) or Tutsch (2007).
One possible motivation to study conditional multivariate risk measures is thus
the extension from univariate to multivariate dynamic risk measures, and to
study the question of what happens to the risk of a system as new information
arises in the course of time. In the context of multivariate risk measures, how-
ever, also a second interesting and important dimension of conditioning arises,
besides dynamic conditioning: Risk measurement conditional on information in
space in order to identify systemic relevant structures. In that case G represents
for example information on the state of a subsystem, and one is interested in
questions of the type: How is the overall risk of the system affected, given that a
subsystem is in distress? Or how is the risk of a single institution affected, given
the entire system is in distress? In Föllmer (2014) and Föllmer and Klüppelberg
(2014) the authors analyze such spatial conditioning in the context of univariate
conditional risk measures, so-called spatial risk measures. Another field of ap-
plication where these questions are important are systemic risk measures, which
measure the risk of a financial network. For instance the systemic risk measures
CoVaR of Adrian and Brunnermeier (2011) or the systemic expected shortfall of
Acharya et al. (2010) can be considered to be examples of conditional multivari-
ate risk measures. We refer to Hoffmann et al. (2016) and the references therein
for a thorough discussion about the relation to systemic risk measures.

When dealing with families of conditional risk measures, a frequently imposed
requirement is that the conditional risk measurement behaves consistent in a
certain way with respect to the flow of information. In particular, in the literature
on univariate dynamic risk measures most often the so-called strong consistency
is studied; c.f. Detlefsen and Scandolo (2005); Cheridito et al. (2006); Cheridito
and Kupper (2011); Kupper and Schachermayer (2009); Penner (2007). Two
univariate conditional risk measures ρG and ρH with corresponding σ-algebras
G ⊆ H ⊆ F are called strongly consistent if for all X, Y ∈ L∞(F)

ρH(X) ≤ ρH(Y ) =⇒ ρG(X) ≤ ρG(Y ), (1.3)

i.e. strong consistency states that if Y is riskier than X given the information
H, then this risk preference also holds under less information.

The purpose of this paper is to study the concept of strong consistency for
multivariate conditional risk measures. Note that the motivation and interpre-
tation of strong consistency in (1.3) remains perfectly meaningful when extend-
ing to the multivariate case. In analogy to the univariate case we thus define
strong consistency of two multivariate conditional risk measures ρG and ρH with
G ⊆ H ⊆ F as in (1.3) for any d-dimensional risk vectors X and Y in L∞d (F).
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In the literature on dynamic consistency of univariate conditional risk measures
a number of weaker consistency concepts have been suggested which could also
be considered in the multivariate setting. For instance, one could consider ac-
ceptance consistency

ρH(X) ≤ α =⇒ ρG(X) ≤ α,

or rejection consistency

ρH(X) ≥ α =⇒ ρG(X) ≥ α,

where α ∈ G denotes a risk level below (resp. above) which a risk X is considered
to be acceptable (or is rejected, resp.) in every state, see Weber (2006) or
Tutsch (2007). This level is typically set to be 0 in the cash-additive case (cash-
additivity is defined below). In this paper we only consider the stronger property
of strong consistency given in (1.3). Our results, however, show how restrictive
strong consistency is and may be interpreted as supporting weaker notions of
consistency which are to be studied in future research.

As a first main result we prove that under some conditions the members
of any family of strongly consistent multivariate conditional risk measures are
necessarily of the following from:

ρG(X) = ηG (ΛG(X)) , (1.4)

where ηG : L∞(F) → L∞(G) is a univariate conditional risk measure, and
ΛG : L∞d (F) → L∞(F) is a (conditional) aggregation function. This subclass
of multivariate conditional risk measures corresponds to the idea that we first
aggregate the risk factors X and then evaluate the risk of the aggregated values.
In fact many prominent examples of multivariate conditional risk measures are
of type (1.4), for instance the Contagion Index of Cont et al. (2013) or the Sys-
tRisk of Brunnermeier and Cheridito (2014) from the systemic risk literature.
Chen et al. (2013) were the first to axiomatically describe this intuitive type of
multivariate risk measures on a finite state space, and in Kromer et al. (2016)
this has been extended to general Lp-spaces, whereas the conditional framework
was studied in Hoffmann et al. (2016). We also remark that in Kromer et al.
(2014) the authors study consistency of risk measures over time which can be
decomposed as in (1.4). However, their definition of consistency differs from ours
in (1.3) as they require consistency of the underlying univariate risk measure and
the aggregation function in (1.4) simultaneously. We will comment more on that
in Remark 4.10.

A requirement on the strongly consistent family of multivariate conditional
risk measures we ask for here—which is automatically satisfied in the univariate
case—is that it contains a terminal risk measure ρF : L∞d (F) → L∞(F) under
full information F . Such a terminal risk measure is nothing but a statewise
aggregation rule for the components of a risk X ∈ L∞d (F). In the univariate
case, if X ∈ L∞(F), there is of course no aggregation necessary. Indeed letting
the terminal risk measure correspond to the identity mapping, i.e. ρF = − id,
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we have that any univariate risk measure ρG with G ⊆ F is strongly consistent
with ρF by monotonicity, so the existence of a terminal risk measure which
is strongly consistent with the other risk measures of the family is no further
restriction. In the truly multivariate case, however, it is very natural that also
under full information there is a rule for aggregating risk over the dimensions,
and the risk measures in the family should be consistent with this terminal
aggregation rule. Another requirement is that the aggregation of constants under
ρG and ρF basically coincide. In case these requirements are fulfilled, we show, as
already mentioned, that the members of the family are necessarily of type (1.4).
Indeed we show that by strong consistency the risk measures inherit a property
called risk-antitonicity in Hoffmann et al. (2016) from the terminal risk measure.
This property is the essential axiom behind allowing for a decomposition of type
(1.4); see Theorem 3.9. A consequence of (1.4) and the stated requirements
is that if the family of strongly consistent multivariate risk measures includes a
deterministic risk measure ρ{∅,Ω}, then all aggregations functions must necessarily
be deterministic, and in fact monotone transformations of each other.

Along the path to this result we characterize strong consistency in terms of
a tower property. It is well-known that for univariate conditional risk measures
which are normalized on constants (ηG(a) = −a for all a ∈ L∞(G)), strong
consistency (1.3) is equivalent to the following tower property:

ρG(X) = ρG
(
− ρH(X)

)
for all X ∈ L∞(F), (1.5)

see e.g. Föllmer and Penner (2006), Bion-Nadal (2008), Tutsch (2007), and the
references therein. The recursive formulation (1.5) is often more useful than (1.3)
when analyzing strong consistency. The formulation (1.5), however, cannot be
extended in a straight forward manner to the multivariate case. Firstly, note
that (1.5) is not even well-defined in the multivariate case since ρH(X) is not
a d-dimensional random vector but a random number. Secondly, also in the
univariate case the equivalence (1.3) ⇔ (1.5) only holds for risk measures that
are normalized on constants, which in the monetary univariate case is implied
up to a normalization by requiring that this class of risk measures satisfy cash-
additivity (ηG(X + a) = ηG(X) − a). For multivariate risk measures there is
neither a canonical extension of the concept of cash-additivity nor is it clear
that such a property is desirable at all. One could of course think of generalized
versions of cash-additivity in terms of eligible assets as in Farkas et al. (2015)
but this would have no effect on the problem that strong consistency cannot be
characterized by (1.5). Nevertheless, we prove that there is a generalization of the
recursive formulation (1.5) of strong consistency which holds for multivariate risk
measures without any normalized on constants or cash-additivity assumption.
Indeed, under some typical regularity assumptions, one of our first results is that
two multivariate conditional risk measures ρG and ρH with G ⊆ H ⊆ F are
strongly consistent if and only if for all X ∈ L∞d (F)

ρG(X) = ρG
(
f−1
ρH

(ρH(X))1d
)
, (1.6)

4



where 1d is a d-dimensional vector with all entries equal to 1, and f−1
ρH

is the
(well-defined) inverse of the function fρH associated to ρH given by

fρH : L∞(H)→ L∞(H);α 7→ ρH(α1d). (1.7)

The map fρH describes the risk of a system where each component is equipped
with the same amount of (H-constant) cash α. Note that if ρH is a univariate
risk measure that is normalized on constants then fρH = − id is minus the
identity map and (1.6) reduces to (1.5). We call a multivariate risk measure ρH
normalized whenever fρH = − id. In the multivariate normalized case (1.6) thus
becomes

ρG(X) = ρG
(
− ρH(X)1d

)
.

Further, we remark that one can always ”normalize” a given conditional risk
measure ρH by putting

ρ̄H(X) := −f−1
ρH
◦ ρH(X). (1.8)

Then ρ̄H is a multivariate conditional risk measure with fρ̄H = − id.
After studying strong consistency for general families of multivariate condi-

tional risk measures, we move on to give a characterization of strongly consistent
multivariate conditional risk measures which are also conditionally law-invariant.
In contrast to before we do not require consistency with respect to a risk mea-
sure under full information, but with respect to the initial risk measure given
the trivial information {∅,Ω}. These studies were triggered by the results ob-
tained in Föllmer (2014) for univariate risk measures, where it is shown that the
only family of univariate, strongly consistent, conditional, cash-additive, convex
risk measures is the family of conditional entropic risk measures, i.e. conditional
certainty equivalents of the form

ρH(X) = −u−1 (EP [u(X) | H]) , X ∈ L∞(F),

with deterministic utility function u(x) = a+ beβx or u(x) = a+ bx, where a ∈ R
and b, β > 0 are constants. We also remark that Kupper and Schachermayer
(2009) showed this characterization for the case of dynamic risk measures by an
alternative proof. In the multivariate case we will see that every strongly consis-
tent family of multivariate conditionally law-invariant conditional risk measures
consists of risk measures of type

ρH(X) = fρH
(
f−1
u

(
EP [u(X) | H]

))
, X ∈ L∞d (F), (1.9)

where u : Rd → R is a multivariate utility function and fu(x) := u(x1d), x ∈ R.
In other words the normalized risk measure ρ̄H equals a multivariate conditional
certainty equivalent ρ̄H(X) = −

(
f−1
u

(
EP [u(X) | H]

))
. For the study of uni-

variate conditional certainty equivalents and their dynamic behavior we refer the
interested reader to Frittelli and Maggis (2011).
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Structure of the paper In Section 2 we introduce our notation and multi-
variate conditional risk measures. In Sections 3 and 4 we prove our main results
outlined above for two strongly consistent conditional risk measures, where the
law-invariant case is studied in Section 4. Throughout Section 5 we extend these
results to families of multivariate conditional risk measures. Auxiliary results
and longer proofs are collected in the appendix.

2 Setup

Throughout this paper (Ω,F ,P) is a probability space. For d ∈ N we denote by
L∞d (F) := {X = (X1, ..., Xd) : Xi ∈ L∞(Ω,F ,P) ∀i} the space of equivalence
classes of F -measurable, P-almost surely (a.s.) bounded random vectors. It is a
Banach space when equipped with the norm ‖X‖d,∞ := maxi=1,...,d ‖Xi‖∞ where
‖F‖∞ := esssup |F | is the supremum norm for F ∈ L∞(Ω,F ,P). We will use the
usual componentwise orderings on Rd and L∞d (F), i.e. x = (x1, . . . , xd) ≥ y =
(y1, . . . , yd) for x, y ∈ Rd if and only if xi ≥ yi for all i = 1, . . . , d, and similarly
X ≥ Y if and only if Xi ≥ Yi P-a.s. for all i = 1, ..., d. Note that, as usual, we
identify random variables with the P-a.s. equivalence classes they induce, and
conversely any such equivalence class with an arbitrary representative, whenever
this causes no confusion. 1d and 0d denote the d-dimensional vectors whose
entries are all equal to 1 or all equal to 0, respectively.

