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COMPLEX POWERS OF ABSTRACT

PSEUDODIFFERENTIAL OPERATORS

M. A. FAHRENWALDT

Abstract. Under suitable assumptions, we show that the abstract pseudodifferen-

tial operators introduced by Connes and Moscovici possess complex powers that
belong to this class of operators. We analyse several spectral functions obtained via
the (super)trace including the zeta function and the heat trace. We present examples
showing that the analysis is explicit and tractable.

1. Introduction and key results

In their seminal paper on the local index theorem [20], Connes and Moscovici in-
troduced an algebra of abstract pseudodifferential operators. These are operators that
have a certain asymptotic expansion in powers of |D| where D is a Dirac operator. In a
sense, these operators may be seen as an analogue of a class of classical pseudodifferential
operators between vector bundles on manifolds.

More precisely, let (A,H,D) be a spectral triple and denote by B the algebra generated
by {δk(a), δk([D, a])} for a ∈ A and k = 0, 1, 2, . . . where δ is the derivation δ(·) = [|D|, ·].
Abstract pseudodifferential operators are then formally given as an asymptotic series

(1) P ≃ pµ|D|µ + pµ−1|D|µ−1 + pµ−2|D|µ−2 + · · · ,
where pµ is a positive real number and pµ−k ∈ B for k ≥ 1. We call µ the order of the
operator. The space of such operators of order µ is denoted by Ψµ

cl.
The main application of this class of operators is to prove the local index theorem as

shown in [20, 34]. However, these operators also provide a very transparent framework
in which to study classical constructions such as complex powers, spectral functions and
traces. Indeed, zeta-regularised traces with regulariser |D| and a canonical trace on Ψµ

cl

were studied in [51].
In this paper we construct complex powers of suitable abstract pseudodifferential

operators and use these to investigate spectral functions. The study of complex powers
of positive elliptic pseudodifferential operators goes back to the investigations of Seeley
[59, 60, 61] and was then further extended for example in [42]. These approaches define
the complex powers as a Dunford integral and replace the resolvent by the parametrix.
Related constructions for various classes of operators can be found in [7, 30, 44, 57] to
name but a few. An axiomatic approach was introduced in [31] and generalised in [2].
Applications of complex powers of operators are rather broad including spectral theory
[62], index theory [4] and evolution equations [21]. For the complete picture we refer the
reader to the references in the cited papers and also to the references in [45, 50, 58].

It is intriguing that much of the richness of the “commutative” results carries over to
the abstract setting, see below for a summary of our key results. Note, however, that
the definition (1) already shows the limitations of abstract pseudodifferential operators.
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They are expressed in terms of the basic building block given by the operator |D|, which
makes the framework rather rigid. This rigidity is also observed from the point of view
of |D|-regularised traces in [51].

Our key results can roughly be described as follows. Assume that the spectral triple
(A,H,D) is d-summable, i.e. that |D|−1 belongs to the Schatten class Ld. If the spectral
triple is even, let γ be the grading operator. Also denote by −

∫

b = resz=0 Trace(b|D|−z)
the noncommutative integral. We assume for simplicity that the dimension spectrum Sd
is simple. We then construct two operators:

(i) Complex powers. For suitable P ∈ Ψµ
cl we define the complex powers P z by a

Dunford integral. The P z form a holomorphic family of abstract pseudodifferential
operators in Ψµz

cl whose asymptotic expansion can be computed explicitly.
(ii) Heat operator. For suitable P ∈ Ψµ

cl the heat operator e−tP belongs to the inter-
section ∩µΨµ

cl, the analogue of smoothing operators.

Using the operators, we study several spectral functions for Q ∈ Ψν
cl and suitable

P ∈ Ψµ
cl:

(i) Zeta function. The zeta function ζ(z,Q, P ) = Trace(γQP−z) can be meromorphi-
cally continued to the whole complex plane with at most simple poles in a discrete
set P that can be explicitly given in terms of Sd. As in the classical case, we find
the singularity structure to be

Γ(z)ζ(z,Q, P ) ∼
∑

β∈P∪−N0

1
∑

l=0

aβ,l
(z − β)l+1

.

The residues aβ,l are expressed in terms of −
∫

.
Since an important purpose of these zeta functions is to define a P -regularised

trace of Q, our results form an extension of part of the analysis in [51].
(ii) Heat trace. The heat trace Trace(γQe−tP ) has an asymptotic expansion

Trace
(

γQe−tP
)

∼
∑

β∈P∪−N0

1
∑

l=0

aβ,lt
−β logl(t)

for t→ 0+ with P and coefficients as above.
(iii) Weyl asymptotics. Denote by N(λ) the number of eigenvalues of P less than or

equal to λ. Then

N(λ) ∼ ad/µ,0

Γ(1 + d/µ)
λ−d/µ,

where ad/µ,0 is as above.

(iv) Determinant. If the zeta function Trace(|D|−z) is regular at z = 0, then one can
define the determinant

detP = exp

(

− d

dz
Trace(P−z)|z=0

)

for any P ∈ Ψµ
cl for which the complex powers exist in Ψµ

cl.

Clearly, these functions provide different ways of aggregating the spectrum so that in
particular the pole structure of zeta function and the short-time asymptotics of the heat
trace contain equivalent information. It is, however, instructive to see how properties of
the spectral triple, namely the singularity structure of the zeta functions Trace(b|D|−z),
can be translated into more complex situations.

The paper is organised as follows. For the reader’s benefit we give a very brief intro-
duction to the basic ideas of noncommutative geometry in the following section. Sec-
tion 3 formally introduces the abstract pseudodifferential operators and develops the
corresponding calculus. This allows the construction of the complex powers and the heat
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operator within that class. In Section 4 we apply the (super)trace to the operators to
construct certain spectral functions and investigate their properties.

2. A brief survey of noncommutative geometry

In this section we give a brief overview of the basic ideas of noncommutative geometry
as initiated by Alain Connes. This overview is limited by the requirements of the main
part of this paper so that we only touch upon some aspects of the theory. There are
several excellent detailed introductions to noncommutative geometry so that the reader
is referred to [5, 13, 15, 29, 43, 67] for a comprehensive presentation. The presentation
in this chapter also benefited from unpublished lecture notes by Antony Wassermann.

The main structure and contents of our exposition are strongly inspired by [15, 17].
We will be imprecise on some of the topics and give only key ideas without proofs. The
technical depth of the description depends on whether an idea is needed later in the
paper or not. We only give selected references and do not aspire to produce a historically
accurate account.

The basic idea of noncommutative geometry is to exploit the correspondence between
“spaces” and “algebras”. In the classic case, the Gelfand-Naimark Theorem tells us that
a unital commutative C∗-algebra corresponds to the algebra of continuous functions on
a compact Hausdorff space. One then views a noncommutative algebra as encoding a
“noncommutative space”. Standard examples of noncommutative spaces are:

(i) the space of Penrose tilings,
(ii) the space of leaves of a foliation,
(iii) the phase space in quantum mechanics, and
(iv) the noncommutative torus (the irrational rotation algebra).

One of the aims of noncommutative geometry is to develop tools that allow to anal-
yse such spaces with a noncommutative algebra of coordinates. Analogues of classical
“global” tools include de Rham cohomology which corresponds to cyclic cohomology and
the K-theory of vector bundles which corresponds to the K-theory of C∗-algebras. An-
other strand of ideas in noncommutative geometry is motivated by index theory where
geometric information is encoded using elliptic operators, in K-homology etc.

The following subsections consider different generalisations of the commutative world.
The notation in sections 2.1, 2.2 and 2.3 is borrowed from the respective disciplines and
may not fully agree with the notation used in the rest of the paper.

2.1. Noncommutative measure theory: von Neumann algebras. Let H be a
separable infinite-dimensional Hilbert space and denote by B(H) the algebra of bounded
linear operators on H. A von Neumann algebra A is a unital ∗-subalgebra of B(H) that
is closed in the weak (or strong) operator topology. Denote the commutant of A by
A′ = {y ∈ B(H)|yx = xy for all x ∈ A}. The famous Double Commutant Theorem of
von Neumann [65] asserts that A is a von Neumann algebra precisely if A = A′′, i.e. if
A is equal to the commutant of A′.

Any commutative von Neumann algebra is isomorphic to the algebra of bounded mea-
surable functions on a measure space. The surprising feature of a noncommutative von
Neumann algebra is that it automatically carries a one-parameter group of automor-
phisms which one can view as representing time, see below.

Murray and von Neumann [47, 48, 49, 66] showed that any von Neumann algebra can
be written as a direct integral of factors. A factor is a von Neumann algebra with trivial
centre. As any von Neumann algebra is generated by its projections, Murray and von
Neumann classified factors into three types by comparing and ordering projections using
a Schroeder-Bernstein-type theorem. The types are also distinguished by the range of a
countably additive dimension function D defined on projections:
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(i) Type I: Each Type I factor is either of type In for n ∈ N (isomorphic to B(Hn) for
some n ∈ N where Hn is a Hilbert space of dimension n) with D taking values in
{1, . . . , n} or of type I∞ (isomorphic to B(H)) with D taking values in {1, . . . ,∞}.

(ii) Type II: This leads to a continuous infinity of factors, any two of them non-
isomorphic. We have types II1 with D taking values in [0, 1] and II∞ where D
has range [0,∞].

(iii) Type III: Here, the dimension function takes only values 0 and ∞, and all nonzero
projections have infinite dimension. Powers [53] showed that there is an infinity of
such factors Rλ for λ ∈ (0, 1) with any two nonisomoprhic.

The dimension function can be linearised to give a trace on the factor. Factors of
Types In (n finite) and II1 allow for a tracial state on the algebra, in type I∞ and II∞
some elements have infinite trace and in type III all nonzero elements have infinite trace.

A complete classification of the Type III factors appeared elusive until the 1970s when
Connes [11, 12] applied the modular theory of Tomita and Takesaki [63] to this problem.
The basic idea is as follows: let Ω be a vector that is cyclic for both A and A′, i.e. AΩ
and A′Ω are dense in H. Define a closable unbounded operator S : H → H by xΩ 7→ x∗Ω
and let ∆Ω = S∗S be the modular operator. This gives rise to a one-parameter group
of automorphisms σt(x) = ∆it

Ωx∆
−it
Ω for t ∈ R. If A is commutative, then this is just

the identity but for A noncommutative we find the “time evolution” mentioned above.
Connes then defined the essential spectrum as S(A) = ∩Sp(∆Ω) with intersection over
all vectors that are cyclic for A and A′. This is of course hard to compute in concrete
situations as one must find all cyclic vectors. However, the so-called 2 × 2-matrix trick
shows that the class of σt in the group of outer automorphisms does not depend on
Ω. One obtains a group structure on Γ = S(A) ∩ R∗

+ (the star means that R+ has the
multiplicative group operation) that allows to classify type III factors: III0 with Γ = {1},
IIIλ for λ ∈ (0, 1) with Γ = {λk|k ∈ Z} and III1 with Γ = R∗

+. Further properties of III1
were established by Haagerup [32], finalising the classification.

Subsequent major developments in von Neumann algebras include the index theory
of subfactors by V. Jones [37] (see [38, 39, 71] for example for its impact on other
mathematical subdisciplines) and the programme of free probability theory developed by
D. Voiculescu, cf. [70] for an overview of early results.

2.2. Noncommutative topology: K-theory. Recall that one of the origins of non-
commutative geometry is the Gelfand-Naimark Theorem which one can view as a duality
of the category of (locally) compact spaces with (proper) continuous maps and the cat-
egory of unital commutative C∗-algebras and ∗-homomorphisms.

A second observation allowing to transfer tools from topology to the noncommutative
world is the fact that K-theory and its dual theory K-homology allow the use of Hilbert
space techniques with the key idea being the idea of a “Fredholm representation” of a C∗-
algebra in KK-theory. For example, topological K-theory of a space X can be described
in terms of the algebra C(X). Moreover, Atiyah and Bott gave an algebraic proof of
the Bott periodicity theorem. Another example is the formulation of K-homology as an
Ext-functor by Brown, Douglas and Fillmore [6].

