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Abstract

We prove the existence of comonotone Pareto optimal allocations satisfying utility con-

straints when decision makers have probabilistic sophisticated variational preferences and

thus representing criteria in the class of law invariant robust utilities. The total endowment

is only required to be integrable.
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1 Introduction

In this paper we prove the existence of Pareto optimal allocations of integrable random endow-

ments when decision makers have probabilistic sophisticated variational preferences. Variational

preferences were introduced and axiomatically characterized by Maccheroni, Marinacci, and Rus-

tichini (2006). This broad class of preferences allows to model ambiguity aversion and includes

several subclasses of preferences that have been extensively studied in the economic literature. In

mathematical finance, variational preferences are known as robust utilities; see Föllmer, Schied,
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and Weber (2009) and the references therein. In particular, Föllmer et al. (2009) establish the

connection between variational preferences and robust utilities as representing choice criteria

of variational preferences on random endowments corresponding to Savage acts; see also Re-

mark 2.2 for a brief summary of these results. Our study focuses on variational preferences

which are in addition assumed to be probabilistic sophisticated1 and thus can be represented

by robust utilities which are law invariant. Probabilistic sophistication or law invariance means

that the decision maker sees any two random endowments that have the same distribution un-

der a reference probability measure as equivalent. To be consistent both with the literature on

decision making and (mathematical) finance, we use the term probabilistic sophistication when-

ever referring to preferences, and law invariance whenever referring to the representing robust

utility. We pursue this approach – in the spirit of Föllmer et al. (2009) – in an attempt to unify

the current knowledge on Pareto optimal allocations, and to emphasize the range of the results

presented in this paper.

The class of law invariant robust utilities which represent probabilistic sophisticated varia-

tional preferences are of the following type:

(1.1) U(X) = inf
Q∈Q

(EQ[u(X)] + α(Q)) , X ∈ L1,

where u : R→ R∪{−∞} is a (not necessarily strictly) concave (not necessarily strictly) increas-

ing utility function, Q is a set of probability measures which is closed under densities with the

same distribution, and α(Q) is a suited law invariant penalization on Q ∈ Q; see Definition 2.1

for the details. This broad class nests many well-known choice criteria studied in the economic

and finance literature, in particular, the von Neumann and Morgenstern (1947) expected utility,

the probabilistic sophisticated maxmin expected utility preferences introduced by Gilboa and

Schmeidler (1989), the multiplier preferences introduced by Hansen and Sargent (2000, 2001),

and (apart from the sign) the law invariant cash (sub)-additive convex risk measures introduced

by Artzner, Delbaen, Eber, and Heath (1999), Föllmer and Schied (2002), and Frittelli and

Rosazza Gianin (2005) with the property of cash-invariance, and by El Karoui and Ravanelli

(2010) with the generalized property of cash (sub)-additivity.

1Probabilistic sophisticated preferences were introduced by Machina and Schmeidler (1992), further studied

by Marinacci (2002) and by Maccheroni et al. (2006) and Strzalecki (2011) for the case of variational preferences.
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We assume that the decision makers have preferences on a space of future random payoff

profiles which we identify with L1 := L1(Ω,F ,P), i.e. the space of P-integrable random variables

on a fixed non-atomic probability space (Ω,F ,P) modulo P-almost sure equality, where P is the

reference probability measure. So far, most of the existing literature makes the assumption that

payoff profiles are bounded, i.e. in L∞, or even that the state space is finite. These assumptions

are justified in many settings. But for applications in finance where nearly all models involve

unbounded distributions, the boundedness assumption is not appropriate. This suggests the

model space L1 and the probabilistic sophistication of the preferences indeed allows for that;

see Remark 2.2 or Filipović and Svindland (2012).

In this paper we consider n ≥ 2 decision makers with probabilistic sophisticated variational

preferences on L1 represented by law invariant robust utilities as in (1.1). All decision makers

share the same reference probability. Given the initial endowments Wi ∈ L1, i = 1, . . . , n,

of the decision makers, we prove the existence of comonotone Pareto optimal allocations of the

aggregate endowment W = W1+. . .+Wn which satisfy individual rationality constraints. Indeed

we show that under some mild conditions comonotone Pareto optima exist for basically any

constraints on the utilities of the allocations as long as there is at least one allocation satisfying

these constraints. Note that comonotonicity means that the endowments in the allocation are

continuous increasing functions of the aggregate endowment W . Comonotonicity of the Pareto

optima is a consequence of the law invariant robust utilities preserving second order stochastic

dominance; see Section 3.2. The possibility to restrain the set of allocations to the comonotone

ones in the optimization problem corresponding to Pareto optima is also a major ingredient in

our existence proof.

The existence of Pareto optimal allocations has so far only been established for a few sub-

classes of law invariant robust utilities. In case that all decision makers have von Neumann–

Morgenstern expected utilities, existence results were already proved in the sixties by Borch

(1962), Arrow (1963) and Wilson (1968). More recent is the proof of the existence of Pareto

optimal allocations when all decision makers apply law invariant convex risk measures on L∞;

see Jouini, Schachermayer, and Touzi (2008) (and also Acciaio (2007) and Barrieu and El Karoui

(2005)) and references therein. Filipović and Svindland (2008) extend this result to integrable

(not necessarily bounded) aggregate endowments. Even more recently, Dana (2011) proves the
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existence of Pareto optimal allocations when the decision makers have choice criteria within a

class of law invariant, finitely valued, continuous, concave utility functions on L∞ not necessarily

representing variational preferences. In Dana (2011) at least one utility function is required to

be cash additive and the others are assumed to be strictly concave. Note that the cash addi-

tivity assumption is very useful when proving the existence of optimal allocations because, in

conjunction with a comonotone improvement result, it immediately allows us to restrain the op-

timal allocation problem to an essentially compact set. Dropping the cash additivity assumption

generates some difficulties which we are able to solve: Indeed, we also reduce the problem to an

optimization over an essentially compact set of comonotone allocations. However, in contrast

to the cash additive case, in which this reduction can be simply imposed due to the invariance

towards constant re-sharing of sure payoffs, in the concave (non cash additive) case it follows as

a necessity from the concavity of the utility functions u in (1.1). Other results on the existence

of Pareto optimal allocations are found in Kiesel and Rüschendorf (2008). Here the existence

of optimal allocations is proved for convex risk functionals on L∞ which are not necessarily law

invariant, however, under the assumption that the aggregate endowment W is in the interior

of the domain of the (infimal-)convolution of the convex risk functionals, and that there exists

an interior point in the intersection of the domains of the dual functions of these risk func-

tionals. Such interior point conditions are standard when arguing by means of convex duality

theory. Unfortunately, such results are not applicable in our case. The reason is that on large

model spaces like L1 the interior of the domains of the robust utilities (1.1), as well as of their

(sup-)convolutions, are in general empty. Reducing the model space to e.g. L∞ could solve that

problem, but then monotonicity implies that the interior of the domain of the dual function is

always empty because it is concentrated on the positive cone of the dual space. Another result

in the economic literature is provided by Rigotti, Shannon, and Strzalecki (2008). Here the au-

thors prove the existence of Pareto optimal allocations for variational preferences on the positive

cone of L∞ under the strong assumption of mutual absolute continuity, which is in general not

satisfied in our case.

The paper is organized as follows. In Section 2 we introduce probabilistic sophisticated vari-

ational preferences and law invariant robust utilities on L1 and we recall some useful properties.

The Pareto optimal allocations problem is studied throughout Section 3 in which we state our

4



main results. Section 4 briefly summarizes our main result on the existence of comonotone

Pareto optimal allocations whereas in Section 5 we provide examples illustrating our findings.

2 Setup

Throughout this paper (Ω,F ,P) is an atom-less probability space, i.e. a probability space sup-

porting a random variable with continuous distribution. All equalities and inequalities between

random variables are understood in the P-a.s. sense. Given two random variables X and Y we

write X
d
= Y to indicate that both random variables have the same distribution under the ref-

erence probability measure P. The expectation (if well-defined) of a random variable X under

a probability measure Q on (Ω,F) will be denoted by EQ[X]. In case Q = P we also write

E[X] := EP[X]. We denote by L1 := L1(Ω,F ,P) the space of P-integrable random variables

modulo P-almost sure equality.

2.1 Probabilistic Sophisticated Variational Preferences on L1

Variational preferences were introduced by Maccheroni et al. (2006). In the same paper the au-

thors also study the subclass of probabilistic sophisticated variational preferences. Probabilistic

sophistication means that X
d
= Y implies X ∼ Y in the preference order.

Definition 2.1. (i) A function u : R→ R∪{−∞} is a utility function (on R) if it is concave,

right-continuous, increasing, dom u := {x ∈ R | u(x) > −∞} 6= ∅, and not constant in the

sense that there exist x, y ∈ dom u such that u(x) 6= u(y).

(ii) Let ∆ denote the set of all probability measures Q on (Ω,F) which are absolutely continuous

and have bounded densities with respect to P, i.e. ∀A ∈ F , P(A) = 0 ⇒ Q(A) = 0, and

there exists K > 0 such that P
(
dQ
dP < K

)
= 1. A set of probability measures Q ⊂ ∆ is

closed under densities with the same distribution if Q ∈ Q and Q̂ ∈ ∆ with dQ̂
dP

d
= dQ

dP

implies that Q̂ ∈ Q.