Definition 2.1. Let G ⊆ F . A conditional risk measure (CRM) is a function

ρG : L∞d (F)→ L∞(G),

possessing the following properties:

i) There exists a position with zero risk, i.e. 0 ∈ Im ρG.

ii) Strict Antitonicity: X ≥ Y and P(X > Y ) > 0 implies ρG(X) ≤ ρG(Y )
and P

(
ρG(X) < ρG(Y )

)
> 0.

iii) G-Locality: For all A ∈ G we have ρG(X1A + Y 1AC ) = ρG(X)1A +
ρG(Y )1AC .

iv) Lebesgue property: If (Xn)n∈N ⊂ L∞d (F) is a ‖ · ‖d,∞-bounded sequence
such that Xn → X P-a.s., then

ρG(X) = lim
n→∞

ρG(Xn) P-a.s.

We remark that the properties in Definition 2.1 are standard in the literature
on conditional risk measures. Note that strict antitonicity is sometimes also
referred to as strong sensitivity in the literature. In order to stress the dimension
we often use the term univariate conditional risk measure for a conditional risk
measure as defined in Definition 2.1 with d = 1 and we typically denote it by ηG.
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For d > 1 the risk measure ρG of Definition 2.1 is called multivariate conditional
risk measure.

A standard assumption on univariate CRMs is cash-additivity, i.e. ηG(X +
α) = ηG(X)−α for all α ∈ L∞(G), which in particular implies that we postulate
a certain behavior of the risk measure ηG on (G)-constants α ∈ L∞(G) which
turns out to be helpful in the study of consistency in dimension 1. Given that
a multivariate analogue of cash-additivity is tricky to define and probably not
reasonable to ask for, we do not require such a property. However, we will have
to extract the behavior of a CRM on constants in the following way.

Definition 2.2. For every CRM ρG : L∞d (F)→ L∞(G) we introduce the function

fρG : L∞(G)→ L∞(G);α 7→ ρG(α1d)

and the corresponding inverse function

f−1
ρG

: Im fρG → L∞(G); β 7→ α such that fρG(α) = β.

We call ρG normalized on constants if

fρG(α) = −α for all α ∈ L∞(G).

For any CRM ρG : L∞d (F) → L∞(G), let ρ̄G := −f−1
ρG
◦ ρG be the normalized

CRM of ρG.

In Appendix A we show that f−1
ρG

is well-defined. Also, it follows from
Lemma A.1 and Lemma A.2 that ρ̄G is indeed a CRM which is normalized on
constants.

Example 2.3. Consider a strictly increasing continuous function u : R → R
such that u(0) = 0 and define

ρG(X) := −EP

[
u

(
1

d

d∑
i=1

Xi

)∣∣∣∣∣ G
]
, X = (X1, . . . , Xd) ∈ L∞d (F).

Then ρG is a CRM, and fρG(α) = −u(α), α ∈ L∞(G), whereas f−1
ρG

(β) = u−1(−β),
β ∈ Im fρG . The corresponding normalized risk measure is the conditional cer-
tainty equivalent

ρ̄G(X) = −u−1

(
EP

[
u

(
1

d

d∑
i=1

Xi

)∣∣∣∣∣ G
])

, X = (X1, . . . , Xd) ∈ L∞d (F).

3 Strong consistency

In this section we study consistency of CRMs. We consider the most frequently
used consistency condition for univariate risk measures in the literature which
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is known as strong consistency and extend it to the multivariate case. We refer
to Detlefsen and Scandolo (2005), Cheridito et al. (2006), Cheridito and Kupper
(2011), Kupper and Schachermayer (2009), and Penner (2007) for more informa-
tion on strong consistency of univariate risk measures. Kromer et al. (2014) also
study a kind of consistency for multivariate risk measures, however, as we will
point out in Remark 4.10 below, their definition of consistency differs from our
approach. For the remainder of this section we let G andH be two sub-σ-algebras
of F such that G ⊆ H, and let ρG : L∞d (F)→ L∞(G) and ρH : L∞d (F)→ L∞(H)
be the corresponding CRMs.

Definition 3.1 (Strong consistency). The pair {ρG, ρH} is called strongly con-
sistent if

ρH(X) ≤ ρH(Y ) ⇒ ρG(X) ≤ ρG(Y ) (X, Y ∈ L∞d (F)). (3.1)

Strong consistency states that if one risk is preferred to another risk in al-
most surely all states under more information, then this preference already holds
under less information. Our first result shows that strong consistency can be
equivalently defined by a recursive relation.

Lemma 3.2. Equivalent are:

(i) {ρG, ρH} is strongly consistent;

(ii) For all X ∈ L∞d (F) it holds that

ρG(X) = ρG

(
f−1
ρH

(
ρH(X)

)
1d

)
,

where f−1
ρH

was defined in Definition 2.2.

Proof. (i)⇒(ii): As for all X ∈ L∞d (F)

ρH(X) = ρH
(
f−1
ρH

(ρH(X)) 1d
)
,

it follows from strong consistency that

ρG(X) = ρG
(
f−1
ρH

(ρH(X)) 1d
)
.

(ii)⇒(i): Let X, Y ∈ L∞d (F) be such that ρH(X) ≤ ρH(Y ). Then by antitonicity

of f−1
ρH

(see Lemma A.1) and ρG it follows that

ρG(X) = ρG

(
f−1
ρH

(
ρH(X)

)
1d

)
≤ ρG

(
f−1
ρH

(
ρH(Y )

)
1d

)
= ρG(Y ).

Remark 3.3. Let ηG and ηH be two univariate CRMs, where ηH is normalized on
constants, i.e. ηH(α) = −α for all α ∈ L∞(H). Then fηH(α) = f−1

ηH
(α) = −α and

thus strong consistency is equivalent to the tower property (see (1.5))

ηG(F ) = ηG
(
− ηH(F )

)
, F ∈ L∞(F).
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Remark 3.4. If {ρG, ρH} is strongly consistent so is the pair of normalized CRMs
{ρ̄G, ρ̄H} as defined in Definition 2.2 and vice versa, because fρG , fρH and their
inverse functions are antitone (Lemma A.1). Since fρ̄G = fρ̄H = − id strong
consistency of the normalized CRMs is equivalent to

ρ̄G(F ) = ρ̄G
(
− ρ̄H(F )1d

)
, F ∈ L∞(F),

in analogy to Remark 3.3.

Lemma 3.5. If {ρG, ρH} is strongly consistent, then ρG uniquely determines the
normalized CRM ρ̄H = −f−1

ρH
◦ ρH.

Proof. Suppose that there are two CRMs ρ1
H and ρ2

H which are strongly consistent
with respect to ρG, i.e.

ρG

(
f−1
ρ1H

(
ρ1
H(X)

)
1d

)
= ρG(X) = ρG

(
f−1
ρ2H

(
ρ2
H(X)

)
1d

)
, X ∈ L∞d (F).

We will show that f−1
ρ1H

(ρ1
H(X)) = f−1

ρ2H
(ρ2
H(X)). Suppose that there exists an

X ∈ L∞d (F) such that A :=
{
f−1
ρ1H

(ρ1
H(X)) > f−1

ρ2H
(ρ2
H(X))

}
∈ H has posi-

tive probability. Then, by the H-locality of ρ1
H and ρ2

H and of f−1
ρ1H

and f−1
ρ2H

(Lemma A.1), we obtain

ρG(X1A) = ρG

(
f−1
ρ1H

(
ρ1
H(X1A)

)
1d

)
= ρG

(
f−1
ρ1H

(
ρ1
H(X)

)
1A1d

)
≤ ρG

(
f−1
ρ2H

(
ρ2
H(X)

)
1A1d

)
= ρG

(
f−1
ρ2H

(
ρ2
H(X1A)

)
1d

)
= ρG(X1A). (3.2)

where the inequality (3.2) is strict with positive probability as ρG is strictly
antitone, and hence we have a contradiction. Reverting the role of ρ1

H and ρ2
H in

the definition of A proves the lemma.

In Hoffmann et al. (2016) we studied under which conditions a (multivariate)
conditional risk measure can be decomposed as in (1.4), i.e. into a conditional
aggregation function and a univariate conditional risk measure. We will pursue
showing that strong consistency of {ρG, ρF} is already sufficient to guarantee a
decomposition (1.4) for both ρG and ρF . To this end we need to clarify what we
mean by a conditional aggregation function:

Definition 3.6. We call a function Λ : L∞d (F) → L∞(F) a conditional aggre-
gation function if it fulfills the following properties:

Strict isotonicity: X ≥ Y and P(X > Y ) > 0 implies Λ(X) ≥ Λ(Y ) and
P
(
Λ(X) > Λ(Y )

)
> 0.

F-Locality: Λ(X1A + Y 1AC ) = Λ(X)1A + Λ(Y )1AC for all A ∈ F ;
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Lebesgue property: For any uniformly bounded sequence (Xn)n∈N in L∞d (F)
such that Xn → X P-a.s., we have that

Λ(X) = lim
n→∞

Λ(Xn) P-a.s.

If in addition
Λ(L∞d (J )) ⊆ L∞(J ) for all H ⊆ J ⊆ F ,

where H ⊂ F we call Λ a H-conditional aggregation function. Moreover, for
any conditional aggregation function Λ : L∞d (F)→ L∞(F) let

fΛ : L∞(F)→ L∞(F);F 7→ Λ(F1d)

and
f−1

Λ : Im fΛ → L∞(F);G 7→ F such that fΛ(F ) = G.

Remark 3.7. The nameH-conditional aggregation function refers to the fact that
Λ(x) ∈ L∞(H) for all x ∈ Rd. Thus every conditional aggregation function is at
least F -conditional.

Before we state our decomposition result for strongly consistent CRMs in
Theorem 3.9 we need the following definition.

Definition 3.8. A realization ρG(·, ·) of a function ρG : L∞d (F) → L∞(G) is a
selection of one representative ρG(X, ·) of the equivalence class ρG(X) ∈ L∞(G)
for each X ∈ L∞d (F). We call such a realization continuos whenever Rd × Ω 3
(x, ω) 7→ ρG(x, ω) is continuous in its first argument P-a.s. Here we identify
x ∈ Rd with the equivalence class in L∞d (F) determined by the corresponding
constant random vector.

Theorem 3.9. Let ρG : L∞d (F) → L∞(G) and ρF : L∞d (F) → L∞(F) be CRMs
such that {ρG, ρF} is strongly consistent. Moreover, suppose that

ρ̄G(x) = ρ̄F(x) for all x ∈ Rd. (3.3)

If ρG has a continuous realization ρG(·, ·), then there exists a G-conditional ag-
gregation function ΛG : L∞d (F) → L∞(F) and a univariate CRM ηG : Im ΛG →
L∞(G) such that

ρG(X) = ηG
(
ΛG(X)

)
for all X ∈ L∞d (F) (3.4)

and
ηG
(
ΛG(X)

)
= −ΛG(X) for all X ∈ L∞d (G). (3.5)

Let ΛF := −ρF and ηF := − id so that ρF = ηF ◦ ΛF for the conditional aggre-
gation function ΛF and the univariate CRM ηF . Then ΛF(α) ∈ L∞(G) for all
α ∈ L∞d (G) and

ΛF(X) ≤ ΛF(Y ) =⇒ ΛG(X) ≤ ΛG(Y ) (X, Y ∈ L∞d (F)), (3.6)

i.e. ΛG and ΛF are strongly consistent.
Conversely, suppose that the CRM ρG : L∞d (F) → L∞(G) satisfies (3.4) and

(3.5), then {ρG, ρF} is strongly consistent and satisfies (3.3), where ρF := −ΛG
is a CRM.
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A proof of Theorem 3.9 is provided in Appendix B. We remark that in Theo-
rem 3.9 we require consistency of the pair {ρG, ρF} where ρF is a CRM given the
full information F . Note that ρF is (apart from the sign) simply a conditional
aggregation function as defined in Definition 3.6, so ρG is required to be consis-
tent with some aggregation function under full information. This also explains
ΛF . For d = 1 this consistency is automatically satisfied by monotonicity, the
aggregation is simply the identity function, and clearly the assertion is trivial
anyway. For higher dimensions, Theorem 3.9 states that if there exists an ag-
gregation function which is consistent with ρG, then ρG is automatically of type
(3.4). Clearly, if we already know that (3.4) holds true, then ρG is consistent
with ρF = −ΛG.