These are special cases of the bivariant KK-Theory of Kasparov. This is a powerful
tool that allowed a proof of the Novikov conjecture for discrete subgroups of Lie groups.
Other key advances in this area include the Pimsner-Voiculescu exact sequence allowing
the computation of K-groups of crossed products of C∗-algebras or the excision theorem.

Let us look at these ideas in slightly more detail, cf. [5, 22, 56] for more comprehen-
sive treatments with further references. For any C∗-algebra we define K0(A) to be the
Grothendieck group obtained from equivalence classes of projections in matrix algebras
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over A. This gives a covariant functor from C∗-algebras to Abelian groups satisfying
three main axioms:

(i) Homotopy invariance. If A,B are C∗-algebras and ϕ1, ϕ2 are homotopic homo-
morphisms A → B, then the induced maps ϕ1∗, ϕ2∗ : K0(A) → K0(B) are the
same.

(ii) Half-exactness. Given an exact sequence of C∗-algebras 0→ J → A→ B → 0, the
sequence of groups K0(J)→ K0(A)→ K0(B) is exact.

(iii) Stability. Let K be the algebra of compact operators. Then K0(A) is isomorphic
to K0(K ⊗ A), where one thinks of K ⊗ A as infinitely large matrices with entries
from A.

One can view this as an extension of the dimension function introduced by Murray
and von Neumann, cf. Section 2.1. The group K1(A) is also a covariant functor from C∗-
algebras to Abelian groups and morally gives an index group for maps from the invertible
elements in matrix algebras over A. The prototype is the Fredholm index map from the
Calkin algebra B/K to the integers. The K-groups have two principal properties:

(i) Bott periodicity. Recall that the suspension of a C∗-algebra A is defined as SA =
C0(R, A) ≃ A⊗C0(R), where C0(R) denotes the algebra of functions onR vanishing
at infinity. Then K1(A) ≃ K0(SA) and K0(A) ≃ K1(SA).

(ii) 6-term exact sequence. Let J be a closed two-sided ideal in A. Then the following
sequence is exact:

K0(J) −−−−→ K0(A) −−−−→ K0(A/J)
x









y

K1(A/J) ←−−−− K1(A) ←−−−− K1(J)

There are similar exact sequences that allow the computation of K-groups for crossed
products, in the case of crossed products with Z this is the Pimsner-Voiculescu exact
sequence [52]; for an overview of the general situation we refer to Chapter 5 of [24]. By
their very constructions, K-groups are also the natural receptacles for index maps.

The basis of K-homology, i.e. the dual theory to K-theory, lies in the classification of
short exact sequences 0 −→ J −→ E −→ A −→ 0 up to equivalence. Brown, Douglas and
Fillmore [6] considered the special case J = K and A = C(X) for a suitable topological
space X. They defined an object Ext(A) which can under certain circumstances be given
a group structure. This leads to a contravariant functor from C∗-algebras to Abelian
groups that has similar properties to the K-groups. In the case A = C(X), they showed
that Ext(C(X)) was isomorphic to the first K-homology group of the space X. This
was further refined by Kasparov [40] who constructed a bivariant functor Ext(A,B) by
considering J = B ⊗K for certain C∗-algebras B.

Kasparov [41] then constructed another homotopy-invariant bivariant theoryKK(A,B)
on pairs of C∗-algebras (contravariant in the first variable, covariant in the second). In
fact, he defined two groups KK0(A,B) = KK(A,B) and KK1(A,B) = KK(SA,B) ≃
KK(A,SB): the group KK0(A,B) can be seen as “K-homomorphisms” from A to B,
whereas KK1(A,B) is interpreted as equivalence classes of extension of A by B.

Selected key properties of this functor are:

(i) KK∗(C, B) ≃ K∗(B), and KK(A,C) = K∗(A), the K-homology.
(ii) There is a product (sometimes called “intersection product”) KK(A,B)×

KK(B,C) → KK(A,C) which corresponds to the composition of “K-homomor-
phisms”.

(iii) KK(A,C) is related to Ext(A) and KK(SA,B) ≃ Ext(A,B).
(iv) In many cases, KK satisfies a 6-term cyclic exact sequence in each variable.
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The two basic approaches (or “pictures”) of KK-Theory are: the Kasparov picture
that has cycles called “Kasparov modules” which themselves are generalisations of the
Fredholm modules suggested in [3], where they appear as abstract elliptic operators that
are candidates for cycles in K-Homology. And the Cuntz picture as homotopy classes
of ∗-homomorphisms from a universal algebra qA, an ideal in the free product A ∗A, to
K ⊗ B, cf. [22, 23]. An axiomatic characterisation of KK-theory is provided by Higson
in [33].

2.3. Noncommutative differential topology: cyclic cohomology. We address this
in somewhat greater detail as it is more relevant to the rest of the paper. The idea is to
generalise classical concepts such as de Rham homology, curvature and connections to a
noncommutative setting and the appropriate theory is cyclic cohomology. It also serves
as a receptacle for the Chern character K(A) → HC(A) and allows a pairing between
the K-theory of an algebra A and its cyclic cohomology: this generalises the pairing of
the Chern character and de Rham currents in the classical theory. For a comprehensive
presentation of cyclic (co)homology we refer the reader to [43]. Cyclic homology was
independently discovered by Tsygan [64] in the context of Lie algebras.

The cyclic cohomology HC∗(A) of an algebra A is defined (cf. part II of [13]) as the
cohomology of the complex of cyclic cochains i.e., functionals satisfying

ϕ(a1, . . . , an, a0) = (−1)nϕ(a0, a1, . . . , an)
under the coboundary operator

(bϕ)(a0, . . . , an+1) =
n
∑

j=0

(−1)jϕ(a0, . . . , ajaj+1, . . . , an+1)

+(−1)n+1ϕ(an+1a0, . . . , an).

Equivalently it can be given in terms of the second filtration Z∗(F ∗C) of the (b,B)-
complex of arbitrary cochains with coboundary operators b and B = AB0 where

(Aϕ)(a0, . . . , an) =

n
∑

j=0

(−1)jϕ(aj , . . . , aj−1),

(B0ϕ)(a0, . . . , an) = ϕ(1, a0, . . . , an)− (−1)n+1ϕ(a0, . . . , an, 1).

To switch between these two perspectives on cyclic cohomology note that to an n-
dimensional cyclic cocycle ϕ there corresponds a (b,B)-cocycle ψ ∈ Zp(F qC) with
n = p− 2q defined by

ψp,q =
(−1)[n/2]

n!
ϕ,

where ψp,q is the only nonzero component of ψ (cf. [18] and Remark 30 in Chapter III.1.γ
of [15] for details).

The tensor product of algebras descends to a linear periodicity operator S : HCn(A)→
HCn+2(A) whence the periodic cyclic cohomology HP ∗(A) can be defined as the induc-
tive limit HP ∗(A) = lim−→S

HC2n+∗(A).

The pairing between HP 0(A) and K0(A) is given as follows. Choose ϕ = (ϕ2k) ∈
HP 0(A) and a selfadjoint idempotent e ∈Mq(A). The pairing is given as

(2) 〈[ϕ], [e]〉 =
∑

k≥0

(−1)k (2k)!
k!

ϕ2k#Trace(e, . . . , e),

where ϕ2k#Trace is defined on Mq(A) =Mq(C)⊗A by

ϕ2k#Trace(µ0 ⊗ a0, . . . , µ2k ⊗ a2k) = Trace(µ0µ1 · · ·µ2k)ϕ2k(a0, a1, . . . , a2k).
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For an A-bimodule M recall that the Hochschild cohomology H∗(A,M) is the coho-
mology of n-linear maps A → M under the coboundary operator b. Cyclic cohomology
is linked to Hochschild cohomology via a long exact sequence

(3) · · · → HCn(A)
I−→ Hn(A,A∗)

B−→ HCn−1(A)
S−→ HCn+1(A)→ · · · ,

where A∗ denotes the dual of A as a linear space and I is the inclusion map.
To see that periodic cyclic cohomology is the “right” generalisation of de Rham ho-

mology, we quote the

Theorem 2.1 ([13], Theorem 46). Let M be a smooth compact manifold, and let A =
C∞(M). Then HP ∗(A) is canonically isomorphic to the de Rham homology HdR

∗ (M,C).

Note that to a homomorphism ϕ : A → B there correspond morphisms in the com-
plexes we have studied inducing maps on homology denoted by HC∗(ϕ), HC

∗(ϕ), etc.

2.4. Noncommutative manifolds: Spectral triples and the Dirac operator. A
Riemannian geometry is characterised by a tuple (M, g) consisting of a manifold M and
a metric g. Points on the manifold are labelled by coordinates which form a commu-
tative algebra. The noncommutative notion of a manifold is given by a spectral triple
(A,H,D) consisting of an algebra A represented as bounded operators on a Hilbert space
H and an unbounded operator D, the Dirac operator. The algebra A corresponds to the
manifold M and we think of A as noncommutative coordinates. The metric corresponds
to the Dirac operator in the sense that the line element ds becomes the inverse D−1.
The metric aspect means that distance between two points on a manifold is generalised
using a dual formula based on states. The dimension of a manifold is replaced by the
dimension spectrum reflecting the growth of the eigenvalues of |D|. The link between
the spectral triple and (M, g) is that spectral triples coming from Riemannian manifolds
are characterised by commutation relations between D and A and Poincaré duality, cf.
Theorem 4.1 of [16] for example.

The link between local and global properties in ordinary manifolds is given by dif-
ferential and integral calculus. In noncommutative geometry, this is replaced by a local
index formula. To describe this, we need a brief excursion into a quantized calculus.
The typical “dictionary” of noncommutative geometry translates classical notions into
the noncommutative world based on a spectral triple (verbatim from [17]):

Classical Noncommutative

Complex variable Linear operator on H

Real variable Selfadjoint operator on H

Infinitesimal Compact operator

Infinitesimal of order α Compact operator with charac-
teristic values µn satisfying µn =
O(n−α) as n→∞

Integral of an infinitesimal of or-
der 1

−
∫

T= Coefficient of logarithmic
divergence in the trace of T

A metric noncommutative geometry is based on the notion of a spectral triple. We
specialise straight to the “regular” case as this is the important situation for the rest of
the paper.
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Definition 2.2 ([19], Definition 1.120). A spectral triple (A,H,D) is given by an in-
volutive algebra A represented on a Hilbert space H and a selfadjoint operator D with
compact resolvent such that all commutators [D, a] are bounded for a ∈ A.

Let δ be the derivation δ(a) = [|D|, a]. A spectral triple (A,H,D) is called regular if
for each k ∈ N0 the operators δk(a) and δk([D, a]) are bounded. We denote by B the
algebra generated by δk(a), δk([D, a]) for a ∈ A and k ∈ N0.

We tacitly assume that D is invertible. The general case can be treated with minor
modifications, cf. Section IV.2.γ of [15] or Section 6.1 of [34].

We sometimes assume that there is a grading operator γ on H that commutes with
any a ∈ A and anticommutes with D. The Hilbert space H then splits as H = H+⊕H−.
With respect to this splitting we have the representation γ =

(

1 0
0 −1

)

, an element a ∈ A
acts diagonally as ( a 0

0 a ) and the Dirac operator can be decomposed as
(

0 D
−+

D+−
0

)

. The

selfadjointness of D forces D∗
−+ = D+−.

The metric aspect of the Dirac operator can be seen as follows. Given a C∗-algebra
A, one can define a metric on its space of states by

d(ϕ,ψ) = sup{|ϕ(a)− ψ(a)| : ||[D, a]|| ≤ 1},
which agrees with the geodesic distance when evaluated on a Riemannian manifold and
its commutative coordinate algebra. The reader is referred to [15], Chapter VI.1 for
further details.

There is also the notion of dimension of a noncommutative space.

Definition 2.3 (cf. [19], Definition 1.122). A spectral triple (A,H,D) is finitely sum-
mable or d-summable when |D|−1 belongs to the Schatten ideal Ld for some d ≥ 1. We
call d the degree of summability of the spectral triple.