(iii) A decision maker has probabilistic sophisticated variational preferences � if for all X,Y ∈

L1:

X � Y ⇔ inf
Q∈Q

(EQ[u(X)] + α(Q)) ≥ inf
Q∈Q

(EQ[u(Y )] + α(Q))
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where u is a utility function, ∅ 6= Q ⊂ ∆ is convex and closed under densities with the same

distribution, and α : Q → R is a convex and law invariant function on Q in the sense that

Q, Q̂ ∈ Q with dQ̂
dP

d
= dQ

dP implies α(Q̂) = α(Q). In addition α satisfies infQ∈Q α(Q) > −∞.

The numerical representation

(2.1) U : L1 → R ∪ {−∞}, X 7→ inf
Q∈Q

(EQ[u(X)] + α(Q)) ,

is the law invariant robust utility used by the decision maker to quantify the utility of a

payoff profile X ∈ L1.

The law invariant robust utility U in (2.1) is, clearly, law invariant2 (X
d
= Y implies U(X) =

U(Y )) and posseses some other useful properties which are collected in Lemma 2.3 below. Due to

Jensen’s inequality for concave functions, the expectations in (2.1) are all well-defined, possibly

taking the value −∞. Note that U(X) = −∞ is possible for some X ∈ L1. The interpretation

is that the payoff profiles with utility −∞ are totally unacceptable.

We remark that what we call a utility function in Definition 2.1 (i) satisfies relatively weak

requirements and nests the vast majority of utilities proposed in the economic, finance, and

insurance literature (like CARA and CRRA), also including extreme cases such as increasing

linear or affine functions (Convex Risk Measures). Notice that by allowing u to take the value

−∞ we incorporate the cases when the domain of the utility function u is bounded from below,

as e.g. for the power utilities or the logarithmic utilities.

Remark 2.2. A standard approach to modeling preferences in presence of model ambiguity

(Knightian uncertainty) is to consider preference orders on the set M of all Markov kernels

X (ω, dy) from (Ω,F) to (R,B(R)) (where B(R) denotes the Borel-σ-algebra) for which there

exists a k > 0 such that X (ω, [−k, k]) = 1 for all ω ∈ Ω. It can then be shown under some mild

additional assumptions that a preference order onM is in the class of variational preferences if

and only if it admits a numerical representation of the form

(2.2) U(X ) = inf
Q∈C

(∫ ∫
u(y)X (ω, dy) dQ(ω) + α(Q)

)
, X ∈M.

2Since U is defined via the law invariant penalization α, it is law invariant. This follows as in Föllmer and

Schied (2004) Theorem 4.54. Conversely, the dual function in the convex duality sense of a law invariant concave

function U : L1 → R ∪ {−∞}, which in particular can serve as a penalization α in the sense of (2.1), is always

law invariant; again see Föllmer and Schied (2004) Theorem 4.54.
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Here u is a utility function on R, and without loss of generality we may assume that C is the set of

all finitely additive normalized measures, and α : C → R∪{∞} is a convex law invariant function

with the additional property of being the minimal function for which U can be represented as in

(2.2). For an axiomatic definition of variational preferences on Markov kernels and the details

on their numerical representation (2.2) we refer to Föllmer et al. (2009). Notice that the space

of all bounded payoff profiles L∞ is naturally embedded into the space M by identifying each

X ∈ L∞ with the associated kernel X (ω, dy) = δX(ω)(dy) where δx denotes the Dirac measure

given x ∈ R. The restriction of U to L∞ then takes the form

(2.3) U(X) = inf
Q∈C

(∫
u(X) dQ+ α(Q)

)
, X ∈ L∞,

which is a robust utility. In case of probabilistic sophistication/law invarinace, using results in

Svindland (2010a), it follows that U is σ(L∞, L∞)-upper semi continuous and thus we obtain a

representation of U as an infimum over σ-additive probability measures in ∆:

(2.4) U(X) = inf
Q∈Q

(EQ[u(X)] + α(Q)) , X ∈ L∞,

where Q := dom α∩∆. Hence, these preferences on L∞ are indeed consistent with our definition

of probabilistic sophisticated variational preferences on L1; see Definition 2.1. Moreover, the

representation (2.4) shows that the robust utility U and thus the corresponding preference order

is canonically extended from L∞ to L1. ♦

2.2 Properties of the Law Invariant Robust Utilities

In the following Lemma 2.3 we collect some well-known properties of law invariant robust utilities

on L1 which we will make frequently use of. The proofs can be found or easily derived from

results in for instance Dana (2005), Föllmer and Schied (2004) and Maccheroni et al. (2006).

For the sake of completeness we provide a proof in Section A.

Lemma 2.3. Consider a law invariant robust utility U as in (2.1). Then U has the following

properties:

(i) properness: U <∞ and the domain dom U := {X ∈ L1 | U(X) > −∞} is not empty.

(ii) concavity: U(λX + (1− λ)Y ) ≥ λU(X) + (1− λ)U(Y ) for all λ ∈ [0, 1].
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(iii) monotonicity: X ≥ Y implies U(X) ≥ U(Y ).

(iv) �ssd-monotonicity: X �ssd Y implies U(X) ≥ U(Y ), where

X �ssd Y ⇔ E[u(X)] ≥ E[u(Y )], for all utility functions u : R→ R,

is the second order stochastic dominance order.

(v) upper semi-continuity: If (Xn) ⊂ L1 converges to X ∈ L1 (with respect to ‖ · ‖1 := E[| · |]),

then U(X) ≥ lim supn→∞ U(Xn).

Probabilistic sophisticated variational preferences do not only preserve second order stochas-

tic dominance (Lemma 2.3 (iv)) but consequently also the concave order, i.e. X �co Y implies

U(X) ≥ U(Y ), where �co denotes the concave order, that is

X �co Y ⇔ E[u(X)] ≥ E[u(Y )] for all concave functions u : R→ R.(2.5)

Clearly, X �co Y implies X �ssd Y . The property of preserving �co is often referred to as

Schur concavity of U . Indeed, in case of monotone concave upper semi-continuous functions

�ssd-monotonicity is equivalent to Schur concavity.

3 Comonotone Pareto Optimal Allocations for Probabilistic So-

phisticated Variational Preferences

Consider n ≥ 2 decision makers with initial endowments Wi ∈ L1. All decision makers are

assumed to have probabilistic sophisticated variational preferences on L1 and corresponding law

invariant robust utilities

(3.1) Ui(X) = inf
Q∈Qi

(EQ[ui(X)] + αi(Q)) , X ∈ L1, i = 1, . . . , n,

as defined in (2.1). We assume that Ui(Wi) > −∞ for all i = 1, . . . , n, and let W := W1+. . .+Wn

be the aggregate endowment.

Denote by A(W ) the set of all allocations of W , i.e.

A(W ) = {(X1, . . . , Xn) ∈ (L1)n |
n∑
i=1

Xi = W}.
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Recall that an allocation (X1, . . . , Xn) ∈ A(W ) is Pareto optimal if (Y1, . . . , Yn) ∈ A(W ) and

Ui(Yi) ≥ Ui(Xi) for i = 1, . . . , n implies that Ui(Yi) = Ui(Xi) for all i = 1, . . . , n. We are

interested in those Pareto optimal allocations which are in addition acceptable in the following

sense: Define the set Ac(W ) of all acceptable allocations of W as those (X1, . . . , Xn) ∈ A(W )

such that Ui(Xi) > −∞ and

Ui(Xi) ≥ Ui(Wi)− ci(3.2)

for all i = 1, . . . , n, where ci ∈ R∪{∞}. The condition (3.2) expresses the individual (rationality)

constraint of decision maker i, specifying which payoff profiles Xi in a new re-allocation of W

she is willing to accept. Clearly, ci = 0 represents the (classical) case when the decision maker

will not accept any allocation which allots her an endowment which is not at least as good as

her initial one. An extreme is ci =∞ which means that the decision maker is willing to accept

any allocation with finite utility.3 We also allow for situations in which the decision maker is

to some bounded extent willing to accept a worsening as compared to her initial endowment

(ci > 0), or requires an improvement (ci < 0). Note that if ci ≥ 0 for all i ∈ {1, . . . , n}, then

the initial allocation (W1, . . . ,Wn) is acceptable, so in particular Ac(W ) 6= ∅. However, if some

agents demand a strict improvement, it is in general not clear whether the set of acceptable

allocations is non-empty. Hence, we make the following assumption.

Assumption 3.1. Ac(W ) 6= ∅.

3.1 Characterization of Pareto Optimal Allocations

It is well-known that Pareto optima can be characterized as solutions to a weighted sup-

convolution optimization problem

(3.3) Maximize
n∑
i=1

λiUi(Xi) subject to (X1, . . . , Xn) ∈ A(W ),

where λi ≥ 0, i = 1, . . . , n, are Negishi weights associated to the Pareto optimal allocation.

Notice that we do not require acceptability in (3.3). However, replacing A(W ) by Ac(W ) in

(3.3) characterizes acceptable Pareto optima as solutions to

(3.4) Maximize

n∑
i=1

λiUi(Xi) subject to (X1, . . . , Xn) ∈ Ac(W )

3ci =∞ is understood as the restriction Ui(Xi) ≥ Ui(Wi)−∞ := −∞ being redundant.
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where again λi ≥ 0, i = 1, . . . , n. The relation of (3.3) and (3.4) to (acceptable) Pareto optima

is given in the following proposition.

Proposition 3.2. If (X1, . . . , Xn) ∈ A(W ) (∈ Ac(W )) is Pareto optimal (and acceptable), then

there exist weights λi ≥ 0, i = 1, . . . , n, not all equal to zero, such that the allocation (X1, . . . , Xn)

solves (3.3) (or (3.4)) with these weights. Conversely, if (X1, . . . , Xn) solves (3.3) (or (3.4))

for some strictly positive weights λi > 0, i = 1, . . . , n, then (X1, . . . , Xn) is Pareto optimal (and

acceptable).

