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Abstract

The paper presents a comprehensive model of a banking system that integrates
network effects, bankruptcy costs, fire sales, and cross-holdings. For the integrated
financial market we prove the existence of a price-payment equilibrium and design
an algorithm for the computation of the greatest and the least equilibrium. The
number of defaults corresponding to the greatest price-payment equilibrium is ana-
lyzed in several comparative case studies. These illustrate the individual and joint
impact of interbank liabilities, bankruptcy costs, fire sales and cross-holdings on
systemic risk. We study policy implications and regulatory instruments, including
central bank guarantees and quantitative easing, the significance of last wills of
financial institutions, and capital requirements.
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1. Introduction

“Systemic risk refers to the risk that a financial system as a whole is susceptible to failures

initiated by the characteristics of the system itself.”1 If strong links between financial

institutions are present, a shock to only a small number of entities might propagate

through the system and trigger substantial financial losses. Significant dependence can

thus increase the risk of a system-wide breakdown.
aInstitut für Mathematische Stochastik, Leibniz Universität Hannover, Welfen-

garten 1, 30167 Hannover, Germany. e-mail: sweber@stochastik.uni-hannover.de,
weske@stochastik.uni-hannover.de.

1See Feinstein, Rudloff & Weber (2017)
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Financial institutions influence each other via direct or indirect channels such as credit

contracts, similar asset portfolios that are jointly exposed to price impact in market crises,

and cross-shareholdings. Frictions like, e.g., bankruptcy costs may amplify the impact of

the effect of the firms’ interaction. The aim of the current paper consists in constructing

and analyzing a comprehensive model that integrates all effects mentioned above. This

multi-factor setting allows to assess regulatory policies in a robust manner. To the best

of our knowledge, such a contribution is still missing in the literature.

(i) We prove the existence of a clearing equilibrium that is not necessarily unique and

provide an algorithm for the computation of the greatest and the least equilibrium.

The equilibrium is characterized by the vector of clearing payments and the price

of the commonly held illiquid asset that is exposed to price effects.

(ii) We study the impact of bankruptcy costs, fire sales, and cross-holdings on systemic

risk in numerical experiments. We demonstrate that fire sales and bankruptcy costs

can trigger and amplify financial crises. Policies that mitigate their impact might

significantly enhance the resilience of the financial system. Cross-holdings do, in

contrast, have a stabilizing effect, if they can be exchanged for liquid assets. Central

banks that engage in such a market can reduce the number of defaults in the system.

(iii) We study policy implications and regulatory instruments, including central bank

guarantees, quantitative easing, the significance of last wills of financial institutions,

and the efficiency of capital requirements. We find that capital adequacy ratios

based on risk-weighted assets reduce systemic risk, if they are sufficiently high.

However, they do not rely on any statistics that capture systemic risk in a proper

way. Comparative statics show that capital adequacy ratios can be equal for varying

parameters of our model that are associated with completely different levels of

systemic risk. This demonstrates that classical capital adequacy ratios are a very

rough instrument. A much better alternative are systemic risk measures that we

analyze in the last section.

Previous papers do not allow an assessment of the robustness of their conclusions since
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they only focus on particular aspects of systemic risk neglecting all other driving fac-

tors. Our model, in contrast, shows to what extent causal relations that were previously

discovered are preserved within a general framework; it also detects the differences that

might occur. In summary, we find that many of our qualitative results are quite robust

across different network structures and for a large number of driving factors. However,

the relative importance of interacting contagion channels can only be characterized in the

joint model. This justifies—for the first time from a general perspective—the relevance

of previous approaches, but indicates at the same time that quantitative predictions and

the design of regulatory policies require a more sophisticated analysis.

Literature. Our approach extends the equilibrium approach of Eisenberg & Noe (2001).

Their seminal paper models interbank contagion within a network of nominal liabilities

and proves the existence and uniqueness of a clearing payment vector that endogenously

captures losses given default. At the same time, they construct an efficient algorithm

for the computation of the clearing vector. Closely related empirical studies can, e.g.,

be found in Cont, Moussa & Santos (2013), Elsinger, Lehar & Summer (2006), Glasser-

man & Young (2015), and Upper (2011). These cast doubt that empirical patterns of

contagious defaults can solely be explained by networks of nominal liabilities.

In this paper, we integrate multiple interaction channels and amplifying mechanisms

of contagion, including bankruptcy costs, fire sales, and cross-holdings. While we inves-

tigate their joint impact, up to now the literature has only been studying these factors

separately: Bankruptcy costs are, for example, considered by Rogers & Veraart (2013),

Elliott, Golub & Jackson (2014), Elsinger (2009), and Glasserman & Young (2015); cross-

holdings, e.g., by Suzuki (2002), Elsinger (2009), Elliott et al. (2014), Fischer (2014), and

Karl & Fischer (2014). Cifuentes, Ferrucci & Shin (2005) incorporate fire sales into the

setting of Eisenberg & Noe (2001); their approach is further extended by Gai & Kapadia

(2010), Nier, Yang, Yorulmazer & Alentorn (2007), Amini, Filipović & Minca (2013),

Chen, Liu & Yao (2016), and Feinstein (2017). Most of these papers consider only one

extension of the basic framework.2 For a detailed review of the literature see also Staum
2Elliott et al. (2014) and Elsinger (2009) consider both cross-holdings and bankruptcy costs. However,
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(2013).

All of these mechanisms are important channels of contagion. In contrast to direct

liabilities and cross-holdings that are described by network structures, fire sales are a

global transmission mechanism. It is, for example, defined in Shleifer & Vishny (2011):

“A fire sale is essentially a forced sale of an asset at a dislocated price. The

asset sale is forced in the sense that the seller cannot pay creditors without

selling assets. The price is dislocated because the highest potential bidders

are typically involved in a similar activity as the seller, and are therefore

themselves indebted and cannot borrow more to buy the asset. Indeed, rather

than bidding for the asset, they might be selling similar assets themselves.

Assets are then bought by nonspecialists who, knowing that they have less

expertise with the assets in question, are only willing to buy at valuations

that are much lower.”

Evidence is discussed in several papers including Brunnermeier (2009), Cont & Wagalath

(2016), Coval & Stafford (2007), Jotikasthira, Lundblad & Ramadorai (2012), Khandani

& Lo (2011), and Shleifer & Vishny (1992). In real markets, fire sales typically refer

to the liquidation of portfolios. Empirical data show that this is related to increased

correlations as well as price impact. A single representative illiquid asset can thus be

used as a first approximation. This is the approach that we take in our model in order

to keep the suggested framework simple.

Outline. The paper is organized as follows. In Section 2, we present our model of

the financial system and provide a preliminary analysis of net worth, price impact, and

clearing payment vectors. The existence of a price-payment equilibrium consisting of a

clearing payment vector and a clearing price of the illiquid asset is demonstrated in Section

3. Moreover, we provide an extension of the fictitious default algorithm of Eisenberg &

the underlying network model of Elliott et al. (2014) does not explicitly feature direct liabilities, but

aggregates instead all dependencies linearly including cross-holdings. Elsinger (2009) uses a modified

Eisenberg–Noe model, but only includes a stylized form of bankruptcy costs. This is primarily done in

order to illustrate that the profitability of bailouts depends on these costs.
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Noe (2001) in order to compute the greatest and least equilibrium. Section 4 focuses

on numerical case studies which constitute a key part of our paper. These illustrate the

individual and joint impact of bankruptcy costs, fire sales, and cross-holdings on systemic

risk, measured as the number of defaults in the greatest price-payment equilibrium. We

describe various regulatory policies and analyze their efficiency. The main conclusions

and questions for future research are discussed in Section 5. All proofs of the results in

Sections 2 and 3 are presented in Section 6.

2. An Integrated Financial Network Model

We analyze default in a one-period interbank market model in which banks are connected

to each other via three different channels:

• Direct liabilities: Banks have nominal liabilities against each other. These liabil-

ities are promises that will only partially be fulfilled if some of the banks default.

• Fire sales: If the portfolios of different banks include common assets, changes

in asset prices simultaneously influence the net worths of these banks. Common

holdings may give rise to substantial systemic risk, if illiquid assets are sold in large

quantities and prices decrease significantly. For simplicity, our model assumes the

existence of a single (representative) illiquid asset.

• Cross-holdings: Banks may, in addition, hold shares of each other. In this case,

the net worths of banks depends on the net worths of other banks due to these

cross-holdings.

The single period is interpreted as a snapshot of a banking system that continues to

exist afterwards. The net worth of each bank in the financial network depends on the

realized payments, the price of the commonly held illiquid asset, and the net worths of

the other banks. In the first step, we will describe how the value of asset holdings of

an individual bank can be computed if these three key factors are exogenously fixed.

In the second step, we will construct and analyze an equilibrium model that allows an
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endogenous computation of the net worths of all banks, a clearing payment vector, and

a realized average price of the illiquid asset.

2.1. Assets and Liabilities

Letting N = {1, . . . , n} be the set of banks in the financial system, we denote by p ∈ Rn
+

the realized payments of the banks, by w ∈ Rn
+ the vector of net worths of the banks,

and by q ∈ R+ the price of the representative illiquid asset. In the first step, we suppose

that these quantities are exogenously specified.

External Assets. As suggested by Cifuentes, Ferrucci & Shin (2005), we consider

banks that hold two assets which are external to the banking system: an amount of

r ∈ Rn
+ shares of a liquid asset (e.g., cash) and s ∈ Rn

+ shares of an illiquid asset.

Assuming that the liquid asset’s price remains constant at one monetary unit, the value

of bank i’s external assets is given by ri + siq, if the price of the illiquid asset is q.

Liabilities. Each bank has nominal liabilities to the other banks for the considered

time horizon. Analogous to Eisenberg & Noe (2001), we suppose that these liabilities are

represented by a nominal liabilities matrix L ∈ Rn×n: for all i, j ∈ N , Lij ≥ 0 describes

the nominal obligation of bank i towards bank j; no bank may hold a liability against

itself, i.e., Lii = 0 for all i ∈ N . In addition, banks may have further liabilities l ∈ Rn
+ to

entities outside the banking system; here, the component li is interpreted as the liability

of bank i to the outside.

The vector of total liabilities p̄ captures all liabilities of the banks in the system; i.e.,

its component p̄i equals the total liabilities of bank i and is given by p̄i =
∑

j∈N Lij + li,

for i ∈ N . If all banks are able to fulfill their total obligations, p̄ indeed equals the realized

payments p of the banks. If, in contrast, some banks do not possess sufficient resources

to meet their obligations, then p ≤ p̄, where the inequality is interpreted componentwise.

