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Abstract. In this note, we study term structure models driven by Lévy pro-
cesses and provide stability results for them. In reality, we can never be sure of
the accuracy of a proposed model. With this motivation, we present sufficient
conditions which ensure that the model has the tendency to recover from per-
turbations. Our results include stability conditions for the forward rates, yield
curves and option prices.

1. Introduction

The value at time t of one monetary unit to be paid at time T ≥ t is expressed
by a Zero Coupon Bond. A Zero Coupon Bond is a contract which guarantees the
holder one monetary unit at the maturity date T . The corresponding bond prices
till maturity can be written as the continuous discounting of one unit of cash

P (t, T ) = exp

(
−
∫ T

t

f(t, s)ds

)
,

where f(t, T ) is the rate prevailing at time t for instantaneous borrowing at time
T , the so-called the forward rate for date T .

The classical continuous time framework for the evolution of the forward rates
goes back to Heath, Jarrow and Morton (HJM) [14]. They assume that, for every
date T , the forward rates f(t, T ) follow an Itô process of the form

f(t, T ) = f(0, T ) +

∫ t

0

αHJM(s, T )ds+

∫ t

0

σ(s, T )dWs, t ∈ [0, T ](1.1)

where W is a Wiener process.
In this paper, we consider Lévy term structure models, which generalize the

classical HJM framework by replacing the Wiener process W in (1.1) by a more
general Lévy process X, also taking into account the occurrence of jumps. This
extension has been proposed by Eberlein et al. [8, 7, 3, 4, 5, 6]. In the sequel, we
therefore assume that, for every date T , the forward rates f(t, T ) follow an Itô
process

f(t, T ) = f(0, T ) +

∫ t

0

αHJM(s, T )ds+

∫ t

0

σ(s, T )dXs, t ∈ [0, T ]

with X being a Lévy process.
In reality, we can never be sure of the accuracy of a proposed model. Therefore, we

are interested to know how much its corresponding quantities (forward rates, option
prices, etc.) would change if we perturb the model – i.e. the volatility σ(t, T ) and the
initial forward curve f(0, T ) – a bit. In order to approach this stability problem, we
will switch to the Musiela parametrization of forward curves rt(x) = f(t, t+x) (see
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[17]), which allows us to consider the forward rates as the solution of a stochastic
partial differential equation (SPDE), the so-called HJMM (Heath–Jarrow–Morton–
Musiela) equation{

drt =
(
d
dxrt + αHJM(rt)

)
dt+ σ(rt−)dXt

r0 = h0,
(1.2)

and to apply stability results for Lévy driven SPDEs, which can, e.g., be found in
[1, 12, 16]. Existence and uniqueness of the Lévy driven HJMM equation (1.2) has
been investigated in [2, 11, 15, 18, 19].

In order to ensure that the implied bond market P (t, T ) is free of arbitrage
opportunities, we assume the existence of an equivalent martingale measure. Under
such a measure, the drift αHJM : H → H in (1.2) is given by the HJM drift condition

αHJM(h) =
d

dx
Ψ

(
−
∫ •
0

σ(h)(η)dη

)
= −σ(h)Ψ′

(
−
∫ •
0

σ(h)(η)dη

)
,(1.3)

where Ψ denotes the cumulant generating function of the Lévy process, see [7,
Sec. 2.1].

Therefore, the principal difficulty when applying stability results for SPDEs is
to assure that not only the volatility σ, but also the corresponding drift term αHJM

which depends on σ, satisfy appropriate regularity conditions.
The remainder of the note is organized as follows. In Section 2 we introduce the

term structure model, and in Section 3 we present the announced stability results.

2. Presentation of the term structure model

In this section, we introduce the Lévy term structure model. From now on, let
(Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual conditions, and
let X = (Xt)t≥0 be a real-valued Lévy process with drift b ∈ R, Gaussian part c ≥ 0
and Lévy measure ν, that is, the characteristic function of X1 is given by

ϕX1(u) = exp

(
ibu− c

2
u2 +

∫
R

(
eiux − 1− iux1[−1,1](x)

)
ν(dx)

)
, u ∈ R.

In what follows, we assume the existence of constants N, ε > 0 such that∫
{|x|>1}

ezxν(dx) <∞, z ∈ [−(1 + ε)N, (1 + ε)N ].