Let us briefly comment on the differences between the problems (3.3) and (3.4). It is easily

verified that any solution (X1, . . . , Xn) to either (3.3) or (3.4) for some strictly positive weights

λi > 0 is Pareto optimal. In case of (3.4) this follows from the fact that any other allocation

(Y1, . . . , Yn) with Ui(Yi) ≥ Ui(Xi) for all i would have to satisfy (Y1, . . . , Yn) ∈ Ac(W ) too.

However, the solutions to (3.4) are acceptable Pareto optima. On the other hand, any acceptable

Pareto optimum (X1, . . . , Xn) can be characterized as a solution to both (3.3) and (3.4). Clearly,

for any Negishi weights (λ1, . . . , λn) associated to (X1, . . . , Xn) via (3.3), (X1, . . . , Xn) also solves

(3.4) with the same weights because Ac(W ) ⊂ A(W ). But in general the converse is not true.

The set of weights for which (X1, . . . , Xn) solves (3.4) does in general depend on the individual

constraints ci. This set increases as the set Ac(W ) decreases4, and is thus always a superset of

the set of Negishi weights associated to (X1, . . . , Xn) via (3.3). This latter set corresponds to

the limiting case where ci =∞ for all i and is valid for and therefore independent of any possible

individual constraints. Also notice that for given weights (λ1, . . . , λn) the solution to problem

(3.4) may depend on the individual constraints in the sense that changing the constraints gives

a different or no solution.5 When proving the existence of acceptable Pareto optima later on,

we will need both (3.3) and (3.4). More precisely, in Theorems 3.8 and 3.9 we will show that

there is an invariant (under all possible individual constraints) set of Negishi weights for which

(3.4) (and thus also the limiting case (3.3)) always admits a comonotone solution. This set of

Negishi weights however is given by the limiting case (3.3).

4See Example 5.4.
5The individual constraints may for instance imply that the closed set Ac(W ) is essentially bounded. Let us

think of it as compact. Then (3.4) will allow for a solution for any positive weights whereas the optimization (3.3)

over all allocations only works for certain weights.
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In the characterization of Pareto optima given in Proposition 3.2 the associated Negishi

weights in (3.3) or (3.4) can in general only be shown to be non-negative. So we may have

λj = 0 for some j.6 As we will see in Section 3.3, our techniques allow us to prove the existence

of solutions to (3.4) only in case all Negishi weights are strictly positive, i.e. λi > 0 for all

i ∈ {1, . . . , n} (see Theorems 3.8 and 3.9). So the question may arise what kind of Pareto

optimal allocations we are neglecting. The following Lemma 3.3 shows that very often there are

strictly positive Negishi weights for any Pareto optimum.

Lemma 3.3. Let (X1, . . . , Xn) ∈ A(W ) be Pareto optimal and suppose that there is some ε > 0

such that for any i = 1, . . . , n it holds that Ui(Xi − ε) ∈ dom Ui and that

(0, ε) 3 m 7→ Ui(Xi +m) is strictly increasing.

Then all Negishi weights associated to (X1, . . . , Xn) via (3.3) are strictly positive.

Proof. Let (X1, . . . , Xn) ∈ A(W ) be Pareto optimal and consider any set of Negishi weights

(λ1, . . . , λn) associated to (X1, . . . , Xn) via (3.3). Assume that for some j ∈ {1, . . . , n} we have

λj = 0 and pick some k ∈ {1, . . . , n} such that λk > 0 (Proposition 3.2). Consider the allocation

(X̃1, . . . , X̃n) ∈ A(W ) where X̃i = Xi for all i 6= j, k and X̃j = Xj− δ and X̃k = Xk + δ for some

δ ∈ (0, ε). As λj = 0, we obtain

n∑
i=1

λiUi(X̃i) =
n∑

i=1;i 6=k,j
λiUi(Xi) + λkUk(Xk + δ)

>
n∑

i=1;i 6=k,j
λiUi(Xi) + λkUk(Xk) =

n∑
k=1

λiUi(Xi).(3.5)

which is a contradiction.

An immediate consequence of Lemma 3.3 and Proposition 3.2 is the following:

Corollary 3.4. Suppose that the Ui satisfy the following conditions for all i = 1, . . . , n:

• dom Ui = dom Ui + R,

• R 3 m 7→ Ui(X +m) is strictly increasing for all X ∈ dom Ui.
6Note that λj = 0 implies that the decision maker j is not considered in the social welfare maximization

problem (3.4).
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Then (X1, . . . , Xn) ∈ A(W ) is Pareto optimal if and only if it solves (3.3) for some strictly

positive weights λi > 0, i = 1 . . . , n.

3.2 Comonotone Pareto Optimal Allocations

When proving the existence of solutions to (3.4), and thus of acceptable Pareto optimal al-

locations, we will profit from the fact that due to the �ssd-monotonicity of the Ui we may

restrict our attention to the set of comonotone acceptable allocations defined next; see proofs of

Theorems 3.8 and 3.9 in Appendix C.

Definition 3.5. We denote by CF the set of all n-tuples (f1, . . . , fn) of increasing functions

fi : R→ R, i = 1, . . . , n, such that
∑n

i=1 fi = IdR. These functions fi are necessarily 1-Lipschitz-

continuous. An allocation (Y1, . . . , Yn) ∈ A(W ), is comonotone if there exists (fi)
n
i=1 ∈ CF such

that Yi = fi(W ) for all i = 1, . . . , n.

In particular, it is known that if there exists a Pareto optimal allocation in our setting, then

there is also a comonotone one. This follows from the following Proposition.

Proposition 3.6. For any (X1, . . . , Xn) ∈ Ac(W ) there exists a comonotone acceptable alloca-

tion (Y1, . . . , Yn) ∈ Ac(W ) such that Yi �co Xi (and thus Yi �ssd Xi) for all i = 1, . . . , n.

Proof. First of all we recall a result which is often referred to as comonotone improvement: for

any allocation (X1, . . . , Xn) ∈ A(W ) there exists a comonotone allocation (Y1, . . . , Yn) ∈ A(W )

such that Yi �co Xi for all i = 1, . . . , n. The proof for the case when W is supported by

a finite set goes back to Landsberger and Meilijson (1994). This has been further extended

to aggregate endowments W ∈ L1 by Filipović and Svindland (2008), Dana and Meilijson

(2011), and Ludkovski and Rüschendorf (2008). Finally, by �ssd-monotonicity of the Ui (see

Lemma 2.3 (iv)) it follows that if (X1, . . . , Xn) ∈ Ac(W ), then any comonotone improvement

(Y1, . . . , Yn) of (X1, . . . , Xn) is acceptable as well, i.e. (Y1, . . . , Yn) ∈ Ac(W ).

Remark 3.7. The comonotone allocations have another desirable property. Suppose that

W ∈ Lp ⊂ L1 for some p ∈ [1,∞], and let (fi(W ))ni=1 be a comonotone allocation of W ,

i.e. (fi)
n
i=1 ∈ CF. Then, by the 1-Lipschitz continuity of the fi, it is easily verified that

(fi(W ))ni=1 ∈ (Lp)n. Hence, any comonotone Pareto optimal allocation will posses the same

12



integrability/boundedness properties as the aggregate endowment W . In that sense, further

restricting the set of acceptable allocations by imposing additional integrability or even bound-

edness constraints in the formulation of problem (3.4) (or (3.3)) will yield the same comonotone

solutions as solving the unrestricted problem. ♦

3.3 Main Results

Let si := inf dom ui ∈ R ∪ {−∞}, i = 1, . . . , n, and diH := limx→si u
′
i(x) (which may be ∞)

and diL := limx→∞ u
′
i(x)(≥ 0) where u′ denotes the right-hand-derivative of u. Finally, let

N ⊂ {1, . . . , n} be the set of all indices such that diH = diL
7, and M := {1, . . . , n} \N the set of

all indices such that diL < diH . Note that N = ∅ or M = ∅ is possible.

In the following theorems we specify a non-empty set of Negishi weights (λ1, . . . , λn) for

which the associated optimization problem (3.4) admits a solution.

Theorem 3.8. Suppose that si > −∞, i = 1, . . . , n. Then for every set of strictly positive

weights λi > 0, i = 1, . . . , n, (3.4) admits a comonotone solution.

Theorem 3.9. Consider the following bounds on the weights λi, i = 1, . . . , n, and some δ > 0:

(3.6)
λi = δ

diH
for all i ∈ N,

λid
i
L < δ < λid

i
H for all i ∈M.

We consider two cases:

(i) Suppose that N = ∅ or |N | = 1. Then (3.4) admits a comonotone solution for every set

of weights λi > 0, i = 1, . . . , n, satisfying the constraints (3.6).

(ii) Suppose that |N | ≥ 2. If si = −∞ for all i ∈ N , and Uj(−W−) > −∞ for all j ∈ N

such that cj ∈ R, then (3.4) admits a comonotone solution for every set of weights λi > 0,

i = 1, . . . , n, satisfying the constraints (3.6). In particular, if |N | = n, the solutions are

given up to a reallocation of cash. That is, if (X1, . . . , Xn) is a solution to (3.4) for some

given weights, then also (X1 + m1, . . . , Xn + mn) is a solution to (3.4) with that weights

whenever the numbers mi ∈ R satisfy
∑n

i=1mi = 0 and (X1 +m1, . . . , Xn+mn) ∈ Ac(W ).