One can interpret d as the metric dimension of the noncommutative space defined
by the spectral triple. A more refined notion of dimension is played by a discrete set of
singularities of a zeta function.

Definition 2.4 ([20], Definition II.1). A regular spectral triple (A,H,D) has discrete
dimension spectrum Sd if Sd ⊂ C is discrete and for any element of the algebra B the
function

ζb(z) = Trace(b|D|−z)

extends holomorphically to C \ Sd. We say that the dimension spectrum is simple if ζb
hast at most simple poles for any b ∈ B.

Note that for ease of presentation we assume throughout this paper that any dimension
spectrum is simple. The results can easily be adjusted to the case when the poles are of
higher order.

Example 2.5. We give some examples of regular spectral triples.

(i) In the case of classical pseudodifferential operators on a closed manifoldM one typ-
ically considers zeta functions of the form z 7→ Trace(QP−z). Here P is a positive
differential operator of order µ and Q is a differential operator of order ν. Stan-
dard results (e.g., Theorem 1.12.2 of [28]) show that the function Γ(z)Trace(QP−z)
can be extended to a meromorphic function with at most isolated simple poles at
the points Sd = {(d + ν − j)/µ|j ∈ N0} where d is the dimension of M . This
example suggests the interpretation of Sd as the correct notion of dimension in
noncommutative geometry.

(ii) The noncommutative n-torus with dimension spectrum {n, n − 1, . . .}, cf. [26, 27]
for an analysis of the associated spectral triple.

(iii) The quantum sphere SUq(2) with dimension spectrum {1, 2, 3}, cf. [35].
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(iv) The spectral triple from the triangular structure in [20].
(v) A general construction for obtaining regular spectral triples with finite and simple

dimension spectrum was proposed in [8].

An example of a non-regular spectral triple but with a meaningful calculus of abstract
pseudodifferential operators is the standard Podleś sphere [25].

A key role will be played by the residues of ζb, see above.

Definition 2.6 (cf. [19], Theorem 1.134). We denote the residues at the poles of the
function ζb(z) by

−
∫

b = res
z=0

Trace(b|D|−z)

and call this the noncommutative integral.

This deserves further explanation and context as it is used throughout this paper.
We briefly recall the definition of the Dixmier trace and list its main properties. To
any bounded sequence (αn)n∈N we assign the bounded function fα given by fα(λ) = αn

for λ ∈ (n − 1, n]. The Cesàro mean of a function f : [1,∞) → C with respect to the
multiplicative group R∗

+ with Haar measure dλ/λ is given by

M(f)(λ) =
1

log λ

∫ λ

1

f(u)
du

u
.

Now take a positive linear form L on the bounded continuous functions Cb(R
∗
+) such

that L(1) = 1 and which is zero on the subspace C0(R
∗
+) of functions vanishing at ∞.

In the following definition of the Dixmier trace, denote the linear map on l∞(N) given
by

α 7−→ L(M(fα))

by Limω(α) for α ∈ l∞(N).

Definition 2.7 (cf. [15], Chapter IV.2.β, Definition 2). For any T ≥ 0, T ∈ L(1,∞)(H),
the Dixmier trace is defined by

Traceω(T ) = Limω

(

1

logN

N−1
∑

n=0

µn(T )

)

with µn(T ) being the eigenvalues of |T | in decreasing order with multiplicity.

One can prove that Traceω is additive (cf. [15], IV.2.β),

Traceω(T1 + T2) = Traceω(T1) + Traceω(T2)

for T1, T2 ≥ 0 and T1, T2 ∈ L(1,∞)(H). This shows that one can extend Traceω linearly
to the whole of L(1,∞)(H).

The next proposition collects some properties of Traceω:

Proposition 2.8 ([15], Chapter IV.2.β, Proposition 3). Denote by Traceω the Dixmier
trace on the ideal L(1,∞)(H).

(i) If T ≥ 0 then Traceω(T ) ≥ 0.
(ii) If S is any bounded operator and T ∈ L(1,∞)(H), then Traceω(ST ) = Traceω(TS).
(iii) Traceω(T ) is independent of the choice of the inner product on H, i.e., it depends

only on the Hilbert space H as a topological vector space.

(iv) Traceω vanishes on the ideal L(1,∞)
0 (H) which is the closure, for the ‖ · ‖1,∞-norm,

of the ideal of finite rank operators.
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Here, ‖x‖p,∞ = supN≥1
1

N1−ασN (x) with α = 1/p, σN (x) =
∑N−1

0 µn(x). The last

claim implies that Traceω(T ) = 0 if T ∈ L1(H). We shall employ that fact later.
So far, we have not dealt with the dependence of Traceω on the choice of the linear

functional L. For a positive operator T ∈ L(1,∞)(H), the complex powers T z are well-
defined on the set {z ∈ C|Re (z) > 1} and are of trace class, so that

ζ(z) = Trace(T z) =

∞
∑

0

µn(T )
z

defines a holomorphic function. Here, µz
n = eiz log µn and log is analytic on the cut plane

C \ {x ∈ R | x ≤ 0}.
The next proposition allows us to compute the Dixmier trace under certain circum-

stances.

Proposition 2.9 ([15], Chapter IV.2.β, Proposition 4). For any T ≥ 0, T ∈ L(1,∞)(H),
the following conditions are equivalent

(i) (z − 1)ζ(z) −→ k as z → 1+,

(ii) 1
logN

∑N−1
0 µn −→ k as N →∞.

Under these conditions, the value of Traceω(T ) is of course independent of the func-
tional L, and if ζ(z) has a simple pole at z = 1, this value is just the residue of ζ at
s = 1, i.e.

Traceω(T ) = res
z=1

ζ(z) .

In 1988, Connes [14] established the link between the Dixmier trace and the Wodzicki
residue [72]. He proved the following theorem where the Wodzicki residue is denoted by
RES.

Theorem 2.10 ([14], Theorem 1). Let M be a compact n-dimensional manifold, E a
complex vector bundle on M and P a pseudodifferential operator of order −n acting on
sections of E. Then the corresponding operator P on H = L2(M) belongs to the Macaev
ideal L(1,∞)(H) and one has

Traceω(P ) =
1

n
RES(P )

for any invariant mean ω.

The notion of “locality” in noncommutative geometry means that we use the “local
trace” −

∫

which vanishes in infinitesimals of order greater than 1. There is a related sense
of locality in that the quantity is expressed as the residue of an operator zeta function.
In the commutative case, the Wodzicki residue can indeed be computed locally in an
integral by means of a density.

To finish this introduction, we briefly summarise two index theorems. The second is
the Connes-Moscovici index theorem whose original proof uses the abstract pseudodif-
ferential operators that we study later. The Hochschild class of the Chern character of
a d-summable spectral triple (A,H,D) can then be expressed locally with the Dixmier
trace Traceω.

Theorem 2.11 ([15], Chapter IV.2.γ, Theorem 8). Denote by (A,H,D) a d-summable
spectral triple such that for any a ∈ A the operators a and [D, a] are in the domain
of all powers of the derivation δ(x) = [|D|, x]. Then the following expression defines a
Hochschild d-cocycle on A by

ϕω(a0, . . . , ad) = λdTraceω(γa0[D, a1] . . . [D, ap]|D|−d)
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for a constant λp. This yields the Hochschild class of the Chern character i.e., its image
under the map I in the exact sequence (3) in a pointwise sense: for every d-dimensional
Hochschild cycle c the pairing between Hochschild homology and cohomology satisfies

〈ϕω, c〉 = 〈ϕd, c〉,
where ϕd ∈ HCd(A) is the Chern character of (H,F ).

This theorem is rather powerful as it is local in the sense of noncommutative geometry
and does not need the high regularity assumptions on the spectral triple that the next
theorem requires.

We now state the Connes-Moscovici local index theorem. Let (A,H,D) be a finitely
summable spectral triple with discrete simple dimension spectrum. Set da = [D, a] for a
an operator on H, let

∇a = [D2, a],

a(k) = ∇k(a),

and define trace-like functionals through residues as

τk(P ) = res
z=0

zkTrace(γP |D|−2z)

for operators P ∈ B.
In the even case, the local index theorem of Connes and Moscovici reads

Theorem 2.12 ([20], Theorem II.3). Under the above assumptions, the following asser-
tions hold.

(i) One can construct an even cocycle in the (b,B) bicomplex of A by

(4) ϕn(a0, . . . , an) =
∑

kj≥0,q≥0

ck,ατq

(

γa0(da1)
(k1) . . . (dan)

(kn)|D|−(2|k|+n)
)

for n 6= 0 even, where

ϕ0(a0) = τ−1(γa0)

with τ−1(b) = ress=0 s
−1Trace(b|D|−2s). Here, k = (k1, . . . , kn) ∈ Nn, |k| = k1 +

. . .+ kn and the ck,α are suitable coefficients.
(ii) The cohomology class of the cocycle (ϕn) in HP 0(A) coincides with the periodic

cyclic cohomology class of the Chern character of (A,H,D).
(iii) We have 〈[ϕ], [e]〉 = Ind(e(D ⊗ IN )e) for a projection e ∈MN (A). where IN is the

N ×N identity matrix.

3. The calculus of abstract pseudodifferential operators

In this section we recall the basic properties of abstract pseudodifferential operators
from [19, 20, 34] and develop a calculus that allows the construction of complex powers
as in the case of classical pseudodifferential operators between vector bundles on a closed
manifold (the “commutative case”).

3.1. Abstract pseudodifferential operators. Let (A,H,D) be a regular d-summable
spectral triple. We define the Sobolev spaces Hs for s ∈ R as Hs = Dom |D|s. These can
be completed to Hilbert spaces under the natural norm ||ξ||s = || |D|sξ||. For s > t we
have a continuous inclusion Hs →֒ Ht. Clearly, H0 = H and we define H∞ = ∩s∈RH

s

and H−∞ = ∪s∈RH
s.

An immediate consequence of |D|−1 being compact is the compact inclusion of Sobolev
spaces.

Lemma 3.1. If s > t, then the inclusion Hs →֒ Ht is compact.
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Proof. We split the inclusion Hs →֒ Ht as Hs |D|s−→ H0 |D|t−s

−→ H0 |D|−t

−→ Ht and note that
the first and third operators are bounded and the middle one is compact. �

We will consider continuous operators between these spaces. Thus, for z ∈ C we
introduce the class opz of linear operators H∞ → H∞ that extend continuously to maps
Hs → Hs−Re z for any s ∈ R. We first introduce a notion of asymptotic expansion of
operators.

Definition 3.2. Let P ∈ opµ0 with µ0 ∈ C. Then we say

P ≃ pµ0
|D|µ0 + pµ1

|D|µ1 + pµ2
|D|µ2 + · · · ,

where pµk
∈ B and µk ∈ C with Re µk ↓ −∞ if for any N = 1, 2, . . . there is an l ∈ N

such that P −∑l
k=0 pµk

|D|µk ∈ op−N .

This allows to define spaces of abstract (classical) pseudodifferential operators.

Definition 3.3. We say that such a P ∈ opµ is an abstract pseudodifferential operator
if P has the asymptotic expansion

P ≃ pµ|D|µ + pµ−1|D|µ−1 + pµ−2|D|µ−2 + · · · ,
where pµ−k ∈ B. We call µ the order of the operator. The space of abstract pseudodiffer-
ential operators of order µ is denoted by Ψµ

cl. We define the Ψ∞
cl to be the union ∪µ∈CΨ

µ
cl

of all abstract pseudodifferential operators and Ψ−∞
cl their intersection ∩µ∈CΨ

µ
cl.

Remark 3.4. Two brief remarks on this definition.