Then, the Lévy process X possesses moments of arbitrary order. The cumulant
generating function

Ψ(z) := lnE[ezX1 ]

exists on [−(1 + ε)N, (1 + ε)N ], and belongs to class C∞ on the open interval
(−(1 + ε)N, (1 + ε)N). We fix an arbitrary constant β > 0 and denote by Hβ the
space of all absolutely continuous functions h : R+ → R such that

‖h‖β :=

(
|h(0)|2 +

∫
R+

|h′(x)|2eβxdx
)1/2

<∞.(2.1)

Spaces of this kind have been introduced in [9]. According to [13, Thm. 2.1], the
space Hβ is a separable Hilbert space, the shift semigroup (St)t≥0 defined by Sth :=
h(t+ ·) is a C0-semigroup on Hβ , there are constants C1, C2 > 0 such that

‖h‖L∞(R+) ≤ C1‖h‖β , h ∈ Hβ ,(2.2)
‖h− h(∞)‖L1(R+) ≤ C2‖h‖β , h ∈ Hβ ,(2.3)
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and there exist another separable Hilbert space Hβ , a C0-group (Ut)t∈R on Hβ and
continuous linear operators ` ∈ L(Hβ ,Hβ), π ∈ L(Hβ , Hβ) such that

πUt` = St for all t ∈ R+.

The latter result allows us to apply the stability results from [12], where SPDEs
are understood as time-dependent transformations of SDEs. The particular rep-
resentation of the Hilbert space Hβ is not required in the sequel. Let H0

β be the
subspace

H0
β :=

{
h ∈ Hβ : lim

x→∞
h(x) = 0

}
,(2.4)

and let U ⊂ H0
β be the set

U :=

{
h ∈ H0

β :

∥∥∥∥∫ •
0

h(η)dη

∥∥∥∥
L∞(R+)

≤ N
}
.(2.5)

For each h ∈ U we define the function Σ(h) : R+ → R as

Σ(h) := h ·Ψ′
(
−
∫ •
0

h(η)dη

)
.

Let C lip
b = C lip

b (Hβ ;H0
β) be the linear space of all bounded Lipschitz functions

σ : Hβ → H0
β . The linear space C lip

b equipped with the norm

‖σ‖lip = sup
h∈Hβ

‖σ(h)‖β + sup
h1,h2∈Hβ
h1 6=h2

‖σ(h1)− σ(h2)‖β
‖h1 − h2‖β

is a Banach space. We define the subset F ⊂ C lip
b as

F := {σ ∈ C lip
b : σ(Hβ) ⊂ U}.

2.1. Lemma. The following statements are valid:
(1) We have Σ(U) ⊂ H0

β, and Σ : U → H0
β is locally Lipschitz continuous.

(2) For each σ ∈ F we have Σ ◦ σ ∈ C lip
b , and for each n ∈ N there exists a

constant M = M(n) > 0 such that

‖Σ ◦ σ‖lip ≤M

for all σ ∈ F with ‖σ‖lip ≤ n.

Proof. By [11, Prop. 4.5] there exists a constant C3 > 0 such that for all h, g ∈ U
we have

‖Σh− Σg‖β ≤ C3(1 + ‖h‖β + ‖g‖β + ‖g‖2β)‖h− g‖β ,

which provides both assertions. �

Now let σ ∈ F be a volatility. Note that we can write the HJM drift term (1.3)
– which ensures the absence of arbitrage – as αHJM = Σ ◦ σ. Hence, by Lemma 2.1
we have αHJM ∈ C lip

b . Consequently, for each h0 ∈ Hβ there exists a unique mild
solution for (1.2) with r0 = h0 on the state space Hβ of forward curves with càdlàg
sample paths satisfying

E
[

sup
t∈[0,T ]

‖rt‖2
]
<∞ for all T ≥ 0,

see, e.g., [11, Thm. C.1].
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3. Stability results

In this section, we present the announced stability results for the Lévy term
structure model presented in the previous section.

Let volatilities σ ∈ F and (σn)n∈N ⊂ F be given. Furthermore, let initial con-
ditions h0 ∈ Hβ and (hn0 )n∈N ⊂ Hβ be given. In addition to the HJMM equation
(1.2), we also consider the sequence of HJMM equations{

drnt = ( d
dxr

n
t + αnHJM(rnt ))dt+ σn(rnt−)dXt

rn0 = hn0 ,
(3.1)

where – in order to ensure the absence of arbitrage – the corresponding drift terms
are given by αnHJM = Σ◦σn. The following standing assumption assumptions prevail
throughout this section:

• hn0 → h0 in Hβ ;
• σn(h)→ σ(h) in Hβ for all h ∈ Hβ ;
• supn∈N ‖σn‖lip <∞.