7When diL = diH = di and si = −∞ (i.e. dom ui = R), then the corresponding robust utility Ui is cash additive

in the sense that Ui(X + m) = Ui(X) + dim for all m ∈ R and X ∈ L1 and thus corresponds to a convex risk

measure (if di = 1 and multiplied by −1).
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We remark that when N = ∅, the two conditions in (3.6) reduce to the last one. Note that

Dana (2011) derives similar bounds on the weights λi given in (3.6) in her setting. The proofs of

Theorems 3.8 and 3.9 are provided in Appendix C. Theorem 3.9 is discussed in several examples

in Section 5.2 in which we illustrate that if we drop one of the conditions on the weights stated

in (3.6), we cannot in general expect the existence of solutions to (3.3) any longer.

If diH = ∞ and diL = 0 for all i = 1, . . . , n, then the bounds in (3.6) are void. Hence,

Theorem 3.9 (i) implies the following Corollary.

Corollary 3.10. If diH =∞ and diL = 0 for all i = 1, . . . , n (as for instance when the decision

makers’ utilities ui are chosen amongst the exponential, logarithmic or power utilities), then there

exists a comonotone solution to (3.4) for any set of strictly positive weights λi > 0, i = 1, . . . , n.

As regards the uniqueness of Pareto optimal allocations, we have the following result. To

this end we recall that a function U : L1 → R∪{−∞} is strictly concave if U(λX + (1−λ)Y ) >

λU(X) + (1− λ)U(Y ) whenever λ ∈ (0, 1) and X 6= Y .

Corollary 3.11. Suppose that under the conditions stated in Theorem 3.8 (and Theorem 3.9,

respectively) (n−1) among the n law invariant robust utilities Ui are strictly concave. Then, for

any given set of weights λi > 0, i = 1, . . . , n, (and satisfying the bounds (3.6), respectively), the

Pareto optimal allocation which solves the optimization problem (3.4) associated to (λ1, . . . , λn)

is unique and comonotone.

Proof. For any given vector of positive weights (λ1, . . . , λn) the set of solutions to the associated

optimization problem (3.4) is convex because the Ui are concave. This together with the strict

concavity of (n− 1) robust utilities implies that the solution to (3.4), if it exists, is unique.

4 Conclusion: The Existence Theorem

Proposition 3.2 and Theorems 3.8 and 3.9 immediately imply the existence of acceptable comono-

tone Pareto optimal allocations. This is summarized in the following theorem.

Theorem 4.1. (i) If si > −∞ for all i = 1, . . . , n, then there exists an acceptable comonotone

Pareto optimal allocation.
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(ii) If |N | ≤ 1, then there exists an acceptable comonotone Pareto optimal allocation.

(iii) Suppose that |N | ≥ 2. If si = −∞ for all i ∈ N , and Uj(−W−) > −∞ for all j ∈ N such

that cj ∈ R, then there exists an acceptable comonotone Pareto optimal allocation.

Moreover, in the situation of (iii), if |N | = n, then the Pareto optimal allocations have the

property of being up to a reallocation of cash. That is, if (X1, . . . , Xn) is a Pareto optimal

allocation of W , then also (X1 +m1, . . . , Xn +mn) is a Pareto optimal allocation whenever the

numbers mi ∈ R satisfy
∑n

i=1mi = 0 and (X1 +m1, . . . , Xn +mn) ∈ Ac(W ).

5 Examples

5.1 Yaari Preferences Versus Multiplier Preferences

Suppose that decision maker 1 has Yaari (1987) type preferences represented by the robust

utility

(5.1) U1(X) =
1

α

∫ α

0
qX(s) ds, X ∈ L1,

where α ∈ (0, 1) and qX(s) := inf{x : P(X ≤ x) ≥ s} with s ∈ (0, 1) being the quantile function

of X. Note that −U1 is the well-known Average Value at Risk (AVaR), that is

U1(X) = −AVaRα(X) = min
Q∈Q1

EQ[X] = min
Q∈Q1

∫ 1

0
qX(s)q dQ

dP
(1− s) ds

where Q1 := {Q� P | dQdP ≤
1
α}; see e.g. Föllmer and Schied (2004) Theorems 4.47 and 4.54. As

for decision maker 2, her probabilistic sophisticated variational preferences are represented by a

law invariant robust utility U2 as in (2.1) satisfying some additional properties which are listed

in Proposition 5.2. Examples of such robust utilities are multiplier preferences or semi-deviation

utilities with any strictly increasing utility u2 : R→ R.

Our case study is inspired by and extends an example in Jouini et al. (2008), Proposition

3.2. In Jouini et al. (2008) U2 is required to be a monetary utility, i.e. cash additive (u2 ≡ IdR).

Proposition 5.2 below shows that the functional form of the Pareto optimal allocations obtained

in Jouini et al. (2008) stays the same also when we allow for a larger class of preferences for

the second agent. The proof of Proposition 5.2 is essentially the same as in Jouini et al. (2008).
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For the sake of completeness we provide it in Section D. Before giving the result, we recall the

definition of strict risk aversion conditional on lower-tail events.

Definition 5.1. (i) Let X ∈ L1 and A ∈ F with P(A) > 0. The set A is a lower tail-event for

X if ess infAX < ess supAX ≤ ess infAc X where ess infAX := sup{m ∈ R | P(X > m |

A) = 1} (sup ∅ := −∞) and ess supAX := inf{m ∈ R | P(X ≤ m | A) = 1} (inf ∅ :=∞).

(ii) A function U : L1 → R ∪ {−∞} is strictly risk averse conditional on lower tail-events if

U(X) < U(X1Ac + E[X | A]1A) for every X ∈ dom U and any set A which is a lower

tail-event for X.

Proposition 5.2. Let decision maker 1 be represented by (5.1) and decision maker 2 by a law

invariant robust utility

U2(X) = inf
Q∈Q

(EQ[u2(X)] + α2(Q))

as in (2.1) with the following additional properties

• dom U2 = dom U2 + R,

• U2 is strictly monotone, i.e. X ≥ Y and P(X > Y ) > 0 implies U2(X) > U2(Y ),

• U2 is strictly risk averse conditional on lower-tail events.

Given any initial endowments Wi ∈ dom Ui, i = 1, 2, and c1, c2 ∈ R∪{∞} such that Ac(W ) 6= ∅,

the comonotone Pareto optimal allocations of the aggregate endowment W = W1 + W2 are of

the following form

(X1, X2) = (−(W − l)− + k,W ∨ l − k) where l ∈ R ∪ {−∞}(5.2)

and k ∈ R with k ≥ U1(W1)− U1(−(W − l)−)− c1.

If U2 is in addition strictly concave, then according to Corollary 3.11 all Pareto optimal

allocations are comonotone and of shape (5.2).

5.2 Examples Illustrating the Bounds (3.6)

Since our examples will only involve two decision makers and as the bounds (3.6) are determined

by the limiting case with trivial individual constraints, in the following we give a version of

Theorem 3.9 for two decision makers with c1 = c2 =∞ .
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Theorem 5.3. Suppose n = 2. We consider two cases:

(i) Suppose that diL < diH for at least one i ∈ {1, 2}. If the weights λ1 > 0 and λ2 > 0 satisfy

(5.3)
λ2
λ1
∈
(
d1L
d2H

,
d1H
d2L

)
,

then there exists a comonotone solution to (3.3).8

(ii) Suppose that d1H = d1L, d2H = d2L, s1 = s2 = −∞. If λi = δ
diH

, i = 1, 2, for some δ > 0,

then there exists a comonotone solution to (3.3).

Example 5.4. Illustration of Theorem 5.3 (i) and of the differences between (3.3) and (3.4):

Let U1(X) = E[dLX
+ − dHX−] and U2(X) := E[X], X ∈ L1, where 0 < dL < 1 < dH . Suppose

that W ≥ 0. If λ2
λ1
< dL, consider the allocations (W + k,−k) ∈ A(W ), k ∈ R+. Then

λ1U1(W + k) + λ2U2(−k) = λ1E[dL(W + k)]− λ2k

= λ1E[dLW ] + (λ1dL − λ2)k →∞ for k →∞

because λ1dL − λ2 > 0. Hence, (3.3) admits no solution. Analogously, (3.3) admits no solution

in case λ2
λ1
> dH . However for λ2

λ1
∈ [dL, dH ] the comonotone allocation (0,W ) solves (3.3). Now

suppose for simplicity that W = 0 and that ci ∈ R for i = 1, 2. By Proposition 3.6 we only need

to consider the comonotone allocations (−k, k), k ∈ R, when solving (3.4). Since acceptability

implies that k must be bounded (for instance k ≤ c1/dH if k ≥ 0), (3.4) admits a solution for

any λi > 0, i = 1, 2. This solution obviously depends on how far we can push k in an optimal

direction, hence on the constraints ci. Apparently, all allocations (−k, k), k ∈ R, are Pareto

optimal and also acceptable for some ci. Also note that if c1 =∞ and c2 ∈ R, then (3.4) admits

a solution if and only if λ2
λ1
≤ dH while if c1 ∈ R and c2 = ∞ there is a solution to (3.4) if and

only if λ2
λ1
≥ dL. ♦

Notice that in Example 5.4 there exists a solution to (3.3) even if λ2λ1 equals one of the bounds

given in (5.3). However, if the robust utility of one of the decision makers is strictly concave,

then often (3.3) admits no solution at the interval bounds of (5.3) either:

8Here 0
∞ := 0 and ∞

0
:=∞.
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Example 5.5. Illustration of Theorem 5.3 (i): Let W = 0 and consider two utility functions

u1 and u2 with diH < ∞ and diL > 0, i = 1, 2. Let Ui(X) := E[ui(X)], X ∈ L1. Suppose that

u′2(a) = d2L + 1
2
√
a

for large a > 0 (in particular u′2 does not attain d2L) and that u′1(−a) = d1H

for a > 0. Then for λ2
λ1

=
d1H
d2L

and some constant k > 0 we have

sup
a∈R

λ1U1(−a) + λ2U2(a) = sup
a∈R

λ1u1(−a) + λ2u2(a) ≥ sup
a≥0

λ2
√
a+ k =∞.

