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Abstract. This paper considers general term structure models like the ones

appearing in portfolio credit risk modelling or life insurance. We give a gen-
eral model starting from families of forward rates driven by infinitely many

Brownian motions and an integer-valued random measure, generalizing exist-

ing approaches in the literature. Then we derive drift conditions which are
equivalent to no asymptotic free lunch on the considered market. Existence

results are also given. In practice, models possessing a certain monotonicity

are favorable and we study general conditions which guarantee this. The setup
is illustrated with some examples.
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1. Introduction

Numerous works in the literature study infinite-dimensional bond markets, with
or without credit risk as for example Björk, Di Masi, Kabanov, and Runggaldier
(1997), Filipović (2001), Özkan and Schmidt (2005), Ekeland and Taflin (2005),
Schmidt (2006), Carmona and Tehranchi (2006), Jakubowski and Zabczyk (2007),
Barski, Jakubowski, and Zabczyk (2011), and Barski and Zabczyk (2012) among
many others.

In this paper we study a general account of such markets: we consider bond
prices of the form

P (t, T, η)

where t ≤ T is current time, T denotes the maturity and η ∈ I denotes a quality
index. This can refer to the credit quality of a term structure model, as it is the case
in so-called rating approaches (see Jarrow, Lando, and Turnbull (1997), Bielecki and

Rutkowski (2000), and Eberlein and Özkan (2003)). Or it could take the role of
the number of already occurred losses in the context of credit portfolio modelling
and collateralized debt obligations (see Filipović, Overbeck, and Schmidt (2011)
and references therein). In the context of life insurance, η denotes the age of the
considered individual and models the effect that a higher age influences the survival
probability as in Tappe and Weber (2013). Also models for market or liquidity
impacts have a similar structure, compare the recent approach in Jarrow and Roch
(2013).

Essentially we only assume that bond prices are non-negative and have a weak
regularity in T and η. This allows us to consider forward rate models in the Musiela
parameterization, i.e.

P (t, T, η) = I(t) exp

( T−t∫
0

r(t, u, η)du

)
;

here I is an indicator being zero when the bond prices are zero and one otherwise.
This is the starting point for modelling r as Hilbert-space valued stochastic process
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given by a stochastic partial differential equation (SPDEs). The market of bond
prices is certainly a large financial market which allows us to utilize the well-known
concept of no asymptotic free lunch (NAFL) introduced in Klein (2000). In this
regard, the market satisfies an appropriate formulation of NAFL if and only if there
exists an equivalent local martingale measure (ELMM).

Conditions which render a measure an ELMM are following the approach of
Heath, Jarrow, and Morton (1992) and give the drift in terms of the volatility,
which is why they are called drift conditions. In our case it turns out that two
conditions are needed, one is a generalization of the classical drift condition to our
more general setup and the second one links the instantaneous rate earned by the
bond to the instantaneous risk and the risk-free rate. It turns out that this second
condition makes it difficult to obtain explicit models.

In this regard we consider a special setting where we are able to obtain existence
results in our setup. We proceed in two steps: first we use the results obtained in
Jacod (1975) for martingale problems for marked point processes to obtain existence
of a driving quality index process. Then we employ techniques from Tappe (2012b)
to obtain conditions which guarantee existence of a unique mild solution of the
SPDE for r when the drift condition is satisfied.

From a practical viewpoint it is natural, that a bond with a lower quality should
be cheaper than a bond with higher quality. This is in general not implied by ab-
sence of arbitrage, as we discuss. However, if interest rates are non-negative, or
more general, bond prices are martingales, the fact that the payoffs of the bonds
are monotone in terms of the credit quality immediately gives monotonicity as the
expectation is a monotone operator. More generally, we show that if the model is
positivity preserving, then monotonicity follows. Finally we give sufficient condi-
tions which yield positivity preserving term structures. Related results appear in
Barski (2013).

The organisation of the paper is as follows: after introducing the setup in Section
2, we discuss in detail the concept of absence of arbitrage considered in this paper. In
particular, we derive the mentioned drift conditions. Section 3 covers the existence
results while Section 4 deals with positivity and monotonicity. In Section 5 we give
a number of examples which illustrate the results.

2. Arbitrage-free term structure movements

Consider a filtered probability space (Ω,F , (Ft)t≥0,P) where the filtration (Ft)t≥0

satisfies the usual conditions, i.e. it is right-continuous and F0 contains all nullsets
of F .

We consider a market where bonds are traded. A T -bond is a contingent claim
which promises the payoff of one unit of currency at maturity T . We denote the
price of the T -bond at time t ≤ T by P (t, T ). The bond is called risk-free if
P(P (T, T ) = 1) = 1. The stochastic process (P (t, T )0≤t≤T ) describes the evolution
of the T -bond over time.

In contrast to risk-free bonds we consider a more general framework where bonds
carry an additional quality index η. There are bonds with different levels of quality.
In this regard we consider a family of term structure models{

(P (t, T, η))0≤t≤T : T ≥ 0, η ∈ I
}

with some interval or countable set I ⊂ R. For our purposes, the typical choice will
be I = [0, 1]. The index η is called quality of the bond. A bond with maturity T
and quality η is called (T, η)-bond. Besides referencing to credit risk, the quality
index can also refer to the liquidity of the bond or to the age of an individual in
a life-insurance context, see Section 5 for examples. This kind of term structures
certainly play a central role in modelling multiple yield curves or term structures
for markets of collateralized debt obligations (CDOs) as we explain in Section 5.1.
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It turns out, that a basic tool for more involved models is to consider bonds with
payoff zero or one which we treat here.

2.1. Absence of arbitrage in infinite dimensional bond markets. The con-
sidered market of (T, η)-bonds is a market which contains an infinite number of
traded assets. We view this setup in spirit of large financial markets and introduce
the right concept of no-arbitrage in our setup which is no asymptotic free lunch
(NAFL). This concept has been applied to bond markets in Klein, Schmidt, and
Teichmann (2013) and we generalize their work to our setting where bond prices
are also indexed by credit quality.

In this chapter we fix a finite time horizon T ∗ > 0. Denote by D = (Dt)0≤t≤T∗

the risk-free bank account which is a non-negative, adapted process with D(0) = 1.
We will need the following assumption on continuity of the bond prices in T and η
and on uniform local boundedness of bond prices and on local boundedness of the
discounting factor.

Assumption 2.1. There is N ∈ F with P(N) = 0 such that N1 ∪N2 ⊂ N where

N1 :=
⋃

t∈[0,T∗],η∈I

{
ω : T → P (t, T, η)(ω) is not absolutely continuous

}
,

N2 :=
⋃

t∈[0,T∗],t≤T≤T∗

{
ω : η → P (t, T, η)(ω) is not right continuous

}
.

Note that in classical HJM-models absolute continuity in maturity always holds,
such that P(N1) = 0. We need furthermore right-continuity in the quality η of the
term structure models.

Assumption 2.2. The following holds:

(i) For any (T, η) there is ε > 0, an increasing sequence of stopping times
τn →∞ and κn ∈ [0,∞) such that

P (t, U, ξ)τn ≤ κn,

for all U ∈ [T, T + ε), ξ ∈ [η, η + ε) ∩ I and all t ≤ T ,
(ii) (D(t))0≤t≤T∗ is locally bounded.