Following Eisenberg & Noe (2001), we assume that in case of bank i’s default, its

realized payments pi < p̄i will be distributed proportionally among its creditors according

to the size of each creditor’s claim. Therefore, we define the relative liabilities matrix
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Π ∈ Rn×n by Πij = Lij/p̄i, if p̄i > 0, and Πij = 0, otherwise. Thus, the entry Πij captures

the size of the interbank obligations of bank i towards bank j in proportion to the size of

i’s total liabilities. This implies that for a given vector of realized payments p, the value

of bank i’s interbank claims is given by
∑

j∈N Πjipj.

Cross-Holdings. Each bank may hold shares of the other banks. Following Elsinger

(2009), these holdings will be captured by a cross-holdings matrix C ∈ Rn×n: the com-

ponent Cij denotes the fraction of bank i’s equity that is held by bank j. We assume

that the cross-holdings are nonnegative, i.e., Cij ≥ 0 for all i, j ∈ N , and that a bank

is not allowed to hold shares of itself, i.e., Cii = 0 for all i ∈ N . The technical assump-

tion
∑

j∈N Cij < 1, i ∈ N , guarantees that the net worth of each bank, as introduced

below, is well-defined. If both a cross-holdings matrix C and a vector of positive net

worths w are given, the contribution of bank i’s cross-holdings to its net worth is equal

to
∑

j∈N Cjiwj. We also suppose limited liability of cross-holdings, i.e., if bank j’s net

worth wj is negative, cross-holdings of bank j do not negatively affect the net worths of

other banks.

It is well-known that cross-holdings inflate the value of the financial system, see

Brioschi, Buzzacchi & Colombo (1989), Fedenia, Hodder & Triantis (1994), and Elliott,

Golub & Jackson (2014). This, in particular, refers to the fact that the aggregated net

worth of all banks will be larger than the value of total assets if cross-holdings are present.

As argued in Brioschi et al. (1989), Fedenia et al. (1994), and Elliott et al. (2014), net

worths need to be adjusted by an auxiliary factor that guarantees the conservation of value

in the system. The market value of bank i should thus be computed as (1−
∑

j∈N Cij)wi

for wi ≥ 0.

Total net worth. We will now describe how each bank’s net worth is calculated. In

order to fulfill its obligation p̄i, bank i will first use its liquid external assets ri and its

interbank revenues
∑

j∈N Πjipj. If these are insufficient, the bank is left with its illiquid

asset and cross-holdings. We assume that bank i’s cross-holdings
∑

j∈N Cjiwj can be

exchanged against cash (possibly involving central banks or governments). However, we
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suppose that bank i can only realize a fraction of λi ∈ [0, 1]. An alternative way to model

price impact of cross-holdings liquidation via inverse demand functions is presented in

Appendix B.

Each bank decides on the order of liquidation. This decision is captured by an indi-

cator variable Ii ∈ {0, 1}, where Ii = 1 represents the case that bank i exchanges its total

cross-holdings against cash before it starts selling the illiquid asset; Ii = 0 refers to the

reversed order of liquidation. Banks liquidate their cross-holdings proportionally, i.e., the

percentage of cross-holdings that are exchanged against cash can be computed as

νi(p, q, w) := min

(
max(p̄i − ri −

∑
j∈N Πjipj − (1− Ii)siq, 0)

λi
∑

j∈N Cji max(wj, 0)
, 1

)
∈ [0, 1].

The remaining share 1−νi(p, q, w) remains on the bank’s balance sheet and is not subject

to the price impact modeled by the factor λi. Setting µi(p, q, w) := νi(p, q, w)λi + 1 −

νi(p, q, w), i ∈ N , the net worth of bank i is given by

wi = ri + siq +
∑
j∈N

Πjipj + µi(p, q, w)
∑
j∈N

Cji max(wj, 0)− p̄i.

The bank is in default if it cannot cover its liabilities, i.e., if wi < 0.

As mentioned before, due to cross-holdings, the net worths of the banks differ from

their market values, see Brioschi et al. (1989), Fedenia et al. (1994), and Elliott et al.

(2014). We will, however, focus on default count statistics which can be computed in

terms of the vector of net worths. Market values will only be considered explicitly in the

numerical case studies.

As defined above, the net worth of bank i depends on the realized payments p, the

price q of the illiquid asset, and all other banks’ net worths w. In the following sections,

we provide a method to derive these three key quantities endogenously.

2.2. Net Worth

Suppose first that p and q are fixed. In this situation, our aim is to define an equi-

librium vector of the net worths of the banks. To simplify the notation, we write

8



0 := (0, . . . , 0)T ,1 := (1, . . . , 1)T ∈ Rn, set a ∨ b := (max(a1, b1), . . . ,max(an, bn)) for

a, b ∈ Rn and denote by diag(µ(p, q, w)) the diagonal matrix whose diagonal entries are

given by the vector µ(p, q, w) := (µ1(p, q, w), . . . , µn(p, q, w))T .

Definition 2.1. For p ∈ Rn
+, q ∈ R+, an essential net worths vector is a fixed-point

vector w∗(p, q) ∈ Rn such that

w∗(p, q) = Ψ(w∗(p, q)), (1)

where the function Ψ : Rn → Rn is defined by

Ψ(w) := r + sq + ΠTp+ diag(µ(p, q, w))CT (w ∨ 0)− p̄. (2)

The essential net worths vector is defined as a solution of the non-linear fixed-point

problem (1). The following lemma shows that this equation always possesses a unique

solution. A proof of this result is given in Section 6.

Lemma 2.2. For all p ∈ Rn
+, q ∈ R+:

(a) The essential net worths vector w∗(p, q) exists and is unique.

(b) The essential net worths vector is increasing in payments and prices:

p1 ≥ p2 =⇒ w∗(p1, q) ≥ w∗(p2, q),

q1 ≥ q2 =⇒ w∗(p, q1) ≥ w∗(p, q2).

2.3. Price of the Illiquid Asset

We will now explain how the clearing vector p and the price q of the illiquid asset can

endogenously be derived. The presence of the illiquid asset enables us to incorporate the

effect of fire sales into the model. As described in the introduction, the basic economic

idea is that, if a bank is unable to pay its outstanding debt in the considered period using

its shares of the liquid asset and interbank payments, it can sell a proportion of its illiquid
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asset holdings at the current market price. This triggers an increase in the supply of the

asset that can decrease its market price during times of crisis. Consequently, other banks

holding the same asset are also affected by such a price decline. In particular, if they

need to sell an amount of the illiquid asset themselves, the proceeds from this transaction

are diminished. At the same time, the price is further pushed down.

To integrate this idea into our model, we assume that there exists an exogenously

given positive continuous inverse demand function for the illiquid asset f :
[
0,
∑

i∈N si
]
→

(0,∞), such that the price q of one unit of the illiquid asset is given by q = f(θ), where

θ denotes the quantity of the illiquid asset that is sold in the market. We assume that

f(0) = q0 and that θ 7→ f(θ) is monotonically decreasing which indicates that the illiquid

asset’s price is decreasing in its supply. A fixed-point problem is present, since the amount

sold depends on the price of the illiquid asset itself:

q = f(θ(p, q))

for a given payment vector p and where

θ(p, q) :=
∑
i∈N

min

(
max[p̄i − ri −

∑
j∈N Πjipj − Iiλi

∑
j∈N Cji max(w∗j (p, q), 0), 0]

q
, si

)

signifies the total amount of the illiquid asset that is sold. If Ii = 1, bank i exchanges

its total cross-holdings against cash before selling the illiquid asset and, obviously, this

decreases the asset’s supply θ; here, w∗(p, q) denotes the unique vector of essential net

worths as introduced in Definition 2.1. We assume that all illiquid asset holdings are

marked-to-market at the resulting price. Note that due to our assumptions, the price of

the illiquid asset is both bounded from above by q0 and from below by qmin := f(
∑

i∈N si),

since banks may at most sell their total holdings of the illiquid asset
∑

i∈N si.

2.4. Payment Vector

In the final step, we define a price-payment equilibrium that endogenously derives the

price of the illiquid asset as well as a corresponding clearing vector. We integrate one
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more effect that influences the clearing process, namely bankruptcy costs. In reality, a

fraction of the recovery value of the assets will be lost to the obligors in case of default

due to, e.g., legal and administrative expenses. Observe that bankruptcy costs and fire

sales impact systemic risk differently. Firstly, bankruptcy costs are only incurred in the

case of a default, while fire sales may also occur if there are no defaults in the system.

Secondly, a fire sale may affect banks that are not connected to the triggering bank via

direct credit contracts. Fire sales are a global channel of contagion, while bankruptcy

costs are an amplifier of credit risk.

Following Rogers & Veraart (2013), we introduce two new parameters 0 ≤ α ≤ 1 and

0 ≤ β ≤ 1, such that 1−α and 1−β determine the frictional costs due to bankruptcy: A

defaulting bank will only realize a fraction α of its external asset value, i.e., the value of

the liquid and illiquid asset, and a fraction β of its interbank asset value, i.e., the value

of interbank claims and cross-holdings. We further postulate that the clearing process

satisfies the criteria of proportionality, limited liability, and absolute priority of debt, as

outlined by Eisenberg & Noe (2001). Finally, we define a price-payment equilibrium as

follows.

Definition 2.3. A price-payment equilibrium is a pair (p∗, q∗) ∈ [0, p̄]× [qmin, q0] ⊆ Rn+1,

consisting of a clearing payment vector p∗ and a clearing price q∗, such that

(p∗, q∗) = Φ(p∗, q∗),

where Φ : Rn+1 → Rn+1 is the function defined by

Φi(p, q) :=


χi(p, q), for i = 1, . . . , n,

f(θ(p, q)), for i = n+ 1,
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with

χi(p, q) :=


p̄i, if ri + siq + ηi(p, q) ≥ p̄i,

α[ri + siq] + β [ηi(p, q)] , otherwise,

ηi(p, q) :=
∑
j∈N

Πjipj + µi(p, q)
∑
j∈N

Cji max(w∗j (p, q), 0),

µi(p, q) = νi(p, q)λi + 1− νi(p, q),

νi(p, q) = min

(
max(p̄i − ri −

∑
j∈N Πjipj − (1− Ii)siq, 0)

λi
∑

j∈N Cji max(w∗j (p, q), 0)
, 1

)
,

and

θ(p, q) :=
∑
i∈N

min

(
max(p̄i − ri −

∑
j∈N Πjipj − Iiλi

∑
j∈N Cji max(w∗j (p, q), 0), 0)

q
, si

)
.

In the combined equilibrium, the banks’ clearing payments p∗ are given as the fixed

point of the function χ, and a clearing price of the illiquid asset q∗ is found as a fixed

point of the inverse demand function f . Hence, bank i pays its total liabilities p̄i, if its

total asset value consisting of its external asset value ri + siq
∗ and interbank asset value

ηi(p
∗, q∗) exceeds its liabilities. If this is not the case, bank i is in default and receives

(and due to absolute priority of debt also pays out) only the given fractions α and β of

its external and interbank asset value, respectively. The interbank asset value of bank i,

ηi(p
∗, q∗), depends on the proportion of cross-holdings that are exchanged against liquid

assets, νi(p∗, q∗), and this proportion is multiplied by λi ∈ [0, 1] as defined in µi(p∗, q∗).