Condition (3.3) is a strengthening of strong consistency in absence of any
risk, that is for constants, since it states that in that case aggregation under
ρG equals aggregation under full information ρF up to normalization with f−1

ρG
and f−1

ρF
, respectively . Note that we may replace condition (3.3) by requiring

ρ̄F(x) ∈ L∞(G) for all x ∈ Rd. Indeed, in the setting of Theorem 3.9, assuming
(3.3), the theorem shows that ρF(α) = −ΛF(α) ∈ L∞(G) for all α ∈ L∞d (G)
and thus the same is true for ρ̄F . Conversely, if ρ̄F(x) ∈ L∞(G), then by strong
consistency we have that

ρ̄G(x) = ρ̄G
(
− ρ̄F(x)1d

)
= ρ̄F(x), x ∈ Rd,

which is condition (3.3). As regards the required existence of a continuous real-
ization of ρG, sufficient criteria are well-known, e.g. Kolmogorov’s criterion; see
Theorem 2.1 in Revuz and Yor (1999).

Remark 3.10. We show in Lemma A.3 that the inverse function f−1
ΛG

of fΛG is

isotone and that ΛG(X) = ΛG
(
f−1

ΛG
(ΛG(X))1d

)
for all X ∈ L∞d (F). Therefore it

can be shown as in Lemma 3.2, that (3.6) is equivalent to

f−1
ΛG

(
ΛG(X)

)
= f−1

ΛF

(
ΛF(X)

)
, for all X ∈ L∞d (F).

Note that we cannot write the recursive form of the strong consistency of two
CRMs ρG and ρF as above, since fρG is only defined on L∞(G) and not on L∞(F)
in contrast to fΛG .

The following Theorem 3.11 extends the results in Hoffmann et al. (2016) for
strong consistency based on our findings in Theorem 3.9.

Theorem 3.11. If ρG : L∞d (F)→ L∞(G) is a CRM with a continuous realization
ρG(·, ·), then the following three statements are equivalent

(i) ρG(·, ·) is risk-antitone, that is ρG(X(ω), ω) ≥ ρG(Y (ω), ω) P-a.s., implies
ρG(X) ≥ ρG(Y );

(ii) ρG is decomposable as in (3.4);

(iii) ρG is strongly consistent with some aggregation function Λ : L∞d (F) →
L∞(F), i.e. {ρG,−Λ} is strongly consistent, and ρ̄G(x) = −f−1

ΛF

(
ΛF(x)

)
for all x ∈ Rd.
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Proof. The equivalence of (ii) and (iii) has been shown in Theorem 3.9 and that
(i) implies (ii) follows from Proposition B.1. Finally, the proof of Theorem 3.9
shows that (iii) implies (i).

Example 3.12. Recall Example 2.3. In that case ρ̄G(x) = −1
d

∑d
i=1 xi for

all x = (x1, . . . , xd) ∈ Rd, so condition (3.3) is satisfied whenever ρF(X) =
−l(
∑d

i=1Xi) for some strictly increasing function l : R → R, so in partic-
ular for l = u. Moreover, we may choose the realization of ρG such that
ρG(x, ω) = −u(1

d

∑d
i=1 xi), x = (x1, . . . , xd) ∈ Rd, which is obviously continu-

ous in x. Replacing the sum by a conditional aggregation function, for instance
−ρF(x) = ΛF(x) =

∑d
i=1 aixi1A +

∑d
i=1 bixi1Ac , x = (x1, . . . , xd) ∈ Rd, where

ai, bi > 0 are weights and P(A) > 0, then indeed (3.3) requires that A ∈ G.

4 Conditional law-invariance and strong consis-

tency

As in the previous section, if not otherwise stated, throughout this section we
let G and H be two sub-σ-algebras of F such that G ⊆ H, and let ρG : L∞d (F)→
L∞(G) and ρH : L∞d (F)→ L∞(H) be the corresponding CRMs.

Definition 4.1. A CRM ρG is conditional law-invariant if ρG(X) = ρG(Y ) when-
ever the G-conditional distributions µX(·|G) and µY (·|G) of X, Y ∈ L∞d (F) are
equal, i.e. if P(X ∈ A | G) = P(Y ∈ A | G) for all Borel sets A ∈ B(Rd). In
case G = {∅,Ω} is trivial, conditional law-invariance of ρG is also referred to as
law-invariance.

In the law-invariant case we will often have to require a little more regularity
of the underlying probability space (Ω,F ,P):

Definition 4.2. We say that (Ω,F ,P) is

atomless, if (Ω,F ,P) supports a random variable with continuous distribution;

conditionally atomless given H ⊂ F , if (Ω,F ,P) supports a random vari-
able with continuous distribution which is independent of H.

The next lemma shows that conditional law-invariance is passed from ρG
(forward) to ρH by strong consistency. The proof is based on Föllmer (2014).

Lemma 4.3. If {ρG, ρH} is strongly consistent and ρG is conditionally law-
invariant, then ρH is also conditionally law-invariant.

Proof. Let X, Y ∈ L∞(F) such that µX(·|H) = µY (·|H) and let A := {ρH(X) >
ρH(Y )} ∈ H. Then the random variables X1A and Y 1A have the same con-
ditional distribution given G. As ρG is conditionally law-invariant and strongly

12



consistent with ρH we obtain

ρG

(
f−1
ρH

(
ρH(X)1A + ρH(0d)1AC

)
1d

)
= ρG(X1A) = ρG(Y 1A)

= ρG

(
f−1
ρH

(
ρH(Y )1A + ρH(0d)1AC

)
1d

)
.

On the other hand, by strict antitonicity of ρG and f−1
ρH

ρG

(
f−1
ρH

(
ρH(X)1A + ρH(0d)1AC

)
1d

)
≥ ρG

(
f−1
ρH

(
ρH(Y )1A + ρH(0d)1AC

)
1d

)
,

and the inequality is strict with positive probability if P(A) > 0. Thus A must
be a P-nullset and interchanging X and Y in the definition of A shows that
indeed ρH(X) = ρH(Y ).

While in Theorem 3.9 we had to require that the strongly consistent pair
{ρG, ρH} satisfies H = F , in this section we in some sense require the opposite
extreme, namely that G = {∅,Ω} is trivial while H ⊆ F .

Assumption 1. For the rest of the section we assume that G = {∅,Ω}. For
simplicity we will write ρ := ρG = ρ{∅,Ω}.

In the following we extend the representation result of Föllmer (2014) to
multivariate CRMs.

Theorem 4.4. Let (Ω,H,P) be atomless and let (Ω,F ,P) be conditionally atom-
less given H. Suppose that ρ is law-invariant. Then, {ρ, ρH} is strongly consis-
tent if and only if ρ and ρH are of the form

ρ(X) = g
(
f−1
u

(
EP [u(X)]

))
for all X ∈ L∞d (F) (4.1)

and
ρH(X) = gH

(
f−1
u

(
EP [u(X) | H]

))
for all X ∈ L∞d (F) (4.2)

where u : Rd → R is strictly increasing and continuous, f−1
u : Im fu → R is the

inverse function of
fu : R→ R; x 7→ u(x1d)

and g : R → R and gH : L∞(H) → L∞(H) are strictly antitone, fulfill the
Lebesgue property, 0 ∈ Im g ∩ Im gH, and gH is H-local.

In particular, for any CRM ρ of type (4.1) we have that g = fρ, and similarly
for any CRM ρH of type (4.2) we have gH = fρH, where fρ and fρH are defined
in Definition 2.2.

The proof of Theorem 4.4 is provided in Appendix C. Note that the common
function u : Rd → R appearing in (4.1) and (4.2) can be seen as a multivariate
utility where u being strictly increasing means that x, y ∈ Rd with x ≥ y and
x 6= y implies u(x) > u(y). So f−1

u

(
EP [u(·)]

)
and f−1

u

(
EP [u(·) | H]

)
are (con-

ditional) certainty equivalents – in the univariate case (d = 1) we clearly have

13



f−1
u = u−1. Thus if ρ and/or ρH in Theorem 4.4 are normalized on constants

(and hence fρ ≡ − id or fρH ≡ − id), then ρ and/or ρH equal (minus) certainty
equivalents. But (4.1) and (4.2) also comprise other prominent classes of risk
measures. For instance if fρ = −fu or fρH = −fu, then ρH(X) = −EP [u(X)]
is an multivariate expected utility whereas ρH(X) = −EP [u(X) | H] is a multi-
variate conditional expected utility.

Example 4.5. We have seen in Theorem 4.4 that under some mild technical
assumptions on the probability space every pair {ρ, ρH} of law-invariant CRMs
is strongly consistent if and only if it is of the form (4.1) and (4.2). This class
comprises two important subclasses: Firstly, if fρ = − id and fρH = − id, then

ρ(X) = −f−1
u (EP [u(X)]) and ρH(X) = −f−1

u (EP [u(X) | H]) ,

which are multivariate conditional certainty equivalents with deterministic utility
function u. Secondly, if fρ = −fu and fρH = −fu, then

ρ(X) = −EP [u(X)] and ρH(X) = −EP [u(X) | H] ,

is a multivariate conditional expected utility.

Recall Theorem 3.9 where we proved that if a multivariate CRM ρH is strongly
consistent in a forward looking way with an aggregation ρF under full information
F (and ρF fulfills (3.3)), then the multivariate CRM can be decomposed as in
(3.4). The following Theorem 4.6 shows that we also obtain such a decomposition
(3.4) under law-invariance by requiring strong consistency of ρH in a backward
looking way with ρ given trivial information {∅,Ω}.

When stating Theorem 4.6 we will need an extension of fρH to L∞(F): Sup-
pose that the process R 3 a 7→ fρH(a) allows for a continuous realization. Due to
the fact that ρH is strictly antitone and H-local, we can find a possibly different
realization fρH(·, ·) such that f̃ρH : R×Ω→ R : x 7→ fρH(x, ω) is continuous and
strictly decreasing in the first argument for all ω ∈ Ω. Note that there exists a
well-defined inverse f̃−1

ρH
(·, ω) of f̃ρH(·, ω) for all ω ∈ Ω. Now define the functions

f̄ρH : L∞(F)→ L∞(F); F 7→ f̃ρH(F (ω), ω) (4.3)

and
f̄−1
ρH

: Im f̄ρH → L∞(F); F 7→ f̃−1
ρH

(F (ω), ω),

where we with the standard abuse of notation identify the random variable
f̃ρH(F (ω), ω) or f̃−1

ρH
(F (ω), ω) with the equivalence classes they generate in L∞(F).

By construction of f̄ρH we have that

f̄ρH(L∞(J )) ⊆ L∞(J )

for all σ-algebras J such that σ (fρH(a, ·), a ∈ R) ⊆ J ⊆ F , c.f. Hoffmann et al.
(2016) Lemma 3.1. By definition f̄ρH is also F -local and has the Lebesgue prop-

erty due to continuity of R 3 a 7→ f̃ρH(a, ω). Moreover, H-locality and continuity
also imply that indeed f̄ρH(X) = fρH(X) for all X ∈ H (approximation by simple
random variables), so f̄ρH is indeed an extension of fρH to L∞(F).
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Theorem 4.6. Under the same conditions as in Theorem 4.4 let {ρ, ρH} be
strongly consistent. Then ρ can be decomposed as

ρ = η ◦ Λ,

where
Λ : L∞d (F)→ L∞(F); X 7→ −fρ

(
f−1
u (u(X))

)
is a {∅,Ω}-conditional aggregation function,

η : Im Λ→ R; F 7→ −U−1 (EP [U(F )])

is a law-invariant univariate certainty equivalent given by the (deterministic)
utility

U : Im ρ→ R; a 7→ fu
(
f−1
ρ (−a)

)
which is strictly increasing and continuous. Here u : Rd → R is the multivariate
utility function from Theorem 4.4.
If the function R 3 a 7→ fρH(a) has a continuous realization, then ρH can be
decomposed as

ρH = ηH ◦ ΛH,

with
ηH (ΛH(X)) = −ΛH(X), for all X ∈ L∞d (H),

where

• ΛH : L∞d (F)→ L∞(F); X 7→ −f̄ρH (f−1
u (u(X))) is a σ (fρH(a, ·) : a ∈ R)-

conditional aggregation function (fρH(a, ·) denotes a continuous realization
with strictly increasing paths);

• ηH : Im ΛH → L∞(H); F 7→ −U−1
H (EP [UH(F ) | H]) is a univariate con-

ditional certainty equivalent;

• the stochastic utility UH : Im ΛH → L∞(F); F 7→ fu
(
f̄−1
ρH

(−F )
)

is

strictly isotone, F-local, fulfills the Lebesgue property and U−1
H (ImUH ∩

L∞(H)) ⊆ L∞(H);

• f̄ρH is given in (4.3).