Definition 2.3. Fix a sequence (Ti)i∈N in [0, T ∗] and a set (ηi)i∈N ⊂ I. Define the
n2 + 1-dimensional stochastic process (Sn) = (S0, S11, . . . , Snn) as follows:

Sijt = D(t)P (t ∧ Ti, Ti, ηj), 0 ≤ t ≤ T ∗,(1)

for i, j = 1, . . . , n and S0
t ≡ 1. The large financial market consists of the sequence

of classical markets (Sn).

Note that this assumption is fullfilled when the family of term structure models
is locally bounded and non-decreasing in (T, η), a criterion for which we derive
sufficient conditions in Section 4.

In large financial markets absence of arbitrage is considered for each finite market
Sn and appropriate limits. In this way we are able to avoid using measure-valued
strategies, as for example used in De Donno and Pratelli (2005). Let H be a
predictable Sn-integrable process and denote by (H ·Sn)t the stochastic integral of
H with respect to Sn until t. The process H is called admissible trading strategy
if H0 = 0 and there is a > 0 such that (H · Sn)t ≥ −a, 0 ≤ t ≤ T ∗. Define the
following cones:

(2) Kn = {(H · Sn)T∗ : H admissible} and Cn = (Kn − L0
+) ∩ L∞.

Kn containes all replicable claims in the finite market n, and Cn contains all claims
in L∞ which can be superreplicated. We define the set Mn

e of equivalent separating
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measures for the finite market n as

Mn
e = {Q ∼ P|T∗ : Sn is local Q-martingale}(3)

If Sn is bounded then Mn
e consists of all equivalent probability measures such that

Sn is a (true) martingale.
We assume that for each finite market n no arbitrage holds, i.e.

(4) Mn
e 6= ∅, for all n ∈ N.

However, there is still the possibility of approximations of an arbitrage profit by
trading on the sequence of market models and we arrive at the following formulation.

Definition 2.4. A given large financial market satisfies NAFL if

∞⋃
n=1

Cn

∗

∩ L∞+ = {0}.

Definition 2.5. The family of term structure models {(P (t, T, η))0≤t≤T : T ≥
0, η ∈ I} satisfies NAFL if there exists a dense sequences (Ti)i∈N in [0,∞) and
(ηi)i∈N in I, such that the large financial market of Definition 2.3 satisfies the
condition NAFL.

Inspection of the proof in Klein, Schmidt, and Teichmann (2013), Theorem 5.2,
shows that the following result holds in our case.

Theorem 2.1. Assume that Assumptions 2.1, 2.2 and (4) hold. The family of
term structure models {(P (t, T, η))0≤t≤T : 0 ≤ T ≤ T ∗, η ∈ I} satisfies NAFL, if
and only if there exists a measure Q∗ ∼ P|T∗ such that

(DtP (t, T, η))0≤t≤T are local Q∗-martingales for all (T, η) ∈ [0, T ∗]× I.(5)

Such a measure Q∗ is called equivalent local martingale measure (ELMM). In the
following section we derive drift conditions in spirit of the classical Heath-Jarrow-
Morton drift condition which give (5) for arbitrary T ∗.

2.2. The considered term structure models. As is customary in term structure
modelling we directly consider the filtered probability space (Ω,F , (Ft)t≥0,Q) with
Q ∼ P. The aim of the following sections is to give a precise setting of the considered
term structure models under Q and thereafter derive conditions which are equivalent
to NAFL.

In line with credit risk models, we associate a stopping time τη to each quality
level η and we assume that the payment of the (T, η)-bond takes place only if τη > T .
It will be convenient to represent the model in terms of forward rates, such that we
make the weak assumption that (T, η)-bonds can be represented by

P (t, T, η) = 1{τη>t} exp

(
−

T∫
t

f(t, u, η)du

)
;(6)

f(t, T, η) is called (T, η)-forward rate at time t.
Our aim is to consider general, infinite-dimensional models for f . In the spirit

of Björk, Di Masi, Kabanov, and Runggaldier (1997) and Carmona and Tehranchi
(2004) we assume that (T, η)-forward rates follow a semimartingale of the form

df(t, T, η) = α(t, T, η)dt+ σ(t, T, η)dWt(7)

+

∫
E

γ(t, T, η, x)(µ(dt, dx)− Ft(dx)dt), 0 ≤ t ≤ T ;

here W is a Q-Wiener process on a separable Hilbert space U with a trace class
operator Q ∈ L(U) (see Da Prato and Zabczyk (1992)) and µ is a integer-valued
random measure on R+ × E with absolutely continuous compensator dt ⊗ Ft(dx)
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and E is the mark space. The mark space is a measurable space (E, E) which we
assume to be a Blackwell space (see Dellacherie and Meyer (1982)).We remark that
every Polish space with its Borel σ-field is a Blackwell space.

We assume that the stopping times τη have the following representation in terms
of the random measure µ. By P we denote the predictable σ-algebra on Ω× R+.

(A1) There is a R-valued, P ⊗ B(I)⊗ E-measurable process β such that

1{τη>t} = 1 +

t∫
0

∫
E

1{τη≥s}β(s, η, x)µ(ds, dx).(8)

Remark 2.6. Set Yt := 1{τη>t}. Then the representation (8) reads

Yt = 1 +

t∫
0

∫
E

Ys−β(s, η, x)µ(ds, dx).

In Section 5.3 we show how such a representation can be obtained in infinite di-
mensional bond markets.

Recall that the separable Hilbert space U denotes the state space of the Wiener
process W . Then there exists an orthonormal basis (ej)j∈N of U and a sequence
(λj)j∈N ⊂ (0,∞) with

∑
j∈N λj <∞ such that for all u ∈ U

Qu =
∑
j∈N

λj〈u, ej〉U ej ;

the λj are the eigenvalues of Q, and each ej is an eigenvector corresponding to λj .

The space U0 := Q1/2(U), equipped with the inner product

〈u, v〉U0
:= 〈Q−1/2u,Q−1/2v〉U ,

is another separable Hilbert space and (
√
λjej)j∈N is an orthonormal basis. Ac-

cording to Da Prato and Zabczyk (1992, Prop. 4.1), the sequence of stochastic
processes (W j)j∈N defined as W j := 1√

λj
〈W, ej〉 is a sequence of real-valued inde-

pendent Brownian motions and we have the expansion

W =
∑
j∈N

√
λjW

jej .

Given another separable Hilbert space H, we denote by L0
2(H) := L2(U0, H) the

space of Hilbert-Schmidt operators from U0 into H, which, endowed with the
Hilbert-Schmidt norm

‖Φ‖L0
2(H) :=

√∑
j∈N

λj‖Φej‖2, Φ ∈ L0
2(H)

itself is a separable Hilbert space. Note that L0
2(H) ∼= `2(H), because Φ 7→ (Φj)j∈N

with Φj :=
√
λjΦej , j ∈ N is an isometric isomorphism. According to Da Prato

and Zabczyk (1992, Thm. 4.3), for every predictable process σ : Ω× R+ → L0
2(H)

satisfying

P
( t∫

0

‖σs‖2L0
2(H)ds <∞

)
= 1 for all t ≥ 0

with σjt :=
√
λjσtej we have the identity

t∫
0

σsdWs =
∑
j∈N

t∫
0

σjsdW
j
s , t ≥ 0.
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In particular, the diffusion term in (7) can be written as

σ(t, T, η)dWt =
∑
j∈N

σj(t, T, η)dW j
t ,

where σj(t, T, η) =
√
λjσ(t, T, η)ej .