Finally, the amount of the illiquid asset that is sold in equilibrium is given by θ(p∗, q∗).

The price-payment equilibrium provides a solution to an integrated financial system

which is characterized by (Π, p̄, r, s, α, β, λ, f, C, I); here, λ = (λ1, . . . , λn) ∈ [0, 1]n and

I = (I1, . . . , In) ∈ {0, 1}n. It admits a joint analysis of a network of liabilities, bankruptcy

costs, cross-holdings, and fire sales as well as an analysis of models that incorporate only

some of these effects. Namely, by choosing α = β = 1, s = 0, or C as the zero n × n

matrix, we can simply exclude the corresponding extensions from our system. This shows

that the models of, e.g., Eisenberg & Noe (2001), Rogers & Veraart (2013), Cifuentes,
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Ferrucci & Shin (2005), and Elsinger (2009) are special cases of our integrated financial

system.

3. Existence of Equilibria and an Algorithm for their

Computation

The current section analyzes the existence and computation of equilibria. All proofs are

provided in Section 6. We consider the ordered vector space 〈Rn+1,≤〉 equipped with the

partial order x ≤ y :⇔ xi ≤ yi ∀i = 1, . . . , n + 1 and use the notation x < y :⇔ (x ≤

y and ∃i : xi 6= yi). We will also use this ordering on linear subspaces. The following

lemma states elementary properties of the function Φ, see Definition 2.3.

Lemma 3.1. The function Φ has the following properties:

(a) Φ is bounded: For all (p, q) ∈ [0, p̄] × [qmin, q0]: Φ(p, q) ≥ (0, qmin) and Φ(p, q) ≤

(p̄, q0),

(b) Φ is monotone: For (p1, q1) ≤ (p2, q2): Φ(p1, q1) ≤ Φ(p2, q2).

Lemma 3.1 enables us to apply Tarski’s fixed-point theorem (Tarski 1955, Theorem

1) to the function Φ proving the existence of equilibria.

Theorem 3.2. Let (Π, p̄, r, s, α, β, λ, C, I) be an integrated financial system. Then, there

always exist a unique greatest and least price-payment equilibrium (p+, q+) and (p−, q−),

i.e., for every price-payment equilibrium (p∗, q∗) it holds that

(p−, q−) ≤ (p∗, q∗) ≤ (p+, q+).

Remark 3.3. While the clearing payment vector is unique within the basic setting of

Eisenberg & Noe (2001) under certain technical conditions, extensions allowing separately

for bankruptcy costs or fire sales may lead to multiple clearing vectors, see Rogers &

Veraart (2013, Example 3.3) and Chen et al. (2016, Example 7). This observation applies,
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in particular, to our integrated financial system as shown by an example in Appendix A.

The example also demonstrates that the set of equilibria is not necessarily connected.

Amini, Filipović & Minca (2016) prove uniqueness of price-payment equilibria in a

model with fire sales under the additional condition on the inverse demand function

f that x 7→ xf(x) is strictly increasing. They provide the following rational for their

assumption: If there exists a subinterval I := (x0, x1) with I 3 x 7→ xf(x) decreasing,

rational banks would never choose to sell a suboptimal amount x ∈ I of the illiquid asset;

they would instead liquidate less, i.e., only the quantity x0.

The argument of Amini et al. (2016) relies on implicit assumptions. First, it requires

that banks understand both the mechanism of price formation as well as their own price

impact. Second, the price of the illiquid asset depends on the total quantity that is sold

which would have to be known; it does not only depend on the amount that is sold by

an individual bank. However, in contrast to the price, the total quantity sold is hardly

observable in reality. Third, Amini et al. (2016) interpret the one-stage model literally;

the latter could also be seen as a simplified static picture of the true dynamic processes

of prices sliding down the slide while banks continue to liquidate their holdings over

time. For simplicity, we decided to model banks as price takers and do not impose the

additional condition of Amini et al. (2016).

We now explain how equilibria can be determined, generalizing the fictitious default

algorithm of Eisenberg & Noe (2001), and the procedures of Rogers & Veraart (2013),

and Amini et al. (2013). Our method allows the computation of the greatest and least

price-payment equilibrium, see Algorithm 3.4 and Remark 3.6 below.

Algorithm 3.4. Set k = 0, (p(0), q(0)) := (p̄, q0), D−1 := ∅ and determine the starting

essential net worths vector w(0) := w∗(p(0), q(0)) using fixed-point iteration. Determine

the sets of initially defaulting and surviving banks

D0 := {i ∈ N | w(0)
i < 0} and S0 := {i ∈ N | w(0)

i ≥ 0}.
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If D0 = D−1 and no bank has to liquidate its illiquid asset holdings, i.e., for all i ∈ N :

ri +
∑
j∈N

Πjip
(0)
j + Iiλi

∑
j∈N

Cji max(w
(0)
j , 0) ≥ p̄i, (3)

terminate. Otherwise, go to Step 2.

Step 1: Determine the sets of defaulting and surviving banks

Dk := {i ∈ N | w(k)
i < 0} and Sk := {i ∈ N | w(k)

i ≥ 0}.

If Dk = Dk−1, terminate. Otherwise, go to Step 2.

Step 2: Set p(k+1)
i = p̄i for all i ∈ Sk, p(k+1)

i = xi for all i ∈ Dk, q(k+1) = y, and w(k+1) =

w∗(x, y), where (x, y) is determined as the maximal solution to the following system

of equations:

xi = α [ri + siy] + β

∑
j∈Dk

Πjixj +
∑
j∈Sk

[Πjip̄j + λiCji max(w∗j (x, y), 0)]

 , ∀i ∈ Dk, (4)

y = f

(∑
i∈Dk

si +
∑
i∈Sk

min

(
ζ

(k)
i (x, y)

y
, si

))
, (5)

ζ
(k)
i (x, y) := max

p̄i − ri − ∑
j∈Dk

Πjixj −
∑
j∈Sk

[Πjip̄j + IiλiCji max(w∗j (x, y), 0)], 0

 , ∀i ∈ Sk.

(6)

The (sloppy) notation w∗(x, y) refers to the essential net worths vector correspond-

ing to the payment vector p(k+1); its components are equal to xi for the defaulting

banks i ∈ Dk and equal to p̄i for the surviving banks i ∈ Sk.

Set k → k + 1 and go to Step 1.

The algorithm works as follows. Starting with the total liabilities vector for the

payments and the initial price of the illiquid asset q0, it calculates the set of those banks

that will default even if all other banks pay their liabilities in full. This is the set of
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initially defaulting banks. If there are no initially defaulting banks and, in addition, no

bank has to liquidate parts of its illiquid asset holdings, we immediately arrive at the end

of the clearing process and terminate. Note that leaving out the extra condition (3) in

the initial step may lead to an incorrect result if the contagion cascade is solely triggered

by the asset price effect. This is due to the fact that the price of the illiquid asset and

the corresponding payments must be adjusted if there are banks forced to sell the illiquid

asset. The adjustment is made in Step 2 by solving the fixed-point equations (4) and (5)

simultaneously. Using the adjusted price-payment pair, in Step 1 of the next round, we

calculate the set of defaulting banks that corresponds to it. If this default set equals the

default set from the previous round, the algorithm terminates with the current pair of

payments and price of the illiquid asset. Otherwise, the procedure continues until the set

of defaulting banks does not change anymore.

The following theorem extends Rogers & Veraart (2013, Theorem 3.7) to the case of

cross-holdings and fire sales.

Theorem 3.5. Algorithm 3.4 produces a sequence of price-payment pairs (p(k), q(k)) that

decreases to the greatest price-payment equilibrium in at most n+ 1 iterations.

Remark 3.6. Algorithm 3.4 computes the least price-payment equilibrium, if we make

the following changes:

• In the initial step: Set (p(0), q(0)) = (0, qmin), D−1 = N and terminate the algorithm

if D0 = D−1, i.e., condition (3) can be eliminated.

• In Step 2: Compute the minimal solution to the system of equations.

The iterations of the procedure that computes the least price-payment equilibrium

can be viewed3 as a process in which financial health spreads throughout a system that

is initially in default. The iterations of the algorithm that determines the greatest price-

payment equilibrium describe, in contrast, how defaults spread in a system that initially

is completely healthy. As we expect the latter situation to be more likely in real world

3This interpretation is due to Rogers & Veraart (2013).
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financial markets, we focus on the greatest equilibrium when conducting our numerical

case studies.

The greatest price-payment equilibrium (p+, q+) corresponds to a set of defaulting

banks

D(p+, q+) := {i ∈ N | w∗i (p+, q+) < 0} = {i ∈ N | p+
i < p̄i}

that is directly provided by Algorithm 3.4. The cardinality of this set is a simple measure

of systemic risk. In the following section, we will investigate how this quantity is affected

by bankruptcy costs, cross-holdings, and fire sales—separately and jointly.

4. Case Studies

The integrated financial system is characterized by a 10-tuple, (Π, p̄, r, s, α, β, λ, f, C, I).

The relative liabilities matrix Π and the cross-holdings matrix C will be modeled as ran-

dom quantities. In contrast to a deterministic approach, a probabilistic mechanism allows

for an identification of the structure of a class of networks on the basis of appropriate

statistical quantities. We choose two settings: Erdös–Rényi random networks (Erdös &

Rényi (1959)), and a two-tiered (core-periphery) random graph model adapted to Ger-

man interbank market data (extracted from Craig & von Peter (2014)). We also analyze

an extension to multi-layer networks that capture heterogeneous business models.

4.1. Erdös–Rényi Random Networks

4.1.1. Simulation Methodology

We use a simulation procedure similar to Elliott et al. (2014). Specifically, we choose

two parameters cΠ ∈ [0, 1] and dΠ ∈ [0, n − 1] describing the level of integration and

diversification of the relative liabilities network. The parameter cΠ refers to the proportion

of total liabilities that are spread across the interbank market while dΠ describes the

expected number of creditors of a bank therein. We generate a homogeneous weighted

random network for Π with n nodes as follows:
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(i) Construct an adjacency matrix A ∈ Rn×n by letting Aij, i 6= j ∈ N , be i.i.d.

Bernoulli random variables, taking the value 1 with probability dΠ/(n− 1) and 0

with probability 1− dΠ/(n− 1). Set Aii = 0 for all i ∈ N .

(ii) For all banks i ∈ N , set douti =
∑

j∈N Aij, and let Πij = cΠ/d
out
i if Aij = 1, otherwise

Πij = 0, j ∈ N .

The parameter dΠ is the average out-degree of the corresponding directed network, the

parameter cΠ is the row sum of the matrix A.