Moreover, it holds that
UH ◦ ΛH = u = U ◦ Λ (4.4)

are deterministic and independent of the chosen information H or {Ω, ∅}.
Finally we also have that f−1

ΛH
◦ ΛH = f−1

u ◦ u = f−1
Λ ◦ Λ, i.e. {Λ,ΛH} is strongly

consistent as defined in (3.6).
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Proof. By Theorem 4.4 we have that

ρH(X) = fρH
(
f−1
u (EP [u(X) | H])

)
= f̄ρH

(
f−1
u

(
EP
[
fu
(
f̄−1
ρH

(
f̄ρH

(
f−1
u (u(X))

))) ∣∣ H])) ,
where u and fu are given in Theorem 4.4. Hence, recalling the definitions of UH,
ηH, and ΛH, we have ρH = ηH◦ΛH. It can be readily seen that UH as well as U−1

H ,
and thus also ΛH, are F -local, strictly isotone, and fulfill the Lebesgue property.
As f̄ρH(L∞(J )) ⊆ L∞(J ) for all σ-algebras J such that σ (fρH(a, ω) : a ∈ R) ⊆
J ⊆ F , the same also applies to ΛH = −f̄ρH ◦ f−1

u ◦ u and we conclude that
ΛH is a σ (fρH(a, ω) : a ∈ R)-conditional aggregation function. Moreover, for
X ∈ L∞d (H)

ηH (ΛH(X)) = f̄ρH
(
f−1
u (u(X))

)
= −U−1

H
(
u(X)

)
= −ΛH(X).

The result for ρ follows similarly to the proof above without requiring a continu-
ous realization and by using the canonical extension of fρ from R to L∞d (F), i.e.
f̄ρ(F )(ω) = fρ(F (ω)) for all ω ∈ Ω and F ∈ L∞(F).

We remark that (4.4) is the crucial fact which ensures that ρ and ρH are
strongly consistent and (conditionally) law-invariant.

In Theorem 4.6 we have seen that basically every CRM which is strongly con-
sistent with a law-invariant CRM under trivial information can be decomposed
into a conditional aggregation function and a univariate conditional certainty
equivalent. For the rest of this section we study the effect of additional prop-
erties of the CRMs on this decomposition. For instance, we want to identify
conditions under which the univariate conditional certainty equivalent is gener-
ated by a deterministic (instead of a stochastic) utility function; see Corollary 4.7.
Also we study what happens if the univariate CRMs η and ηH from Theorem 4.6
are required to be strongly consistent; see Corollary 4.9.

Corollary 4.7. In the situation of Theorem 4.6, if ρ is normalized on constants,
then

Λ(X) = f−1
u (u(X)), X ∈ L∞d (F),

and
η(F ) = ρ(F1d) = −f−1

u (EP [fu(F )]), F ∈ L∞(F).

If ρH is normalized on constants, then similarly

ΛH(X) = f−1
u (u(X)), X ∈ L∞d (F),

and
ηH(F ) = ρH(F1d) = −f−1

u (EP [fu(F ) | H]), F ∈ L∞(F).

In particular the univariate conditional certainty equivalent ηH is now given by
the deterministic univariate utility function fu, and thus ηH is conditionally law-
invariant.
If both ρ and ρH are normalized on constants, then Λ = ΛH.
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Example 4.8. Suppose that ρ and ρH from Theorem 4.6 are normalized on
constants and that for all F,G ∈ L∞(F), m,λ ∈ R with λ ∈ (0, 1)

ρ(F1d +m1d) = ρ(F1d)−m (4.5)

as well as

ρ
(
λF1d + (1− λ)G1d

)
≤ λρ(F1d) + (1− λ)ρ(G1d). (4.6)

Recalling Corollary 4.7 it follows that η(F ) = ρ(F1d) is cash-additive (4.5) and
convex (4.6). Since fu is a deterministic function it can be easily checked that
η and ηH are strongly consistent (conditionally) law-invariant univariate CRMs.
Therefore we are in the framework of Föllmer (2014). There it is shown that the
univariate CRMs must be either linear or of entropic type, i.e.

fu(x) = ax+ b or fu(x) = −ae−βx + b, x ∈ R,

for constants a, b, β ∈ R with a, β > 0, which implies that

ηH(F ) = EP [−F | H] or ηH(F ) =
1

β
log
(
EP
[
e−βF

∣∣ H])
and similarly for η. Clearly, this also has consequences for the aggregation
function Λ = ΛH = f−1

u ◦ u since x 7→ u(x1d) = fu(x) is either of linear
or exponential form. For instance, a possible aggregation would be given by
u(x1, . . . , xd) = a

∑d
i=1 wixi + b, where wi ∈ (0, 1) for i = 1, ..., d such that∑d

i=1wi = 1, because fu(x) = ax + b. In this case the aggregation function is

simply Λ(x) =
∑d

i=1 wixi.

Corollary 4.9. In the situation of Theorem 4.6, suppose that η and ηH are
defined on all of L∞(F). Then {η, ηH} are strongly consistent if and only if

η = −ũ−1 (EP [ũ(F )]) and ηH = −ũ−1 (EP [ ũ(F ) | H])

for a continuous and strictly increasing utility function ũ : R → R. Moreover,
the corresponding (conditional) aggregation functions are given by

Λ = −fρ ◦ f−1
u ◦ u and ΛH = −fρ ◦ f−1

u ◦ aH ◦ u,

where aH(F ) = αF +β, F ∈ L∞(F), is a positive affine transformation given by
α, β ∈ L∞(H) with P(α > 0) = 1.

Proof. As η is law-invariant, it follows from Lemma 4.3 that ηH is conditionally
law-invariant. Moreover, fη ≡ fηH ≡ − id, i.e. η and ηH are normalized on
constants. Thus by Theorem 4.4 we obtain that

η = −ũ−1 (EP [ũ(F )]) and ηH = −ũ−1 (EP [ ũ(F ) | H])
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for a continuous and strictly increasing function ũ : R → R. It follows from
Proposition D.1 that U as well as UH are affine transformations of ũ. This in
turn implies that UH = ãH ◦ U , where ãH(F ) = α̃F + β̃ for α̃, β̃ ∈ L∞(H)
with P(α̃ > 0) = 1. Finally we obtain that the σ (fρH(a, ω), a ∈ R)-conditional
aggregation function ΛH is given by

ΛH = U−1
H ◦ u = U−1 ◦ ã−1

H ◦ u = −fρ ◦ f−1
u ◦ ã−1

H ◦ u.

Since the inverse aH := ã−1
H of an affine function is affine the result follows.

Remark 4.10. Our notion of consistency is defined in terms of the multivariate
CRMs. In contrast in Kromer et al. (2014) it is a priori assumed that the
multivariate CRMs are of the decomposable form ρ = η ◦ Λ as in (3.4) and
they define ”consistency” of {ρG, ρH} by requiring strong consistency of both
pairs {ηG, ηH} and {ΛG,ΛH}. Note that these definitions of consistency are not
equivalent, in particular strong consistency of both {ηG, ηH} and {ΛG,ΛH} does
not imply strong consistency of {ρG, ρH}. Kromer et al. (2014) also study the
interplay of the strong consistency of {ρG, ρH} and of strong consistency of both
{ηG, ηH} and {ΛG,ΛH}. As Corollary 4.9 shows in the law-invariant case this
requirement is quite restrictive.

5 Consistency of a family of conditional risk

measures

So far we only considered consistency for two multivariate CRMs. In this section
we extend our results on strong consistency to families of multivariate CRMs.
We begin with some motivating examples.

Example 5.1 (Dynamic risk measures). If one is interested in a dynamic risk
measurement under growing information in time up to a terminal time T > 0,
this can be modeled by a family of CRMs (ρt)t∈[0,T ] and a filtration (Ft)t∈[0,T ]

such that ρt : L∞d (FT )→ L∞(Ft).

In systemic risk measurement conditioning on varying information in space
rather than in time is of interest. In that situation, as opposed to Example 5.1,
the family of multivariate CRMs is not necessarily indexed by a filtration. To
exemplify this we recall a multivariate version of the spatial risk measures which
have been introduced by Föllmer (2014) in a univariate framework.

Example 5.2 (Multivariate spatial risk measures). Let I = {1, ..., d} denote a
set of financial institutions and let (S,S) be a measurable space. Each financial
institution i ∈ I can be in some state s ∈ S, and Ω = SI = {ω = (ω)i∈I : ωi ∈ S}
denotes all possible states of the system. Then the σ-algebra FJ on Ω which is
generated by the canonical projections on the j-th coordinate for j ∈ J describes
the observable information within the subsystem of financial institutions J ⊆ I.
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Finally let P be a probability measure on (Ω,F), where F := FI . Then the
risk evolution under varying spatial information can be modeled by the family
of CRMs (ρJ)J⊆I , where each ρJ : L∞d (F) → L∞(FJ), i.e. ρJ is the risk of the
system given the information on the state of the financial institutions within the
subsystem J .

From the viewpoint of a regulator, systemic risk measurement contingent on
information in space is helpful in identifying systemic relevant structures, i.e. in
analyzing questions like: ”How much is the system affected given that a specific
institution or subgroup of institutions is in distress?”, or ”How resilient is a spe-
cific institution or subgroup of institutions given that the system is in distress?”.
In Example 5.2 the spatial conditioning is based on a σ-algebra which is gener-
ated by all possible states of the institutions within a given subsystem. To treat
questions of the type mentioned before one might alternatively consider condi-
tioning with respect to more granular information in space. For instance, in the
spirit of the systemic risk measures CoVaR in Adrian and Brunnermeier (2011)
or Systemic Expected Shortfall in Acharya et al. (2010) one could condition on
a single crisis event with respect to a given subsystem, e.g. that all financial
institutions within the subsystem are below their individual value-at-risk levels.

In Example 5.1 as well as Example 5.2 the families of CRMs are indexed by
one-dimensional information structure. However, in Frittelli and Maggis (2011),
they propose conditional certainty equivalents based on a one-dimensional in-
formation structure caused by the fact that utilities of agents may vary over
time:

Example 5.3 (Conditional certainty equivalents). Let (Ω,F , (Ft)t∈R+ ,P) be an
atomless filtered probability space and let ut : R×Ω→ R be a function which is
strictly increasing and continuous in the first argument and Ft-measurable in the
second argument for all t ∈ R+. Suppose that the range Rt := {ut(x, ω) : x ∈ R}
is independent of ω ∈ Ω, that Rt ⊆ Rs for all s ≤ t, and denote the pathwise
inverse function of u by u−1

t (y) ∈ L∞(Ft) for all y ∈ Rt, where ut(x) and u−1
t (y)

is the shorthand for ut(x, ·) and u−1
t (y, ·), resp. Then the backward conditional

certainty equivalent is given by

Cs,t : L∞(Ft)→ L∞(Fs);F 7→ Cs,t(F ) = −u−1
s

(
EP [ut(F ) | Fs]

)
.

It has been shown in Frittelli and Maggis (2011) Proposition 1.1 that for a fixed
T ∈ R+, we have that the family (Ct,T )t≤T is consistent, i.e. for all s ≤ t ≤ T

Ct,T (F ) ≥ Ct,T (G) =⇒ Cs,T (F ) ≥ Cs,T (G) (F,G ∈ L∞(FT )).