Similar arguments show that in general we cannot expect the existence of solutions to (3.3) in

case λ2
λ1

equals the lower bound
d1L
d2H

either. ♦

Example 5.6. Illustration of Theorem 5.3 (ii): Suppose that u1(x) = d1x and u2(x) = d2x for

some d1, d2 > 0. If λ2
λ1
6= d1

d2
, then (λ1d

1 − λ2d2) 6= 0 and considering the allocations of type

(W + k,−k) ∈ A(W ) for some constant k yields

sup
k∈R

λ1U1(W + k) + λ2U2(−k) = λ1U1(W ) + λ2U2(0) + sup
k∈R

(λ1d
1 − λ2d2)k =∞.

Hence, (3.3) admits no solution. ♦

5.3 (Non-)Existence of Pareto Optima in case the Decision Makers are not

Probabilistic Sophisticated with respect to the same Reference Measure

Consider two decision makers with expected utility choice criteria U1(X) = EP[u1(X)] and

U2(X) = EP̃[u2(X)], X ∈ L∞, where the probability measures P̃ and P are equivalent but not

equal, and ui : R → R are utility functions with ui(0) = 0, i = 1, 2. Notice that the decision

makers are probabilistic sophisticated in different worlds, i.e. with respect to different reference

probabilities. Hence there is ε > 0 such that the sets A := {dP̃dP ≥ 1 + ε} and B := {dP̃dP ≤ 1− ε}

have positive probability (under P). Suppose that c1 = c2 = ∞ and that (Y1, Y2) ∈ A(0) is

a Pareto optimal allocation. According to Lemma 3.3 - which does not rely on probabilistic

sophistication - if the ui are ‘nice’, then (Y1, Y2) is the solution to

λ1U1(Y1) + λ2U2(Y2) = sup
Y ∈L1

λ1U1(−Y ) + λ2U2(Y )

for some weights λi > 0, i = 1, 2. However,

λ1U1(Y1) + λ2U2(Y2) ≥ sup
t>0

λ1EP[u1(−t1A)] + λ2EP

[
u2(t1A)

dP̃
dP

]
≥ sup

t>0
(λ1u1(−t) + λ2(1 + ε)u2(t))P(A)(5.4)
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and similarly

λ1U1(Y1) + λ2U2(Y2) ≥ sup
t>0

λ1EP[u1(t1B)] + λ2EP

[
u2(−t1B)

dP̃
dP

]
≥ sup

t>0
(λ1u1(t) + λ2(1− ε)u2(−t))P(B).(5.5)

Now it is easy to construct situations in which (5.4) or (5.5) explode and thus contradict the

Pareto optimality of (Y1, Y2). If for instance diL > 0 and diH <∞ for i = 1, 2, then

(5.6) (5.4) ≥ sup
t>0

(λ2(1 + ε)d2L − λ1d1H)P(A)t

and

(5.7) (5.5) ≥ sup
t>0

(λ1d
1
L − λ2(1− ε)d2H)P(B)t.

(5.6) or (5.7) explode apart from the case9

(5.8)
(1 + ε)d2L

d1H
≤ λ1
λ2
≤

(1− ε)d2H
d1L

.

So in particular we must have that

(5.9)
(1 + ε)d2L

d1H
≤

(1− ε)d2H
d1L

.

However, if e.g. 1 − ε/2 < diL ≤ diH < 1 + ε/2, i = 1, 2, then (5.9) is not satisfied which in the

end contradicts the Pareto optimality of (Y1, Y2).

But there are also cases in which Pareto optimal allocations exists. Suppose that there are

constants K > 1 > k > 0 such that k ≤ dP̃/dP ≤ K and suppose that u2 is such that
d2H
d2L
≥ K

k .

The latter condition implies that u2 is concave enough in the sense that there is a utility function

ũ2 which dominates v(x) := ku2(x)1{x<0} + Ku2(x)1{x≥0}, x ∈ R. Indeed, as v is concave on

the half axises x < 0 and x ≥ 0 respectively, and by the requirement on the concavity of u2,

there are x0 < 0 and x1 > 0 and a joint constant L > 0 such that ku′2(x0) > Ku′2(x1) and

x 7→ ku′2(x0)x + L dominates v on x < 0 and x 7→ Ku′2(x1)x + L dominates v on x ≥ 0, so

ũ2(x) := Ku′2(x1)x
+ − ku′2(x0)x− + L does the job. Consequently for all W ∈ L1 and for any

9Note the similarity between the bounds in (5.8) and the bounds in (5.3).
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λ1, λ2 > 0 we have

sup
(X1,X2)∈A(W )

λ1U1(X1) + λ2U2(X2) = sup
(X1,X2)∈A(W )

λ1U1(X1) + λ2EP

[
u2(X2)

dP̃
dP

]
(5.10)

≤ sup
(X1,X2)∈A(W )

λ1U1(X1) + λ2EP [v(X2)]

≤ sup
(X1,X2)∈A(W )

λ1U1(X1) + λ2EP [ũ2(X2)] .(5.11)

Since Ũ2(·) := EP [ũ2(·)] is of type (2.1) we know that (5.11) is bounded and admits a comonotone

solution if λ1, λ2 satisfy the conditions stated in Theorem 5.3. Now it is easy to construct

situations in which the above inequalities are indeed equalities, and solutions to (5.11) thus

coincide with solutions to the left hand side of (5.10). Suppose for instance that dP̃
dP = k1B+K1Bc

for some set B ∈ F with P(B) = K−1
K−k , and that u2(x) = d2Lx

+ − d2Hx−. Then we may choose

ũ2(x) = v(x) = Kd2Lx
+−kd2Hx−. Depending on u1, any situation in which the extreme allocation

(W, 0) is a solution to (5.11) (like in Example 5.4), this allocation obviously also solves the left

hand side of (5.10). Furthermore, whenever there is a solution (Y1, Y2) to (5.11) such that

B = {Y2 ≤ 0}, the allocation (Y1, Y2) solves (5.10) too, because then u2(Y2)
dP̃
dP = ũ2(Y2).

Apparently, if P̃ 6= P, the existence of Pareto optima depends on parameters such as the deviation

of the measures P and P̃ from each other relative to the concavity of the utilities ui. Hence,

if the decision makers are not probabilistic sophisticated with respect to the same reference

probability measure, then existence results like Theorem 4.1 do not hold in general any longer.

A Proof of Lemma 2.3

In the proof of Lemma 2.3 and Theorems 3.8 and 3.9 we will apply the following facts about

law invariant monetary utilities which apart from the sign are convex risk measures.

Lemma A.1. Let

U(X) = inf
Q∈Q

(EQ[u(X)] + α(Q)) , X ∈ L1,

be a law invariant robust utility as (2.1). Define

(A.1) U(X) := inf
Q∈Q

(EQ [X] + α(Q)) , X ∈ L1,
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so that U(·) = U(u(·)). Then, U is a proper, law invariant, �ssd-monotone, upper semi-

continuous, monotone, cash additive (U(X + m) = U(X) + m for all m ∈ R), and concave

function. Moreover, we have that

(A.2) U(X) ≤ E[X] + U(0) for all X ∈ L1.

Proof. We give a brief version of the proof since many of the presented arguments are standard

and can for instance be found in Föllmer and Schied (2004). Cash additivity and monotonicity

are obvious by definition of U and properness follows from infQ∈Q α(Q) > −∞. Concavity and

upper semi-continuity follow from the fact that U is a point-wise infimum over continuous affine

functions. To see that U is law invariant we note that for X ∈ L1 and Z ∈ L∞ we have

(A.3) sup

Z̃
d
=Z

E[XZ̃] =

∫ 1

0
qX(s)qZ(s) ds

where qY (s) := inf{x | P(Y ≤ x) ≥ s} denotes the (left-continuous) quantile function of a ran-

dom variable Y . The relation (A.3) is a consequence of the (upper) Hardy-Littlewood inequality

and some analysis. A proof can be found in Föllmer and Schied (2004), Lemma 4.55, or in a

slightly more general version in Svindland (2010b), Lemma C.2. As e.g. in the proof of Föllmer

and Schied (2004), Theorem 4.54, by (A.3) and law invariance of Q and α we obtain that

U(X) = inf
Q∈Q

(
E
[
dQ
dP

X

]
+ α(Q)

)
= inf

Q∈Q
inf

Q̃ d
=Q

(
E

[
dQ̃
dP

X

]
+ α(Q̃)

)

= inf
Q∈Q

−
sup

Q̃ d
=Q

E

[
−dQ̃
dP

X

]+ α(Q)


= inf

Q∈Q

(∫ 1

0
−q−X(s)q dQ

dP
(s) ds+ α(Q)

)
= inf

Q∈Q

(∫ 1

0
qX(1− s)q dQ

dP
(s) ds+ α(Q)

)

in which, with some abuse of notation, we write Q̃ d
= Q instead of dQ̃

dP
d
= dQ

dP and use the fact

that qX(1− s) = −q−X(s) for almost all s ∈ (0, 1). Clearly, the last term in the equations only

depends on the distribution of X under P. Hence, the law invariance follows. According to Dana

(2005), Theorem 4.1, an upper semi-continuous monotone concave function is law invariant if

and only if it is �ssd-monotone as defined in Lemma 2.3 (iv). The final statement follows from
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the fact that E[X] �ssd X by Jensen’s inequality for concave functions. Thus �ssd-monotonicity

and cash additivity imply that U(X) ≤ U(E[X]) = E[X] + U(0).