(i) We can compare the above notion of abstract pseudodifferential operators with the
usual notion of classical pseudodifferential operators. This also makes the rigidity
of the abstract framework transparent. For simplicity consider the algebra of SG-
operators that allow a global calculus on Rn, cf. [44]. Given m ∈ C, let Sm(Rn

x) be
the space of smooth functions a(x) of a variable x that obey the growth condition

sup
x∈Rn

|∂αx a(x)| 〈x〉−m−|α| <∞

for any multi-index α ∈ Nn
0 where 〈x〉 =

√

1 + |x|2. Denote by Sm
cl (R

n
x) the space

of classical symbols. They are characterised by having an asymptotic expansion
into homogeneous terms of certain orders of homogeneity, i.e. there are functions
am−j with

a(x)−
N−1
∑

j=0

χ(x)am−j(x) ∈ Sm−N (Rn
x)

and am−j(tx) = tm−jam−j(x) for t > 0 where χ is an arbitrary excision function.
Loosely speaking, the space of symbols of SG-operators is then given as the ten-
sor product Sm

cl (R
n
x) ⊗ Sµ

cl(R
n
ξ ) for m,µ ∈ C, cf. [44] for details. The abstract

pseudodifferential operators of Ψµ
cl can then be seen as the analogues of the symbol

subclass

S0
cl(R

n
x)⊗







a(ξ) ∈ Sµ
cl(R

n
ξ )

∣

∣

∣

∣

∣

∣

a(ξ) ∼
∞
∑

j=0

λµ−j |ξ|µ−j , λµ−j ∈ C







.

(ii) A typical example of an abstract pseudodifferential operator is the curvature oper-
ator P = ∆+[D, a] where ∆ = |D|2. This operator appears in the context of cyclic
cohomology (Section 8 of [54], cf. also [34]).

We collect several simple properties of these operators that will be useful later.

Lemma 3.5. Let (A,H,D) be a regular d-summable spectral triple.
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(i) For µ ∈ C, any P ∈ Ψµ
cl belongs to opµ, i.e. it extends continuously to a bounded

operator Hs → Hs−Re µ for any s ∈ R.
(ii) If P ∈ opµ with Re µ < −d, then P is trace class. In particular, any P ∈ Ψµ

cl is
trace class for Re µ < −d.

(iii) If the resolvent (λ− |D|µ)−1 exists, then (λ− |D|µ)−k ∈ op−µk for all k ∈ N.
(iv) If b ∈ B denote by b(n) the n-fold commutator with |D|µ:

b(0) = b, b(1) = [|D|µ, b], b(n) =
[

|D|µ, b(n−1)
]

for n = 2, 3, . . . We then have b(n) ∈ Ψ
n(µ−1)
cl .

(v) Let µ ∈ C and b ∈ B. Then we have the asymptotic expansion

(5) (|D|µ)z b ≃
∞
∑

k=0

(

z

k

)

b(k) (|D|µ)z−k

for any z ∈ C, with b(k) as above. In particular,

(6) |D|zb ≃
∞
∑

k=0

(

z

k

)

δk(b)|D|z−k,

where δ(b) = [|D|, b] and δk is the k-fold application of δ.

(vi) The space Ψ∞
cl is a graded algebra: if P ∈ Ψµ

cl and Q ∈ Ψν
cl, then PQ ∈ Ψµ+ν

cl .
(vii) Let µ ∈ C, b ∈ B and λ 6∈ Sp(|D|µ). Then

(λ− |D|µ)−kb ≃b(λ− |D|µ)−k + kb(1)(λ− |D|µ)−(k+1)

+ k(k+1)
2! b(2)(λ− |D|µ)−(k+2)(7)

+ k(k+1)(k+2)
3! b(3)(λ− |D|µ)−(k+3) + · · ·

for any k = 1, 2, 3, . . .

Proof of Lemma 3.5. (i) This follows from the definition of the spaces opµ and Definition
3.3.

(ii) The d-summability means that |D|−d is of trace class. Now let P ∈ opµ with
Re µ < −d. Then P = P |D|d|D|−d. Here, P |D|d is bounded and |D|−d is trace class so
that the claim follows. The same assertion holds for P ∈ Ψµ

cl since such a P belongs to
opµ by (i).

(iii) The assertion is clear if we can show that (λ − |D|µ)−1 ∈ op−µ. To see this we
must show that the resolvent extends to a continuous map Hs → Hs+Re µ for any s ∈ R.
But this is clear from the definition of the norm in Hs.

(iv) First recall equation (11) from [20] (which is also equation (6) above)

(8) |D|zb ≃
∞
∑

k=0

(

z

k

)

δk(b)|D|z−k,

where δ(b) = [|D|, b] and δk is the k-fold application of δ.
We then construct a suitable asymptotic expansion of b(n) inductively. The claim for

n = 1 follows from (8) since

b(1) = [|D|µ, b] ≃
∞
∑

k=1

(

µ

k

)

δk(b)|D|µ−k.

Now assume that the claim holds for some n > 1, i.e. there is an asymptotic expansion

b(n) ≃
∞
∑

k=0

bk|D|n(µ−1)−k
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for some operators bk ∈ B. We then obtain the formal expansion

b(n+1) = [|D|µ, b(n)]

≃
∞
∑

k=0

[

|D|µ, bk|D|n(µ−1)−k
]

=

∞
∑

k=0

∞
∑

l=1

(

µ

l

)

δl(bk)|D|n(µ−1)+µ−(l+k),

where we used (8) again. The highest order in |D| is (n+1)(µ− 1) since k+ l ≥ 1. This
is the desired asymptotic expansion of b(n+1) in the sense of Definition 3.2.

(v) Equation (5) follows from the proof of Lemma 4.30 in [34] with λ−∆ replaced by
|D|µ. For the reader’s convenience we sketch the argument which is based on Cauchy’s
theorem and commutator identities. We start with the identity

[(w − |D|µ)−1, b] = (w − |D|µ)−1b(1)(w − |D|µ)−1

for w ∈ C and b ∈ B. Applying this again on the right hand side to push b(1) to the left
leads to

[(w − |D|µ)−1, b] = b(1)(w − |D|µ)−2 + (w − |D|µ)−1b(2)(w − |D|µ)−2.

We apply this procedure N times to obtain an expression of the form

(9) [(w − |D|µ)−1, b] =

N
∑

k=1

b(k)(w − |D|µ)−(k+1) +RN (w),

where RN (w) ∈ op−(N+1) and operator norm ||RN (w)||s,s+N+1 ∼ |w|−(N+1). The formal
series for [(|D|µ)z, b] is then obtained by a Cauchy-type formula

(

z

k

)

(|D|µ)z−k =
1

2πi

∫

Γ

wz(w − |D|µ)−(k+1)dw,

which can be proved by integrating by parts. The contour Γ is taken as in [34] as a
straight line in the complex plane separating the origin and the spectrum of |D|.

The claim (v) follows by applying the Cauchy formula to (9). Note that the Dunford
integral converges for Re z suitably negative but can be extended to the whole of the
complex plane by increasing N thanks to the estimates on the operator norm of RN and
the order of b(k) from (iv).

(vi) This is clear from (6) as it allows us to write any product b|D|µ−kc|D|ν−l with
b, c ∈ B as a formal asymptotic sum

b|D|µ−kc|D|ν−l ≃
∞
∑

n=0

(

µ− k
n

)

bδn(c)|D|(µ+ν)−(k+l+n),

which belongs to Ψµ+ν
cl .

(vii) This is Lemma 4.20 in [34] with ∆ replaced by |D|µ, cf. the proof of (v) above. �

3.2. The parameter-dependent resolvent. Our first task is to find an asymptotic
expansion of the resolvent of an operator P ∈ Ψµ

cl for µ > 0. To this end we consider
the operator λ − P for λ in a certain sector in the complex plane. The construction is
analogous to the construction of parameter-dependent parametrices for classical pseudo-
differential operators in a global calculus, cf. [44, 50].

In the rest of this section we make the following standing assumption on abstract
pseudodifferential operators.
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Hypothesis 3.6. Let P ∈ Ψµ
cl for some µ > 0 with asymptotic expansion

P ≃ pµ|D|µ + pµ−1|D|µ−1 + pµ−2|D|µ−2 + · · · ,
where pµ is a positive real number and pµ−k ∈ B. Let Λ be a sector in the right half of the
complex plane with apex at the origin: Λ =

{

reiϕ
∣

∣π − δ < ϕ < π + δ
}

for a δ ∈ (0, π/4).
Given ǫ > 0 define Λǫ = Λ ∪ {z ∈ C||z| ≤ ǫ}. We then assume:

(i) The operator λ− P is invertible for all λ ∈ Λ with λ 6= 0 and λ = 0 is at most an
isolated spectral point.

(ii) For suitably small ǫ > 0, the resolvent of the analogue of the principal symbol
(λ− pµ|D|µ)−1 exists for any λ ∈ Λǫ. For convenience we choose ǫ such that 2ǫ is
smaller than any eigenvalue of pµ|D|µ.

(iii) The operator |D|µ(λ−pµ|D|µ)−1 is bounded in operator norm on H independently
of λ ∈ Λǫ.

Remark 3.7. These conditions mimic the classical conditions for the construction of
complex powers. The first part of assumption (i) is almost verbatim condition (A) of
[44]. Also, (ii) and (iii) replace the Λ-ellipticity assumption from [44]; condition (iii) is
mentioned for completeness only since considering the eigenvalues of |D| we see that it
holds automatically. The condition on the sector Λ as expressed by δ is of technical
nature and used in Case (ii) in the proof of Lemma 3.9.

We first note that the resolvent (λ−P )−1 is of order −µ on the scale of Sobolev spaces
and bounded in operator norm in terms of |λ| uniformly for λ ∈ Λǫ.

Theorem 3.8. Assume Hypothesis 3.6. Then for any l ∈ R with 0 ≤ l ≤ µ there is a
constant cµ,l such that

(10)
∣

∣

∣

∣(λ− P )−1
∣

∣

∣

∣

s,s+l
≤ cµ,l

(1 + |λ|)1−l/µ

for any λ ∈ Λǫ. Here || · ||s,s+l denotes the operator norm for maps Hs → Hs+l for any
s ∈ R.

The assertion and proof are analogous to Theorem 9.1 in [62]. We start with an
auxiliary result.

Lemma 3.9. Under the assumptions of Theorem 3.8 define the operator T = 1 + |D|+
|λ|1/µ. Then Tµ(λ− |D|µ)−1 belongs to op0 and has operator norms Hs → Hs bounded
independently of λ ∈ Λǫ.

Proof. The claim follows by considering the action of this operator on the eigenvectors
of |D| once we can show that there is a C > 0 such that we have

(1 + x+ |λ|1/µ)µ(λ− xµ)−1 ≤ C
for all x ≥ 2ǫ and λ ∈ Λǫ.

Fix x > 0, let λ ∈ Λǫ and decompose λ = λ1 + iλ2 into real and imaginary parts. We
distinguish two cases by the sign of λ1.

Case (i) λ1 ≥ 0. The part of Λǫ with λ1 ≥ 0 is a compact set and hence of no concern
for the inequalities. Note that we have λ− xµ bounded below as x ≥ 2ǫ.

Case (ii) λ1 < 0. Note that by elementary calculus there is a C > 0 such that

(11) (1 + t)µ ≤ C(1 + tµ)

for t > 0. By the design of Λǫ we know that if λ1 < 0, then |λ2| < −λ1. So
∣

∣

∣
(1 + x+ |λ|1/µ)µ (λ− xµ)−1

∣

∣

∣
=

(

1 + x+
√

λ21 + λ22

1/µ
)µ
√

(λ1 − xµ)2 + λ22

−1

≤
(

1 + x+
√
2
1/µ|λ1|1/µ

)µ

(|λ1|+ xµ)−1.



320 M. A. FAHRENWALDT

By repeated application of (11) we find for the first factor that
(

1 + x+
√
2
1/µ|λ1|1/µ

)µ

≤ C
(

1 +
(

x+
√
2
1/µ|λ1|1/µ

)µ
)

= C

(

1 + xµ
(

1 + x−1
√
2
1/µ|λ1|1/µ

)µ
)

≤ C
(

1 + xµC
(

1 + x−µ
√
2|λ1|

))

= C + C2xµ + C2
√
2|λ1|.