Also in the context of conditioning on spatial information a two-dimensional
information structure could be of interest, for example to represent risk measure-
ment policies that differ locally in the financial system.
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Example 5.4 (Local regulatory policies). In the context of Example 5.2, let
I = {1, ..., d} be a network of financial institutions that is of interest for su-
pervisory authorities associated to different levels with possibly different reg-
ulatory policies. For example, think of I as the European financial system.
Then regulatory policies of authorities on the European level might differ from
policies on the national levels which again might differ from regional policies.
To include these different regulatory viewpoints into the framework of spatial
risk measures one could consider a family of CRMs (ρJ,K)J⊆K⊆I , where each
ρJ,K : L∞d (FK) → L∞(FJ). Here the first index J has the same meaning as in
Example 5.2, i.e. the risk measurement is performed conditioned on the state of
the institutions in subsystem J . The second index K identifies the type of reg-
ulatory policy on the risk management prevailing in subsystem K, for example
expected shortfall measures at different significance levels according to European
(K = I), national, or regional standards. Even though regulatory policies may
differ depending on the level of authority, it might still be desirable that these
policies behave consistently in some way, i.e. the family (ρJ,K)J⊆K⊆I should be
consistent not only with respect to the contingent information implied by the
index J but also with respect to the different policies implied by the index K.
In the following, this question will be considered.

Motivated by the examples above, we will consider the following types of
families of CRMs in this section: Let I1 and I2 be sets of sub-σ-algebras of
F such that I1 contains the trivial σ-algebra and denote by E := {(H, T ) ∈
I1×I2 : H ⊆ T }. In the following we denote by ρH,T a multivariate CRM which
maps L∞d (T ) to L∞(H) and we consider families of CRMs of type (ρH,T )(H,T )∈E .
In order to allow for a comparison of the risks of two random risk factors under
different information, we assume for the rest of this section that ρH,T1(L

∞
d (T1)) =

ρH,T2(L
∞
d (T2)) for all (H, T1), (H, T2) ∈ E . Sometimes it will also be convenient to

consider only a subfamily of E where the second σ-algebra is fixed. In that case
we denote the corresponding index set by E(T ) := {H ∈ I1 : H ⊆ T } for T ∈ I2.
Note that the structure of the families of CRMs discussed in Example 5.1 and
Example 5.2 is covered by this framework by letting I2 := {F}.

Definition 5.5. A family of CRMs (ρH,T )(H,T )∈E is strongly consistent if for all
G ⊆ H ⊆ T1 ∩ T2

ρH,T1(X) ≥ ρH,T2(Y ) =⇒ ρG,T1(X) ≥ ρG,T2(Y ), (X ∈ L∞(T1), Y ∈ L∞d (T2)).

It can be easily checked that the conditional certainty equivalents of Frittelli
and Maggis (2011) (see Example 5.3) are strongly consistent. Analogously to
Lemma 3.2 strong consistency is equivalent to the following recursive relation
between the CRMs.

Lemma 5.6. Let (ρH,T )(H,T )∈E be family of CRMs, then the following statements
are equivalent:

(i) (ρH,T )(H,T )∈E is strongly consistent;
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(ii) For all G ⊆ H ⊆ T1 ∩ T2 and X ∈ L∞d (T1)

ρG,T1(X) = ρG,T2

(
f−1
ρH,T2

(
ρH,T1(X)

)
1d

)
.

Clearly, our results from the previous sections carry over to families of CRM.
We illustrate this in the following by giving the straightforward extensions of
Theorem 3.9 and Theorem 4.4 to a family of CRMs.

Theorem 5.7. Let (ρH,T )(H,T )∈E be a family of strongly consistent CRMs. More-
over, if there exists a T ∈ I2 such that

ρ̄H,T (x) = ρ̄T ,T (x) for all x ∈ Rd and all H ∈ E(T ), (5.1)

then each multivariate CRM ρH,T of the subfamily (ρH,T )H∈E(T ) which has a con-
tinuous realization ρH,T (·, ·) can be decomposed into a H-conditional aggregation
function ΛH,T : L∞d (T ) → L∞(T ) and a univariate CRM ηH,T : Im ΛH,T →
L∞(H) such that

ρH,T = ηH,T ◦ ΛH,T

and ρH,T (X) = ηH,T
(
ΛH,T (X)

)
= −ΛH,T (X) for all X ∈ L∞d (H). Moreover,

for those ρH,T ,H ∈ E(T ), for which a decomposition exists the corresponding
conditional aggregation functions are strongly consistent.

As in the discussion of Theorem 3.9, if there is a minimal element G in E(T ),
then (5.1) can be replaced by ρ̄T ,T (x) ∈ L∞(G) for all x ∈ Rd. In particular if
{∅,Ω} ∈ E(T ), then (5.1) requires ρ̄T ,T (x) ∈ Rd for all x ∈ Rd, so all aggregation
functions ΛH,T are necessarily deterministic, H ∈ E(T ).

Theorem 5.8. Let (ρH,T )(H,T )∈E be a family of CRMs. Furthermore, suppose
that there exists an (G, T ) ∈ E such that (Ω, T ,P) is a conditionally atom-
less probability space given G, (Ω,G,P) is atomless and ρT := ρ{∅,Ω},T is law-
invariant. Then the subfamily (ρH,T )H∈E(T ) is strongly consistent if and only if
for each H ∈ E(T ) the CRM ρH,T is of the form

ρH,T (X) = gH,T
(
f−1
uT

(
EP [uT (X) | H]

))
, for all X ∈ L∞d (T ), (5.2)

where uT : Rd → R is strictly increasing and continuous, f−1
uT

: Im fuT →
R is the unique inverse function of fuT : R → R;x 7→ uT (x1d) and gH,T :
L∞(H)→ L∞(H) is strictly antitone, H-local, fulfills the Lebesgue property and
0 ∈ Im gH,T .
In particular, for any CRM of type (5.2) we have that gH,T = fρH,T , where fρH,T

is defined in Definition 2.2.

Note that the latter results, being extensions from the two-CRM-case of the
previous sections, only used the strong consistency as a pairwise strong con-
sistency of the elements in subfamilies (ρH,T )(H,T )∈E(T ) of (ρH,T )(H,T )∈E . But if
I2 contains more than just one σ-algebra, then the definition of strong consis-
tency given in Definition 5.5 also has implications on the relations between these
subfamilies corresponding to different sets E(T ) for T ∈ I2.
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Assumption 2. In order to have sufficiently many subfamilies we suppose for
the remainder of this section that I1 = I2 =: I.

Proposition 5.9. Let (ρH,T )(H,T )∈E be a strongly consistent family such that
(5.2) holds for all (H, T ) ∈ E. Then for all T1, T2 ∈ I and H ∈ T1 ∩ T2, H ∈ I,

ρH,T1(X) = fρH,T2

(
f−1
uT2

(
aT1,T2EP [uT1(X) | H] + bH,T1,T2

))
,

where aT1,T2 ∈ R+\{0}, bH,T1,T2 ∈ L∞(H) and EP [bH,T1,T2 | G] = bG,T1,T2 for all
G ∈ I with G ⊆ H.

The proof of Proposition 5.9 is provided in Appendix E. From Proposition 5.9
it follows that any strongly consistent family (ρH,T )(H,T )∈E (under Assumption 2)
is basically a family of conditional certainty equivalents as in Frittelli and Maggis
(2011):

Corollary 5.10. In the situation of Proposition 5.9, if aT1,T2 = 1, bH,T1,T2 = 0
for all H ⊆ T1 ∩ T2 where H ∈ I and T1, T2 ∈ I, and if ρT ,T are normalized on
constants for all T ∈ I, then (ρH,T )(H,T )∈E satisfies

ρH,T (X) = −f−1
uH

(
EP [uT (X) | H]

)
, X ∈ L∞d (T ). (5.3)

Proof. If aT1,T2 = 1 and bH,T1,T2 = 0 for all H ⊆ T1 ∩ T2, then

ρH,T1(X) = fρH,T2

(
f−1
uT2

(
EP [uT1(X) | H]

))
,

and thus by choosing T2 = H and since ρH,H is normalized on constants we get
(5.3).

A Auxiliary results

Note that the strict antitonicity of ρG implies that the inverse function f−1
ρG

in
Definition 2.2 is well-defined. Indeed let β ∈ Im fρG and α1, α2 ∈ L∞(G) such
that fρG(α1) = β = fρG(α2). Suppose that P(A) > 0 where A := {α1 > α2} ∈ G.
Then by strict antitonicity and G-locality we obtain that

β1A + ρG(0d)1AC = ρG(α11d)1A + ρG(0d)1AC = ρG(α11d1A)

≤ ρG(α21d1A) = ρG(α21d)1A + ρG(0d)1AC

= β1A + ρG(0d)1AC ,

and the inequality is strict with positive probability which is a contradiction.
Thus we have that P(α1 > α2) = 0. The same argument for {α1 < α2} yields
α1 = α2 P-a.s.

Next we will show that properties of ρG transfer to fρG and f−1
ρG

. Since the
domain of f−1

ρG
might be only a subset of L∞(G), we need to adapt the definition

of the Lebesgue property for f−1
ρG

in the following way: If (βn)n∈N ⊂ Im fρG
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is a sequence which is lower- and upper-bounded by some β, β ∈ Im fρG , i.e.

β ≤ βn ≤ β for all n ∈ N, and such that βn → β P-a.s., then f−1
ρG

(βn)→ f−1
ρG

(β)
P-a.s. Note that this alternative definition of the Lebesgue property is equivalent
to Definition 2.1 (iv) if the domain is L∞(G). The properties ’strict antitonicity’
and ’locality’ of fρG or f−1

ρG
are defined analogous to Definition 2.1 (ii) and (iii).

Lemma A.1. Let fρG and f−1
ρG

be as in Definition 2.2. Then fρG and f−1
ρG

are
strictly antitone, G-local and fulfill the Lebesgue property.

Proof. For fρG the statement follows immediately from the definition and the
corresponding properties of ρG. Concerning the properties of f−1

ρG
, we start by

proving strict antitonicity. Let β1, β2 ∈ Im fρG such that β1 ≥ β2 and P(β1 >
β2) > 0. Suppose that P(A) > 0 where A :=

{
f−1
ρG

(β1) > f−1
ρG

(β2)
}
∈ G. Then

β11A + fρG(0)1AC = fρG
(
f−1
ρG

(β1)
)
1A + fρG(0)1AC = fρG

(
f−1
ρG

(β1)1A
)

≤ fρG
(
f−1
ρG

(β2)1A
)

= β21A + fρG(0)1AC ,

and the inequality is strict on a set with positive probability since fρG is strictly
antitone. This of course contradicts β1 ≥ β2. Hence f−1

ρG
(β1) ≤ f−1

ρG
(β2). More-

over, as
P(β1 > β2) = P

(
fρG
(
f−1
ρG

(β1)
)
> fρG

(
f−1
ρG

(β2)
))
> 0

we must have f−1
ρG

(β1) 6= f−1
ρG

(β2) with positive probability, i.e.

P
(
f−1
ρG

(β1) < f−1
ρG

(β2)
)
> 0.

Now we show that f−1
ρG

is G-local. Let β1, β2 ∈ Im fρG as well as A ∈ G be
arbitrary. Further let αi = f−1

ρG
(βi), i = 1, 2, i.e. fρG(αi) = βi. Then we have that

fρG(α11A + α21AC ) = fρG(α1)1A + fρG(α2)1AC = β11A + β21AC .

Thus f−1
ρG

(β11A + β21AC ) = α11A + α21AC .