Then, by Lemma 2.1 we have
• αnHJM(h)→ αHJM(h) in Hβ for all h ∈ Hβ ;
• supn∈N ‖αnHJM‖lip <∞.

For what follows, we define the joint Lipschitz constant

L := sup
n∈N

max{‖αnHJM‖lip, ‖σn‖lip} <∞.(3.2)

Denoting by (rt)t≥0 the mild solution for (1.2), for every T ≥ 0 we have

(3.3)
εn(T, r) :=

(
E
[ ∫ T

0

‖αHJM(rs)− αnHJM(rs)‖2βds
]

+ E
[ ∫ T

0

‖σ(rs)− σn(rs)‖2βds
])1/2

→ 0,

which follows from Lebesgue’s dominated convergence theorem. Now, we are ready
to prove stability of the forward curves under the previous conditions.

3.1. Proposition. For all T ≥ 0 there exists a constant K1 = K1(T, L) > 0 such
that

E
[

sup
t∈[0,T ]

‖rt − rnt ‖2β
]1/2

≤ K1

√
‖h0 − hn0‖2β + ε2n → 0 for n→∞,(3.4)

where εn = εn(T, r) was defined in (3.3).

Proof. Since we have the joint Lipschitz constant (3.2), the assertion follows from
[12, Prop. 9.1]. �

Besides the forward curve, the yield curve is another measurement of the bond
market. Given a bond price P (t, T ), the yield Y (t, T ) is the quantity

Y (t, T ) := − lnP (t, T )

T − t
=

1

T − t

∫ T

t

f(t, s)ds.

Switching to the Musiela parametrization, we thus define the yield curve operator
y : Hβ → C(R+) as the linear operator

y(h)(x) :=

{
h(0), if x = 0,
1
x

∫ x
0
h(η)dη, if x > 0.

3.2. Lemma. We have y(Hβ) ⊂ Cb(R+) and y ∈ L(Hβ , Cb(R+)), that is, y is a
continuous linear operator from Hβ to Cb(R+).
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Proof. For h ∈ Hβ we estimate, by using (2.2),

‖y(h)‖L∞(R+) = sup
x∈(0,∞)

∣∣∣∣ 1x
∫ x

0

h(η)dη

∣∣∣∣ ≤ sup
x∈(0,∞)

1

x

∫ x

0

|h(η)|dη

≤ ‖h‖L∞(R+) ≤ C1‖h‖β ,
finishing the proof. �

We define (yt)t≥0 as the Cb(R+)-valued process yt(x) := y(rt(x)), where (rt)t≥0
denotes the mild solution for the HJMM equation (1.2). Then, the time t yield
curve is given by

Y (t, T ) = yt(T − t), T ≥ t.

3.3. Proposition. For all T ≥ 0 there exists a constant K2 = K2(T, L) > 0 such
that

E
[

sup
t∈[0,T ]

‖yt − ynt ‖2L∞(R+)

]1/2
≤ K2

√
‖h0 − hn0‖2β + ε2n → 0 for n→∞,(3.5)

where εn = εn(T, r) was defined in (3.3).

Proof. This is a consequence of Proposition 3.1 and Lemma 3.2. �

Next, we analyze the stability of option prices under perturbations of the interest
rate model (1.2). For this purpose, we will assume that the HJMM equation (1.2)
only produces positive forward curves. This is a reasonable condition, as negative
forward rates are rarely observed at the market. More precisely, from now on we
suppose that the HJMM equation (1.2) is positivity preserving, that is, for all
h0 ∈ P we have

P(rt ∈ P ) = 1, t ≥ 0

where (rt)t≥0 denotes the mild solution for (1.2) with r0 = h0, and where P ⊂ Hβ

denotes the subset

P = {h ∈ Hβ : h ≥ 0}
consisting of all nonnegative forward curves. We note that the conditions

σ(h)(ξ) = 0, ξ ∈ (0,∞) and h ∈ Hβ with h(ξ) = 0,

h+ σ(h)x ∈ P, h ∈ P and ν–almost all x ∈ R.
are necessary and sufficient for the positivity preserving property of the HJMM
equation (1.2), see [13, Cor. 4.23].

Now, let us fix a future date T > 0 and a payoff profile φ : P → R depending on
the forward curve rT . Since we model the HJMM equation (1.2) under a risk-neutral
probability measure, the time t price of φ is given by

πt(φ) = E
[
e−

∫ T
t
rs(0)dsφ(rT ) | Ft

]
, t ∈ [0, T ]

where rt(0) denotes the short rate at time t.