Thus,
∣

∣

∣

(

1 + x+ |λ1|1/µ
)µ

(λ− xµ)−1
∣

∣

∣ ≤ (C + C2xµ + C2
√
2|λ1|)/(|λ1|+ xµ)

=
C

|λ1|+ xµ
+ C2 xµ

|λ1|+ xµ
+
√
2C2 |λ1|
|λ1|+ xµ

,

which can be bounded uniformly in x ≥ 2ǫ and λ ∈ Λǫ. �

We are now ready to prove Theorem 3.8.

Proof of Theorem 3.8. Let P be as in Hypothesis 3.6. Without loss of generality pµ = 1.
To prove (10) we write

∣

∣

∣

∣(λ− P )−1
∣

∣

∣

∣

s,s+l
=
∣

∣

∣

∣T−µTµ(λ− P )−1
∣

∣

∣

∣

s,s+l

≤
∣

∣

∣

∣T−µ
∣

∣

∣

∣

s,s+l

∣

∣

∣

∣Tµ(λ− P )−1
∣

∣

∣

∣

s,s

and bound the two norms independently of λ in separate steps.
1. To estimate the first norm let ξ ∈ Hs:

||T−µξ||s+l =
∣

∣

∣

∣

∣

∣
|D|s+l(1 + |D|+ |λ|1/µ)−µξ

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣D|l(1 + |D|+ |λ|1/µ)−µ|D|sξ
∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣|D|l(1 + |D|+ |λ|1/µ)−µ
∣

∣

∣

∣

∣

∣

0,0
||ξ||s.

Note that there is a constant cµ,l such that

sup
x≥0

xl(1 + x+ t)−µ = cµ,lt
l−µ,

cf. Step 3 in the proof of Theorem 9.1 of [62]. Considering the eigenvalues of the diagonal
operator |D|s+l(1 + |D|+ |λ|1/µ)−µ and using this bound we find

∣

∣

∣

∣

∣

∣|D|l(1 + |D|+ |λ|1/µ)−µ
∣

∣

∣

∣

∣

∣ ≤ cµ,l|λ|(l−µ)/µ,

which is bounded independently of λ as 0 ≤ l ≤ µ.
2. By the asymptotic expansion of P we can write P = |D|µ +R for some R ∈ opµ−1.

Then in the notation of Lemma 3.9 we have

Tµ(λ− P )−1 = Tµ(λ− |D|µ)−1
(

I + (λ− |D|µ)−1R
)−1

.

By Lemma 3.9 the first operator is bounded on norm independently of λ ∈ Λǫ. Writing
(λ−|D|µ)−1R = (λ−|D|µ)−1|D|µ |D|−µR shows that this is the product of two bounded
operators onH with bound controllable in terms of |λ|−1. Hence, Tµ(λ−P )−1 is bounded
independently of λ.

We know that Tµ(λ − P )−1 maps Hs → Hs continuously for any s ∈ R. It is
bounded for s = 0, so it must be bounded for any s: consider |D|−sTµ(λ − P )−1|D|s,
the composition of bounded operators Hs → H → H → Hs. �
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We are now ready to investigate parameter-dependent resolvents.

Theorem 3.10. Under Hypothesis 3.6 there are operators b−µ−k(λ) ∈ op−µ−k for k =

0, 1, 2, . . . such that the following holds with BN (λ) =
∑N−1

k=0 b−µ−k(λ).

(i) Uniformly in λ ∈ Λǫwe have

|λ| [(λ− P )BN (λ)− I] ∈ op−N , |λ| [BN (λ)(λ− P )− I] ∈ op−N

for any N = 0, 1, 2, . . .. By “uniformly” we mean that the operator norm Hs →
Hs+N is bounded uniformly in λ.

(ii) Uniformly in λ ∈ Λǫ we have

(12) |λ|2
[

(λ− P )−1 −BN (λ)
]

∈ op−N

for any N = 0, 1, 2, . . . so that in particular (λ− P )−1 −BN (λ) ∈ op−N .

Moreover, the b−µ−k can be computed explicitly as

(13)

b−µ(λ) = (λ− pµ|D|µ)−1,

b−µ−k(λ) =

k
∑

n=1

∑

|j|=k
j
·
≥1









(λ− pµ|D|µ)−1pµ−j1 |D|µ−j1(λ− pµ|D|µ)−1 × · · ·

· · · × (λ− pµ|D|µ)−1pµ−jn |D|µ−jn(λ− pµ|D|µ)−1



































for k ≥ 1. Here, j = (j1, . . . , jn) ∈ Nn is a multi-index and j· ≥ 1 means that all
components of j are greater than or equal to 1.

If pµ = 1, the terms read in lowest orders

b−µ(λ) =(λ− |D|µ)−1,

b−µ−1(λ) =(λ− |D|µ)−1pµ−1|D|µ−1(λ− |D|µ)−1 + · · · ,
b−µ−2(λ) =(λ− |D|µ)−1pµ−1|D|µ−1(λ− |D|µ)−1pµ−1|D|µ−1(λ− |D|µ)−1

+ (λ− |D|µ)−1pµ−2|D|µ−2(λ− |D|µ)−1 + · · ·
with λ ∈ Λǫ.

Proof. Without loss of generality pµ = 1. Part of the argument is similar to Section 3.2
of [44].

1. The construction of the BN (λ) is done as in the commutative case by formally
solving the equation

[

(λ− |D|µ)− pµ−1|D|µ−1 − · · ·
]

[b−µ(λ) + b−µ−1(λ) + · · · ] = 1,

where b−µ−k(λ) is an operator of order −µ−k to be determined. By order we mean that
the term is homogeneous of order −µ − k upon replacing |D| by t|D| and λ by tµλ for
t > 0. Solving the formal equation iteratively in each order yields

b−µ(λ) = (λ− |D|µ)−1,

b−µ−k(λ) = (λ− |D|µ)−1
[

pµ−1|D|µ−1b−µ−(k−1)(λ) + · · ·+ pµ−k|D|µ−kb−µ(λ)
]

for k ≥ 1. In closed form this yields (13).
By construction of the b−µ−k and by Theorem 3.8 we have

(14) ||b−µ(λ)|| ≤ C/(1 + |λ|), ||b−µ−k(λ)|| ≤ C/(1 + |λ|)2

for some constant C and all λ ∈ Λǫ. We finally set

(15) BN (λ) = b−µ(λ) + · · ·+ b−µ−(N−1)(λ)

for N = 1, 2, . . .
2. We now prove assertion (i) in two steps.
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a) Note that if we can show the claim for (λ − P )BN (λ) − I, then the reverse
order follows automatically. For suppose that R−N (λ) = (λ − P )BN (λ) − I with
|λ|R−N (λ) ∈ op−N uniformly in λ. Then BN (λ)(λ − P ) − I = S−N (λ) with S−N (λ) =
(λ− P )−1R−N (λ)(λ− P ). To show that |λ|S−N (λ) ∈ op−N uniformly in λ we write

|λ|S−N (λ) = (λ− P )−1|λ|R−N (λ)(λ− P )
= λ(λ− P )−1|λ|R−N (λ)− (λ− P )−1|λ|R−N (λ)P.

Consider this expression term by term. We know that |λ|R−N (λ) ∈ op−N uniformly in
λ. Also by Theorem 3.8, the operator λ(λ − P )−1 is in op0 uniformly in λ so that the
summand λ(λ − P )−1|λ|R−N (λ) belongs to op−N uniformly in λ. The same holds for
the second summand (λ− P )−1|λ|R−N (λ)P by the estimates

∣

∣

∣

∣(λ− P )−1|λ|R−N (λ)P
∣

∣

∣

∣

s,s+N

≤ ||(λ− P )−1||s−µ+N,s+N · |||λ|R−N (λ)||s−µ,s−µ+N · ||P ||s,s−µ

and again invoking Theorem 3.8 to see that the right hand side is bounded independently
of λ.

b) We prove assertion (i) forR−N (λ) = (λ−P )BN (λ)−I. Set PN =
∑N−1

k=0 pµ−k|D|µ−k

which belongs to opµ so that P − PN ∈ opµ−N . Then

(λ− P )BN (λ) = (λ− PN − (P − PN ))BN (λ)

= (λ− PN )BN (λ)− (P − PN )BN (λ).

The first summand can be written as

(λ− PN )BN (λ) =
N−1
∑

k=0

k
∑

j=0

pµ−j |D|µ−jb−µ−j(λ) +
2N−2
∑

k=N

k
∑

j=0

pµ−j |D|µ−jb−µ−j(λ).

By construction of the b−µ−k we find

N−1
∑

k=0

k
∑

j=0

pµ−j |D|µ−jb−µ−j(λ) = 1

and

|λ|





2N−2
∑

k=N

k
∑

j=0

pµ−j |D|µ−jb−µ−j(λ)



 ∈ op−N

uniformly in λ ∈ Λǫ. By (14) we have |λ| [(P − PN )BN (λ)− I] ∈ op−N also uniformly
in λ ∈ Λǫ which proves the claim for (λ− P )BN (λ)− I.

3. To show (ii) we use the identity (λ − P )−1 − BN (λ) = −BN (λ)R−N (λ) and note
that |λ|BN (λ) and |λ|R−N (λ) are uniformly bounded in λ. �

The above form of the resolvent expansion (13) is highly symmetric. For later use we
need a different yet more unpleasant representation of the b−µ−k.

Corollary 3.11. Under the assumptions of Theorem 3.10 and with pµ = 1, the parameter-
dependent operator (λ − P )−1 has the following explicit asymptotic representation. For
k ≥ 1 we have

(16) b−µ−k(λ) ≃
k
∑

n=1

∑

|j|=k,
j
·
≥1

l≥0
m≥0

c(l)c′(j,m)p(j,m, l)|D|µ(n−|m|)−|j|(λ− |D|µ)−(|l|+n+1)

with
p(j,m, l) = p

(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

.
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Here, l = (l1, . . . , ln) ∈ Nn
0 and m = (m2, . . . ,mn) ∈ N

n−1
0 for constants c(l) and c′(j,m)

(17) c(l) =
(l1 + · · ·+ ln + n)!

l1! · · · ln!(l1 + 1) · · · (l1 + · · ·+ ln + n)

and

(18) c′(j,m) =

(

1− j1
µ

m2

)(

2− j1+j2
µ −m2

m3

)

× · · ·

×
(

(n− 1)− j1+···+jn−1

µ − (m2 + · · ·+mn−1)

mn

)

.

Here, p(l) denotes the l-fold commutator with |D|µ.

In lowest orders this can be made explicit

b−µ(λ) =(λ− |D|µ)−1,

b−µ−1(λ) =pµ−1|D|µ−1(λ− |D|µ)−2 + p
(1)
µ−1|D|µ−1(λ− |D|µ)−3 + · · · ,

b−µ−2(λ) =pµ−2|D|µ−2(λ− |D|µ)−2 + p2µ−1|D|2µ−2(λ− |D|µ)−3 + · · ·

in the above notation.

Proof. Set Xi = pµ−ji |D|µ−ji for i = 1, . . . , n and recall that

b−µ−k(λ) =

k
∑

n=1

∑

|j|=k,
j
·
≥1

(λ− |D|µ)−1X1(λ− |D|µ)−1 · · · (λ− |D|µ)−1Xn(λ− |D|µ)−1.

Using rules (5) and (7) we move all powers of |D| and (|D|µ − λ)−1 to the right.
1. First pushing all powers of (|D|µ − λ)−1 to the right using (7) we find

(λ− |D|µ)−1X1(λ− |D|µ)−1 · · · (λ− |D|µ)−1Xn(λ− |D|µ)−1

≃
∑

l≥0

c(l)p
(l1)
µ−j1
|D|µ−j1p

(l2)
µ−j2
|D|µ−j2 · · · p(ln)µ−jn

|D|µ−jn(λ− |D|µ)−(|l|+n+1),

where c(l) as given in (17). We have used the algorithm and constants defined in the
proof of Proposition 4.14 of [34] noting that |D| and (λ− |D|µ)−1 commute.