Finally for the Lebesgue property let β, β ∈ Im fρG and let (βn)n∈N ⊂ Im fρG be

a sequence with β ≤ βn ≤ β for all n ∈ N and βn → β P-a.s. Consider the

bounded sequences βun := supk≥n βk and βdn := infk≥n βk, n ∈ N which converge
monotonically almost surely to β, i.e. βun ↓ β P-a.s. and βdn ↑ β P-a.s. Since
β ≤ βun ≤ β for all n ∈ N which by antitonicity of f−1

ρG
yields f−1

ρG
(β) ≤ f−1

ρG
(βun) ≤

f−1
ρG

(β), we observe that the sequence
(
f−1
ρG

(βun)
)
n∈N is uniformly bounded in

L∞(G). Note that by the same argumentation also the sequences
(
f−1
ρG

(βdn)
)
n∈N

and
(
f−1
ρG

(βn)
)
n∈N are uniformly bounded in L∞(G). Next we will show that

βun ∈ Im fρG for all n ∈ N. Fix n ∈ N and set recursively

Ann−1 := {βun = β} and Ank := {βun = βk}\
k−1⋃
i=n−1

Ani , k ≥ n,
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then it follows from induction thatAnk ∈ G, k ≥ n− 1. Since sup {β, βk : k ≥ n} =

max {β, βk : k ≥ n}, we have that
(⋃

k≥n−1A
n
k

)C
is a P-nullset. It follows from

G-locality and the Lebesgue property of fρG that

fρG

(
f−1
ρG

(β)1An
n−1

+
∑
k≥n

f−1
ρG

(βk)1An
k

)

= β1An
n−1

+ fρG

(
lim
m→∞

m∑
k=n

f−1
ρG

(βk)1An
k

)
1
⋃

k≥n A
n
k

= β1An
n−1

+ lim
m→∞

(
m∑
k=n

βk1An
k

+ fρG (0)1⋃
k≥m An

k

)
= β1An

n−1
+
∑
k≥n

βk1An
k

= βun,

which implies βun ∈ Im fρG . By a similar argumentation we obtain βdn ∈ Im fρG .
Recall that βun ↓ β P-a.s. which by antitonicity of f−1

ρG
implies that the sequence(

f−1
ρG

(βun)
)
n∈N is isotone and thus α = limn→∞ f

−1
ρG

(βun) exists in L∞(G). It follows
from antitonicity and the Lebesgue property of fρG that

β = lim
n→∞

βun = lim
n→∞

fρG
(
f−1
ρG

(βun)
)

= fρG(α),

and hence that indeed α = f−1
ρG

(β). Analogously, we obtain that fρG(α̂) = β for

α̂ = limn→∞ f
−1
ρG

(βdn), and thus α̂ = α = f−1
ρG

(β). Hence, by antitonicity of f−1
ρG

f−1
ρG

(β) = lim
n→∞

f−1
ρG

(βun) ≤ lim inf
n→∞

f−1
ρG

(βn)

≤ lim sup
n→∞

f−1
ρG

(βn) ≤ lim
n→∞

f−1
ρG

(βdn) = f−1
ρG

(β),

so limn→∞ f
−1
ρG

(βn) = f−1
ρG

(β), i.e. f−1
ρG

has the Lebesgue property.

An important observation is that the domain of f−1
ρG

is equal to the image of ρG,
i.e. f−1

ρG
(ρG(X)) is well-defined for all X ∈ L∞d (F).

Lemma A.2. For a CRM ρG : L∞d (F)→ L∞(G) it holds that

ρG(L
∞
d (F)) = fρG(L

∞(G)).

Proof. Clearly, ρG(L
∞
d (F)) ⊇ fρG(L

∞(G)).
For the reverse inclusion let X ∈ L∞d (F). Our aim is to show that there exists
an α∗ ∈ L∞(G) such that

ρG(X) = fρG(α
∗). (A.1)

Define
P :=

{
α ∈ L∞(G) : fρG(α) ≥ ρG(X)

}
.
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As −‖X‖d,∞1d ≤ X ≤ ‖X‖d,∞1d we have that −‖X‖d,∞ ∈ P , so P 6= ∅.
Moreover, P is bounded from above by ‖X‖d,∞ since if A := {α > ‖X‖d,∞} for
α ∈ L∞(G) has positive probability, then by G-locality and strict antitonicity

fρG(α)1A = fρG(α1A)1A ≤ fρG(‖X‖d,∞1A)1A = fρG(‖X‖d,∞)1A ≤ ρG(X)1A

where the first inequality is strict with positive probability, so α 6∈ P . By G-
locality it also follows that P is upwards directed. Hence, for

α∗ := esssupP

there is a uniformly bounded sequence (αn)n∈N ⊂ P such that α∗ = limn→∞ αn
P-a.s.; see Föllmer and Schied (2011) Theorem A.33. Thus it follows that α∗ ∈
L∞(G) and

fρG(α
∗) = lim

n→∞
fρG(αn) ≥ ρG(X),

i.e. α∗ ∈ P . Let
B := {fρG(α∗) > ρG(X)}

and note that by the Lebesgue property

B =
⋃
n∈N

{fρG(α∗ + 1/n) > ρG(X)} P-a.s.

Hence, if P(B) > 0 it follows that P(Bn) > 0 for some Bn := {fρG(α∗ + 1/n) >
ρG(X)}. Note that Bn ∈ G and that

α∗1BC
n

+ (α∗ + 1/n)1Bn ∈ P

by G-locality of fρG . But this contradicts the definition of α∗. Hence, P(B) =
0.

Lemma A.3. Let Λ : L∞d (F) → L∞(F) be a conditional aggregation function.
Then fΛ and f−1

Λ are strictly isotone, F-local, and fulfill the Lebesgue property.
Moreover, Λ(L∞d (F)) = fΛ(L∞(F)) and Λ(X) = Λ

(
f−1

Λ (Λ(X))1d
)

for all X ∈
L∞d (F).

The well-definedness of f−1
Λ follows similarly to the well-definedness of f−1

ρG
. Fur-

ther the proof of Lemma A.3 is analogous to the proofs of Lemma A.1 and
Lemma A.2 and therefore omitted here.

B Proof of Theorem 3.9

The Proof of Theorem 3.9 is based on a result from Hoffmann et al. (2016) which
we in the following present in a version adapted to the framework of this paper.
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Proposition B.1. Let ρG : L∞d (F)→ L∞(G) be a CRM and suppose that there
exists a continuous realization ρG(·, ·) which satisfies risk-antitonicity:

ρG(X(ω), ω) ≥ ρG(Y (ω), ω) P-a.s., implies ρG(X) ≥ ρG(Y ).

Then there exists a G-conditional aggregation function ΛG : L∞d (F) → L∞(F)
and a univariate CRM ηG : Im ΛG → L∞(G) such that

ρG (X) = ηG (ΛG(X)) for all X ∈ L∞d (F)

and
ηG (ΛG(X)) = −ΛG(X) for all X ∈ L∞d (G). (B.1)

This decomposition is unique.

Proof. Since ρG is antitone, Rd 3 x 7→ ρG(x) is antitone. It has been shown
in Hoffmann et al. (2016) Theorem 2.10 that this property in conjunction with
the fact that ρG has a continuous realization which fulfills risk-antitonicity is
sufficient for the existence and uniqueness of a function ΛG : L∞d (F) → L∞(F)
which is isotone, F -local and fulfills the Lebesgue property and a function ηG :
Im ΛG → L∞(G) which is antitone such that

ρG = ηG ◦ ΛG and ηG
(
ΛG(x)

)
= −ΛG(x) for all x ∈ Rd. (B.2)

Note that in the proof of Theorem 2.10 in Hoffmann et al. (2016) ΛG is basically
constructed by setting ΛG(X)(ω) = −ρG(X(ω), ω), which implies that ΛG is
necessarily F -local even though this is not directly mentioned in the paper.
Indeed in Hoffmann et al. (2016) we do not require or mention locality at all.

It remains to be shown that ΛG is a G-conditional aggregation function, ηG is
a univariate CRM on Im ΛG, and that (B.1) holds. First of all, we show that F -
locality and (B.2) imply (B.1). To this end denote by S the set of F -measurable
simple random vectors, i.e. X ∈ S if X is of the form X =

∑k
i=1 xi1Ai

, where
k ∈ N, xi ∈ Rd and Ai ∈ F , i = 1, ..., k, are disjoint sets such that P(Ai) > 0
and P(

⋃k
i=1Ai) = 1. Now let X ∈ L∞d (G). Pick a uniformly bounded sequence

(Xn)n∈N =
(∑kn

i=1 x
n
i 1An

i

)
n∈N
⊂ S such that Ani ∈ G for all i = 1, . . . , kn, n ∈ N,

and Xn → X P-a.s. Then by (B.2), F -locality and the Lebesgue property of ΛG
and ρG we infer that

−ΛG(X) = − lim
n→∞

ΛG(Xn) = lim
n→∞

kn∑
i=1

−ΛG(x
n
i )1An

i

= lim
n→∞

kn∑
i=1

ρG(x
n
i )1An

i
= lim

n→∞
ρG(Xn) = ρG(X),

which proves (B.1). Next we show that ΛG is a G-conditional aggregation func-
tion. The yet missing properties which need to be verified are strict anti-
tonicity and that ΛG is G-conditional. The latter follows from Hoffmann et al.
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(2016) Lemma 3.1. As for strict antitonicity let X, Y ∈ L∞d (F) with X ≥ Y such
that P(X > Y ) > 0. Then by isotonicity of ΛG we have that ΛG(X) ≥ ΛG(Y ).
Suppose that ΛG(X) = ΛG(Y ) P-a.s., then

ρG(X) = ηG(ΛG(X)) = ηG(ΛG(Y )) = ρG(Y )

which contradicts strict antitonicity of ρG. Thus ΛG fulfills all properties of a
G-conditional aggregation function.
As for ηG, note that by Lemma A.3 for all F ∈ Im ΛG we have that

ηG(F ) = ηG
(
ΛG
(
f−1

ΛG
(F )1d

))
= ρG

(
f−1

ΛG
(F )1d

)
. (B.3)

Since ρG and f−1
ΛG

are strictly monotone, G-local, and fulfill the Lebesgue property,
so does ηG, i.e. ηG is a univariate CRM on Im ΛG.

The proof of Theorem 3.9 is now based on the following observations: ρF
is necessarily risk-antitone as defined in Proposition B.1. Strong consistency in
turn implies that risk-antitonicity of ρF is passed on (backwards) to ρG, and
hence Proposition B.1 applies.

Proof of Theorem 3.9: In case we already know that (3.4) holds, then by an-
titonicity of ηG it follows that {ρG,−ΛG} is strongly consistent, and clearly
−ΛG : L∞d (F)→ L∞(F) is also a CRM. Thus the last assertion of Theorem 3.9
is proved.

In order to show the first part of Theorem 3.9, we recall that the only property
which remains to be shown in order to apply Proposition B.1 is risk-antitonicity
of ρG: For this purpose we first consider simple random vectors X, Y ∈ S where
S was defined in the proof of Proposition B.1. Note that there is no loss of
generality by assuming that X =

∑n
i=1 xi1Ai

∈ S and Y =
∑n

i=1 yi1Ai
∈ S,

i.e. the partition (Ai)i=1,...,n of Ω is the same for X and Y . Suppose that
ρG(X(ω), ω) ≥ ρG(Y (ω), ω) P-a.s. It follows that ρG(xi, ω) ≥ ρG(yi, ω) for all
ω ∈ Ai\N, i = 1, ..., n, where N is a P-nullset. Let Bi := {ω ∈ Ω | ρG(xi, ω) ≥
ρG(yi, ω)} ∈ G. As (Ai \ N) ⊆ Bi, using antitonicity and G-locality of f−1

ρG
we

obtain

f−1
ρG

(
ρG(xi)

)
1Ai

= f−1
ρG

(
ρG(xi)1Bi

)
1Ai
≤ f−1

ρG

(
ρG(yi)1Bi

)
1Ai

= f−1
ρG

(
ρG(yi)

)
1Ai

.

Now by strong consistency of {ρG, ρF}, F -locality of ρF and f−1
ρF

, and by (3.3)
as well as antitonicity of ρG we arrive at

ρG(X) = ρG
(
f−1
ρF

(
ρF(X)

)
1d
)

= ρG

(
n∑
i=1

f−1
ρF

(
ρF(xi)

)
1Ai

1d

)

= ρG

(
n∑
i=1

f−1
ρG

(
ρG(xi)

)
1Ai

1d

)
≥ ρG

(
n∑
i=1

f−1
ρG

(
ρG(yi)

)
1Ai

1d

)
= ρG(Y ),
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which proves risk-antitonicity for simple random vectors X, Y ∈ S. For general
X, Y ∈ L∞d (F) with ρG(X(ω), ω) ≥ ρG(Y (ω), ω) for P-a.e. ω ∈ Ω we can find
uniformly bounded sequences (Xn)n∈N, (Yn)n∈N ⊂ S such that Xn ↗ X and
Yn ↘ Y P-a.s. for n→∞. Then by antitonicity

ρG(Xn(ω), ω) ≥ ρG(X(ω), ω) ≥ ρG(Y (ω), ω) ≥ ρG(Yn(ω), ω) P-a.s.