Intensity-based default models correspond well with the assumption on absolute
continuity of bond prices (which is implicit in (6)) which will enable us to obtain a
drift condition in Theorem 2.7. Set

λ(t, η) := −
∫
E

β(t, η, x)Ft(dx).

The process (1{τη>·}) is decreasing and hence the Doob-Meyer decomposition gives
a unique representation in terms of a local martingale and an absolutely contin-

uous process. We denote this absolutely continuous process by
∫ t

0
λ(s, η)ds, the

cumulative intensity. Then

Mη
t := 1{τη>t} +

t∫
0

1{τη≥s}λ(s, η)ds(9)

is the (local) martingale in the Doob-Meyer decomposition. The non-negative pro-
cess (λ(t, η))t≥0 is called (local) intensity of τη.

2.3. Musiela parametrization. It will be more convenient to consider the alter-
native parametrization

rt(ξ, η) := f(t, t+ ξ, η)

which goes back to Musiela (1993). Then r is one single stochastic process with
values in a function space H of curves h : R+ × I → R to be specified later.
Assume that r is continuous in ξ and denote by (St)t≥0 the shift semigroup on H,
i.e. Sth(ξ, η) = h(ξ + t, η). Then equation (7) can be written as the variation of
constants formula

rt(ξ, η) = Str0(ξ, η) +

t∫
0

St−sα(s, s+ ξ, η)ds+

t∫
0

St−sσ(s, s+ ξ, η)dWs

+

t∫
0

∫
E

St−sγ(s, s+ ξ, η, x)(µ(dt, dx)− Fs(dx)ds);(10)

here r0 ∈ H denotes the initial value of r and St−s operates on the functions
ξ 7→ α(s, s + ξ, η), ξ 7→ σ(s, s + ξ, η), and ξ 7→ γ(s, s + ξ, η, x). In the following,
we will suppress the dependence on (ξ, η). We obtain that (10) can be written
equivalently as the mild solution of

drt =

(
d

dξ
rt + αt

)
dt+ σtdWt +

∫
E

γt(x) (µ(ds, dx)− Fs(dx)ds).(11)

In the following we denote by µ̄(ds, dx) := µ(ds, dx) − Fs(dx)ds the compensated
random measure.

We make the following technical assumptions: Denote by O and P the optional
and predictable σ-algebra on Ω× R+, respectively. Set T := R+ × I.

(A2) The initial curve r0 is B(R+)⊗ B(I)-measurable, and locally integrable:

ξ∫
0

|r0(u, η)| du <∞ for all (ξ, η) ∈ T , Q–almost surely.
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(A3) The drift αt(ξ, η) is R-valued, O ⊗ B(R+) ⊗ B(I)-measurable, and locally
integrable:

ξ∫
0

ξ∫
0

|αt(u, η)| du dt <∞ for all (ξ, η) ∈ T , Q–almost surely.

(A4) The volatility σt(ξ, η) is L0
2(R)-valued, O⊗B(R+)⊗B(I)-measurable, and

locally square integrable:

E
[ ξ∫

0

ξ∫
0

‖σt(u, η)‖2L0
2(R)dudt

]
<∞ for all (ξ, η) ∈ T .

(A5) The jump-term γt(x)(ξ, η) is R-valued, P ⊗ E ⊗ B(R+)⊗B(I)-measurable,
and locally square integrable:

E
[ ξ∫

0

ξ∫
0

∫
E

|γt(x)(u, η)|2Ft(dx)dudt

]
<∞ for all (ξ, η) ∈ T .

Conditions (A2)–(A5) assert that the risk free short rate rt = rt(0, 1) has a pro-

gressive version and satisfies
∫ T

0
|rt| dt <∞ for all T , see e.g. Filipović (2001). The

discounting process in our setup is given by

Dt = e−
∫ t
0
rsds, t ≥ 0.

2.4. The drift conditions. This section will derive drift conditions which ensure
that the considered probability measure Q is an equivalent local martingale measure
(ELMM). Then NAFL holds by Theorem 2.1.

First, we introduce some notation. LetA(t, T, η) :=
∫ T−t

0
α(t, s, η)ds, Σj(t, T, η) :=∫ T−t

0
σj(t, s, η)ds for all j ∈ N, and Γ(t, T, η, x) :=

∫ T−t
0

γ(t, s, η, x)ds.

Theorem 2.7. Assume that (A1)–(A5) hold. Then Q is an ELMM, if and only if

α(t, T, η) =
∑
j∈N

σj(t, T, η)Σj(t, T, η)(12)

−
∫
E

γ(t, T, η, x)
(
e−Γ(t,T,η,x)(1 + β(t, η, x))− 1

)
Ft(dx)

rt(0, η) = rt + λ(t, η),(13)

where (12) and (13) hold on {τη > t}, Q⊗ dt-a.s.

In an auxiliary lemma we derive the dynamics of the pre-default bond prices and
thereafter give the proof of the theorem. Let

p(t, T, η) := exp

(
−

T−t∫
0

rt(x, η)dx

)
.

Lemma 2.8. Under (A2)–(A5) we have for all 0 ≤ t ≤ T and η ∈ I that

dp(t, T, η) = p(t−, T, η)mtdt+ dMT,η
t

where mt equals

rt(0, η)−A(t, T, η) +
1

2

∑
j∈N

Σj(t, T, η)2 +

∫
E

(
e−Γ(t,T,η,x) − 1 + Γ(t, T, η, x)

)
Ft(dx)

and MT,η is the local martingale given in (14).
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Proof. The proof follows the arguments in Filipović (2001). For h ∈ H define

IT :=
∫ T

0
h(s)ds. We fix η ∈ I and write

IT−trt := IT−trt(·, η) =

T−t∫
0

rt(x, η)dx.

By the variation of constants formula (10) we have that

IT−trt = IT−t(Str0) +

t∫
0

IT−t(St−uαu)du+

t∫
0

IT−t(St−uσu)dWu

+

t∫
0

IT−t(St−uγu(x))µ̄(du, dx),

where µ̄ is the compensated random measure. Note that IT−t(St−uh) = IT−uh −
It−uh. We apply this to all terms and obtain IT−trt = I1 − I2 with

I1 = IT r0 +

t∫
0

IT−uαudu+

t∫
0

IT−uσudWu +

t∫
0

IT−uγu(x)µ̄(du, dx),

I2 = Itr0 +

t∫
0

It−uαudu+

t∫
0

It−uσudWu +

t∫
0

It−uγu(x)µ̄(du, dx).