2. In each term

p
(l1)
µ−j1
|D|µ−j1p

(l2)
µ−j2
|D|µ−j2 · · · p(ln)µ−jn

|D|µ−jn

we now move the powers of |D| to the right using rule (5) incurring further commutators
with |D|µ. The first step is

p
(l1)
µ−j1
|D|µ−j1p

(l2)
µ−j2
|D|µ−j2 · · · p(ln)µ−jn

|D|µ−jn

=p
(l1)
µ−j1

(|D|µ)1−j1/µp
(l2)
µ−j2
|D|µ−j2 · · · p(ln)µ−jn

|D|µ−jn

≃p(l1)µ−j1





∑

m2≥0

(

1− j1/µ
m2

)

p
(l2+m2)
µ−j2

(|D|µ)1−j1/µ−m2



 |D|µ−j2 · · · p(ln)µ−jn
|D|µ−jn

=
∑

m2≥0

(

1− j1/µ
m2

)

p
(l1)
µ−j1

p
(l2+m2)
µ−j2

|D|2µ−(j1+j2)−µm2p
(l3)
µ−j3

· · · p(ln)µ−jn
|D|µ−jn .
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Now note that

|D|2µ−(j1+j2)−µm2p
(l3)
µ−j3

=(|D|µ)2−(j1+j2)/µ−m2 p
(l3)
µ−j3

≃
∞
∑

m3=0

(

2− j1+j2
µ −m2

m3

)

p
(l3+m3)
µ−j3

|D|2µ−(j1+j2)−µ(m2+m3).

We then repeat this to finally obtain

p
(l1)
µ−j1
|D|µ−j1p

(l2)
µ−j2
|D|µ−j2 · · · p(ln)µ−jn

|D|µ−jn

≃
∑

m≥0

c′(j,m)p
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

|D|nµ−|j|−µ|m|

for constants c′(j,m) as in (18) where m = (m2, . . . ,mn) ∈ N
n−1
0 . �

Example 3.12. An important special case of this result concerns the operator P = ∆+p
where p ∈ B and ∆ = |D|2. This operator arises in Quillen’s interpretation of the JLO
cocycle [36] in the framework of superconnections [54]. We find b−2−k = 0 if k is odd
and for k even we have

b−2−k(λ) = (λ−∆)−1p(λ−∆)−1 · . . . · (λ−∆)−1p(λ−∆)−1

with p appearing k/2 times.

Example 3.13. A nontrivial example is given by the operator P = |D|µ + p|D|µ−1. A
similar calculation as above yields

b−µ(λ) = (λ− |D|µ)−1,

b−µ−1(λ) = (λ− |D|µ)−1p|D|µ−1(λ− |D|µ)−1,

b−µ−2(λ) = (λ− |D|µ)−1p|D|µ−1(λ− |D|µ)−1p|D|µ−1(λ− |D|µ)−1.

One can expand these terms further. In the lowest non-trivial order we find

(λ− |D|µ)−1p|D|µ−1(λ− |D|µ)−1 ≃
∞
∑

l=0

p(l)|D|µ−1(λ− |D|µ)−(l+2)

with p(l) the l-fold commutator with |D|µ.
For the construction of the complex powers we will need a finer analysis of the coeffi-

cients p
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

. These are expressed as commutators with |D|µ whereas
our class of pseudodifferential operators requires coefficients given in terms of commuta-
tors with |D|. Thanks to Lemma 3.5 we can switch between these representations.

Proposition 3.14. The operators p
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

from (16) belong to

Ψ
(|l|+|m|)(µ−1)
cl . Indeed they can be expressed as asymptotic sums of the form

p
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

≃
∞
∑

k=0

bk(j, l,m)|D|(|l|+|m|)(µ−1)−k

for some coefficients bk(j, l,m) ∈ B.
In terms of commutators with |D| we can write the resolvent components in lowest

orders as

b−µ(λ) =(λ− |D|µ)−1,

b−µ−1(λ) =pµ−1|D|µ−1(λ− |D|µ)−2 + µδ(pµ−1)|D|2µ−2(λ− |D|µ)−3 + · · · ,
b−µ−2(λ) =p

2
µ−1|D|2µ−2(λ− |D|µ)−3 + pµ−2|D|µ−2(λ− |D|µ)−2 + · · ·
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Proof. It suffices to prove this for n = 1 since Ψ∞
cl is a graded algebra by Lemma 3.5 (vi).

The claim for n = 1 follows from Lemma 3.5 (v). �

3.3. The complex powers. We construct the complex powers of suitable operators
in Ψµ

cl, show that these also belong to this class and construct explicit asymptotic ex-
pansions. Our construction is parallel to the situation in a global calculus of classical
pseudodifferential operators on Rn as in [44].

Let Λǫ be as in Hypothesis 3.6. For Re z < 0 we define the complex powers of P by a
Dunford integral

(19) Pz =
1

2πi

∫

∂Λǫ

λz(λ− P )−1dλ,

where ∂Λǫ is a parametrisation of the boundary of Λǫ. The power λz = ez log λ is given
by the main branch of the logarithm. The integral converges for Re (z) < 0 to a bounded
operator by the decay properties of the resolvent in Theorem 3.8.

In general we define P z = P kPz−k for arbitrary z ∈ C by choosing k ∈ N sufficiently
large so that Re z < k. A simple argument (as in Theorem 10.1 of [62]) shows that this
definition is independent of k and that the complex powers so defined have the group
property.

We now show that P z also belongs to Ψµz
cl , i.e. has a suitable asymptotic expansion

that can be computed explicitly in principle.

Theorem 3.15. Assume Hypothesis 3.6. Then the operator P z belongs to Ψµz
cl . More

precisely, for Re z < 0 we have the following asymptotic expansions.

(i) On a symbolic level of the parameter-dependent resolvent we have in the notation
of Hypothesis 3.6 that

P z ≃ |D|µz

+

∞
∑

k=1

k
∑

n=1

∑

|j|=k
j
·
≥1

1

2πi

∫

∂Λǫ

λz(λ− pµ|D|µ)−1pµ−j1 |D|µ−j1(λ− pµ|D|µ)−1 × · · ·

× (λ− pµ|D|µ)−1pµ−jn |D|µ−jn(λ− pµ|D|µ)−1dλ.

Here, j· ≥ 1 means that all components of j are greater than or equal to 1.
(ii) Expressing this with coefficients in terms of commutators with |D|µ one has

P z ≃ |D|µz +
∞
∑

k=1

k
∑

n=1

∑

|j|=k
j
·
≥1

l≥0
m≥0

(

z

|l|+ n

)

c(l)c′(j,m)p(j, l,m)|D|µ(z−|l|−|m|)−|j|,

where
p(j, l,m) = p

(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

with constants c, c′ as in Corollary 3.11. Here, l = (l1, . . . , ln) andm = (m2, . . . ,mn)
are multi-indices.

(iii) And with coefficients in B we find,

(20) P z ≃ |D|µz

+

∞
∑

k=1

k
∑

n=1

∑

|j|=k
j
·
≥1

l≥0
m≥0

∞
∑

r=0

(

z

|l|+ n

)

c(l)c′(j,m)br(j,m, l)|D|µz−(|j|+r+|l|+|m|)
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for operators br(j,m, l) ∈ B as in Proposition 3.14.

The lowest-order terms in the asymptotic expansion of P z are given as

(21)

bµz = |D|µz,
bµz−1 = zpµ−1|D|µz−1,

bµz−2 =
[

z(z−1)
2 p2µ−1 + zpµ−2 + µδ(pµ−1)

]

|D|µz−2,















where we assumed pµ = 1 and Re z < 0.

Proof. Without loss of generality pµ = 1. We only consider the case Re z < 0, the other
case follows by recalling that P z = P kPz−k for any k satisfying Re z < k, where Pz−k is
defined by a Dunford integral. As usual, the idea is to replace the resolvent in (19) by
the operators BN from Proposition 3.10.

1. In order to construct the asymptotic expansion term by term, we write

(22)
1

2πi

∫

∂Λǫ

λz(λ− P )−1dλ =
1

2πi

∫

∂Λǫ

λz
[

(λ− P )−1 −BN (λ)
]

dλ+B
(z)
N ,

where

B
(z)
N =

N−1
∑

k=0

1

2πi

∫

∂Λǫ

λzb−µ−k(λ)dλ.

We first show that the operators 1
2πi

∫

∂Λǫ
λzb−µ−k(λ)dλ belong to opµz−k. For k = 0 we

have b−µ(λ) = (λ−|D|µ)−1 so that by Cauchy’s integral formula bµz = |D|µz. Now, from
(16) we must consider

1

2πi

∫

∂Λǫ

λzp
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

|D|nµ−|m|µ−|j|(λ− |D|µ)−(|l|+n+1)dλ

=p
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

|D|nµ−|m|µ−|j| 1

2πi

∫

∂Λǫ

λ−z(λ− |D|µ)−(|l|+n+1)dλ.

Since Theorem 3.8 ensures that the functions

Λ→ op0 :λ 7→ |λ|k(λ− |D|µ)−k,

Λ→ op−µk :λ 7→ (λ− |D|µ)−k

are bounded uniformly in λ we can integrate by parts to find

1

2πi

∫

∂Λǫ

λz (λ− |D|µ)−(|l|+n+1)
dλ =

(

z

|l|+ n

)

|D|µ(z−(|l|+n))

belonging to opµ(z−(|l|+n)). Moreover,

p
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

∈ op(|l|+|m|)(µ−1)

by Proposition 3.14.
This shows that overall

(23)
1

2πi

∫

∂Λǫ

λzp
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

|D|nµ−|m|µ−|j|(λ− |D|µ)−(|l|+n+1)dλ

belongs to opµz−|l|−|m|−|j| so that the claim follows since |j| = k and |l|, |m| ≥ 0.
2. We then claim that P z ∈ Ψµz

cl , i.e. has the asserted asymptotic expansion. From
(12) we deduce that the integral in (22) converges and yields an operator in op−N . Thus,

the difference P z −∑N
k=0 bµz−k belongs to op−N and the asymptotic expansion of P z

holds.
3. The expansions in (ii) and (iii) follow immediately from Corollary 3.11 and Propo-

sition 3.14. �
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We illustrate this theorem in two examples.

Example 3.16. Consider the operator P = ∆ + p. We computed the asymptotic ex-
pansion of the resolvent in Example 3.12. The expansion of the complex powers is an
immediate consequence.

1

2πi

∫

λ−z(λ−∆)−1dλ = ∆−z,

1

2πi

∫

λ−z(λ−∆)−1p(λ−∆)−1dλ ≃
∞
∑

l=0

( −z
l + 1

)

p(l)∆−z−(l+1)

and the subsequent term reads

1

2πi

∫

λ−z(λ−∆)−1p(λ−∆)−1p(λ−∆)−1dλ

≃
∞
∑

l1,l2=0

c(l1, l2)p
(l1)p(l2)

( −z
l1 + l2 + 2

)

∆−z−(l1+l2)−2.

The expansion of the next term is

1

2πi

∫

λ−z(λ−∆)−1p(λ−∆)−1p(λ−∆)−1p(λ−∆)−1dλ ≃
(−z

3

)

p3∆−z−3 + · · ·

Collecting terms according to powers in ∆, we find the lowest orders in the asymptotic
expansion of (∆ + p)−z to be

(∆ + p)−z ≃∆−z +

(−z
1

)

p∆−z−1 +

(−z
2

)

[

p(1) + c(0, 0)p2
]

∆−z−2

+

(−z
3

)

[

p(2) +
(

c(0, 1)pp(1) + c(1, 0)p(1)p
)

+ p3
]

∆−z−3 + · · ·

This can be further simplified using c(0, 0) = 1, c(0, 1) = 2 and c(1, 0) = 3/2.

Example 3.17. We consider the operator P = |D|µ + p|D|µ−1. We find in the lowest
order that

1

2πi

∫

λ−z(λ− |D|µ)−1dλ = |D|−µz,

using Example 3.13. The next order is computed as follows

1

2πi

∫

λ−z(λ− |D|µ)−1p|D|µ−1(λ− |D|µ)−1dλ

≃
∞
∑

l=0

p(l)|D|µ−1 1

2πi

∫

λ−z(λ− |D|µ)−(l+2)dλ

=

∞
∑

l=0

p(l)
( −z
l + 1

)

|D|−µz−µl−1.