The cross-holdings matrix C describes an interbank network as well and can be mod-

eled according to an analogous mechanism. We denote by c ∈ [0, 1) the corresponding

level of integration, and by d ∈ [0, n− 1] the level of diversification of the cross-holdings

matrix. The parameter c refers to the fraction of net worth that banks sell as cross-

holdings to other banks, d describes the expected number of shareholders within the

interbank market. We assume that banks can liquidate cross-holdings at their market

value, possibly reduced to a fraction κ ∈ [0, 1). We thus set λi = (1−c)κ, i ∈ N . Buyers

could either be market participants or a central bank that tries to stabilize the financial

system.

The number of shares r of the liquid asset and the number of shares s of the illiquid

asset are specified in terms of two parameters δ and ρ; δ denotes the size of a capital

buffer, and ρ the proportion of the illiquid asset:

(i) Compute the random vector of the minimal value of assets that prevent the banks

from defaulting (not considering cross-holdings): h := (p̄− ΠT p̄) ∨ 0.

(ii) Given a capital buffer δ > 0, set the overall external assets to be e := (1 + δ)h.

(iii) Given a proportion ρ ∈ [0, 1] of the illiquid asset, let r = (1− ρ)e and s = ρe.

For simplicity, we use the parametric exponential inverse demand function f(x) = exp(−γx);

alternative inverse demand functions can also be implemented within our framework. We

assume that all banks follow the same rule regarding the order of liquidation. This means

that either all banks exchange their total cross-holdings against cash before selling the
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illiquid asset (i.e., I = 1), or that all banks first liquidate their total holdings of the

illiquid asset before using cross-holdings (i.e., I = 0).

Setting n = 100 and p̄ = 1, the following parameters govern the simulation model:

(cΠ, dΠ, δ, α, β, ρ, γ, c, d, κ, I).

We fix cΠ = 0.15, dΠ = 10, and δ = 0.01, and vary the other parameters as indicated in

Table 1.4

Parameter Description Range of variation
α Realized fraction of external asset

value in case of bankruptcy [0.5,1]
β Realized fraction of interbank asset

value in case of bankruptcy [0,1]
ρ Proportion of the illiquid asset [0,0.05]
γ Exponent of the inverse demand function [0,1]
c Integration of the cross-holdings matrix [0,0.9]
d Diversification of the cross-holdings matrix [1,90]
κ Realized fraction of cross-holdings’ market value [0,1]
I Order of liquidation {0,1}

Table 1: Extension parameters

Methodological Remark 4.1. The numerical case studies are conducted as follows:

Π and C are randomly sampled; the derived random quantities r and s are computed

from the samples. One bank i ∈ N is uniformly sampled at random; its external asset

holdings ri and si are set to zero. This corresponds to a local shock to a single bank.

For the resulting scenario, the greatest price-payment equilibrium and the corresponding

number of defaulting firms is calculated. The simulation is repeated a large number of

times, and sample averages and standard deviations are computed. The exact number

of the simulations that were conducted is mentioned below for each case study. We use

the following notation: Parameters corresponding to a basic Eisenberg–Noe model are
4The choice of cΠ = 0.15 is consistent with empirical findings for developed countries reported in

Upper (2007) (with data from 2005), in Drehmann & Tarashev (2011) for the 20 largest internationally

active banks, and with integration values for European countries computed in Glasserman & Young

(2015).
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denoted by EN, B signifies the incorporation of bankruptcy costs, C cross-holdings, and

F fire sales.

4.1.2. Separate Effects

First, we focus on the separate impact of individual model ingredients, leaving all other

parameters as in the EN model. Section 4.1.3 investigates joint effects.

Bankruptcy Costs and Fire Sales. As expected, both bankruptcy costs and fire

sales amplify the threat of contagion to the system. This is shown in Figure 1. Increasing
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Figure 1: Contour plots of the number of defaults for n = 100 banks as a function of (a)
bankruptcy costs and (b) fire sales, averaged over 1000 simulations of Π. The simulation
procedure is explained in Remark 4.1.

bankruptcy costs, i.e., decreasing α and β, increases the number of defaults quite quickly,

as shown by Figure 1 (a). Part (b) of Figure 1 shows a similar phenomenon when both

fire sales parameters are increased. Additionally, a clear threshold effect can be observed

that separates an area of many defaults from an area of few defaults. For low parameter

values of ρ and γ, the financial system exhibits the EN number of defaults (around 11).

Increasing ρ and γ beyond a certain threshold boundary causes defaults of all banks in the

system. The threshold curve can approximately be described by the following power-law

function: ρ = exp(−4.3183) · γ−0.4528.

From a policy point of view, these findings have two important implications:
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(i) Bankruptcy costs increase the instability of the financial system significantly. These

costs are mainly incurred due to the impaired operations of financial institutions

in default. Administrative and legal expenses increase significantly for such insti-

tutions. Policies that improve the efficiency of managing defaults and restructuring

institutions would mitigate the consequences of financial crises. This could, for

example, be achieved by limiting the complexity of financial products and the op-

erations of financial institutions. Another promising instrument are last wills of

financial institutions, approved by the regulator during their lifetime, that simplify

the processes in default.

(ii) Illiquidity, i.e., the joint consequences of limited funding and price impact, decreases

market stability. When markets dry up, the value of financial institutions that need

short-term funding might be significantly impaired. Quantitative easing would, in

this case, be an appropriate instrument to stabilize the banking sector. This should

include the purchase of temporarily illiquid assets.

The simulations also exhibit a sharp boundary between the regimes with few and many

defaults. This indicates that regulatory policies should aim for substantial safety margins

in order to create a resilient system.

Cross-Holdings. Cross-holdings significantly impact the number of defaults. This has

implications for the policies of regulators that we will discuss below.

Integration c generally reduces the expected number of defaults. The dependence on

c is, however, non-monotonic. As shown in Figure 2 (a), increasing c to approximately

0.8 decreases their number at a nearly constant rate; beyond this point the number of

defaults increases again. A second observation concerns diversification. For d ≥ 10, the

average number of defaults is largely independent of the value of d. This is also confirmed

in Figure 2 (b). In addition to integration and diversification, the number of defaults also

depends on the realized fraction κ of the market value of cross-holdings. Figure 3 presents

the expected monotonic effect.

Cross-ownership in the banking sector may stabilize the financial system. However,
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Figure 2: Number of defaults for n = 100 banks as a function of (a) integration and (b)
diversification of the cross-holdings matrix C, realized fraction of cross-holdings’ market
value κ = 0.8, averaged over 100 simulations of Π, each averaged over 100 simulations of
C. The simulation procedure is explained in Remark 4.1.
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Figure 3: Number of defaults as a function of the realized fraction κ of cross-holdings’
market value, varying integration and diversification d = 10, averaged over 100 sim-
ulations of Π, each averaged over 100 simulations of C. The simulation procedure is
explained in Remark 4.1.
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this finding relies on the existence of a market with substantial demand for cross-holdings.

Our results show that regulators and central banks might use cross-holdings in order

to stabilize financial markets during financial crises. Regulatory policies that provide

incentives to cross-ownership in the financial market as well as a credible promise that

these shares will be purchased, e.g., by the central bank would decrease systemic risk in

our model.

The benefits of cross-holdings rely on the fact that they can be exchanged against

cash. This effect becomes, of course, less significant if the realized fraction κ is smaller.

At the same time, there might be an inverse effect on the financial institution whose

shares are sold. If a large sale of its shares decreases its equity price, its solvency is not

directly affected: Solvency is a function of the book value of equity—the latter being

computed from a market consistent balance sheet. The book value of equity may deviate

from its market value. But a decreased equity price may increase the cost of capital

and thereby negatively affect the bank’s solvency indirectly. The closely related topic of

the impact of equity valuation on credit supply to the real economy is, e.g., discussed in

Boucinha, Holton & Tiseno (2017).

Random Fluctuations. The preceding sections described the average behavior of the

system. The actual outcomes, however, might significantly deviate from these averages.

Two examples are provided in Figure 4. The figures display the standard deviation5 of

the number of defaults as (a) a function of the bankruptcy costs parameters α and β, and

(b) as a function of the level c of integration of the cross-holdings matrix. A comparison

of Figure 4 (a) and Figure 1 (a) leads to the following observation: For values of α and

β that lead to outcomes of either a very low number of defaults (i.e., EN-level) or the

total breakdown of the system, the corresponding standard deviation is relatively low.

However, in the transition area between these regimes, we observe a very high standard

deviation. We observed a similar behavior when analyzing fire sales: while regimes with

a very low or a very high average number of defaults exhibited low standard deviations,

5In the ENC scenario, we computed the standard deviation on the basis of the Π samples and continue

to average over the C simulations, since the conditional variance given Π is relatively low.

23



1
0

10

10

10

20

20

20
20

30

30

30
30

30

40

40

40

40

40

β

α
Standard deviation as a function of bankruptcy costs

 

 

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

5

10

15

20

25

30

35

40

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2.8

3

3.2

3.4

3.6

3.8

4

4.2

Integration c

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f 
th

e
 n

u
m

b
e

r 
o

f 
d

e
fa

u
lt
s

 

 

ENC d=10

ENC d=20

ENC d=40

ENC d=60

ENC d=80

(b)

Figure 4: Standard deviation of the number of defaults for n = 100 banks (a) as a function
of both parameters of bankruptcy costs for 1000 simulations of Π, and (b) as a function
of integration of the cross-holdings matrix C for 100 simulations of Π, each averaged over
100 simulations of C. The simulation procedure is explained in Remark 4.1.

regimes with an intermediate average number of defaults were associated with significant

fluctuations around the averages and thus with significant risk. A refined analysis6 shows

that the empirical distribution of defaults is mainly concentrated on the extreme scenarios

of few or many defaults. Medium levels of bankruptcy costs or fire sales may, on average,

seem acceptable, but are in fact associated with an unstable financial system. This shows

that gradual improvements of the efficiency of the operations of distressed banks or light

quantitative easing do not lead to resilience. Regulatory rules and interventions must

be sufficiently forceful in order to achieve the desired effect of creating a stable financial

system.

In the case of cross-holdings, an analysis of the average number of defaults is not

sufficient. Comparing Figure 4 (b) with Figure 2 (a) shows that increasing integration has

an overall beneficial effect on the average number of defaults, but increases the standard

deviation within the considered parameter range. Features of the network thus have a

quite complex impact on how financial stability and instability spread within the system.

Moreover, Figure 4 (b) demonstrates that increasing diversification increases the standard

deviation, while diversification does almost not affect the average number of defaults for

6 We include an analysis of the empirical distribution in the joint model in Figure 8. These findings

were also confirmed in multiple other case studies for other parameter constellations.