We rearrange all the terms with the stochastic Fubini theorem according to the
following argument:

t∫
0

It−uσudWu =

t∫
0

t−u∫
0

σu(v)dv dWu

=

t∫
0

t∫
u

σu(v − u)dv dWu

=

t∫
0

v∫
0

σu(v − u)dWu dv

and obtain that

I2 =

t∫
0

(
Svr0(0, η) +

v∫
0

(
Sv−uαu(0, η)du

+ Sv−uσu(0, η)dWu +

∫
E

Sv−uγu(0, η, x)µ̄(du, dx)
))

dv

=

t∫
0

rv(0, η)dv.
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Hence, as −IT (r0) = ln p(0, T, η) we get Q-a.s. and for all 0 ≤ t ≤ T that

ln p(t, T, η) = −IT−trt = I2 − I1

= ln p(0, T, η) +

t∫
0

rv(0, η)dv

−
t∫

0

(
IT−vαvdv + IT−vσvdWv +

∫
E

IT−vγv(x)µ̄(dv, dx)
)
.

Applying Itô’s formula to ex yields

p(t, T, η) = p(0, T, η) +
1

2

∑
j∈N

t∫
0

p(v−, T, η)
(
IT−vσjv

)2
dv

+

t∫
0

p(v−, T, η)

[
(rv(0, η)− IT−vαv)dv − IT−vσvdWv −

∫
E

IT−vγv(x)µ̄(dv, dx)

]

+

∫
E

p(v−, T, η)
(
e−IT−vγv(x) − 1 + IT−vγv(x)

)
µ(dv, dx)

= p(0, T, η) +

t∫
0

p(v−, T, η)

[
1

2

∑
j∈N

(
IT−vσjv

)2
+ rv(0, η)− IT−vαv

+

∫
E

(
e−IT−vγv(x) − 1 + IT−vγv(x)

)
Ft(dx)

]
dv

+MT,η
t ,

where MT,η are the local martingales

t∫
0

p(v−, T, η)
(
− IT−vσvdWv −

∫
E

(e−IT−vγv(x) − 1)µ̄(dv, dx)
)
.(14)

Inserting the definitions of A, Σ and Γ we conclude. �

Proof of Theorem 2.7. With the martingale Mη from (9),

d
(
DtP (t, T, η)

)
= d
(
(Dtp(t, T, η)) · 1{τη≥t}

)
(15)

= Dtp(t−, T, η)dMη
t −Dtp(t−, T, η)λ(t, η)1{τη≥t} dt

+ 1{τη≥t}d(Dtp(t, T, η)) + d[Dp(·, T, η), 1{τη≥·}]t.(16)

In the following, we compute all terms separately. First, as D is of finite variation,
the product rule and Lemma 2.8 give

d(Dtp(t, T, η)) = Dtp(t−, T, η)

[
rt(0, η)− rt −A(t, T, η) +

1

2

∑
j∈N

Σj(t, T, η)2

+

∫
E

(
e−Γ(t,T,η,x) − 1 + Γ(t, T, η, x)

)
Ft(dx)

]
dt

+ dM̃t(17)

where M̃ is a local martingale. Second, we recall from Lemma 2.8 that

∆(Dtp(t, T, η)) = Dt∆p(t, T, η) = Dtp(t−, T, η)

∫
E

(
e−Γ(t,T,η,x) − 1

)
µ(dt, dx).
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Assumption (A1) immediately gives

∆(1{τη>t}) =

∫
E

1{τη≥t}β(t, η, x)µ(dt, dx).

Altogether we obtain the quadratic covariation of discounted (T, η)-bond prices and
the default indicator process,

d[Dp(·, T, η), 1{τη>·}]t

= Dtp(t−, T, η)1{τη≥t}

∫
E

(
e−Γ(t,T,η,x) − 1

)
β(t, η, x)µ(dt, dx)(18)

and all terms in (16) have been computed. Note that p(t−, T, η)1{τη≥t} = p(t−, T, η).
Finally, Q ∈ Q if and only if DP is a local martingale. The drift condition is now
obtained by the fact that DP is a local martingale if and only if its drift vanishes.
On {τη ≤ t}, DP is zero and no drift condition applies. Otherwise, on {τη > t} we
have DP = Dp. From (16), (17) and (18) we therefore obtain the following drift
condition (as Dtp(t−, T, η) > 0):

0 = rt(0, η)− rt − λ(t, η)−A(t, T, η) +
1

2

∑
j∈N

Σj(t, T, η)2

+

∫
E

(
e−Γ(t,T,η,x) − 1 + Γ(t, T, η, x)

)
Ft(dx)

+

∫
E

(
e−Γ(t,T,η,x) − 1

)
β(t, η, x)Ft(dx)

= rt(0, η)− rt − λ(t, η)−A(t, T, η) +
1

2

∑
j∈N

Σj(t, T, η)2

+

∫
E

[(
e−Γ(t,T,η,x) − 1

)
(1 + β(t, η, x)) + Γ(t, T, η, x)

]
Ft(dx).

First, letting T = t we obtain (13). Differentiating the remaining terms with respect
to T gives (12).

For the converse, we need to show that the drift conditions imply that all dis-
counted digital options are local martingales. For fixed η, these conditions imply
that on {Lt ≤ η} discounted prices are local martingales. On the other side, on
{Lt > η} the prices are zero by definition and hence martingales. The conclusion
follows. �

3. Existence

Existence in the general model of Section 2 is difficult to obtain. It turns out that
in many applications, on can concentrate on the following special case, see Section
5 for appropriate examples.

Consider a pure-jump process L with values in I which can be interpreted as
quality index of the considered market. For simplicity we consider I = [0, 1]. We
allow for arbitrary granularity, i.e. all τη := inf{t ≥ 0 : Lt > η}, η ∈ I are
considered.

Assume that E = G × I, and G is the mark space of a homogeneous Poisson
random measure µ̃, see Jacod and Shiryaev (2002, Def. II.1.20). For existence,
homogeneity of µ̃ is not relevant, but is simplifies the study of positivity and mono-
tonicity in the following sections.
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Denote by µL the Poisson random measure associated to the jumps of L, that is

Lt =

t∫
0

∫
I

xµL(ds, dx).(19)

Letting τη := inf{t ≥ 0 : Lt > η} we establish the link to (T, η)-bonds such that

P (t, T, η) = 1{Lt≤η} exp

(
−

T∫
t

f(t, u, η)du

)
.(20)

We set µ = µL ⊗ µ̃ and assume that r is the mild solution of

drt =

(
d

dξ
rt + αt

)
dt+ σtdWt +

∫
G

γt(x) µ̃(dt, dx) +

∫
I

δt(x)µL(dt, dx).(21)

Note that in contrast to (11), r is not given in terms of compensated measures. It
will turn out that this leads to a simplification in the drift conditions, which will be
shown in the following proposition. This setting generalizes the approach Filipović,
Overbeck, and Schmidt (2011) in the way that it incorporates jumps in r besides
jumps induced by the loss process. Schmidt and Zabczyk (2012) study the case
where µ̃ is a Lévy-process.
We adapt Assumptions (A1) and (A5) to this setting.

(A1’) Lt =
∑
s≤t ∆Ls is a càdlàg, non-decreasing, adapted, pure jump pro-

cess with values in I which admits an absolutely continuous compensator
νL(t, dx)dt satisfying νL(t, I) <∞ for all t ≥ 0. µ̃ is a homogeneous Poisson

random measure on R+ ×G with compensator dt⊗ F̃ (dx) and F̃ (G) <∞.
Moreover, µ̃ and µL are independent.