The highest order in the subsequent term is

1

2πi

∫

λ−z(λ− |D|µ)−1p|D|µ−1(λ− |D|µ)−1p|D|µ−1(λ− |D|µ)−1dλ

≃p2|D|2µ−2 1

2πi

∫

λ−z(λ− |D|µ)−3dλ+ · · ·

=

(−z
2

)

p2|D|−µz−2 + · · ·
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Collecting terms according to powers of |D| we find

(|D|µ + p|D|µ−1)−z ≃|D|−µz +

(−z
1

)

p|D|−µz−1 +

(−z
2

)

p(1)|D|−µz−µ−1 + · · ·

+

(−z
2

)

p2|D|−µz−2 + · · ·

Using (6) we express p(1) as

p(1) = [|D|µ, p] ≃ µδ(p)|D|µ−1 + µ(µ+1)
2 δ2(p)|D|µ−2 + · · ·

Thus,

(|D|µ + p|D|µ−1)−z ≃ |D|−µz − zp|D|−µz−1 + z(z+1)
2 (µδ(p) + p2)|D|−µz−2 + · · ·

in lowest orders.

The operator family P z is holomorphic in z. For a domain U ⊂ C and a Banach space
E denote by O(U,E) the space of holomorphic functions from U to E.

Proposition 3.18. For any N ∈ N let BN be as in Theorem 3.10 and set

B
(z)
N =















1
2πi

∫

∂Λǫ
λzBN (λ)dλ for Re z < 0

P k 1
2πi

∫

∂Λǫ
λz−kBN (λ)dλ for Re z > 0

,

where k is any natural number such that k > Re z. Then P z − B
(z)
N ∈ O(Re z <

k, opµk−N ).

Proof. 1. We first consider the case k = 0. Here we set R
(z)
N = P z − B(z)

N and want to

show analyticity of the map z 7→ R
(z)
N on the domain {z ∈ C|Re z < 0}. Now choose

z ∈ C with Re z ≤ −δ for δ > 0 small. We know that by construction R
(z)
N is given from

(22) as

R
(z)
N =

1

2πi

∫

∂Λǫ

λz
[

(λ− P )−1 −BN (λ)
]

dλ

and the operator norm of the integral can be bounded by means of Theorem 3.10 so that

R
(z)
N yields a bounded operator in op−N . Formal differentiation of the integral k times

with respect to z yields

1

2πi

∫

∂Λǫ

λz(log λ)k
[

(λ− P )−1 −BN (λ)
]

dλ

and this integral converges for Re z ≤ −δ by Theorem 3.10 to an operator in op−N . The
claim now follows as δ was arbitrary.

2. For k > 0 recall that P z was defined as P z = P kPz−k. Thus, we look at z 7→
R

(z)
N = P kPz−k − P kB

(z−k)
N which we can rewrite as R

(z)
N = P k(Pz−k − B(z−k)

N ). The

last expression shows that R
(z)
N belongs to opµk−N by step 1. The arguments of step 1.

also show that this function is analytic in z since composition with P k does not destroy
analyticity. �

3.4. The heat operator. Under Hypothesis 3.6 we define the heat operator by a Dun-
ford integral

(24) e−tP =
1

2πi

∫

Λǫ

e−tλ(λ− P )−1dλ,

which converges to a bounded operator for t > 0. The resulting operator is of order −∞
on the scale of Sobolev spaces. This is analogous to the construction in Theorem 4.1
of [45].
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Theorem 3.19. Under Hypothesis 3.6 the heat operator as just defined belongs to Ψ−∞
cl

and has the following formal asymptotic expansions.

(i) On the level of the symbolic resolvent expansion we find

e−tP ≃ e−t|D|µ

+

∞
∑

k=1

k
∑

n=1

∑

|j|=k
j
·
≥1

1

2πi

∫

∂Λǫ

e−tλ(λ− pµ|D|µ)−1pµ−j1 |D|µ−j1(λ− pµ|D|µ)−1 × · · ·

× (λ− pµ|D|µ)−1pµ−jn |D|µ−jn(λ− pµ|D|µ)−1dλ.

Here, j· ≥ 1 means that all components of j are greater than or equal to 1.
(ii) On the level of commutators with |D|µ one has

e−tP ≃e−t|D|µ

+

∞
∑

k=1

k
∑

n=1

∑

|j|=k
j
·
≥1

l≥0
m≥0

(−t)|l|+n

(|l|+ n)!
c(l)c′(j,m)p(j, l,m)|D|(n−|m|)µ−|j|e−t|D|µ ,

where

p(j, l,m) = p
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

with constants c, c′ as in Corollary 3.11.

The expansions are in a formal sense as the right hand sides are of order −∞ on the
scale of Sobolev spaces.

Proof. We want to show that e−tP belongs to Ψ−N
cl for any N ∈ N. In the Dunford

integral (24) we replace the resolvent by the operators BN (λ) yielding

1

2πi

∫

∂Λǫ

e−tλ(λ− P )−1dλ(25)

=
1

2πi

∫

∂Λǫ

e−tλ
[

(λ− P )−1 −BN (λ)
]

dλ+
1

2πi

∫

∂Λǫ

e−tλBN (λ)dλ

with BN (λ) be as in Theorem 3.10. This allows us to construct the formal asymptotic
expansion. Without of loss of generality we set pµ = 1.

1. By the definition of the BN , the second integral in (25) becomes the sum

N−1
∑

k=0

1

2πi

∫

∂Λǫ

e−tλb−µ−k(λ)dλ.

So the first claim is that the summands belong to op−∞. For k = 0 we have b−µ(λ) =
(λ− |D|µ)−1 so that by Cauchy’s integral formula

1

2πi

∫

∂Λǫ

e−tλ(λ− |D|µ)−1 = e−t|D|,

which clearly belongs to op−∞.
For k ≥ 1 we employ the representation of b−µ−k from (16) and consider

1

2πi

∫

∂Λǫ

e−tλp
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

|D|(n−|m|)µ−|j|(λ− |D|µ)−(|l|+n+1)dλ

=p
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

|D|(n−|m|)µ−|j| 1

2πi

∫

∂Λǫ

e−tλ(λ− |D|µ)−(|l|+n+1)dλ.
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Integration by parts yields

1

2πi

∫

∂Λǫ

e−tλ (λ− |D|µ)−(|l|+n+1)
dλ =

(−t)|l|+n

(|l|+ n)!
e−t|D|µ

and this belongs to op−∞. This shows that overall

1

2πi

∫

∂Λǫ

e−tλp
(l1)
µ−j1

p
(l2+m2)
µ−j2

· · · p(ln+mn)
µ−jn

|D|(n−|m|)µ−|j|(λ− |D|µ)−(|l|+n+1)dλ

belongs to op−∞ so that the claim follows.
2. We then claim that e−tP has the asserted formal asymptotic expansion. From (12)

we deduce that the first integral in (25) converges and yields an operator in op−N for any
N . The asymptotic expansions follow immediately from Corollary 3.11 and the proof of
Theorem 3.15. �

Example 3.20. As a first example we consider the operator P = ∆+p with p ∈ B. The
expansion of the heat operator in powers of t can be computed as follows. In the lowest
order we find

1

2πi

∫

e−tλ(λ−∆)−1dλ = e−t∆.

The next term is

1

2πi

∫

e−tλ(λ−∆)−1p(λ−∆)−1dλ ≃
∞
∑

l=0

p(l)
1

2πi

∫

e−tλ(λ−∆)−j−2dλ

=
∞
∑

l=0

p(l)
(−t)l+1

(l + 1)!
e−t∆.

So we have the formal expansion

e−t(∆+p) ≃ e−t∆ +

[

−tp+ t2

2!
p(1) − t3

3!
p(2) + · · ·

]

e−t∆

in lowest orders.

Example 3.21. Now we consider the operator P = |D|µ+p|D|µ−1. Using the resolvent
expansions from Example 3.13 we obtain

1

2πi

∫

e−tλ(λ− |D|µ)−1dλ = e−t|D|µ .

The next term reads

1

2πi

∫

e−tλ(λ− |D|µ)−1p|D|µ−1(λ− |D|µ)−1dλ

≃
∞
∑

l=0

p(l)|D|µ−1 1

2πi

∫

e−tλ(λ− |D|µ)−(j+2)dλ

=

(

∞
∑

l=0

(−t)l+1

(l + 1)!
p(l)

)

|D|µ−1e−t|D|µ .

The top order in the next term is

1

2πi

∫

e−tλ(λ− |D|µ)−1p|D|µ−1(λ− |D|µ)−1p|D|µ−1(λ− |D|µ)−1dλ

≃p2|D|2µ−2 (−t)2
2!

e−t|D|µ + · · ·



COMPLEX POWERS OF ABSTRACT PSEUDODIFFERENTIAL OPERATORS 331

Overall we find the formal expansion

e−t(|D|µ+p|D|µ−1) ≃e−t|D|µ +

(

−tp+ (−t)2
2!

p(1) + · · ·
)

|D|µ−1e−t|D|µ

+ p2|D|2µ−2 (−t)2
2!

e−t|D|µ + · · ·

in lowest orders.

4. Spectral functions

This section considers spectral functions of the abstract pseudodifferential operators.
We consider in particular the zeta function and the heat trace but also the regularised
determinant and Weyl-type eigenvalue asymptotics. In line with [34] we consider graded
and ungraded Hilbert spaces simultaneously. If we are interested in the “ordinary”
spectral functions with the trace we set γ = 1.

4.1. The zeta function. The construction of the complex powers allows us to find the
singularity structure of the zeta function Trace(γQP z), which can also be viewed as the
P -regularised trace of Q. The case P = |D| was extensively analysed in [51]. We employ
the notation of [28] for zeta functions depending on two operators.

Theorem 4.1. Let (A,H,D) be a regular spectral triple with degree of summability d
and grading operator γ. Let P ∈ Ψµ

cl satisfy Hypothesis 3.6 and let Q ∈ Ψν
cl. Then the

function
ζ(z,Q, P ) = Trace(γQP−z)

is analytic for Re z > d/µ. It can be extended to a meromorphic function on the whole
complex plane with at most simple poles which are located in the set

P = {z ∈ C|µz − ν + j ∈ Sd, j = 0, 1, 2, . . .} =
∞
⋃

j=0

1
µ (Sd+ ν − j) ,

where Sd is the dimension spectrum of (A,H,D). The residue at the poles can be ex-
pressed in terms of the noncommutative integral −

∫

.

Remark 4.2. Of course this agrees with the commutative case of classical pseudodifferen-
tial operators on a closed manifold. Here, the poles of the function ζ(z,Q, P ) are located
at the points {(d+ ν − j)/µ|j ∈ N0} where d is the dimension of the manifold, ν is the
order of Q and µ is the order of P .

Proof. We consider the ungraded case γ = 1, the graded case follows similarly. Without
loss of generality we have pµ = 1. Let Q = 1 for the time being.

1. Recall that by Theorem 3.15 (iii), P−z is a classical abstract pseudodifferential
operator which for Re z > 0 has an asymptotic expansion of the form

P−z ≃ |D|−µz + p−µz−1|D|−µz−1 + p−µz−2|D|−µz−2 + · · ·
for operators p−µz−k ∈ B. Note that Trace(p−µz−k|D|−µz−k) is holomorphic except for
poles at points for which µz + k ∈ Sd. So the set of poles is a subset of 1

µ (Sd − k).
The residue at these poles can obviously be expressed in terms of the noncommutative
integral.