Proof of Lemma 2.3. Let

U(X) := inf
Q∈Q

(EQ[u(X)] + α(Q)) , X ∈ L1,

as in (2.1) and let U be defined as in Lemma A.1 such that U(·) = U(u(·)).

(i): This follows from Jensen’s inequality for concave functions and the fact that by definition

dom u 6= ∅ and infQ∈Q α(Q) > −∞.

(ii): is obvious.

(iii): This follows from the concavity of u and the monotonicity and concavity of U .

(iv): According Dana (2005), Theorem 4.1, an upper semi-continuous monotone concave function

is law invariant if and only if it is �ssd-monotone. The upper semi-continuity of U is proved in

the next item.

(v): Let k ∈ R and (Xn)n∈N ⊂ Ek := {X ∈ L1 | U(X) ≥ k} be a sequence converging in

(L1, ‖ · ‖1) to some X. Then we may choose a subsequence which we also denote by (Xn)n∈N

which converges P-a.s. to X too. We consider the following two cases: either the right-hand

derivative u′ of u is bounded on the domain of u or it is unbounded. In the first case, if the

right-hand derivative u′ of u is bounded on the domain of u, let C > 0 such that u′(x) ≤ C for

all x ∈ dom u. The right continuity of u implies that in this case dom u is closed in R. Since

Xn ∈ dom U for all n ∈ N, we must have that Xn ∈ dom u P-a.s. for all n ∈ N (see (A.2)) and

therefore X ∈ dom u P-a.s. Monotonicity and concavity of u imply that

|u(Xn)− u(X)| ≤ (u′(X) ∨ u′(Xn))|Xn −X| ≤ C|Xn −X|.

Hence, we conclude that the sequence u(Xn) converges to u(X) in L1, and by upper semi-

continuity of U we infer that

U(X) = U(u(X)) ≥ lim sup
n→∞

U(u(Xn)) ≥ k,

so Ek is closed. Now suppose that u′ is unbounded on the domain of u. Then there ex-

ists a strictly decreasing sequence (ar)r∈N ⊂ dom u such that u′(a1) > 0, u′(ar) < ∞, and
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limr→∞ u
′(ar) =∞. By the same arguments as presented in the first case the sequence u(Xn∨ar)

converges in L1 to u(X∨ar), because u′ is bounded on [ar,∞] and (Xn∨ar)n∈N converges P-a.s.

and in (L1, ‖·‖1) to X∨ar. Hence, by upper semi-continuity and monotonicity of U (Lemma A.1)

as well as monotonicity of u we obtain

U(X ∨ ar) = U(u(X ∨ ar)) ≥ lim sup
n→∞

U(u(Xn ∨ ar)) ≥ lim sup
n→∞

U(u(Xn)) ≥ k.

Now let a := limr→∞ ar ≥ −∞. Then dom u ⊂ [a,∞), and Xn ≥ a P-a.s., because Xn ∈ dom U .

Hence, X = limn→∞Xn ≥ a P-a.s. too and thus limr→∞X ∨ ar = X. Moreover, by right-

continuity and monotonicity of u we have limr→∞ u(X ∨ ar) = u(X) monotonously. Therefore,

we infer from applying the monotone convergence theorem that

U(X) = inf
Q∈Q

(EQ[u(X)] + α(Q)) = inf
Q∈Q

lim
r→∞

(EQ[u(X ∨ ar)] + α(Q))

≥ lim sup
r→∞

inf
Q∈Q

(EQ[u(X ∨ ar)] + α(Q)) = lim sup
r→∞

U(X ∨ ar)

≥ k.

Hence, also in this case Ek is closed, so U is upper semi-continuous.

B Proof of Proposition 3.2

We prove the case of Pareto optima. For acceptable Pareto optima in what follows simply

replace A(W ) by Ac(W ).

Now let (X1, . . . , Xn) ∈ A(W ) be Pareto Optimal. Then the non-empty convex sets

C := {(U1(X1), . . . ,Un(Xn))}

and

V = {(U1(Y1), . . . ,Un(Yn)) | (Y1, . . . , Yn) ∈ A(W )} − Rn++

in Rn, where Rn++ := {(y1, . . . , yn) ∈ Rn | yi > 0, i = 1, . . . , n}, have empty intersection due

to the Pareto optimality of (X1, . . . , Xn). Hence, there exists a non-trivial linear functional

(λ1, . . . , λn) ∈ Rn such that

(B.1)
n∑
i=1

λiUi(Xi) ≥
n∑
i=1

λi(Ui(Y1)− yi)

23



for all (Y1, . . . , Yn) ∈ A(W ) and (y1, . . . , yn) ∈ Rn++; see Rockafellar (1974), Theorem 11.2. We

infer that λi ≥ 0 for all i because otherwise choosing yi >> 0 would yield a contradiction. The

last assertion of Proposition 3.2 is obvious.

C Proofs of Theorems 3.8 and 3.9

The next Lemma C.1 is an Arzela-Ascoli type argument which will also play a crucial role in

the proof of Theorems 3.8 and 3.9. For a proof see e.g. Filipović and Svindland (2008).

Lemma C.1. Let fn : R → R, n ∈ N, be a sequence of increasing 1-Lipschitz-continuous

functions such that fn(0) ∈ [−K,K] for all n ∈ N where K ≥ 0 is a constant. Then there is a

subsequence (fnk)k∈N of (fn)n∈N and an increasing 1-Lipschitz-continuous function f : R → R

such that limk→∞ fnk(x) = f(x) for all x ∈ R.

Let CFN := {(fi)ni=1 ∈ CF | f1(0) = . . . = fn(0) = 0}. Note that

CF = {(fi + ai)
n
i=1 | (fi)ni=1 ∈ CFN, ai ∈ R,

n∑
i=1

ai = 0}.

According to Proposition 3.6 there exists a solution to (3.4) for some given weights (λ1, . . . , λn)

if and only if there is a solution to

Maximize

n∑
i=1

λiUi(fi(W ) + ai) subject to (fi)
n
i=1 ∈ CFN, ai ∈ R,(C.1)

n∑
i=1

ai = 0, (fi(W ) + ai)
n
i=1 ∈ Ac(W ).

Proof of Theorem 3.9. We will prove the existence of a solution to (C.1). Fix a set of weights

(λ1, . . . , λn) satisfying the conditions (3.6). First of all, we observe that if for some j ∈ M

the right-hand-derivative u′j does not attain the values djH and/or djL, we can always find non-

negative numbers d̃jH and/or d̃jL in the image of u′j such that, for the already given set of weights

(λ1, . . . , λn), the conditions (3.6) still hold true if we replace the djH and/or djL by d̃jH and/or d̃jH .

We assume that all djH and/or djL which are not attained by the corresponding u′j are replaced

as in the described manner, and for the sake of simplicity we keep the notation djH and djL.

By concavity of the ui there is a constant k such that for all i = 1, . . . , n the affine functions
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R 3 x 7→ diLx+ k and R 3 x 7→ diHx+ k both dominate ui
10. Using this, we will show that

P := sup
{ n∑
i=1

λiUi(fi(W ) + ai) | (fi)ni=1 ∈ CFN, ai ∈ R,(C.2)

n∑
i=1

ai = 0, (fi(W ) + ai)
n
i=1 ∈ Ac(W )

}
<∞,

and that this supremum is realized over a bounded set of comonotone allocations where the

bound is given by W . More precisely, we will prove that there exists some constant K > 0

depending on W such that

P = sup
{ n∑
i=1

λiUi(fi(W ) + ai) | (fi)ni=1 ∈ CFN, ai ∈ [−K,K],(C.3)

n∑
i=1

ai = 0, (fi(W ) + ai)
n
i=1 ∈ Ac(W )

}
.