24



d > 10. A diversification of d = 10 (i.e.,
√
n) seems to be an optimal level. It would be

interesting to investigate if such a statement holds more generally. Regulatory incentives

for cross-ownership in the banking sector must therefore be very carefully designed. This

requires substantial future research on the exact magnitude of the impact of cross-holdings

in real financial networks.

4.1.3. Joint Effects

In the current section, we investigate the joint impact of network effects, bankruptcy

costs, fire sales, and cross-holdings in our integrated model and study the robustness of

the results of the previous section. We focus on the following three questions: (i) Is

quantitative easing in the joint model an appropriate policy for limiting systemic risk?

How is this affected by other model drivers? (ii) Are the results modified by the change of

the order of liquidation? (iii) Do cross-holdings have a beneficial effect on the stability of

the financial system if bankruptcy costs and fire sales are included in the model? Which

regulatory policies are appropriate?

(i) First, consider an integrated financial system with α = 0.9, β = 0.9, c = 0.5,

d = 10, and κ = 0.8. The resulting average number of defaults as a function of the

fire sales parameters is displayed in Figure 5.7 A comparison of Figures 1 (b) and

5 (a) reveals that the general structure of the influence of price impact is preserved

if bankruptcy costs and cross-holdings are added. However, the number of defaults

increases and the sharp transition between the area of few defaults and the area of

the breakdown of the system disappears. Similar qualitative results were all also

confirmed in additional case studies based on both the ENBF and ENCF models.

The results indicate that quantitative easing continues to be a suitable instrument

in order to contain the number of defaults in this case.

(ii) Second, Figures 5 (b) and 6 deal with the impact of changing the order of liquidation

on the number of defaults and the price of the illiquid asset as a function of the
7Kinks in the boundary are numerical artifacts. Note that the simulations still took several days to

complete on the RRZN computing cluster.
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Figure 5: Contour plot of the number of defaults for n = 100 banks as a function of
both parameters of fire sales, ρ and γ, for α = 0.9, β = 0.9, c = 0.5, d = 10, κ = 0.8,
I = 1 in (a) and I = 0 in (b), averaged over 100 simulations of Π, each averaged over 100
simulations of C. The simulation procedure is explained in Remark 4.1.

fire sales parameters ρ and γ. These figures show that, regardless of whether cross-

holdings or illiquid asset shares are liquidated first, the observed behavior is very

similar.

(iii) Third, we analyze the effects of integration of cross-holdings in the joint model.

This leads to rather complex, but very interesting features. We investigate a net-

work model with d = 10, κ = 0.8, β = 0.9, γ = 0.2, ρ = 0.02, and varying α.

Within the considered parameter range, increasing integration decreases the aver-

age number of defaults, cf. Figure 7 (a). The non-monotonicity observed in Figure

2 (a) disappears. As expected, the higher the realized fraction α, the lower the

number of defaults. However, for α ≤ 0.8 cross-holdings cannot prevent the total

breakdown of the system. Observe that for the chosen value of β = 0.9, the value

α = 0.8 corresponds roughly to the critical boundary between the regimes of a very

high (α ≤ 0.8) and a very low (α ≥ 0.9) number of defaults in Figure 1 (a).

Figure 7 (b) displays standard deviations. These are comparatively small for ex-

treme regimes of the default count statistics, i.e., α ∈ {0.8, 0.85, 0.95}. For regimes

with an intermediate average number of defaults, i.e., α ∈ {0.9, 0.925}, the stan-

dard deviations are large. For fixed α ≤ 0.9, the standard deviation increases as a
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Figure 6: Contour plot of the price of the illiquid asset for n = 100 banks as a function
of both parameters of fire sales, ρ and γ, for α = 0.9, β = 0.9, c = 0.5, d = 10, κ = 0.8,
I = 1 in (a) and I = 0 in (b), averaged over 100 simulations of Π, each averaged over 100
simulations of C. The simulation procedure is explained in Remark 4.1.
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Figure 7: Average (a) and standard deviation (b) of the number of defaults for n =
100 banks as a function of integration c for d = 10, and for different bankruptcy costs
parametrized by α in an integrated financial system with β = 0.9, γ = 0.2, ρ = 0.02,
κ = 0.8, I = 1 averaged over 100 simulations of Π, each averaged over 100 simulations of
C. The simulation procedure is explained in Remark 4.1.

27



function of integration c; for α ≥ 0.925, the standard deviation is decreasing.
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Figure 8: Empirical cumulative distribution functions of the number of defaults in 100
simulations of the relative liabilities matrix Π each averaged over 100 simulations of C,
for two integration values c = 0.3 and c = 0.7 for α = 0.9 (a) and α = 0.925 (b).

This different behavior can easily be understood when analyzing the empirical cu-

mulative distribution functions (CDFs) of the number of defaults. It turns out that

the distributions of the numbers of defaults are very close to Bernoulli distribu-

tions. In this case, the standard deviation is maximal for a success probability of

0.5 and monotonously decreasing if the success probability is either increased or

decreased. As illustrated in Figure 8, for α = 0.9, the distribution of defaults for

c = 0.3 roughly corresponds to a success probability of 0.2 – 0.3; for c = 0.7, to

a success probability of 0.3 – 0.4. Thus, the standard deviation increases in c. In

contrast, for α = 0.925, the distribution of defaults for c = 0.3 roughly corresponds

to a success probability of 0.5 – 0.6; for c = 0.7, to a success probability of 0.7 –

0.8. Thus, the standard deviation decreases in c.

The approximate Bernoulli distributions are supported by the EN number of de-

faults and a total breakdown of the system. This shows that the system essentially

randomizes between extreme states. While the probability of the negative outcome

can be controlled by cross-holdings for the chosen level of bankruptcy costs and fire

sales, the number of defaults in this adverse scenario is not mitigated.

From a policy point of view, our numerical case studies again indicate the funda-
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mental role played by bankruptcy costs, emphasizing the importance of efficient

procedures for managing defaults and restructuring institutions. Regulators should

thus implement policies that lower the costs of bankruptcy. Moreover, if bankruptcy

costs are not too large, a higher integration c of cross-holdings decreases both the

average number of defaults and their variance. More integrated systems are thus

more resilient. These results, of course, rely on the existence of a sufficiently deep

and liquid market for cross-holdings. If this market dries up during a crisis, central

banks might buy cross-holdings or provide guarantees for their purchase in order to

stabilize the financial system. In our model, such a policy, however, does not seem

to be efficient anymore if bankruptcy costs are too high.

4.1.4. Capital Adequacy Ratios

Capital requirements are a powerful instrument for the regulation of financial institutions.

We investigate these in Section 4.2.4 in more detail. For surveys of the literature on

monetary risk measures, we refer to Föllmer & Schied (2011) and Föllmer & Weber

(2015). A less sophisticated approach than monetary risk measures are capital adequacy

ratios (CAR) based on risk-weighted assets. In the current section, we show in the context

of our model that these are not always well-adopted for regulatory purposes.

We consider a stylized definition of CAR and ignore cross-holdings. For each bank

i, capital Ci is computed as the sum of external asset holdings ei and promised inter-

bank holdings
∑

j∈N Πjip̄j less its liabilities p̄i. We assume that risk-weights8 are 100%

and calculate risk-weighted assets RAi of bank i as the sum of its illiquid assets si and

its interbank holdings
∑

j∈N Πjip̄j. The capital adequacy ratio of bank i is defined by

CARi = Ci/RAi.

For a model including bankruptcy costs and fire sales, but no cross-holdings (ENBF),

Figure 9 displays the level sets of the lowest capital adequacy ratio in the banking system,

CAR, as a function of the buffer δ and the proportion ρ of the illiquid asset. At the same

time, the boundary between the extreme default scenario (lower right corner) and few

8The specific risk-weight that is chosen is irrelevant to our findings.
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Figure 9: Level sets of the lowest capital adequacy ratio in the banking system CAR :=
mini∈N CARi as a function of the buffer δ and the proportion ρ of the illiquid asset in
an ENBF-model with α = 0.925, β = 0.9, and γ = 0.2. The solid line is the boundary
between many (lower right) and few (upper left) defaults. Results are averaged over 100
simulations of Π. The simulation procedure is explained in Remark 4.1.

defaults (upper left corner) is shown.

A sufficiently high CAR can indeed prevent default cascades. However, in our case

study, CAR appears to be an inefficient regulatory tool that does not properly measure

the driving forces behind extreme default scenarios. Apparently, the barrier between

many and few defaults and the level sets of CAR are not collinear. While for small values

of ρ a small CAR is sufficient, for large values of ρ a large CAR is necessary in order to

stabilize the system. The results indicate that regulators should base capital regulation

on more sophisticated statistics than risk-weighted assets.

4.2. Core-Periphery Random Networks

So far, we considered homogeneous random network topologies. Recent research on finan-

cial networks, however, suggests that core-periphery network models capture the structure

of the interbank market (see, e.g., Craig & von Peter (2014) for the German interbank
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market, and van Lelyveld & in ’t Veld (2014) for the Netherlands): These consist of a

few highly connected nodes (making up the core) and a larger number of only sparsely

connected nodes (referred to as the periphery). In this section, we simulate the relative

liabilities matrix Π as a core-periphery random network and observe how this affects the

impact of bankruptcy costs, cross-holdings, and fire sales on the number of defaults.

4.2.1. Simulation Methodology

We divide the set of banks N into a subset of core banks, C, and a subset of periphery

banks, P , with cardinalities nC and nP , with nC + nP = n, respectively. We assume

that a core-periphery relative liabilities matrix Π can be represented by a random block

matrix

Π =

CC CP

PC PP

 ∈ Rn×n, (7)

where, for example, the block CP ∈ RnC×nP represents the core banks’ liabilities towards

the periphery banks. This matrix is constructed as follows.

(i) Adjacency matrix: We first simulate an adjacency matrix A ∈ Rn×n, using exoge-

nously specified connection probabilities pCC , pCP , pPC , and pPP for each block.

(ii) Weights: Second, we fix the value of total liabilities ` of all banks. A fraction cΠ

is allocated to the total interbank liabilities; the remaining share models external

liabilities that are uniformly distributed among all banks, i.e., li = (1−cΠ)·`
n

, i ∈ N .

Total interbank liabilities cΠ ·` are allocated to the four matrix blocks in fractions of

xCC , xPC , xCP , and xPP with xCC + xPC + xCP + xPP = 1. The resulting interbank

liabilities per block are uniformly distributed among all existing links within the

block. This is, denoting by lCP =
∑

i∈C
∑

j∈P Aij the random number of total links

in the CP -block, the corresponding entries of the nominal liabilities matrix L are

Lij = xCP ·cΠ·`
lCP , i ∈ C, j ∈ P , if Aij > 0, and Lij = 0, otherwise. The other blocks are

computed analogously. Finally, with p̄i =
∑

j∈N Lij + li, the entries of the relative

liabilities matrix Π are given by Πij =
Lij

p̄i
.
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As in the other case studies, we set n = 100, cΠ = 0.15, and ` = 100. In addition, following

Craig & von Peter (2014) who analyzed data from the German interbank market, we

choose core-periphery parameters

pCC = 0.66, pCP = 0.15, pPC = 0.07, pPP = 0.001,

xCC = 0.35, xCP = 0.16, xPC = 0.47, xPP = 0.02.