2. The meromorphic extension of Trace(P−z) is then obtained as follows. Fix N ∈ N

and let

PN (z) =

N−1
∑

k=0

p−µz−k|D|−µz−k

be the terms of order up to −µz − (N − 1) in the asymptotic expansion of P−z. Then
Trace(P−z) = Trace(P−z−PN (z))+Trace(PN (z)). The operator P−z−PN (z) belongs to
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op−µz−N . Since the spectral triple is d-summable, this operator is trace-class if µz+N >
d, cf. Lemma 3.5 (ii). Hence, the function Trace(P−z − PN (z)) is analytic on the half-
plane {z ∈ C|Re z > d −N}. By step 1, the poles of the second map Trace(PN (z)) are
located in the set ∪∞j=0

1
µ (Sd− j).

3. For general Q ∈ Ψν
cl we have an asymptotic expansion

Q ≃ qν |D|ν + qν−1|D|ν−1 + qν−2|D|ν−2 + · · ·

so that the product QP−z has an expansion given by
(

qν |D|ν + qν−1|D|ν−1 + · · ·
) (

|D|−µz + p−µz−1|D|−µz−1 + · · ·
)

leading to and expansion of the form

QP−z ≃
∞
∑

k=0

r−µz+ν−k|D|−µz+ν−k

for some r−µz+ν−k ∈ B. The arguments presented in step 2 prove the assertion. �

Corollary 4.3. Under the assumptions of Theorem 4.1, the map Γ(z)ζ(z,Q, P ) has the
singularity structure

Γ(z)ζ(z,Q, P ) ∼
∑

β∈P∪−N0

1
∑

l=0

aβ,l
(z − β)l+1

,

where the relation ∼ has the following meaning: the left hand side minus a finite sum
on the right hand side over {β ∈ P ∪ −N0|Re β > r} is holomorphic on the half-plane
{z ∈ C|Re z > r} for any r ∈ R.

The poles located in the set −N0 are due to the Gamma-function. We have aβ,1 6= 0
only if both Γ and ζ have a pole at β. These double poles can occur precisely at points
β ∈ P ∩ −N0.

Remark 4.4. It is natural to consider the eta function

η(z) = ζ(z,D, |D|) = Trace(D|D|−z−1).

However, the operator D itself is not in Ψ∞
cl , so that the eta function does not fit into

our framework.

Example 4.5. Higson’s approach [34] to the Connes-Moscovici local index theorem in-
volves another kind of zeta function, namely multilinear functionals on Ψµ

cl parametrised
by z ∈ C

〈X0, X1, . . . , Xn〉z

=(−1)nΓ(z)
2πi

Trace

(

γ

∫

∂Λǫ

λ−zX0(λ− |D|µ)−1X1 · · ·Xn(λ− |D|µ)−1dλ

)

.

One can then expand the function Γ(z)Trace(γX0P
−z) in terms of the simpler functions

〈·〉z. Indeed, if P satisfies Hypothesis 3.6. Then

Γ(z)Trace
(

γX0P
−z
)

∼
∞
∑

k=0

k
∑

n=1

∑

|j|=k
j
·
≥1

(−1)n〈X0, X1, . . . , Xn〉z,

where Xi = pµ−ji |D|µ−ji .
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4.2. The heat trace. An alternative formulation of the spectral information encoded
by the zeta function is the short-time asymptotic expansion of the heat trace. For a
comprehensive review of the applications of heat kernel asymptotics in mathematics and
physics, we refer to [68]. The case of generalised Laplacians on certain noncommutative
spaces is treated in [69].

Theorem 4.6. For P ∈ Ψµ
cl satisfying Hypothesis 3.6 and Q ∈ Ψν

cl, the asymptotics of

the heat trace Trace
(

γQe−tP
)

are

Trace
(

γQe−tP
)

∼
∑

β∈P∪−N0

1
∑

l=0

aβ,lt
−β logl(t)

as t → 0+. Here, the coefficients aβ,l are taken from Corollary 4.3. The summation is
over the discrete set P ∪ −N0 where P is as in Corollary 4.3.

Proof. The existence of e−tP as a trace-class operator is clear. The asymptotics are fairly
standard and we refer to the detailed account in Section 4.1 of [45] or to Chapter 3.3.3 of
[58]. The arguments relating the resolvent, zeta and heat traces go through as Theorem
3.8 ensures that the functions

Λ→ op0 :λ 7→ |λ|k(pµ|D|µ − λ)−k,

Λ→ op−µk :λ 7→ (pµ|D|µ − λ)−k

are bounded uniformly in λ. �

Example 4.7 (Lowest-order terms). Let (A,H,D) be an ungraded spectral triple whose
dimension spectrum is of the form Sd = {d, d − 1, d − 2, . . .} with d > 2. Choose a
P ∈ opµ with P ≃ |D|µ + pµ−1|D|µ−1 + · · · satisfying Hypothesis 3.6 so that the poles

of ζ(z, 1, P ) are located in the set of points
{

d
µ ,

d−1
µ , . . .

}

. For simplicity we assume that

µ is irrational, meaning that Γ(z)Trace(P−z) has no double poles and the heat trace
expansion contains no logarithmic terms.

From (21), the zeta function ζ(z, 1, P ) = Trace(P−z) can be written as

Trace
(

|D|−µz
)

+Trace
(

φ1(z)|D|−µz−1
)

+Trace
(

φ2(z)|D|−µz−2
)

+mero

with coefficient functions

φ1(z) = zpµ−1,

φ2(z) =
z(z+1)

2 p2µ−1 − zpµ−2 + µδ(pµ−1)

from (21) where mero stands for a meromorphic function with potential poles in the half
plane {z ∈ C|Re < (d− 2)/µ}.

We consider the three right-most poles separately:
z0 = d

µ : here only the function Trace (|D|−µz) can have a pole with residue −
∫

|D|−d

as −µz − 1 = −(d + 1) and −µz − 2 = −(d + 2) do not belong to Sd. By assumption,
none of these points is a nonpositive integer so that Γ(z) is regular at each point. Thus,

(26) ad/µ,0 = res
z=z0

Γ(z)ζ(z, 1, P ) = Γ
(

d
µ

)

−
∫

|D|−d.

z1 = d−1
µ : here both Trace (|D|−µz) and Trace

(

pµ−1|D|−µz−1
)

can have poles with

residues −
∫

|D|−(d−1) and −
∫

pµ−1|D|−d, respectively. Hence

a(d−1)/µ,0 = res
z=z1

Γ(z)ζ(z, 1, P )

= Γ
(

d−1
µ

)

(

−
∫

|D|−(d−1) + d−1
µ −
∫

pµ−1|D|−d

)

.(27)
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z2 = d−2
µ : in this case all traces may have poles and we find

a(d−2)/µ,0 = res
z=z2

Γ(z)ζ(z, 1, P )

= Γ(z2)

(

−
∫

|D|−(d−2) +−
∫

φ1(z2)|D|−(d−1) +−
∫

φ2(z2)|D|−d

)

.(28)

The singularity structure of Γ(z)ζ(z, 1, P ) can thus be expressed as

Γ(z)ζ(z, 1, P ) =
2
∑

j=0

azj ,0

z − zj
+mero,

where mero stands for a meromorphic function analytic at z0, z1 and z2. We obtain the
heat kernel expansion

Trace
(

e−tP
)

∼ ad/µ,0t−d/µ + a(d−1)/µ,0t
−(d−1)/µ + a(d−2)/µ,0t

−(d−2)/µ + · · ·
In analogy with the commutative situation (cf. [46] and also [19], Chapter 10.1) we
can view −

∫

b|D|−d as the volume form and −
∫

b|D|−(d−2) as the scalar curvature form (or
Einstein-Hilbert action).

Example 4.8 (The JLO cocycle). We touch upon the relationship with the JLO cocycle
by considering the operator P = ∆ + [D, a]. Let a0, a1 ∈ A. Following Appendix 1 of
[34] we introduce functionals parametrised by t ≥ 0 given by

〈a0, [D, a1], . . . , [D, a1]〉JLOt = t
n
2 Trace

(

γa0

∫

Σn

[D, a1]e
−u0t∆ · · · [D, a1]e−unt∆du

)

with n arguments [D, a]. The integration is over the standard n-simplex

Σn =
{

(u0, . . . , un) ∈ R
n+1|ui ≥ 0, u0 + · · ·+ un = 1

}

.

The usual JLO cocycle as defined in [36] is obtained for t = 1. Lemma A.2 in [34] shows
that we can express the functionals as

〈a0, [D, a1], . . . , [D, a1]〉JLOt

=t−
n
2
(−1)n
2πi

Trace

(

γa0

∫

Λǫ

e−tλ(λ−∆)−1[D, a1] · · · [D, a1](λ−∆)−1dλ

)

.

We recognise the integral as coming from the asymptotic expansion of the heat trace
Trace(γa0e

−t[D,a1]) which was also observed in Section 8 of [54].

4.3. The regularised determinant. Following [55] one can investigate the regularised
determinant of an operator P as defined by

(29) detP = exp

(

− d

dz
ζ(z, 1, P )|z=0

)

,

where ζ(z, 1, P ) = Trace(P−z) provided that this zeta function is regular at the ori-
gin. This notion of regularised determinant has been investigated in various calculi of
(pseudodifferential) operators and we refer to [45, 58] for a discussion of the literature,
alternative definitions of operator determinants and applications.

In our setting we can make sense of the above definition if the dimension spectrum of
(A,H,D) does not contain 0.

Theorem 4.9. Let (A,H,D) be a spectral triple with simple dimension spectrum such
that 0 6∈ Sd. For P ∈ Ψµ

cl satisfying Hypothesis 3.6, the zeta function Trace(P−z) is
regular at the origin and hence the definition (29) makes sense.
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Remark 4.10. Unfortunately, there is no closed-form formula for the determinant even in
the commutative case. The condition 0 6∈ Sd must be checked in concrete cases and it is
for example satisfied in the case of quantum spheres SUq(2) where Sd = {1, 2, 3}. Even
if the condition is not satisfied (recall that this entails the regularity of Trace(b|D|−z) at
the origin for all b ∈ B), we may still have regularity of ζ(z, 1, |D|) at the origin so that
det |D| make sense.

Proof. This follows from a closer inspection of the proof of Theorem 4.1. Let P have the
asymptotic expansion P ≃

∑∞
k=0 pµ−k|D|µ−k where without loss of generality pµ = 1.

By (20) we can write

P−z ≃ |D|−z + p−µz−1|D|−µz−1 + p−µz−2|D|−µz−2 + · · · ,
where the point is that the p−µz−k are linear combinations of operators in B with coef-
ficients of the form

(

z
r

)

for r ∈ N. Now each
(

z
r

)

is a polynomial of degree r in z with

leading term z. The consequence is that any simple pole that Trace(b|D|−µz−k) may
have at z = 0 is cancelled out by this coefficient.

So if Trace(P−z) has a pole at 0, then this must be caused by the term |D|−µz in the
asymptotic expansion of P−z. But this pole only exists if 0 ∈ Sd. �

4.4. Weyl asymptotics. The pole structure of the zeta function or equivalently the
short-time expansion of the heat trace yield the Weyl asymptotics of the eigenvalue
growth of an abstract pseudodifferential operator.

Theorem 4.11. Let (A,H,D) be a d-summable spectral triple and let P ∈ Ψµ
cl satisfy

Hypothesis 3.6. Denote by N(λ) the number of eigenvalues of P less than or equal to λ.
Then

N(λ) ∼ ad/µ,0

Γ(1 + d/µ)
λ−d/µ,

where ad/µ,0 is a coefficient from Corollary 4.3 or Theorem 4.6.

Proof. The usual proof of this goes via a Tauberian theorem. We can relate the eigen-
value growth to the poles of the zeta function ζ(z, 1, P ), cf. the argument following
Theorem 6.1.1 of [1]. We can write

Γ(z)ζ(z, 1, P ) =
ad/µ,0

z − d/µ +mero,

where mero denotes a meromorphic function analytic at d/µ. The claim then follows
from Ikehara’s Tauberian Theorem.

Alternatively, one could employ Karamata’s Tauberian Theorem on the heat trace
asymptotics

Trace(e−tP ) ∼ ad/µ,0t−d/µ + higher orders.

Formally, the result also follows by applying the spectral action principle [9, 10] with the
indicator function on the interval [0, 1]. �
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