3.4. Examples. Let us consider the following examples:
(1) φ ≡ 1 is the payoff profile of a T -bond.
(2) We fix another future date S with T < S and a strike rate K, and set

φ(h) =

(
exp

(
−
∫ S−T

0

h(η)dη

)
−K

)+

, h ∈ P.(3.6)

Then we have

φ(rT ) =

(
exp

(
−
∫ S−T

0

rT (η)dη

)
−K

)+

= (P (T, S)−K)+,
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and hence φ is the payoff profile of a call option on a S-bond. Note that the
cash flow of a floor is (up to a constant) equivalent to the cash flow of a
call option on a bond, see [10, Chap. 2].

(3) Accordingly, the function

φ(h) =

(
K − exp

(
−
∫ S−T

0

h(η)dη

))+

, h ∈ P

is the payoff profile of a put option on an S-bond, and its cash flow is (up
to a constant) equivalent to the cash flow of a cap.

3.5. Proposition. For all T ≥ 0 and all Lipschitz continuous payoff profiles φ :
P → R there exists a constant K3 = K3(T, φ, L, r) > 0 such that

sup
t∈[0,T ]

E[|πt(φ)− πnt (φ)|] ≤ K3

√
‖h0 − hn0‖2β + ε2n → 0 for n→∞,(3.7)

where εn = εn(T, r) was defined in (3.3).

Proof. By the Lipschitz continuity of φ, there exist constants Lφ,Kφ > 0 such that

|φ(h)− φ(g)| ≤ Lφ‖h− g‖β , h, g ∈ Hβ

|φ(h)| ≤ Kφ(1 + ‖h‖β), h ∈ Hβ .

Note that ev0 : Hβ → R, ev0(h) = h(0) is a continuous linear operator by [13,
Thm. 2.1]. Hence, using the Cauchy-Schwarz inequality we calculate

sup
t∈[0,T ]

E[|πt(φ)− πnt (φ)|] ≤ sup
t∈[0,T ]

E
[∣∣∣e− ∫ T

t
rs(0)dsφ(rT )− e−

∫ T
t
rns (0)dsφ(rnT )

∣∣∣]
≤ sup
t∈[0,T ]

E
[∣∣∣(e− ∫ T

t
rs(0)ds − e−

∫ T
t
rns (0)ds

)
φ(rT )

∣∣∣]
+ sup
t∈[0,T ]

E
[
e−

∫ T
t
rns (0)ds|φ(rT )− φ(rnT )|

]
≤ Kφ sup

t∈[0,T ]

E
[
(1 + ‖rT ‖β)

∫ T

t

|rs(0)− rns (0)|ds
]

+ LφE[‖rT − rnT ‖β ]

≤ KφE[(1 + ‖rT ‖β)2]1/2E

[(∫ T

0

|rs(0)− rns (0)|ds
)2
]1/2

+ LφE[‖rT − rnT ‖2β ]1/2

≤
√

2TKφ

(
1 + E[‖rT ‖2β ]

)1/2E[ ∫ T

0

|rt(0)− rnt (0)|2dt
]1/2

+ LφE[‖rT − rnT ‖2β ]1/2

≤
(√

2TKφ

(
1 + E[‖rT ‖2β ]

)1/2‖ev0‖+ Lφ

)
E
[

sup
t∈[0,T ]

‖rt − rnt ‖2β
]1/2

.

Now, applying Proposition 3.1 completes the proof. �

3.6. Remark. Note that Proposition 3.5 applies to all payoff profiles presented in
Examples 3.4. For instance, the payoff profile (3.6) of a call option on an S-bond
can be written as

φ(h) = (ψ(h)−K)+, h ∈ P

with ψ : P → R being defined as

ψ(h) = exp

(
−
∫ S−T

0

h(η)dη

)
, h ∈ P.
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Hence, it suffices to prove Lipschitz continuity of ψ. For arbitrary h, g ∈ P this is
established, using estimate (2.2), by the calculation

|ψ(h)− ψ(g)| =
∣∣∣∣ exp

(
−
∫ S−T

0

h(η)dη

)
− exp

(
−
∫ S−T

0

g(η)dη

)∣∣∣∣
≤
∣∣∣∣ ∫ S−T

0

h(η)dη −
∫ S−T

0

g(η)dη

∣∣∣∣ ≤ ∫ S−T

0

|h(η)− g(η)|dη

≤ (S − T )‖h− g‖L∞(R+) ≤ (S − T )C1‖h− g‖β .

Consequently, the prices of caps and floors are stable under perturbations of the
term structure model.