We fix the number of core banks as nC = 10.9 The simulation methodology is analogous

to Section 4.1.1. Note, however, that simulation results will depend on whether a core or

periphery bank is hit by an initial shock.

4.2.2. Results

We focus on three case studies: the separate impact of a) bankruptcy costs and b) fire

sales as well as c) the joint impact of all ingredients while varying the parameters that

govern the fire sales.

Figure 10 shows the effects of bankruptcy costs and fire sales in the core-periphery

network, given that initially a core bank is shocked.10 The qualitative results for an initial

periphery shock are similar; however, the total average number of defaults tends to be

higher as an initially shocked core bank may survive the shock due to a high and possibly

stabilizing level of interconnectedness. Comparing Figure 10 to Figure 1, we observe that

bankruptcy costs and fire sales have a similar impact as in the Erdös–Rényi network: as

expected, an increase in the number of defaults for increasing bankruptcy costs and fire

sales; a clear threshold boundary separating an area of many defaults from an area of few

defaults. The exact numbers are, of course, different. For example, in Figure 10 (a) the

impact of parameter β on defaults is stronger than before.

Figure 11 shows the average number of defaults as a function of both fire sales param-

eters in an ENBCF core-periphery model given that initially a core bank’s external assets

lose their total value. Again, our observations resemble the findings within Erdös–Rényi
9This number is consistent with the empirical results of van Lelyveld & in ’t Veld (2014), who find

a core of around 10 banks in the Dutch interbank network, where the total number of banks is around

our chosen number of 100.
10Observe that rough boundaries are artifacts of the numerical implementation. Still, computing time

on the RRZN cluster was several days.
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Figure 10: Contour plots of the number of defaults for n = 100 banks as a function of (a)
bankruptcy costs and (b) fire sales, conditional on an initial core shock, averaged over
100 simulations of Π, simulated as a core-periphery random network. The simulation
procedure is explained in Remark 4.1.
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Figure 11: Contour plot of the number of defaults for n = 100 banks as a function of fire
sales in the joint model (α = 0.9, β = 0.9, c = 0.5, d = 10, κ = 0.8, I = 1), conditional on
an initial core default, averaged over 100 simulations of Π, simulated as a core-periphery
random network, each averaged over 100 simulations of C simulated as an Erdös–Rényi
random network. The simulation procedure is explained in Remark 4.1.

33



random networks.

The considered core-periphery structure was calibrated to German interbank market

data and presents a good description of a real world interbank market. Overall, the above

comparisons indicate that the results we obtained are qualitatively similar to those within

simpler Erdös–Rényi random networks. This shows that the simplified setting is already

representative and relevant for the analysis of systemic risk. The policy implications

discussed in the context of Erdös–Rényi random networks remain valid for the considered

core-periphery structure.

4.2.3. Multi-Layer Networks

Our model can be extended to more than two layers and is capable of modeling hetero-

genous agents. We will illustrate this with three types of agents: banks, depositors, and

borrowers. Depositors hold deposits at banks. Borrowers receive credit from the banks

that act as intermediaries. For simplicity, we neglect bankruptcy costs and cross-holdings

and assume that the banking system consists of 20 banks that form an Erdös–Rényi ran-

dom network with dΠ = 2 and δ = 0.2. We add depositors and borrowers to the system.

The total liabilities of all banks (to other banks and to the depositors) within the consid-

ered time-period are normalized to the total number of banks, i.e., 20. Liabilities within

the banking system are set to 15% of total liabilities, i.e., cΠ = 0.15.

The remaining 85% are liabilities to depositors. The number of depositors is 90, and

each depositor is linked to exactly two banks that are uniformly sampled at random. Each

link is associated with the same liability. We assume that all liabilities are immediately

due. This scenario can be interpreted as a bank run.

There are 90 borrowers outside the banking system. Each borrower is linked to two

banks that are sampled uniformly at random. Borrowers’ short-term liabilities over the

considered time-period are 1/100 per link. Borrowers hold external assets which amount

to 1+δ of their total short-term liabilities; 40% of these are allocated to the illiquid asset.

All quantities are then computed as in Section 4.1.1. Figure 12 displays the average

defaults in the banking system as a function of the fire sales parameters. Qualitatively,
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the graph resembles previous results and emphasizes their robustness. This shows again

that quantitative easing can stabilize the banking system.
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Figure 12: Contour plot of the average number of bank defaults as a function of fire
sales parameters ρbanks and γ in an ENF-model, averaged over 100 simulations of Π and
periphery link choices. The simulation procedure is explained in Remark 4.1.

4.2.4. Capital Requirements

Another important regulatory tool are capital requirements for banks. In financial net-

works, the financial situation of a bank, of course, does not only depend on its own capital

endowment, but also on the capital of other financial institutions with which it interacts

directly or indirectly. Within a core-periphery network, we discuss the role of capital on

the basis of a framework suggested in Feinstein, Rudloff & Weber (2017). We refer to

this paper for further details on systemic risk measures.

In the current case study, all simulations are conducted according to the same method-

ology as described in Section 4.2.1. However, we introduce two further parameters kC

and kP which signify additional capital on top of the originally computed external assets

e that is held by the core and periphery banks, respectively. As before, the updated

amount of the external assets is then divided into liquid and illiquid assets according to

the parameter ρ, and the simulations are run.

In order to evaluate the effect of the additional capital encoded by the vector k =

(kC , kP ) on the system, we use the following approach. Given k, we compute the greatest
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clearing vector p∗(k) in our system. The clearing vector is a random quantity. The total

random losses from direct liabilities are then given by:

L(k) =
∑
i∈N

(1−
∑
j∈N

Πij) · (p∗i (k)− p̄i).

Observe that losses are considered negative. If there are no losses, L(k) is equal to 0.

Since financial institutions provide services to society, we assume that a regulator accepts

a small loss or cost of up to t, but higher losses only with probability α. We define the

set R of all k = (kC , kP ) ∈ R2 that are compatible with this requirement:

R := {k ∈ R2 : P (L(k) ≤ −t) ≤ α} = {k ∈ R2 : V@Rα(L(k)) ≤ t}.

The set R is a systemic risk measure in the sense of Feinstein, Rudloff & Weber (2017).

We now consider an ENBF model and a core-periphery network as described in Section

4.2.1 and choose t = 1/20 and α = 10%. Figure 13 (a) displays the boundary of the

set-valued systemic risk measures for varying fractions ρ of the illiquid asset without

bankruptcy costs. Note that by definition, the systemic risk measure is an upper set in

the sense that all points above the boundary are acceptable. As expected, we find that

the higher the proportion of the illiquid asset in the external asset portfolio, i.e., the

higher the ρ, the higher the capital requirement for both core and periphery banks is.

The figure also shows that capital requirements tighten in a similar way for both core

and periphery banks if the proportion of the illiquid asset is increased. This indicates,

that according to our model, regulators should pay attention to the capital requirements

of all banks if price impact is an important factor during crises.

Figure (b) includes bankruptcy costs for varying β with ρ = 0.5 fixed. While the

capital requirements for the periphery banks are barely affected by decreasing β, the

requirements for the core banks increase strongly. Since core banks are more connected

than periphery banks, the impact of defaults and resulting interbank bankruptcy costs

on core banks is more significant than on periphery banks. In the context of the chosen

model, a regulator would be well advised if she particularly focused on strengthening the
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Figure 13: Capital requirements for core and periphery banks as a function of fire sales
(varying ρ and fixed γ = 0.2) (a) separately and (b) together with different levels of
bankruptcy costs (varying β and fixed α = 1).

capital endowments of core banks. These can serve as a buffer that reduces systemic risk

even if considerable bankruptcy costs are present.

5. Conclusion

The paper presents a comprehensive model of a financial system that integrates net-

work effects, bankruptcy costs, fire sales, and cross-holdings. For the integrated financial

market, we prove the existence of a price-payment equilibrium and design an algorithm

for the computation of the greatest and the least equilibrium. The number of defaults

corresponding to the greatest price-payment equilibrium was analyzed in several com-

parative case studies for both simple Erdös–Rényi and more realistic core-periphery and

multi-layer random networks:

(i) Systemic risk was studied by shocking the system and computing the average num-

ber of defaults, its variance, and distribution. Outcomes are centered on extreme

scenarios. The risk of extreme adverse events is present, even if averages indicate a

relatively safe system. Regulatory policies should provide substantial safety margins

in order to guarantee stability.

(ii) Fire sales strongly increase systemic risk, while cross-holdings may improve the
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resilience of the banking sector. Central banks might mitigate the risk of de-

fault cascades by purchasing illiquid assets and cross-holdings. Quantitative easing

strengthens the system.

(iii) Bankruptcy costs are a main driver of systemic risk. Regulators should improve

the efficiency of bankruptcy procedures and limit the associated deadweight losses.

Policies might include reducing the complexity of financial products as well as op-

erational procedures and requiring last wills of financial institutions.

(iv) Capital requirements are a powerful instrument, but capital adequacy ratios based

on risk-weighted assets are an extremely rough measure of systemic risk. Instead,

modern systemic risk measures that use capital efficiently could be implemented.

(v) We analyzed different interbank network structures and heterogeneous business

models. Our qualitative results were robust. Quantitative predictions, however,

require a precise specification of all driving mechanisms.

The suggested model can be used as a framework for testing the impact of regulatory

policies and their robustness. It can also provide insights into the significance of the

financial market architecture for systemic risk, e.g., the pros and cons of CCPs. From

a statistical point of view, our comparative statics show that default cascades can be

triggered by a combination of various mechanisms. In particular, bankruptcy costs and

fire sales exhibit similar consequences. Their statistical estimation is a challenging issue

for future research that requires further data on historical bankruptcy procedures and

price impact during crises.

6. Proofs

6.1. Proof of Lemma 2.2.

(a) This follows directly from Banach’s fixed-point theorem applied to the function Ψ.
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(b) We prove that the essential net worths vector is increasing in the payments p. The

corresponding claim for the illiquid asset’s price q can be proven analogously. To

simplify the notation, we suppress the dependence on q and write w∗(p) instead

of w∗(p, q) in the following. Now, for each given payment vector p, we define the

following recursive sequence: Starting with w(0)(p) := r + sq + ΠTp − p̄, we set

w(n)(p) = Ψ(w(n−1)(p)), for n = 1, 2, . . . . Due to part (a), this sequence converges

with lim
n→∞

w(n)(p) = w∗(p).

For two given payment vectors p1 ≥ p2, it holds that w(n)(p1) ≥ w(n)(p2) for all n.