(A5’) γt(x)(ξ, η) is R-valued P ⊗ B(G) ⊗ B(R+) ⊗ B(I)-measurable, and locally
square integrable:

E
[ ξ∫

0

ξ∫
0

∫
G

|γt(x)(u, η)|F̃ (dx)dudt

]
<∞ for all (ξ, η) ∈ T .

δt(x)(ξ, η) is R-valued P ⊗ B(I) ⊗ B(R+) ⊗ B(I)-measurable, and locally
square integrable:

E
[ ξ∫

0

ξ∫
0

∫
I

|δt(x)(u, η)|νL(η, dx)dudt

]
<∞ for all (ξ, η) ∈ T .

We obtain absence of arbitrage, or more precisely NAFL, in this setting by a
direct application of Theorem 2.7. With the notation from this theorem we have that

σj(t, T, η) =
√
λjσ(t, T, η)ej and Σj(t, T, η) =

∫ T
t
σj(t, s, η)ds. Set ∆(t, T, η, x) :=∫ T−t

0
δ(t, s, η, x)ds.

Proposition 3.1. Under (A1’), (A2)–(A4) and (A5’) and with r as given in (11),
we have that Q is ELMM, if and only if

α(t, T, η) =
∑
j∈N

σj(t, T, η)Σj(t, T, η)(22)

−
∫
E

γ(t, T, η, x)e−Γ(t,T,η,x)F̃ (dx)

−
∫
I

δ(t, T, η, x)1{Lt−+x≤η}e
−∆(t,T,η,x)νLt (dx),

rt(0, η) = rt + λ(t, η),(23)
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where (22) and (23) hold on {Lt ≤ η}, Q⊗ dt-a.s.

Proof. Our aim is to apply Theorem 2.7. We write x = (x1, x2) ∈ I×G with x1 ∈ I
and x2 ∈ G. Then (19) gives that

Lt =

t∫
0

∫
E

`s(x)µ(ds, dx),

with `t(x) := x1 as µ = µL ⊗ µ̃. Note that, by definition L takes its values in I.
Next, we need to obtain a representation of τη in terms of L. Note that 1{τη>t} =
1{Lt≤η}. Hence, by uniqueness of the Doob-Meyer decomposition, we obtain that
the compensators of this two processes must coincide, i.e.

−
∫
E

β(t, η, x)Ft(dx) = Ft({x ∈ E : Lt− + `t(x) > η})

=

∫
E

1{Lt−+`t(x)>η}Ft(dx).

This can be satisfied by choosing β(t, η, x) := −1{Lt−+`t(x)>η} such that

1 + β(t, η, x) := −1{Lt−+`t(x)≤η}.(24)

The next step is to derive the dynamics of r given in (21) in terms of (11). In
this regard we have that

drt =

(
d

dξ
rt + αt +

∫
G

γt(x)F̃ (dx) +

∫
I

δt(x)νLt (dx)

)
dt+ σtdWt

+

∫
G

γt(x) (µ̃(dt, dx)− F̃ (dx)dt)

+

∫
I

δt(x)(µ̄L(dt, dx)− νLt (dx)dt).

A careful application of Theorem 2.7 together with (24) gives

α(t, T, η) +

∫
G

γt(T, η, x)F̃ (dx) +

∫
I

δt(T, η, x)νLt (dx)

=
∑
j∈N

σj(t, T, η)Σj(t, T, η)

−
∫
E

γt(T, η, x)
(
e−Γ(t,T,η,x) − 1

)
F̃ (dx)

−
∫
I

δt(T, η, x)
(
e−∆(t,T,η,x)1{Lt−+x≤η} − 1

)
νLt (dx)

which yields (22) and we conclude. �

3.1. A martingale problem. The existence in our setting is a direct extension
from Filipović, Overbeck, and Schmidt (2011), Theorem 5.1. However, the con-
struction is important for the following results and in this section we state the
result in our setting. We assume that the stochastic basis satisfies:

(A6) Ω = Ω1 × Ω2, F = G ⊗ H, Q(dω) = Q1(dω1)Q2(ω1, dω2), where ω =
(ω1, ω2) ∈ Ω, and Ft = Gt ⊗Ht, where
(1) (Ω1,G, (Gt),Q1) is some filtered probability space carrying the market

information, in particular the Brownian motions W j(ω) = W j(ω1),
j ∈ N and the Poisson random measure µ̃(ω) = µ̃(ω1),
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(2) (Ω2,H) is the canonical space of paths for I-valued increasing marked
point processes endowed with the minimal filtration (Ht): the generic
ω2 ∈ Ω2 is a càdlàg, increasing, piecewise constant function from R+

to I. Let

Lt(ω) = ω2(t)

be the coordinate process. The filtration (Ht) is therefore Ht = σ(Ls |
s ≤ t), and H = H∞,

(3) Q2 is a probability kernel from (Ω1,G) to H to be determined below.

Under assumption (A6), the volatility σt(ω) = σt(ω1, ω2), and the jump terms
γt(ω;x) = γt(ω1, ω2;x) and δt(ω;x) = δt(ω1, ω2;x) in (A3) and (A5’) actually are
functions of the loss path ω2. The evolution equation (21) can thus be solved on
the stochastic basis (Ω1,G, (Gt),Q1) along any genuine loss path ω2 ∈ Ω2. Indeed,
the integral with respect to µ in (21) is path-wise in ω2.

Regarding condition (23), note that under (A1’), the intensity λ(t, η) uniquely
determines νL(t, dx) via

(25) νL(t, (0, η]) = λ(t, Lt)− λ(t, Lt + η), η ∈ I,

where we denote λ(t, x) = 0 for x ≥ 1. Then, condition (23) is equivalent to

(26) νL(ω; t, dx) = −rt(ω; 0, ω2(t) + dx), (set rt(0, η) ≡ rt for η ≥ 1).

Hence, unless δ is zero,

αt(ξ, η) = αt(ξ, η, rt)

in (22) becomes via (26) an explicit linear functional of the (short end of the)
prevailing spread curve. In fact, there may result an implicit non-linear smooth
dependence on the entire prevailing spread curve rt via σ and γ in (22), respectively.
But since this dependence on rt is smooth, for any given loss path ω2 ∈ Ω2, equation
(21) will generically be uniquely solvable.

It thus remains to find a probability kernel Q2 such that ν in (26) becomes the
compensator of L. This is a martingale problem for marked point processes, which
has completely been solved by Jacod (1975). It turns out that Q2 exists and is
unique.

Theorem 3.1. Assume (A6) holds. Let r0, σt, γt(x) and δt(x) satisfy (A2), (A4)
and (A5’), respectively. Define νL(t, dx) by (26) and αt by (22) for all (t, T, x).
Suppose, for any loss path ω2 ∈ Ω2, there exists a solution rt(ξ, η) of (21) such that
rt(0, η) is progressive, decreasing and càdlàg in η ∈ I. Then

(1) (A3) is satisfied.
(2) There exists a unique probability kernel Q2 from (Ω1,G) to H, such that the

loss process Lt(ω) = ω2(t) satisfies (A1’) and the no-arbitrage condition (5)
holds.

The proof is analogous to Theorem 5.1 in Filipović, Overbeck, and Schmidt
(2011).