A Zero Coupon Bond P (t, T ) has the payoff profile φ ≡ 1. Applying Proposi-
tion 3.5 yields for every T ≥ 0 the estimate

sup
t∈[0,T ]

E
[
|P (t, T )− Pn(t, T )|

]
≤ K3

√
‖h0 − hn0‖2β + ε2n → 0 for n→∞

with a constant K3 = K3(T, L, r) > 0. Now, we shall improve this result by con-
sidering the bond curve T 7→ P (t, T ) at time t. Note that we can express the bond
prices as

P (t, T ) = exp

(
−
∫ T

t

f(t, s)ds

)
.

Switching to the Musiela parametrization, we thus introduce the bond curve oper-
ator p : Hβ → C(R+) by

p(h) := exp

(
−
∫ •
0

h(η)dη

)
.

3.7. Lemma. The following statements are valid:
(1) We have p(P ) ⊂ Cb(R+).
(2) There exists a constant L1 > 0 such that

‖p(h1)− p(h2)‖L∞(R+) ≤ L1‖h1 − h2‖β , h1, h2 ∈ P with h1(∞) = h2(∞).

(3) For every x0 ∈ R+ there exists a constant L2 = L2(x0) > 0 such that

‖p(h1)− p(h2)‖L∞[0,x0] ≤ L2‖h1 − h2‖β , h1, h2 ∈ P.

Proof. It is clear that p(h) ∈ Cb(R+) for all h ∈ P . For h1, h2 ∈ P with h1(∞) =
h2(∞) we obtain, by using estimate (2.3),

‖p(h1)− p(h2)‖L∞(R+) = sup
x∈R+

∣∣∣e− ∫ x
0
h1(η)dη − e−

∫ x
0
h2(η)dη

∣∣∣
≤ sup
x∈R+

∣∣∣∣ ∫ x

0

(h1(η)− h2(η))dη

∣∣∣∣ ≤ ‖h1 − h2‖L1(R+) ≤ C2‖h1 − h2‖β .

Similarly, for x0 ∈ R+ and h1, h2 ∈ P , by (2.2) we get

‖p(h1)− p(h2)‖L∞[0,x0] = sup
x∈[0,x0]

∣∣∣e− ∫ x
0
h1(η)dη − e−

∫ x
0
h2(η)dη

∣∣∣
≤ sup
x∈[0,x0]

∣∣∣∣ ∫ x

0

(h1(η)− h2(η))dη

∣∣∣∣ ≤ ∫ x0

0

|h1(η)− h2(η)|dη

≤ x0‖h1 − h2‖L∞(R+) ≤ x0C1‖h1 − h2‖β .

This completes the proof. �
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We define (pt)t≥0 as the Cb(R+)-valued process pt(x) := p(rt(x)), where (rt)t≥0
denotes the mild solution for the HJMM equation (1.2). Then, the time t bond
curve is given by

P (t, T ) = pt(T − t), T ≥ t.

3.8. Proposition. For all T, x0 ≥ 0 there exists a constant K4 = K4(T, x0, L) such
that

E
[

sup
t∈[0,T ]

‖pt − pnt ‖2L∞[0,x0]

]1/2
≤ K4

√
‖h0 − hn0‖2β + ε2n → 0 as n→∞,(3.8)

where εn = εn(T, r) was defined in (3.3).

Proof. This is a consequence of Proposition 3.1 and Lemma 3.7. �

For the rest of this section, we suppose that the following stronger conditions
are satisfied:

• hn0 → h0 in Hβ ;
• σn → σ in C lip

b .
Then, for all h ∈ Hβ we have

‖σ(h)− σn(h)‖β ≤ ‖σ − σn‖lip → 0 for n→∞,

and, by Lemma 2.1, there exists a constant L1 > 0 (depending on σ) such that for
all h ∈ Hβ we have

‖αHJM(h)− αnHJM(h)‖β = ‖Σσ(h)− Σσn(h)‖β
≤ L1‖σ(h)− σn(h)‖β ≤ L1‖σ − σn‖lip.

Consequently, for any T ≥ 0 there is a constant L2 = L2(T ) such that we can
estimate εn = εn(T, r) defined in (3.3) by

εn ≤ L2‖σ − σn‖lip → 0.

Therefore, we can improve the estimates (3.4)–(3.8) by replacing the right-hand
sides for i = 1, 2, 3, 4 by

Ki

√
‖h0 − hn0‖2β + ‖σ − σn‖2lip → 0 as n→∞,(3.9)

showing that the dependence of the considered quantities on the initial curves and
on the volatilities is locally Lipschitz.
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