We prove this statement by induction. For n = 0,

w(0)(p1) = r + sq + ΠTp1 − p̄ ≥ r + sq + ΠTp2 − p̄ = w(0)(p2),

since p1 ≥ p2. For the induction step, n→ n+ 1, it holds that

w(n+1)(p1) = r + sq + ΠTp1 + diag(µ(p1, w(n)(p1))CT (w(n)(p1) ∨ 0)− p̄

≥ r + sq + ΠTp2 + diag(µ(p2, w(n)(p2))CT (w(n)(p2) ∨ 0)− p̄ = w(n+1)(p2),

exploiting the induction hypothesis and the fact that µi(p, w) is by definition in-

creasing in both components. Hence, w(n)(p1) ≥ w(n)(p2) for all n, and this yields

w∗(p1) = lim
n→∞

w(n)(p1) ≥ lim
n→∞

w(n)(p2) = w∗(p2).

6.2. Proof of Lemma 3.1.

(a) It holds by definition that Φi(p, q) = χi(p, q) ≥ 0 and Φi(p, q) ≤ p̄i for all i =

1, . . . , n, since the banks will pay at most their total liabilities. For i = n + 1, the

boundedness follows from the definition of the inverse demand function.

(b) Let (p1, q1) ≤ (p2, q2). We have that θ(p1, q1) ≥ θ(p2, q2), because the essential

net worths vector is monotone in the price-payment pairs due to Lemma 2.2 (b).
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Hence,

Φn+1(p1, q1) = f(θ(p1, q1)) ≤ f(θ(p2, q2)) = Φn+1(p2, q2),

since f is monotonically decreasing. For i = 1, . . . , n, monotonicity follows from

a case-by-case analysis extending the arguments of Rogers & Veraart (2013) and

Amini et al. (2013). First, assume that bank i is in default under (p2, q2). This

implies that it is in default under (p1, q1) and that

Φi(p
2, q2) = α[ri + siq

2] + βηi(p
2, q2) ≥ α[ri + siq

1] + βηi(p
1, q1) = Φi(p

1, q1),

due to Lemma 2.2 (b). Next, assume that bank i does not default under (p2, q2).

Then, bank i can either survive or default under (p1, q1). In the first case, mono-

tonicity of Φi directly follows from Φi(p
2, q2) = p̄i = Φi(p

1, q1). In the second case,

if bank i defaults under (p1, q1) but not under (p2, q2), it follows that

Φi(p
2, q2) = p̄i > ri + siq

1 + ηi(p
1, q1) ≥ α[ri + siq

1] + βηi(p
1, q1) = Φi(p

1, q1).

Here, the first inequality holds true, since bank i defaults under (p1, q1). The second

inequality follows from α, β ≤ 1.

6.3. Proof of Theorem 3.2.

Let F := {(p, q) ∈ [0, p̄] × [qmin, q0] | Φ(p, q) = (p, q)} denote the set of fixed points

of Φ. Lemma 3.1 establishes that Φ is an increasing function on the complete lattice

〈[0, p̄] × [qmin, q0],≤〉 with the componentwise ≤-relation. Hence, Tarski’s fixed-point

theorem (Tarski 1955, Theorem 1) states that F is not empty and, moreover, that 〈F ,≤〉

constitutes a complete lattice itself. In particular, this yields the existence of a unique

greatest and least element of F . Since the elements of F constitute by definition the

price-payment equilibria, this completes the proof.
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6.4. Proof of Theorem 3.5.

This proof is an extension of the proof provided by Rogers & Veraart (2013) and pro-

ceeds in three steps. First, we show that the sequence of price-payment pairs (p(k), q(k))

decreases. Second, we demonstrate that each pair in this sequence is larger than or equal

to the greatest price-payment equilibrium. Third, we observe that when the algorithm

terminates, the calculated price-payment pair equals the greatest price-payment equilib-

rium.

(i) For the first step, we claim that

(p(k+1), q(k+1)) ≤ (p(k), q(k)) ∀k = 0, 1, . . . , n− 1. (8)

We prove this statement by induction.

(B.S.) For the base step, k = 0, we need to prove that p(1) ≤ p(0) = p̄ and that

q(1) ≤ q(0) = q0. Regarding the payments, this clearly holds for all i ∈ S0,

since then p
(1)
i = p̄i = p

(0)
i . Thus, it remains to examine the payments of

the defaulting banks in D0 and the corresponding price of the illiquid asset,

which are jointly given by the maximal solution to the equations (4) and

(5). In order to calculate this maximal solution, we propose the following

recursive procedure: Start with (x(0), y(0)), where x(0)
i = p

(0)
i = p̄i for i ∈ D0

and y(0) = q(0) = q0, and define the sequence (x(ν), y(ν)) recursively by

x
(ν+1)
i = α

[
ri + siy

(ν)
]

+ β

[∑
j∈D0

Πjix
(ν)
j +

∑
j∈S0

[Πjip̄j + λCji max(w∗j (x
(ν), y(ν)), 0)]

]

for i ∈ D0 and

y(ν+1) = f

(∑
i∈D0

si +
∑
i∈S0

min

(
ζ

(0)
i (x(ν), y(ν))

y(ν)
, si

))
,

with ζ(0)
i (x, y) for all i ∈ S0 defined as in Equation (6), substituting k with 0.
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Next, we have to show that

(x(ν+1), y(ν+1)) ≤ (x(ν), y(ν)) ∀ν = 0, 1, . . . , (9)

which we will prove by induction. First, for the base case, ν = 0, we observe

that for i ∈ D0:

x
(1)
i = α

[
ri + siy

(0)
]

+ β

[∑
j∈D0

Πjix
(0)
j +

∑
j∈S0

[Πjip̄j + λCji max(w∗j (x
(0), y(0)), 0)]

]

≤ ri + siq
(0) +

∑
j∈D0

Πjip
(0)
j +

∑
j∈S0

Πjip̄j + λ
∑
j∈S0

Cji max(w∗j (p
(0), q(0)), 0)

= ri + siq
(0) +

n∑
j=1

Πjip
(0)
j + λ

n∑
j=1

Cji max(w∗j (p
(0), q(0)), 0) < p̄i = p

(0)
i = x

(0)
i .

Here, the first inequality is satisfied because 0 ≤ α, β ≤ 1. The second step

follows from p
(0)
j = p̄j on S0 and w∗j (p(0), q(0)) < 0 for j ∈ D0. The last step

holds according to the definition of D0 and due to the fact that 0 ≤ λ ≤

µi(p
(0)) ≤ 1.

Moreover, ∑
i∈D0

si +
∑
i∈S0

min

(
ζ

(0)
i (x(0), y(0))

y(0)
, si

)
≥ 0,

by definition of ζ(0)
i (x(0), y(0)). Thus, since f is monotonically decreasing and

f(0) = q0, it follows that y(1) ≤ q0 = y(0). Now, suppose that inequality (9) is

satisfied up to some ν. Then, one obtains:

ζ
(0)
i (x(ν), y(ν))

= max

(
p̄i − ri −

∑
j∈D0

Πjix
(ν)
j −

∑
j∈S0

[Πjip̄j + IiλCji max(w∗j (x
(ν), y(ν)), 0)], 0

)

≥ ζ
(0)
i (x(ν−1), y(ν−1)),

by the induction hypothesis and Lemma 2.2 (b). This yields y(ν+1) ≤ y(ν),

again exploiting the induction hypothesis together with the fact that f is
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monotonically decreasing.

Analogously, it follows from the recursive definition that x(ν+1)
i ≤ x

(ν)
i for all

i ∈ D0. Thus, the sequence continues to decrease for all ν. Hence, the limit

(x, y) := lim
ν→∞

(x(ν), y(ν)) exists and solves Equations (4) and (5). Moreover,

(x, y) is the maximal solution to these equations by construction. This com-

pletes the base step of the induction argument for the proof of (8).

(I.S.) For the induction step, k → k + 1, we first observe that by the induction

hypothesis we have that Dk ⊇ Dk−1 or, equivalently, Sk ⊆ Sk−1. Hence, for all

i ∈ Sk: p(k+1)
i = p̄i = p

(k)
i . Thus, we have to investigate the payments of the

defaulting banks and the corresponding price of the illiquid asset, defined by

the maximal solution to Equations (4) and (5). Analogous to the base step,

we propose the following recursive principle to calculate this maximal solution.

Start with (x(0), y(0)), where x(0)
i = p

(k)
i for i ∈ Dk and y(0) = q(k), and define

(x(ν), y(ν)) by the obvious modification of the above recursive principle:

x
(ν+1)
i = α

[
ri + siy

(ν)
]

+ β

[∑
j∈Dk

Πjix
(ν)
j +

∑
j∈Sk

[Πjip̄j + λCji max(w∗j (x
(ν), y(ν)), 0)]

]
(10)

for i ∈ Dk and

y(ν+1) = f

(∑
i∈Dk

si +
∑
i∈Sk

min

(
ζ

(k)
i (x(ν), y(ν))

y(ν)
, si

))
, (11)

with ζ
(k)
i (x, y) for all i ∈ Sk defined as in Equation (6). Again, we want to

prove that

(x(ν+1), y(ν+1)) ≤ (x(ν), y(ν)), ν = 0, 1, . . . . (12)
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First, note that for ν = 0,

∑
j∈Dk

Πjix
(0)
j =

∑
j∈Dk

Πjip
(k)
j =

∑
j∈Sk−1\Sk

Πjip
(k)
j +

∑
j∈Dk−1

Πjip
(k)
j

=
∑

j∈Sk−1\Sk

Πjip̄j +
∑

j∈Dk−1

Πjip
(k)
j ,

observing Dk = (Sk−1\Sk) ∪ Dk−1 and p(k)
j = p̄j for all j ∈ Sk−1. Second,

∑
j∈Sk

Cji max(w∗j (x
(0), y(0)), 0) =

∑
j∈Sk−1

Cji max(w∗j (p
(k), q(k)), 0),

since w∗j (p(k), q(k)) < 0 for all j ∈ Sk−1\Sk ⊆ Dk. We thus obtain that

x
(1)
i = α

[
ri + siy

(0)
]

+ β

[∑
j∈Dk

Πjix
(0)
j +

∑
j∈Sk

[Πjip̄j + λCji max(w∗j (x
(0), y(0)), 0)]

]

= α
[
ri + siq

(k)
]

+ β

 ∑
j∈Dk−1

Πjip
(k)
j +

∑
j∈Sk−1

[Πjip̄j + λCji max(w∗j (p
(k), q(k)), 0)]

 .
(13)

For i ∈ Dk−1 this shows that x(1)
i = p

(k)
i = x

(0)
i . For the remaining case

i ∈ Dk\Dk−1, we have

x
(1)
i ≤ ri + siq

(k) +
∑

j∈Dk−1

Πjip
(k)
j +

∑
j∈Sk−1

[Πjip̄j + λCji max(w∗j (p
(k), q(k)), 0)]

= ri + siq
(k) +

n∑
j=1

Πjip
(k)
j + λ

n∑
j=1

Cji max(w∗j (p
(k), q(k)), 0) < p̄i = p

(k)
i = x

(0)
i .