3.2. An SPDE approach. The next step will be to state conditions which guar-
antee the existence of solutions of a SPDE as in (21). More precisely, we consider
the SPDE 

drt =
(
d
dξ rt + α(rt)

)
dt+ σ(rt)dWt

+
∫
G
γ(rt−, x)µ̃(dt, dx) +

∫
I
δ(rt−, x)µL(dt, dx)

r0 = h0

(27)

with measurable mappings σ : Hβ → L0
2(Hβ), γ : Hβ×G→ Hβ and δ : Hβ×I → Hβ

on a suitable Hilbert space Hβ consisting of functions h : R+ × [0, 1] → R, which
we shall now introduce. Let β > 0 be an arbitrary constant.
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Definition 3.2. Let Hβ be the linear space consisting of all functions h : R+ ×
[0, 1]→ R satisfying the following conditions:

• For each ξ ∈ R+ the mapping h(ξ, ·), ∂ξh(ξ, ·) are absolutely continuous, and
for each η ∈ [0, 1] the mappings h(·, η), ∂ηh(·, η) are absolutely continuous
(and hence, almost everywhere differentiable).

• We have almost everywhere ∂ξηh = ∂ηξh.
• We have

(28)

‖h‖β :=

(
|h(0, 0)|2 +

∞∫
0

|∂ξh(ξ, 0)|2eβξdξ +

1∫
0

|∂ηh(0, η)|2dη

+

∞∫
0

1∫
0

|∂ξηh(ξ, η)|2dηeβξdξ
)1/2

<∞.

In contrast to default-free term structure modelling, the SPDE (27) describes the
dynamics of two-dimensional surfaces rather than curves, which is due to the addi-
tional parameter η that describes the quality of bonds. In the context of default-free
term structure modelling, similar spaces consisting of curves have been introduced
in Filipović (2001). Let us collect some relevant properties of the spaces Hβ . The
proof of the following result can be provided by using similar techniques as in Fil-
ipović (2001, Section 5), Tappe (2010, Section 4), Filipović, Tappe, and Teichmann
(2010, Appendix) and (Tappe 2012a, Appendix A), and it is therefore omitted.

Theorem 3.2. Let β > 0 be arbitrary.

(1) The linear space (Hβ , ‖ · ‖β) is a separable Hilbert space.
(2) The shift-semigroup (St)t≥0 given by

St : Hβ → Hβ , Sth(ξ, η) = h(ξ + t, η)

is a C0-semigroup on Hβ with infinitesimal generator d/dξ.
(3) There exist another separable Hilbert space Hβ, a C0-group (Ut)t∈R on Hβ

and continuous linear operators ` ∈ L(Hβ ,Hβ), π ∈ L(Hβ , Hβ) such that
πUt` = St for all t ∈ R+.

(4) The linear space

H0
β =

{
h ∈ Hβ : lim

ξ→∞
h(ξ, 0) = 0 and lim

ξ→∞
∂ηh(ξ, η) = 0 for all η ∈ [0, 1]

}
is a closed subspace of Hβ.

(5) Each function h ∈ Hβ is continuous and bounded.
(6) For all (ξ, η) ∈ R+ × [0, 1] the point evaluation h 7→ h(ξ, η) : Hβ → R is a

continuous linear functional.
(7) There is a constant C1 > 0, only depending on β, such that for all h ∈ Hβ

we have

‖h‖∞ ≤ C1‖h‖β .(29)

(8) For all h ∈ Hβ we have exp(h) ∈ Hβ, there are constants C2, C3 > 0, only
depending on β, such that for all h ∈ Hβ we have

‖ exp(h)‖β ≤ C2(1 + ‖h‖β) exp(C3‖h‖β),(30)

and the mapping h 7→ exp(h) is locally Lipschitz continuous on Hβ.
(9) For all h, g ∈ Hβ we have hg ∈ Hβ and the multiplication map m : Hβ ×

Hβ → Hβ defined as m(h, g) := hg is a continuous, bilinear operator.
(10) Let β′ > β be arbitrary. Then we have Hβ′ ⊂ Hβ and the estimate

‖h‖β ≤ ‖h‖β′ , h ∈ Hβ′ .
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Moreover, for each h ∈ H0
β′ we have Ih ∈ Hβ, where

Ih(ξ, η) :=

ξ∫
0

h(ζ, η)dζ, (ξ, η) ∈ R+ × [0, 1],

and the integral operator I : H0
β′ → Hβ is a continuous linear operator.

In particular, we see that Hβ is a separable Hilbert space and that the shift
semigroup (St)t≥0 is a C0-semigroup on Hβ with infinitesimal generator d/dξ. In
order to provide our existence- and uniqueness result, we impose the following
conditions.

(A7): Let β′ > β be another constant. We assume that:
• σ(Hβ) ⊂ L0

2(H0
β′) and γ(Hβ ×G), δ(Hβ × I) ⊂ H0

β′ .

• There is a sequence (cj)j∈N with
∑
j∈N(cj)2 <∞ such that for all j ∈ N we

have

‖σj(h)‖β′ ≤ cj , h ∈ Hβ ,(31)

‖σj(h1)− σj(h2)‖β′ ≤ cj‖h1 − h2‖β , h1, h2 ∈ Hβ .(32)

• There is a constant M > 0 such that for all x ∈ G we have

‖γ(h, x)‖β′ ≤M, h ∈ Hβ ,(33)

‖γ(h1, x)− γ(h2, x)‖β′ ≤M‖h1 − h2‖β , h1, h2 ∈ Hβ ,(34)

and for all x ∈ I we have

‖δ(h, x)‖β′ ≤M, h ∈ Hβ ,(35)

‖δ(h1, x)− δ(h2, x)‖β′ ≤M‖h1 − h2‖β , h1, h2 ∈ Hβ .(36)

In view of Proposition 3.1, we suppose that the drift term α : Ω2×R+×Hβ → Hβ

in the SPDE (27) is given by
(37)

α(ω2, t, h)(ξ, η) =
∑
j∈N

σj(h)(ξ, η)Σj(h)(ξ, η)

−
∫
G

γ(h, x)(ξ, η)e−Γ(h,x)(ξ,η)F̃ (dx)

−
∫
I

1{ω2(t−)+x≤η}δ(h, x)(ξ, η)e−∆(h,x)(ξ,η)h(0, ω2(t) + dx).

We will prove the following existence- and uniqueness result:

Theorem 3.3. For each h0 ∈ Hβ and each ω2 ∈ Ω2 there exists a unique mild
solution r = r(·, ω2) : Ω1 × R+ → Hβ to the SPDE

drt =
(
d
dξ rt + α(ω2, t, rt)

)
dt+ σ(rt)dWt

+
∫
G
γ(rt−, x)µ̃(dt, dx) +

∫
I
δ(rt−, x)µω2(dt, dx)

r0 = h0

(38)

on the filtered probability space (Ω1,G, (Gt)t≥0,Q1).