Therefore, ρG(Xn) ≥ ρG(Yn) and the Lebegue property of ρG yields

ρG(X) = lim
n→∞

ρG(Xn) ≥ lim
n→∞

ρG(Yn) = ρG(Y ).

Thus ρG is risk-antitone and we apply Proposition B.1. Hence, there is a G-
conditional aggregation function ΛG : L∞d (F) → L∞(F) and a univariate CRM
ηG : Im ΛG → L∞(G) such that ρG = ηG ◦ ΛG and ηG

(
ΛG(X)

)
= −ΛG(X) for all

X ∈ L∞d (G).
Using locality it follows that (3.3) indeed holds for all α ∈ L∞d (G) ∩ S and
thus by continuity ρ̄F(α) = ρ̄G(α) ∈ L∞(G) for all α ∈ L∞d (G). Thus also
ΛF(α) = −ρF(α) ∈ L∞(G) for all α ∈ L∞d (G). Finally by the same procedure as
above, i.e. approximation via elements in S, using locality, strong consistency,
and continuity, we obtain (3.6).

C Proof of Theorem 4.4

Lemma C.1. Let {ρ, ρH} be strongly consistent and suppose that ρ is law-
invariant (and thus ρH is conditionally law-invariant by Lemma 4.3). If (Ω,H,P)
is an atomless probability space and X ∈ L∞d (F) is independent of H, then

f−1
ρH

(
ρH(X)

)
= f−1

ρ

(
ρ(X)

)
.

The proof of Lemma C.1 is adapted from Kupper and Schachermayer (2009).

Proof. We distinguish three cases:

• Suppose that f−1
ρH

(
ρH(X)

)
≤ f−1

ρ

(
ρ(X)

)
and strictly smaller with positive

probability. Then by strong consistency

f−1
ρ

(
ρ(X)

)
= f−1

ρ

(
ρ
(
f−1
ρH

(
ρH(X)

)
1d
))

< f−1
ρ

(
ρ
(
f−1
ρ

(
ρ(X)

)
1d
))

= f−1
ρ

(
ρ(X)

)
,

by strict antitonicity of ρ which is a contradiction.

• Analogously it follows that it is not possible that f−1
ρH

(
ρH(X)

)
≥ f−1

ρ

(
ρ(X)

)
and P(f−1

ρH

(
ρH(X)

)
> f−1

ρ

(
ρ(X)

)
) > 0.
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• There exist A,B ∈ H such that P(A) = P(B) > 0 and

f−1
ρH

(
ρH(X)

)
> f−1

ρ

(
ρ(X)

)
on A and f−1

ρH

(
ρH(X)

)
< f−1

ρ

(
ρ(X)

)
on B.

Then we have for an arbitrary m = a1d where a ∈ R that

ρ(X1A +m1AC ) = ρ
(
f−1
ρH

(
ρH(X1A +m1AC )

)
1d
)

= ρ
(
f−1
ρH

(
ρH(X)

)
1A1d +m1AC

)
< ρ

(
f−1
ρ

(
ρ(X)

)
1A1d +m1AC

)
(C.1)

and similarly

ρ(X1B +m1BC ) > ρ
(
f−1
ρ

(
ρ(X)

)
1B1d +m1BC

)
. (C.2)

However, as X is independent ofH the random vector X1A+m1AC has the
same distribution under P as X1B+m1BC . Note that also f−1

ρ

(
ρ(X)

)
1A+

a1AC and f−1
ρ

(
ρ(X)

)
1B+a1BC share the same distribution under P. Hence,

as ρ is law-invariant, (C.1) and (C.2) yield a contradiction.

Proof of Theorem 4.4. For the last assertion of the theorem note that since u is
a deterministic function, we have for α ∈ L∞(H) that

fρH(α) = ρH(α1d) = gH
(
f−1
u

(
EP [u(α1d) | H]

))
= gH

(
f−1
u

(
fu(α)

))
= gH(α)

and analogously we obtain fρ ≡ g.
Next we prove sufficiency in the first statement of the theorem: Let ρH and ρ

be as in (4.2) and (4.1). It is easily verified that ρH and ρ are (conditionally) law-
invariant CRMs. Furthermore, since f−1

u is strictly increasing and gH is strictly
antitone and H-local, we have for each X, Y ∈ L∞d (F) with ρH(X) ≥ ρH(Y ) that

EP [u(X) | H] ≤ EP [u(Y ) | H] .

But this implies that also EP [u(X)] ≤ EP [u(Y )] and thus that ρ(X) ≥ ρ(Y ),
i.e. {ρ, ρH} is strongly consistent.

Now we prove necessity in the first statement of the theorem: We assume in
the following that ρ and ρH are normalized on constants and follow the approach
of Föllmer (2014) Theorem 3.4. The idea is to introduce a preference order ≺ on
multivariate distributions µ, ν on (Rd,B(Rd)) with bounded support given by

µ ≺ ν ⇐⇒ ρ(X) > ρ(Y ), with X ∼ µ and Y ∼ ν.

Here B(Rd) denotes the Borel-σ-algebra on Rd and X ∼ µ means that the dis-
tribution of X ∈ L∞d (F) under P is µ. It is well-known that if this preference
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order fulfills a set of conditions, then there exists a von Neumann-Morgenstern
representation, that is

µ ≺ ν ⇐⇒
∫
u(x)µ(dx) <

∫
u(x) ν(dx), (C.3)

where u : Rd → R is a continuous function. Sufficient conditions to guarantee
(C.3) are that ≺ is continuous and fulfills the independence axiom; cf. Föllmer
and Schied (2011) Corollary 2.28. We refer to Föllmer and Schied (2011) for a
definition and comprehensive discussion of preference orders and the mentioned
properties. Suppose for the moment that we have already proved (C.3). Note
that strict antitonicity of ρ implies that δx � δy whenever x, y ∈ Rd satisfy x ≥ y
and x 6= y. Hence u(x) =

∫
u(s) δx(ds) >

∫
u(s) δy(ds) = u(y), and we conclude

that u is necessarily strictly increasing as claimed.
Now we prove (C.3): The proof of continuity of ≺ is completely analogous

to the corresponding proof in Föllmer (2014) Theorem 3.4, so we omit it here.
The crucial property is the independence axiom, which states that for any three
distributions µ, ν, ϑ such that µ � ν and for all λ ∈ (0, 1], we have

λµ+ (1− λ)ϑ � λν + (1− λ)ϑ.

Since (Ω,F ,P) is conditionally atomless given H, we can find X, Y, Z ∈ L∞d (F)
which are independent of H such that X ∼ µ, Y ∼ ν and Z ∼ ϑ. Furthermore,
since (Ω,H,P) is atomless, we can find an A ∈ H with P(A) = λ. It can be easily
seen thatX1A+Z1AC ∼ λµ+(1−λ)ϑ and Y 1A+Z1AC ∼ λν+(1−λ)ϑ. Moreover,
since µ � ν, we have that ρ(X) ≥ ρ(Y ). As {ρ, ρH} is strongly consistent and
as ρ is law-invariant, we know from Lemma 4.3 that ρH is conditionally law-
invariant. This ensures that we can apply Lemma C.1 to the random vectors X
and Y which are independent of H. Therefore, by H-locality of ρH and recalling
Remark 3.4

ρ (X1A + Z1AC ) = ρ (−ρH (X1A + Z1AC ) 1d)

= ρ (−ρH(X)1A1d − ρH(Z)1AC1d)

= ρ (−ρ(X)1A1d − ρH(Z)1AC1d)

≥ ρ (−ρ(Y )1A1d − ρH(Z)1AC1d) = ρ (Y 1A + Z1AC ) ,

which is equivalent to λµ + (1 − λ)ϑ � λν + (1 − λ)ϑ. Thus there exists a
von Neumann-Morgenstern representation (C.3) with a continuous and strictly
increasing utility function u : Rd → R.
In the next step we define fu : R → R;x 7→ u(x1d). Then fu is strictly increas-
ing and continuous and thus f−1

u exists. Let µ be an arbitrary distribution on
(Rd,B(Rd)) with bounded support and X ∼ µ. Then

ρ
(
‖X‖d,∞1d

)
≤ ρ(X) ≤ ρ

(
− ‖X‖d,∞1d

)
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and hence

fu(−‖X‖d,∞) =

∫
u(x) δ−‖X‖d,∞1d

(dx) ≤
∫
u(x) µ(dx)

≤
∫
u(x) δ‖X‖d,∞1d

(dx) = fu(‖X‖d,∞).

The intermediate value theorem now implies the existence of a constant c(µ) ∈ R
such that

fu
(
c(µ)

)
=

∫
u(x) µ(dx) ⇐⇒ c(µ) = f−1

u

(∫
u(x) µ(dx)

)
.

Finally, since δc(µ)1d
≈ µ, we have

ρ(X) = ρ
(
c(µ)1d

)
= −c(µ) = −f−1

u

(∫
u(x) µ(dx)

)
= −f−1

u

(
EP [u(X)]

)
.

Hence, we have proved (4.1) (with g ≡ − id). Define

ψH(X) := −f−1
u

(
EP [u(X) | H]

)
, X ∈ L∞d (F),

then we have seen in the first part of the proof that ψH is a CRM which is
strongly consistent with ρ. Moreover, ψH is normalized on constants. Thus it
follows by Lemma 3.5 that ρH = ψH. If ρ and/or ρH are not normalized on
constants, then considering the normalized CRMs −f−1

ρ ◦ ρ and −f−1
ρH
◦ ρH, the

result follows from ρ = fρ ◦
(
− (−f−1

ρ ◦ ρ)
)

and ρH = fρH ◦
(
− (−f−1

ρH
◦ ρH)

)
, i.e.

g = fρ and gH = fρH .

D Positive affine transformations of stochastic

utilities

Proposition D.1. Let UH be the stochastic utility from Theorem 4.6 and let
ŨH : Im ΛH → L∞(F) be another function which is strictly isotone, F-local,

fulfills the Lebesgue property and ŨH(Im ΛH ∩ L∞(H)) ⊆ L∞(H), such that

Ũ−1
H

(
EP

[
ŨH(F )

∣∣∣ H]) = U−1
H (EP [UH(F ) | H]) , for all F ∈ Im ΛH. (D.1)

Then ŨH is an H-measurable positive affine transformation of UH, i.e. there
exist α, β ∈ L∞(H) with P(α > 0) = 1 such that ŨH(F ) = αUH(F ) + β for all
F ∈ Im ΛH.

Proof. We have seen in Theorem 4.6 that UH ◦ ΛH = u, where u is strictly
increasing and continuous. Thus

X := ImUH = u(L∞d (F)) ⊆ L∞(F)
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and it follows that for all F ∈ X there exists a sequence of F -simple random
variables (Fn)n∈N ⊆ X such that Fn → F P-a.s. Moreover, by the intermedi-
ate value theorem we can find for each X, Y ∈ L∞d (F) and λ ∈ L∞(F) with
0 ≤ λ ≤ 1 a random variable Z such that min{−‖X‖d,∞,−‖Y ‖d,∞} ≤ Z ≤
max{‖X‖d,∞, ‖Y ‖d,∞} and for all P-almost all ω ∈ Ω

λ(ω)u
(
X(ω)

)
+ (1− λ)u

(
Y (ω)

)
= u

(
Z(ω)1d

)
where X(·), Y (·) and λ(·) are arbitrary representatives of X, Y and λ. Indeed,
it can be shown by a measurable selection argument that Z can be chosen to
be F -measurable and hence X is F -conditionally convex in the sense that λF +
(1− λ)G ∈ X for all F,G ∈ X and λ ∈ L∞(F) with 0 ≤ λ ≤ 1.