Here, the first inequality holds because 0 ≤ α, β ≤ 1. The first stated equality

follows from p
(k)
j = p̄j for j ∈ Sk−1 and the fact that w∗j (p(k), q(k)) < 0 for all

j ∈ Dk−1 ⊆ Dk. The last inequality results from i ∈ Dk\Dk−1 ⊆ Sk−1.

For the price of the illiquid asset, we first observe that for all i ∈ Sk, ζ(k)
i (x(0), y(0)) =

ζ
(k−1)
i (p(k), q(k)) by using the same arguments as for Equation (13). From this
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it follows that

y(1) = f

 ∑
i∈Dk−1

si +
∑

i∈Sk−1\Sk

si +
∑
i∈Sk

min

(
ζ

(k−1)
i (p(k), q(k))

q(k)
, si

)
≤ f

 ∑
i∈Dk−1

si +
∑
i∈Sk−1

min

(
ζ

(k−1)
i (p(k), q(k))

q(k)
, si

) = q(k) = y(0),

because f is monotonically decreasing and the last step follows from the defini-

tion of q(k). This proves (12) for ν = 0; the arguments for ν > 0 are analogous.

This implies that (p(k+1), q(k+1)) = limν(x
(ν), y(ν)) ≤ (x(0), y(0)) = (p(k), q(k)).

This finishes the induction step k → k + 1, and thus completes the first step

of the proof, i.e., the sequence of price-payment pairs (p(k), q(k)) decreases.

(ii) In the second step, we need to show that (p(k), q(k)) ≥ (p+, q+) for all k = 0, 1, . . . , n.

Again, this will be established by induction. For k = 0 the assertion is obvious,

since (p(0), q(0)) = (p̄, q0) ≥ (p+, q+) by Lemma 3.1 (a).

For the induction step k → k+1, we observe that by the induction hypothesis a bank

that defaults under (p(k), q(k)) does also default under (p+, q+), thusD(p+, q+) ⊇ Dk.

Now, for i ∈ Sk, one has p(k+1)
i = p̄i ≥ p+

i . It again remains to analyze the entries of

p(k+1) belonging to banks in Dk. Therefore, we reuse the recursive principle stated

in Equation (10) together with (11), and prove that for all ν = 0, 1, . . . : x(ν)
i ≥ p+

i

(i ∈ Dk), y(ν) ≥ q+. Now, starting again with x(0)
i = p

(k)
i for i ∈ Dk and y(0) = q(k),

we obtain for i ∈ Dk that

x
(1)
i = α

[
ri + siq

(k)
]

+ β

[∑
j∈Dk

Πjip
(k)
j +

∑
j∈Sk

[Πjip̄j + λCji max(w∗j (p
(k), q(k)), 0)]

]

≥ α
[
ri + siq

+
]

+ β

[∑
j∈Dk

Πjip
+
j +

∑
j∈Sk

[Πjip̄j + λCji max(w∗j (p
+, q+), 0)]

]

≥ α
[
ri + siq

+
]

+ β

[
n∑
j=1

Πjip
+
j + λ

n∑
j=1

Cji max(w∗j (p
+, q+), 0)

]
= p+

i .

Here, the first inequality holds because of the induction hypothesis and Lemma 2.2

(b). The second inequality follows from p̄ ≥ p+ and w∗j (p+, q+) < 0 for all j ∈ Dk ⊆
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D(p+, q+). Finally, (p+, q+) is a price-payment equilibrium by assumption; thus,

the last equality holds for i ∈ Dk ⊆ D(p+, q+) according to Definition 2.3.

Regarding the price of the illiquid asset, we first obtain by the induction hypothesis

that ζ(k)
i (p(k), q(k)) ≤ ζ

(k)
i (p+, q+), for all i ∈ Sk. This leads to

y(1) = f

(∑
i∈Dk

si +
∑
i∈Sk

min

(
ζ

(k)
i (p(k), q(k))

q(k)
, si

))

≥ f

 ∑
i∈D(p+,q+)

si +
∑

i∈S(p+,q+)

min

(
ζ

(k)
i (p+, q+)

q+
, si

) = q+,

using similar arguments as before. Hence, by the recursive definition of the sequence

(x(ν), y(ν)), we see that every element of this sequence will be larger than or equal to

the corresponding entries of the greatest price-payment equilibrium. Overall, this

yields (p(k), q(k)) ≥ (p+, q+) for all k = 0, 1, . . . , n, as desired.

(iii) To finish this proof, we combine all previous arguments. By our first step, the

payment vectors are decreasing with each iteration of the algorithm and hence,

Dk+1 ⊇ Dk, which leads to two possible cases. The first is Dk+1 = Dk. In this case,

the algorithm terminates and due to the fixed-point construction, (p(k), q(k)) is a

price-payment equilibrium as in Definition 2.3. Moreover, as (p+, q+) is the unique

greatest price-payment equilibrium and by our second step (p(k), q(k)) ≥ (p+, q+),

the algorithm terminates with the greatest price-payment equilibrium. The second

possibility for the sequence of default sets is that it is strictly increasing from one

round to another, i.e., Dk+1 ⊃ Dk. This means that a new bank joined the default

set, and payments and prices have to be adjusted. But since there are at most n

banks that can join the default set, after at most n+ 1 iterations11 the default set

does not change anymore. Thus, we eventually end up in the first possible case,

finding the greatest price-payment equilibrium.

11In the first round, k = 0, the default set can be empty as the contagion process may solely be

triggered by the asset price effect.
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Appendix A. Example: Price-Payment Equilibria

Price-payment equilibria are non-unique and, moreover, the set of equilibria is not neces-

sarily connected. In the following example, we will construct a financial system in which

for some p ∈ Rn with p− < p < p+ there does not exist a q ∈ [q−, q+] such that (p, q) is a

price-payment equilibrium. We will also show that for given q ∈ R with q− < q < q+ it

is not always possible to find p ∈ [p−, p+] such that (p, q) is a price-payment equilibrium.

For the analysis of the counterexample, we recall two necessary conditions for price-

payment equilibria (p∗, q∗) from Definition 2.3:

(i) For a given clearing price q∗, the clearing payment vector p∗ satisfies the relation

p∗ = χ(p∗, q∗). (A.1)

For any fixed q ∈ [qmin, q0], we call a corresponding fixed point of equation (A.1)

a clearing vector for q, denoted by p∗q. Its existence is established by Tarski’s

fixed-point theorem, analogous to the proof of Theorem 3.2.

(ii) Analogously, for fixed p ∈ [0, p̄], we define a clearing price for p by

q∗p = f(θ(p, q∗p)). (A.2)

Its existence follows again from Tarski’s fixed-point theorem.

Consider the following financial system:

Π =

 0 0.4

0.4 0

 , r =

0.5

0.5

 , s =

1

2

 , p̄ =

1

1

 ,

α = β = 0.5, with cross-holdings C set to zero, and the inverse demand function f(x) =

exp(−x). We obtain the greatest and least price-payment equilibrium by Algorithm 3.4
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and Remark 3.6:

(p−, q−) ≈


0.3488

0.3695

 , 0.0498

 , (p+, q+) ≈


1

1

 , 0.7717

 .

We first demonstrate that there is no price-payment equilibrium (p, q) with p =

(0.4, 0.5)T , although p− < p < p+. If p = (0.4, 0.5)T was a clearing vector, then by

(A.1)

pi = χi(p, q) = α(ri + siq) + β(
∑
j∈N

Πjipj), i = 1, 2.

This follows since both banks are in default and faced with bankruptcy costs. However,

there is no q solving both equations simultaneously. Hence, there is no q ∈ [q−, q+] such

that p = (0.4, 0.5)T becomes a clearing vector for q.

Second, we demonstrate that there is no price-payment equilibrium (p, q) with q =

0.05, although q− < q < q+. If q was a clearing price, then by (A.2):

0.05 = q = f(θ(p, 0.05)) = exp(−θ(p, 0.05)) = exp(−3) = 0.0498,

since θ(p, 0.05) = 3 for all p ∈ [p−, p+]. This is a contradiction.

Appendix B. Cross-Holdings with Price Impact

As explained in Section 2, we assume that the liquidation of cross-holdings is subject to

price impact. So far, this was simply encoded by the parameter λ ∈ Rn which referred to a

fixed fraction that can be realized. A more sophisticated approach consists in specifying

an inverse demand function for cross-holdings. Letting qC ∈ Rn be the vector of net

worth prices for the cross-holdings in the n banks and θC [w, qC ] ∈ Rn the amount of

cross-holdings liquidated for a net worth vector w ∈ Rn, the price vector qC is given as a
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fixed point of the inverse demand function fC : Rn → [0, 1]n = [0,1] ⊂ Rn, i.e.,

qC = fC(θC [w, qC ]),

with fC(0) = 1 and x 7→ fC(x) monotonically decreasing. In case of liquidation, the

value of bank i’s cross-holdings is given by
∑

j∈N Cji max(wj, 0)qCj .

As before, we suppose that banks liquidate their cross-holdings proportionally; i.e.,

each bank j ∈ N calculates the proportion of cross-holdings it needs to liquidate:

νCj [w, qC ] = min

(
max

[
p̄j − rj −

∑
k∈N Πkjpk − (1− Ij)sjq , 0

]∑
k∈N Ckj max(wk, 0)qCk

, 1

)
;

thus, the total quantity of bank i’s shares that is liquidated by other banks equals

θCi [w, qC ] =
∑
j∈N

Cij ν
C
j [w, qC ].

The net worth price vector qC depends on the banks’ net worths vector w and vice versa.

We characterize these values as a combined equilibrium:

Definition B.1. For fixed payments p ∈ Rn
+ and a price of the illiquid asset q ∈ R+, a

net worth equilibrium [w∗, qC∗] ∈ Rn×Rn is a fixed point of the function ΨC : Rn×Rn →

Rn × Rn defined by:

ΨC [w, qC ] = {r + sq + ΠTp+ diag(νC)CT diag(qC)(w ∨ 0) + (I − diag(νC))CT (w ∨ 0)}

× {fC(θC [w, qC ])}.

The existence of a greatest and least net worth equilibrium follows again from Tarski’s

fixed-point theorem, now applied to the function ΨC .

Note that the modeling framework that we consider in the numerical case studies

above is a special case of the general inverse demand function. Setting λi = (1− c)κ with

0 ≤ κ ≤ 1, the corresponding inverse demand function fC is defined by its components

fCj (x) = (1− c)κ, j ∈ N .
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