In order to prepare the proof of Theorem 3.3, note that the drift term (37) can
be expressed as

α(ω2, t, h) = α1(h) + α2(h) + α3
(ω2,t)

(h).(39)
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where we have set

α1(h) :=
∑
j∈N

σj(h)Iσj(h),

α2(h) := −
∫
E

γ(h, x) exp(−Iγ(h, x))F̃ (dx),

α3
(ω2,t)

(h)(ξ, η) := −

f(ω2,t)
(η)∫

0

δ(h, x)(ξ, η) exp(−Iδ(h, x)(ξ, η))∂xh(0, ω2(t) + x)dx,

and where for each (ω2, t) ∈ Ω2 × R+ the piecewise linear function f(ω2,t) : R+ →
[0, 1] is defined as

f(ω2,t)(η) :=


0, if η − ω2(t−) ≤ 0,

η − ω2(t−), if 0 ≤ η − ω2(t−) ≤ 1− ω2(t),

1− ω2(t), if η − ω2(t−) ≥ 1− ω2(t).

Now, our goal is to show that α is locally Lipschitz and satisfies the linear growth
condition. For this purpose, we prepare a few auxiliary results.

Lemma 3.3. The following statements are true:

(1) We have α1(Hβ) ⊂ Hβ.
(2) The mapping α1 : Hβ → Hβ is Lipschitz continuous.

Proof. According to Theorem 3.2, the multiplication m : Hβ × Hβ → Hβ is a
continuous bilinear operator, the integral operator I : H0

β′ → Hβ is a continuous

linear operator, and we have Hβ′ ⊂ Hβ with ‖h‖β ≤ ‖h‖β′ for all h ∈ Hβ′ . Thus,
by (31), for all h ∈ Hβ we have

‖α1(h)‖β =

∥∥∥∥∑
j∈N

σj(h)Iσj(h)

∥∥∥∥
β

≤
∑
j∈N
‖σj(h)Iσj(h)‖β

≤ ‖m‖ ‖I‖
∑
j∈N
‖σj(h)‖2β′ ≤ ‖m‖ ‖I‖

∑
j∈N

(cj)2 <∞,

showing that α1(Hβ) ⊂ Hβ . Moreover, by (31), (32), for all h1, h2 ∈ Hβ we obtain

‖α1(h1)− α1(h2)‖β ≤
∑
j∈N
‖σj(h1)Iσj(h1)− σj(h2)Iσj(h2)‖β

≤
∑
j∈N
‖σj(h1)(Iσj(h1)− Iσj(h2))‖β +

∑
j∈N
‖(σj(h1)− σj(h2))Iσj(h2)‖β

≤ ‖m‖ ‖I‖
∑
j∈N
‖σj(h1)‖β′‖σj(h1)− σj(h2)‖β′

+ ‖m‖ ‖I‖
∑
j∈N
‖σj(h1)− σj(h2)‖β′‖σj(h2)‖β′

≤ 2‖m‖ ‖I‖
(∑
j∈N

(cj)2

)
‖h1 − h2‖β ,

showing that α1 is Lipschitz continuous. �

Lemma 3.4. The following statements are true:

(1) We have α2(Hβ) ⊂ Hβ.
(2) The mapping α2 : Hβ → Hβ is Lipschitz continuous.
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Proof. According to Theorem 3.2, the multiplication m : Hβ × Hβ → Hβ is a
continuous bilinear operator, the integral operator I : H0

β′ → Hβ is a continuous

linear operator, and we have Hβ′ ⊂ Hβ with ‖h‖β ≤ ‖h‖β′ for all h ∈ Hβ′ . Thus,
by estimates (30) and (33), for all h ∈ Hβ we have

‖α2(h)‖β =

∥∥∥∥∫
G

γ(h, x) exp(−Iγ(h, x))F̃ (dx)

∥∥∥∥
β

≤
∫
G

‖γ(h, x) exp(−Iγ(h, x))‖βF̃ (dx)

≤ ‖m‖‖C2

∫
G

‖γ(h, x)‖β(1 + ‖Iγ(h, x)‖β) exp(C3‖Iγ(h, x)‖β)F̃ (dx)

≤ ‖m‖C2

∫
G

‖γ(h, x)‖β′(1 + ‖I‖ ‖γ(h, x)‖β′) exp(C3‖I‖ ‖γ(h, x)‖β′)F̃ (dx)

≤ ‖m‖C2M(1 + ‖I‖M) exp(C3‖I‖M)F̃ (G) <∞,

showing that α2(Hβ) ⊂ Hβ . Moreover, by Theorem 3.2 the mapping h 7→ exp(h)
is locally Lipschitz, and hence, in view of (33), there exists a constant L ≥ 0 such
that

‖ exp(h1)− exp(h2)‖β ≤ L‖h1 − h2‖β for all h1, h2 ∈ −Iγ(Hβ ×G).

Therefore, by estimates (30) and (33), (34), for all h1, h2 ∈ Hβ we obtain

‖α2(h1)− α2(h2)‖β

≤
∫
G

‖γ(h1, x)(exp(−Iγ(h1, x))− exp(−Iγ(h2, x))‖βF̃ (dx)

+

∫
G

‖(γ(h1, x)− γ(h2, x)) exp(−Iγ(h2, x))‖βF̃ (dx)

≤
∫
G

‖γ(h1, x)‖β′L‖Iγ(h1, x)− Iγ(h2, x)‖β′ F̃ (dx)

+

∫
G

M‖h1 − h2‖βC2(1 + ‖Iγ(h2, x)‖β) exp(C3‖Iγ(h2, x)‖β)F̃ (dx)

≤
(
M2L‖I‖+MC2(1 + ‖I‖M) exp(C3‖I‖M)

)
F̃ (G)‖h1 − h2‖β ,

showing that α2 is Lipschitz continuous. �

In order to treat the mapping α3, we prepare a separate auxiliary result. For
(ω2, t) ∈ Ω2 × R+ and any bounded, measurable mapping ε : I → Hβ we define

αε(ω2,t)
(h)(ξ, η) :=

f(ω2,t)
(η)∫

0

ε(x)(ξ, η)∂xh(0, ω2(t) + x)dx

for h ∈ Hβ and (ξ, η) ∈ R+ × [0, 1].

Lemma 3.5. The following statements are true:

(1) For all (ω2, t) ∈ Ω2×R+ and any bounded, measurable mapping ε : I → Hβ

we have αε(ω2,t)
(Hβ) ⊂ Hβ.

(2) There exists a constant N > 0 such that for all (ω2, t) ∈ Ω2 × R+ and any
bounded, measurable mapping ε : I → Hβ we have

‖αε(ω2,t)
(h)‖β ≤ N‖ε‖∞‖h‖β , h ∈ Hβ .(40)
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Proof. We fix (ω2, t) ∈ Ω2 × R+ and a bounded, measurable mapping ε : I → Hβ .
Furthermore, let h ∈ Hβ be arbitrary. Let us determine the partial derivatives of
αε(ω2,t)

(h). The partial derivative ∂ξ is given by

∂ξα
ε
(ω2,t)

(h)(ξ, η) =

f(ω2,t)
(η)∫

0

∂ξε(x)(ξ, η)∂xh(0, ω2(t) + x)dx,

the partial derivative ∂η is given by

∂ηα
ε
(ω2,t)

(h)(ξ, η) = ε(f(ω2,t)(η))(ξ, η)∂xh(0, ω2(t) + f(ω2,t)(η))

+

f(ω2,t)
(η)∫

0

∂ηε(x)(ξ, η)∂xh(0, ω2(t) + x)dx,

and the second order derivative ∂ξη is given by

∂ξηα
ε
(ω2,t)

(h)(ξ, η) = ∂ξε(f(ω2,t)(η))(ξ, η)∂xh(0, ω2(t) + f(ω2,t)(η))

+

f(ω2,t)
(η)∫

0

∂ξηε(x)(ξ, η)∂xh(0, ω2(t) + x)dx.