Next define the strictly isotone and F -local function

VH : X → L∞(F); X 7→ ŨH
(
U−1
H (F )

)
,

that is ŨH = VH ◦ UH. Moreover, it easily follows that VH fulfills the Lebesgue
property and VH(X ∩L∞(H)) ⊆ L∞(H). We show that VH is an affine function,
that is VH(F ) = αF + β for all F ∈ X , where α, β ∈ L∞(F). Note that affinity
can be equivalently expressed via VH(λF + (1− λ)G) = λVH(F ) + (1− λ)VH(G)
for all F,G ∈ X and λ ∈ L∞(F) with 0 ≤ λ ≤ 1.
We suppose that VH is not affine, i.e. there are F,G ∈ X and λ ∈ L∞(F) with
0 ≤ λ ≤ 1 such that

P (VH(λF + (1− λ)G) 6= λVH(F ) + (1− λ)VH(G)) > 0. (D.2)

First note that it suffices to assume that (D.2) holds for deterministic F,G and
λ. To see this suppose that VH is affine on deterministic values, but not on the
whole of X , i.e. (D.2) holds for some F,G ∈ X and λ ∈ L∞(F) with 0 ≤ λ ≤ 1.
We know that there exist sequences of F -simple functions (Fn)n∈N, (Gn)n∈N ⊂
X ∩ S and (λn)n∈N ⊂ L∞(F) ∩ S with 0 ≤ λn ≤ 1 for all n ∈ N such
that Fn → F,Gn → G, λn → λ P-a.s., where S was defined in the proof
of Proposition B.1. Without loss of generality we might assume that Fn =∑kn

i=1 F
n
i 1An

i
, Gn =

∑kn
i=1G

n
i 1An

i
and λn =

∑kn
i=1 λ

n
i 1An

i
have the same disjoint

F -partition (Ani )i=1,...,kn . By the F -locality and Lebesgue property and since
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F n
i , G

n
i , λ

n
i ∈ R for all i = 1, ..., kn and n ∈ N we have

VH(λF + (1− λ)G) = lim
n→∞

VH(λnFn + (1− λn)Gn)

= lim
n→∞

VH

(
kn∑
i=1

(λni F
n
i + (1− λni )Gn

i )1An
i

)

= lim
n→∞

kn∑
i=1

VH
(
λni F

n
i + (1− λni )Gn

i

)
1An

i

= lim
n→∞

kn∑
i=1

(
λni VH(F n

i ) + (1− λni )VH(Gn
i )
)
1An

i

= lim
n→∞

λnVH(Fn) + (1− λn)VH(Gn)

= λVH(F ) + (1− λ)VH(G),

which contradicts (D.2). Moreover we assume that 0 < λ < 1 since otherwise
this would also contradict (D.2). Finally, we assume w.l.o.g. that

A := {VH(λF + (1− λ)G) < λVH(F ) + (1− λ)VH(G)} ∈ H

has positive probability. Next define H1 := F1A + G1AC and H2 := G, then
Hi ∈ X ∩ L∞(H), i = 1, 2 and by F -locality of VH

VH(λH1 + (1− λ)H2) ≤ λVH(H1) + (1− λ)VH(H2)

and the inequality is strict with positive probability.
Since (Ω,P,F) is conditionally atomless given H there exists a B ∈ F with

P(B) = λ and which is independent of H. Since H1, H2 ∈ X and X is F -
conditionally convex

H := H11B +H21BC ∈ X .

Now by F -locality of VH, VH(X ∩ L∞(H)) ⊆ L∞(H) and B ⊥⊥ H we get

EP [VH (H) | H] = EP [VH (H11B +H21BC ) | H]

= VH(H1)EP [1B | H] + VH(H2)EP [1BC | H]

= VH(H1)EP [1B] + VH(H2)EP [1BC ]

= λVH(H1) + (1− λ)VH(H2)

≥ VH(λH1 + (1− λ)H2)

= VH (EP [H11B +H21BC | H])

= VH (EP [H | H]) ,

and the inequality is strict with positive probability. Moreover X = ImUH
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implies the existence of a H̃ ∈ Im ΛH such that H = UH(H̃). Finally we get

Ũ−1
H

(
EP

[
ŨH(H̃)

∣∣∣ H]) = U−1
H

(
V −1
H

(
EP

[
VH

(
UH(H̃)

) ∣∣∣ H]))
= U−1

H
(
V −1
H (EP [VH (H) | H])

)
≥ U−1

H
(
V −1
H (VH (EP [H | H]))

)
= U−1

H (EP [H | H])

= U−1
H

(
EP

[
UH(H̃)

∣∣∣ H]) ,
and the inequality is strict with positive probability, since Ũ−1

H and U−1
H are

strictly isotone (c.f. Lemma A.1). Thus we have the desired contradiction of (D.1)
and hence VH is affine, i.e. VH(F ) = αF + β for all F ∈ X , where α, β ∈ L∞(F).
Moreover, since we know that VH(x) ∈ L∞(H) for all x ∈ R∩X , we obtain that
α, β are actually H-measurable. That α > 0 follows immediately from the fact
that ŨH, U

−1
H are strictly isotone.

E Proof of Proposition 5.9

Lemma E.1. Let u : Rd → R be a deterministic utility, i.e. u is strictly increas-
ing and continuous, and let G and H be a sub-σ-algebras of F such that G ⊆ H.
Then

EP [u(L∞d (H)) | G] = u(L∞d (G)).

Proof. ”⊇”: Obvious. ”⊆”: Define the CRM ρG : L∞d (H) → L∞(G);X 7→
−EP [u(X) | G]. By Lemma A.2 it follows that

EP [u(L∞d (H)) | G] = −ρG(L∞d (H)) = −fρG(L∞(G)) = EP [u(L∞(G)1d) | G]

⊆ EP [u(L∞d (G)) | G] = u(L∞d (G)).

Lemma E.2. For an arbitrary T ∈ I let uT : Rd → R be a deterministic
utility and define XH := uT (L∞d (H)) for all H ∈ E(T ). Moreover, let pH :
XH → L∞(H) be functions such that pH is H-local, strictly isotone and fulfills
the Lebesgue-property. If for all G,H ∈ E(T ) with G ⊆ H and H atomless it
holds that

pG (EP [F | G]) = EP [pH(F ) | G] for all F ∈ XH, (E.1)

then
pH(F ) = aF + βH,

where a ∈ R+\{0} and βH ∈ L∞(H) such that EP [βH | G] = βG.
Note that (E.1) is well-defined by Lemma E.1.
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Proof. Firstly, we consider the case where G is the trivial σ-algebra. We write
p := p{Ω,∅}. Note that, since p is a deterministic function, p (EP [F ]) is law-
invariant and thus by (E.1) also EP [pH(F )].
Now suppose that there exist x, y ∈ X := X{Ω,∅} with pH(x) − pH(y) 6∈ R, i.e.
there exists a c ∈ R such that P(pH(x) ≤ pH(y) + c) ∈ (0, 1). Since H is an
atomless space we can choose A1, A2, A3 ∈ H with

P(A1) = P(A2) := q > 0

such that

A1 ⊆ {pH(x) ≤ pH(y) + c}, A2 ⊆ {pH(x) > pH(y) + c}, A3 := (A1 ∪ A2)C .

Moreover, we define

F1 := x1A1 + y1A2 + x1A3 and F2 := y1A1 + x1A2 + x1A3 .

Obviously F1, F2 ∼ qδy+(1−q)δx, that is F1
d
= F2. However, since pH is H-local,

we have

EP [pH(F1)] + cq = EP [pH(x)1A1 ] + EP [(pH(y) + c)1A2 ] + EP [pH(x)1A3 ]

< EP [(pH(y) + c)1A1 ] + EP [pH(x)1A2 ] + EP [pH(x)1A3 ]

= EP [pH(F2)] + cq,

which contradicts the law-invariance of F 7→ EP [pH(F )].
Hence we have that pH(x) − pH(y) ∈ R for all x, y ∈ X . Choose an arbitrary
x̃ ∈ X , and let

a(x) := pH(x)− pH(x̃), x ∈ X ,

so a : X → R. Define β̃H := pH(x̃) ∈ L∞(H), then pH(x) = a(x) + β̃H. The
function a is continuous, since otherwise there would exist a sequence (xn)n∈N ⊂
X with xn → x ∈ X , but a(xn) 6→ a(x) and the Lebesgue-property would imply
the contradiction

pH(x) = lim
n→∞

pH(xn) = lim
n→∞

a(xn) + β̃H 6= a(x) + β̃H = pH(x).

Let F ∈ XH. Since the H-measurable simple random vectors are dense in L∞d (H)
and by the definition of XH there exists a sequence of H-measurable simple
random variables (Fn)n∈N ⊂ XH ∩ S with Fn =

∑kn
i=1 x

n
i 1An

i
→ F P-a.s. Thus

pH(F ) = lim
n→∞

pH(Fn) = lim
n→∞

kn∑
i=1

pH(xni )1An
i

= lim
n→∞

kn∑
i=1

a(xni )1An
i

+ β̃H

= lim
n→∞

a

(
kn∑
i=1

xni 1An
i

)
+ β̃H = lim

n→∞
a(Fn) + β̃H = a(F ) + β̃H.
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The function XH 3 F 7→ EP [F ] induces a preference relation on M := {µ :
∃F ∈ XH such that F ∼ µ} via

µ < ν ⇐⇒ EP [F ] ≥ EP [G] , F ∼ µ,G ∼ ν.

Moreover the function x 7→ p−1(x+ E[β̃H]) is strictly increasing and by (E.1)

EP [F ] = p−1 (EP [pH(F )]) = p−1
(
EP [a(F )] + E

[
β̃H
])
.

Thus EP [a(F )] is another affine numerical representation of <. It is well-known
that the affine numerical representation of < is unique up to a positive affine
transformation (see e.g. Föllmer and Schied (2011) Theorem 2.21), i.e. there
exist ã, b ∈ R, ã > 0 such that EP [a(F )] = ãEP [F ] + b for all F ∈ XH. In
particular this implies that for all x ∈ X

a(x) = EP [a(x)] = aEP [x] + b = ãx+ b.

By setting b+ β̃H =: βH ∈ L∞(H) we get for all F ∈ XH that

pH(F ) = a(F ) + β̃H = ãF + b+ β̃H = ãF + βH.

Finally we obtain by (E.1) that for every G ⊆ H and for all F ∈ XG

pG(F ) = pG (EP [F | G]) = EP [pH(F ) | G] = aF + EP [βH | G] ,

which proves the martingale property of (βG)G⊆H.

Proof of Proposition 5.9. Let (ρH,T )(H,T )∈E be a strongly consistent family such
that (5.2) holds for all (H, T ) ∈ E , i.e.

ρH,T (X) = fρH,T

(
f−1
uT

(
EP [uT (X) | H]

))
, for all X ∈ L∞d (T ),

We define the functions

hH,T : uT (L∞d (H))→ L∞(H);F 7→ fρH,T ◦ f−1
uT

(F )

and
pH,T1,T2 : uT1(L

∞
d (H))→ L∞(H);F 7→ h−1

H,T2 ◦ hH,T1(F ).

By strong consistency, we obtain for G ⊆ H ⊆ T1 ∩ T2, X ∈ L∞d (T1) and F :=
EP [uT1(X) | H] that

pG,T1,T2 (EP [F | G]) = h−1
G,T2

(
hG,T1

(
EP [EP [uT1(X) | H] | G]

))
= h−1

G,T2 (ρG,T1(X))

= h−1
G,T2

(
ρG,T2

(
f−1
ρH,T2

(
ρH,T1(X)

)
1d

))
= EP

[
h−1
H,T2

(
hH,T1

(
EP [uT1(X) | H]

)) ∣∣ G]
= EP [pH,T1,T2(F ) | G] . (E.2)
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By Lemma E.2 (E.2) is fulfilled, if and only if

pH,T1,T2(F ) = aT1,T2F + bH,T1,T2 , for all F ∈ uT1(L∞d (H)),

where aT1,T2 ∈ R+\{0}, bH,T1,T2 ∈ L∞(H) and EP [bH,T1,T2 | G] = bG,T1,T2 for all
G ∈ I with G ⊆ H. Thus

hH,T1(F ) = hH,T2(aT1,T2F + bH,T1,T2), F ∈ uT1(L∞d (H)),

which implies that

ρH,T1(X) = fρH,T2

(
f−1
uT2

(
aT1,T2EP [uT1(X) | H] + bH,T1,T2

))
.
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