To this end, we define the functions

Ui(X) := inf
Q∈Qi

(EQ[X] + αi(Q)) , X ∈ L1, i = 1, . . . , n,

as in Lemma A.1. Consider (fi)
n
i=1 ∈ CFN and ai ∈ R such that

∑n
i=1 ai = 0 and (fi(W ) +

ai)
n
i=1 ∈ Ac(W ). Let I := {i ∈ {1, . . . , n} | ai < 0} and J := {1, . . . , n} \ I. By applying

10Note that if u is a concave function, then it is always dominated by x 7→ u′(y)(x− y) + u(y).
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monotonicity, cash additivity and finally property (A.2) of the Ui (see Lemma A.1) we obtain:

n∑
i=1

λiUi(fi(W ) + ai) =

n∑
i=1

λiUi(ui(fi(W ) + ai))

≤
∑

i∈I∩M
λiUi(d

i
H(fi(W ) + ai) + k) +

∑
j∈J∩M

λjUj(d
j
L(fj(W ) + aj) + k)+

∑
l∈N

λlUl(d
l
H(fl(W ) + al) + k)

≤ k
n∑
i=1

λi +
∑

i∈I∩M
λiUi(d

i
Hfi(W ))+

∑
j∈J∩M

λjUj(d
j
Lfj(W )) +

∑
l∈N

λlUl(d
l
Hfl(W ))+(

min
i∈I∩M

λid
i
H

) ∑
i∈I∩M

ai +

(
max
j∈J∩M

λjd
j
L

) ∑
j∈J∩M

aj + δ
∑
l∈N

al

≤ k
n∑
i=1

λi + E[W+]
n∑
i=1

λid
i
H +

n∑
i=1

λiUi(0)+(
min
i∈I∩M

λid
i
H

) ∑
i∈I∩M

ai +

(
max
j∈J∩M

λjd
j
L

) ∑
j∈J∩M

aj + δ
∑
l∈N

al.(C.4)

Suppose that N = ∅, then we further estimate

(C.5) (C.4) ≤ E[W+]

n∑
i=1

λid
i
H + k

n∑
i=1

λi +

n∑
i=1

λiUi(0)−
(

min
i∈I

λid
i
H −max

j∈J
λjd

j
L

)
a

where a :=
∑

i∈J ai (≥ 0). If N 6= ∅ and
∑

l∈N al < 0, then we estimate

(C.6) (C.4) ≤ E[W+]

n∑
i=1

λid
i
H + k

n∑
i=1

λi +

n∑
i=1

λiUi(0)−
(
δ − max

j∈J∩M
λjd

j
L

)
ã

for ã :=
∑

i∈J∩M ai (≥ 0) using (3.6). And similarly, if N 6= ∅ and
∑

l∈N al ≥ 0, then we estimate

(C.7) (C.4) ≤ E[W+]

n∑
i=1

λid
i
H + k

n∑
i=1

λi +

n∑
i=1

λiUi(0)−
(

min
i∈I∩M

λid
i
H − δ

)
â

for â :=
∑

i∈J∪N ai (≥ 0). Consequently we infer that

P ≤ E[W+]

n∑
i=1

λid
i
H + k

n∑
i=1

λi +

n∑
i=1

λiUi(0) <∞.

Choose any allocation (X1, . . . , Xn) ∈ Ac(W ) (Assumption 3.1). Then we have that P ≥∑n
i=1 λiUi(Xi) =: k̃. Letting

A := min
i=1,...,n

λid
i
H − max

j=1,...,n
λjd

j
L
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if N = ∅, or

A := min

{(
δ −max

j∈M
λjd

j
L

)
,

(
min
i∈M

λid
i
H − δ

)}
if N 6= ∅, we infer from (C.5), (C.6), and (C.7) that the supremum in (C.2) is realized over

allocations such that

|ai| ≤
|k̃|+ E[W+]

∑n
i=1 λid

i
H + k

∑n
i=1 λi + |

∑n
i=1 λiUi(0)|

A
=: K

for all i ∈ M , and |
∑

i∈N ai| ≤ K too. Note that A > 0 due to the conditions (3.6) on the

weights λi. In the following we argue that in case |N | > 1 we may also assume that the ai

belonging to i ∈ N are bounded due to the insensitivity of the cash additive Ui, i ∈ N , to

constant re-sharings of 0 amongst themselves. To this end note that the choice of the λi and

the requirement si = −∞ for i ∈ N implies

(C.8)
∑
i∈N

λiUi(fi(W ) + ai +mi) =
∑
i∈N

λiUi(fi(W ) + ai) + δ
∑
i∈N

mi =
∑
i∈N

λiUi(fi(W ) + ai),

whenever mi ∈ R such that
∑

i∈N mi = 0. Hence, adding constants mi such that
∑

i∈N mi = 0

to the endowments of the decision makers in N does not affect the contribution of the allocation

to P . This immediately implies that we may assume |ai| ≤ K for all i ∈ N if ci = ∞ for all

i ∈ N , because in that case we may choose m1 =
∑

i∈N ai − a1 and mi = −ai for all i 6= 1 in

(C.8), and the altered allocation satisfies the bound (|m1 + a1| = |
∑

i∈N ai| ≤ K, see above). If

the set Nb ⊂ N of indices i ∈ N such that ci ∈ R is not empty, we also need to consider cash

amounts that might be needed to make the endowment fi(W ) +ai acceptable. This is the point

where the assumption Ui(−W−) > −∞ for all i ∈ Nb enters (whenever |N | > 1). Using the cash

additivity (Ui(Y + z) = Ui(Y ) + diHz, z ∈ R) and monotonicity of Ui we obtain that fi(W ) + z

is acceptable for decision maker i ∈ Nb whenever

z ≥ Ui(Wi)− Ui(−W−)− ci
diH

.

Moreover, acceptability of fi(W ) + ai implies (again using cash additivity and monotonicity of

Ui) for all i ∈ Nb:

ai ≥
Ui(Wi)− ci − Ui(fi(Wi))

diH
≥ Ui(Wi)− ci − Ui(0)

diH
− E[W+]

where we have used that Ui(fi(Wi)) ≤ Ui(W+) ≤ E[diHW
+]+Ui(0) according to (A.2). Therefore

we know that there exists a joint constant K̂ > 0 such that the ai, i ∈ Nb, are bounded
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from below by −K̂ and such that the endowments f(Wi) + ai + mi stay acceptable for mi =

−[(ai− K̂)∨ 0], i ∈ Nb. If Nb = N , then choosing some j ∈ Nb and letting mi = −[(ai− K̂)∨ 0]

for i ∈ Nb \ {j} and mj = −
∑

i∈N\{j}mi, we obtain that
∑

i∈N mi = 0, |ai + mi| ≤ K̂ for all

i ∈ Nb \ {j}, and

|aj +mj | ≤ |
∑
i∈N

ai|+ |
∑

i∈Nb\{j}

ai +mi| ≤ K + |Nb|K̂ =: K.

Moreover, since aj ≤ aj + mj , also f(Wj) + aj + mj is acceptable, i.e. Uj(f(Wj) + aj + mj) ≥

Uj(Wj) − cj . If |Nu| > 1 where Nu := N \ Nb, then we choose some j ∈ Nu and let mi =

−[(ai − K̂) ∨ 0] for all i ∈ Nb and mi = −ai for all i ∈ Nu \ {j}, whereas mj = −
∑

i∈N\{j}mi.

Again,
∑

i∈N mi = 0, and ai +mi = 0 for all i ∈ Nu \ {j}, |ai +mi| ≤ K̂ for all i ∈ Nb, and

|aj +mj | ≤ |
∑
i∈N

ai|+ |
∑
i∈Nb

ai +mi| ≤ K + |Nb|K̂ =: K.

Hence, (C.2) and (C.3) are proved. By virtue of (C.3) we may choose a sequence ((fpi )ni=1)p∈N ⊂

CF with fpi (0) ∈ [−K,K] for all i = 1, . . . , n and p ∈ N such that (fpi (W ))ni=1 ∈ Ac(W ) for all

p ∈ N and

P = lim
p→∞

n∑
i=1

λiUi(fpi (W )).

According to Lemma C.1 there exists a subsequence, which we for the sake of simplicity also

denote by (fpi )ni=1, which converges pointwise to some (fi)
n
i=1 ∈ CF. As |fpi (W )| ≤ |W | + K

for all i = 1, . . . , n and p ∈ N, we may apply the dominated convergence theorem which yields

fi(W ) ∈ L1, and limp→∞ E[|fi(W )− fpi (W )|] = 0 for all i = 1, . . . , n. By upper semi-continuity

of the Ui (Lemma 2.3) we have

Ui(Wi)− ci ≤ lim sup
p→∞

Ui(fpi (W )) ≤ Ui(fi(W )),

and

P = lim
p→∞

n∑
i=1

λiUi(fpi (W )) ≤
n∑
i=1

λi lim sup
p→∞

Ui(fpi (W ))

≤
n∑
i=1

λiUi(fi(W )).

Hence, we infer that (fi(W ))ni=1 ∈ Ac(W ) (since P > −∞) and

P =
n∑
i=1

λiUi(fi(W )).
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For the last part of (ii) suppose that |N | = n, and let (X1, . . . , Xn) be a solution to (3.4) for the

given weights. If mi ∈ R such that
∑n

i=1mi = 0, then the same computation as in (C.8) yields∑n
i=1 λiUi(Xi +mi) =

∑n
i=1 λiUi(Xi).

Proof of Theorem 3.8. Recall (C.1) and let (fi)
n
i=1 ∈ CFN, ai ∈ R with

∑n
i=1 ai = 0 such

that (fi(W ) + ai)
n
i=1 ∈ Ac(W ). Since in particular Ui(fi(W ) + ai) > −∞, we must have that

fi(W ) + ai ≥ si for all i = 1, . . . , n. Let K̃ :=
∑n

i=1 |si|. Then

−(|W |+ K̃) ≤ fi(W ) + ai = W − (
∑
j 6=i

fj(W ) + aj) ≤ |W |+ K̃.

Hence, we deduce that (C.3) holds with K := 2 essinf |W |+K̃. The rest of the proof now follows

the lines of the proof of Theorem 3.9.

D Proof of Proposition 5.2

For the proof of Proposition 5.2 we will need some (additional) tools from convex duality theory

which we briefly introduce in the following. The details and proofs of the statements can e.g.

be found in Ekeland and Téman (1999). Let U be a law invariant robust utility as in (2.1). The

dual function of U is

U∗(Z) := sup
Y ∈L1

U(Y )− E[Y Z], Z ∈ L∞,

which is convex and σ(L∞, L1)-lower semi-continuous, i.e. the level sets Ek := {Z ∈ L∞ |

U∗(Z) ≤ k} are closed in the σ(L∞, L1)-topology for all k ∈ R. Moreover, U∗ is law invariant

by the same arguments as applied in the proof of Lemma A.1 (−U∗ is concave and upper semi-

continuous) and therefore U∗ is �c-antitone according to Dana (2005), Theorem 4.1. Since U is

concave and upper semi-continuous (Lemma 2.3), it follows from the Fenchel-Moreau theorem

that

(D.1) U(X) = U∗∗(X) := inf
Z∈L∞

E[ZX] + U∗(Z), X ∈ L1.

Again the very same techniques as in the proof of Lemma A.1 show that U is law invariant if

and only if U∗ is law invariant. The superdifferential of U at some X ∈ L1 is

∂U(X) := {Z ∈ L∞ | U(Y ) ≤ U(X) + E[Z(Y −X)]∀Y ∈ L1}.
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Notice that

(D.2) Z ∈ ∂U(X) ⇔ U(X) = E[ZX] + U∗(Z)

and that monotonicity of U implies ∂U(X) ⊂ dom U∗ ⊂ L∞+ .

Lemma D.1. Let U be a law invariant robust utility as in (2.1) and let X ∈ L1 such that

∂U(X) 6= ∅. Then there exists a decreasing function h : R→ [0,∞) such that h(X) ∈ ∂U(X).

Proof. Let Z ∈ ∂U(X) and h : R → R+ be a measurable function such that h(X) = E[Z | X].

By (D.2), E[Z | X] �c Z (Jensen’s inequality), �c-antitonicity of U∗ and finally (D.1) it follows

that

U(X) = E[ZX] + U∗(Z) ≥ E[E[Z | X]X] + U∗(E[Z | X]) ≥ U(X).

Thus h(X) ∈ ∂U(X) too. Note that (A.3) and law invariance of U∗ imply

U(X) ≤
∫ 1

0
qh(X)(1− t)qX(t) dt+ U∗(h(X))

in the same way as the similar argument presented in the proof of Lemma A.1. Hence we obtain

that

U(X) ≤
∫ 1

0
qh(X)(1− t)qX(t) dt+ U∗(h(X))

≤ E[h(X)X] + U∗(h(X)) = U(X)

where we applied the Hardy-Littlewood inequalities in the second step; see Föllmer and Schied

(2004) Theorem A.24. Consequently E[h(X)X] =
∫ 1
0 qh(X)(1− t)qX(t) dt which guarantees that

h might be chosen as to be decreasing; see again Föllmer and Schied (2004) Theorem A.24.

Lemma D.2. Let U be a law invariant robust utility as in (2.1) which is strictly risk averse

conditional on lower-tail events. Let (X,Z) ∈ L1×L∞ be such that Z ∈ ∂U(X) and X = f(W ),

Z = h(W ) for some W ∈ L1 and an increasing function f : R → R and a decreasing function

h : R → R+. Consider the set A := {Z = ess supZ}. If P(A) > 0, then X is constant on the

set A.

Proof. Assume that P(A) > 0 and, by contradiction, that X is not constant on A. Since f is

increasing and h is decreasing A is a lower tail-event of X. As U is strictly risk averse conditional
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on lower-tail events it follows that

(D.3) U(X) < U(X)

where X = X1Ac + E[X | A]1A. But E[ZX] = E[ZX] and Z ∈ ∂U(X) imply U(X) ≤ U(X) +

E[Z(X −X)] = U(X) which contradicts (D.3).

Lemma D.3. Let U be a law invariant robust utility as in (2.1) which is in addition strictly

monotone on dom U and let (X,Z) ∈ L1 × L∞ such that Z ∈ ∂U(X). Then Z > 0 a.s.

Proof. Let A := {Z = 0}. As U(X + 1A) ≤ U(X) + E[Z1A] = U(X), strict monotonicity of U

implies P(A) = 0.

Proof of Proposition 5.2. In the following we may and will assume that c1 = c2 = ∞, because

any Pareto optimum remains optimal if we replace the rationality constraints by the trivial ones.

Given that we are only concerned about the shape of the allocation, the constraints ci do not

play any role apart from giving the bound on the constant k in (5.2). This bound in turn follows

from the translation invariance of U1 implying that

U1(X1) = U1(−(W − l)−) + k ≥ U1(W1)− c1.

Hence, let (X1, X2) ∈ A(W ) (where c1 = c2 =∞) be a comonotone Pareto optimal allocation

of W , and let f, g : R → R be increasing functions such that f + g = IdR and (X1, X2) =

(f(W ), g(W )). According to Lemma 3.4 there exists λ1 > 0 and λ2 > 0 such that

(D.4) λ1U1(X1) + λ2U2(X2) = max
(Y1,Y2)∈A(W )

λ1U1(Y1) + λ2U2(Y2).

Note that the function

Uλ1,λ2(Y ) := sup
(Y1,Y2)∈A(Y )

λ1U1(Y1) + λ2U2(Y2), Y ∈ L1,

is concave, increasing and

dom Uλ1,λ2 = dom U1 + dom U2 = L1 + dom U2 = L1.

Moreover Uλ1,λ2(·) ≥ λ1U1(·) + λ2U2(0) implies that there exists an open set in L1 on which

Uλ1,λ2 is bounded from below, because λ1U1 as a continuous concave function has this property;
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see Ekeland and Téman (1999) Proposition 2.5. Hence Uλ1,λ2 is continuous on L1 and there-

fore everywhere superdifferentiable; see e.g. Ekeland and Téman (1999) Proposition 2.5 and

Proposition 5.2. Uλ1,λ2 is also law invariant. This can be deduced by verifying that the dual

U∗λ1,λ2 = (λ1U1)∗ + (λ2U2)∗

is law invariant as a sum of law invariant functions; see also the introductory remarks of this

section. According to Lemma D.1 there exists a decreasing function h : R→ R+ such that

(D.5) Z := h(W ) ∈ ∂Uλ1,λ2(W ) = ∂λ1U1(X1) ∩ ∂λ2U2(X2).

The inclusion ⊂ in (D.5) is due to the fact that for all Z ∈ ∂Uλ1,λ2(W ) we have that

Uλ1,λ2(Y ) ≤ Uλ1,λ2(W ) + E[Z(Y −W )] for all Y ∈ L1

and thus by (D.4) and definition of Uλ1,λ2 that

λ1U1(Y1) + λ2U2(Y2) ≤ λ1U1(X1) + λ2U2(X2) + E[Z(Y1 + Y2 − (X1 +X2))]

for all Y1, Y2 ∈ L1. Now Z ∈ ∂λiUi(Xi), i = 1, 2, follows. The converse inclusion in (D.5) follows

similarly. By definition of the supergradient, this implies that Z
λ1
∈ ∂U1(X1) and Z

λ2
∈ ∂U2(X2).

From Z
λ2
∈ ∂U2(X2) and the strict monotonicity of U2 it follows that P (Z = 0) = 0; see Lemma

D.3. Note that

U1(Y ) =

∫ 1

0
qY (t) dϕ(t), Y ∈ L1,

where ϕ(t) := t
α ∧ 1 for t ∈ [0, 1] is an increasing continuous (on (0, 1)) function. Since Z

λ1
∈

∂U1(X1) we have also that

U1(X1) =

∫ 1

0
qX1(t)q Z

λ1

(1− t) dt =

∫ 1

0
qX1(t) dψ(t)

where ψ(t) := 1
λ1

∫ t
0 qZ(1− s) ds, t ∈ [0, 1], is another increasing continuous function. Hence, we

obtain that ∫ 1

0
qX1(t) dϕ(t)−

∫ 1

0
qX1(t) dψ(t) = U1(X1)− U1(X1) = 0

and integration by parts Dunford and Schwartz (1976, III.6.21, Theorem 22) of each integral in

combination with a limiting argument by means of Xn
1 := −n ∨X1 ∧ n, n ∈ N, yields

(D.6)

∫ 1

0
(ψ(t)− ϕ(t)) dqX1(t) = 0.
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As Z
λ1
∈ Q1, we observe that ψ ≤ ϕ. Hence (D.6) can only be satisfied if qX1 is constant on

{ψ < ϕ}.

Since P(Z = 0) = 0, we have qZ(1 − s) > 0 for any s ∈ (0, 1), so in particular ψ(t) < 1

for all t < 1. Moreover, ψ(0) = 0 and the slope of ψ is at most 1
α . Therefore we have

β := inf{t | ψ(t) < ϕ(t)} ∈ [0, 1) and

(D.7) qX1 is constant on (β, 1) ⊂ {ψ < ϕ}.

If β > 0, it follows for any t ∈ [0, β] that t
α = ψ(t) =

∫ 1
1−t

1
λ1
qZ(s)ds. As q Z

λ1

≤ 1
α , we deduce

that

(D.8) qZ(s) =
λ1
α

= ess supZ for all s ∈ (1− β, 1].

Since Z
λ2
∈ ∂U2(X2) and as U2 is strictly risk averse conditionally on lower tail-events, X2

is constant on {Z = ess supZ}; see Lemma D.2. Recall that X1 = f(W ), X2 = g(W ) and

Z = h(W ) for increasing functions g and f and a decreasing function h. Consequently (D.7)

implies that f(W ) is constant on W−1(l,∞) whereas (D.8) implies that h(W ) and thus g(W )

are constant on W−1(−∞, l) for l := qW (β) (:= −∞ if β = 0). In conjunction with the fact that

f, g are continuous we deduce that X1 and X2 ought to be of the following form

X1 = (W − l)1{W≤l} + k, X2 = l1{W≤l} +W1{l≤W} − k, where k ∈ R.
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