In particular, we have

∂ξα
ε
(ω2,t)

(h)(ξ, 0) = 0.

By estimate (29) of Theorem 3.2 we obtain

1∫
0

|ε(f(ω2,t)(η))(0, η)∂xh(0, ω2(t) + f(ω2,t)(η))|2dη

≤ sup
x∈I
‖ε(x)(0, ·)‖2L∞([0,1])

1∫
0

|∂ηh(0, ω2(t) + f(ω2,t)(η))|2dη

≤ C2
1 sup
x∈I
‖ε(x)‖2β

1∫
0

|∂ηh(0, η)|2dη ≤ C2
1‖ε‖2∞‖h‖2β .

Moreover, we get

1∫
0

∣∣∣∣
f(ω2,t)

(η)∫
0

∂ηε(x)(0, η)∂xh(0, ω2(t) + x)dx

∣∣∣∣2dη
≤

1∫
0

1−ω2(t)∫
0

|∂ηε(x)(0, η)∂xh(0, ω2(t) + x)|2dxdη

=

1−ω2(t)∫
0

|∂xh(0, ω2(t) + x)|2
1∫

0

|∂ηε(x)(0, η)|2dηdx

≤
1−ω2(t)∫

0

|∂xh(0, ω2(t) + x)|2‖ε(x)‖2βdx ≤ ‖ε‖2∞

1∫
0

|∂ηh(0, η)|2dη ≤ ‖ε‖2∞‖h‖2β .
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For every fixed η ∈ [0, 1] we have

∂ξε(f(ω2,t)(η))(ξ, η) = ∂ξε(f(ω2,t)(η))(ξ, 0) +

η∫
0

∂ξηε(f(ω2,t)(η))(ξ, η̄)dη̄,

which implies

∞∫
0

|∂ξε(f(ω2,t)(η))(ξ, η)|2eβξdξ

≤ 2

∞∫
0

∣∣∣∣∂ξε(f(ω2,t)(η))(ξ, 0)

∣∣∣∣2eβξdξ + 2

∞∫
0

∣∣∣∣
η∫

0

∂ξηε(f(ω2,t)(η))(ξ, η̄)dη̄

∣∣∣∣2eβξdξ
≤ 2‖ε(f(ω2,t)(η))‖2β + 2

∞∫
0

1∫
0

|∂ξηε(f(ω2,t)(η))(ξ, η̄)|2dη̄eβξdξ

≤ 4‖ε(f(ω2,t)(η))‖2β ≤ 4‖ε‖2∞.

Therefore, we obtain

∞∫
0

1∫
0

|∂ξε(f(ω2,t)(η))(ξ, η)∂xh(0, ω2(t) + f(ω2,t)(η))|2dηeβξdξ

≤
1∫

0

|∂xh(0, ω2(t) + f(ω2,t)(η))|2
∞∫

0

|∂ξε(f(ω2,t)(η))(ξ, η)|2eβξdξdη

≤ 4‖ε‖2∞

1∫
0

|∂ηh(0, η)|2dη ≤ 4‖ε‖2∞‖h‖2β .

Moreover, we have

∞∫
0

1∫
0

∣∣∣∣
f(ω2,t)

(η)∫
0

∂ξηε(x)(ξ, η)∂xh(0, ω2(t) + x)dx

∣∣∣∣2dηeβξdξ
≤
∞∫

0

1∫
0

1−ω2(t)∫
0

|∂ξηε(x)(ξ, η)∂xh(0, ω2(t) + x)|2dxdηeβξdξ

≤
1−ω2(t)∫

0

|∂xh(0, ω2(t) + x)|2
∞∫

0

1∫
0

|∂ξηε(x)(ξ, η)|2dηeβξdξdx

≤
1−ω2(t)∫

0

|∂xh(0, ω2(t) + x)|2‖ε(x)‖2βdx ≤ ‖ε‖2∞

1∫
0

|∂ηh(0, η)|2dη ≤ ‖ε‖2∞‖h‖2β .

Taking into account the definition (28) of the norm ‖ · ‖β , this concludes the proof.
�

Now, we shall prove that α is locally Lipschitz and satisfies the linear growth
condition.

Proposition 3.6. The following statements are true:

(1) We have α(Ω2 × R+ ×Hβ) ⊂ Hβ.
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(2) For each n ∈ N there exists a constant Ln ≥ 0 such that

‖α(ω2, t, h1)− α(ω2, t, h2)‖β ≤ Ln‖h1 − h2‖

for all (ω2, t) ∈ Ω2 × R+ and all h1, h2 ∈ Hβ with ‖h1‖β , ‖h2‖β ≤ n.
(3) There exists a constant K ≥ 0 such that

‖α(ω2, t, h)‖β ≤ K‖h‖β for all (ω2, t, h) ∈ Ω2 × R+ ×Hβ.

Proof. We define the mapping ε as

ε(h, x) := δ(h, x) exp(−Iδ(h, x)), (h, x) ∈ Hβ × I.

As in the proof of Lemma 3.4, we show that ε(Hβ × I) ⊂ Hβ , and that there is a
constant Mε > 0 such that for all x ∈ I we have

‖ε(h, x)‖β ≤Mε, h ∈ Hβ

‖ε(h1, x)− ε(h2, x)‖β ≤Mε‖h1 − h2‖β , h1, h2 ∈ Hβ .

In particular, for each h ∈ Hβ the mapping ε(h, ·) : I → Hβ is bounded and
measurable. Moreover, we have

α3
(ω2,t)

(h) = α
ε(h,·)
(ω2,t)

for all (ω2, t, h) ∈ Ω2 × R+ ×Hβ .

Let (ω2, t) ∈ Ω2 × R+ be arbitrary. By Lemma 3.5 we have α3
(ω2,t)

(Hβ) ⊂ Hβ , for

each h ∈ Hβ we have

‖α3
(ω2,t)

(h)‖β = ‖αε(h,·)(ω2,t)
(h)‖β ≤ N‖ε(h, ·)‖∞‖h‖β ≤ NMε‖h‖β ,

and for all h1, h2 ∈ Hβ we obtain

‖α3
(ω2,t)

(h1)− α3
(ω2,t)

(h2)‖β = ‖αε(h1,·)
(ω2,t)

(h1)− αε(h2,·)
(ω2,t)

(h2)‖β

≤ ‖αε(h1,·)−ε(h2,·)
(ω2,t)

(h1)‖β + ‖αε(h2,·)
(ω2,t)

(h1 − h2)‖β
≤ N‖ε(h1, ·)− ε(h2, ·)‖∞‖h1‖β +N‖ε(h2, ·)‖∞‖h1 − h2‖β
≤ NMε‖h1 − h2‖β‖h1‖β +NMε‖h1 − h2‖β .

Together with Lemmas 3.3 and 3.4, this concludes the proof. �

Now, we are ready to provide the proof of Theorem 3.3.

Proof of Theorem 3.3. According to Theorem 3.2 there exist another separable Hil-
bert space Hβ , a C0-group (Ut)t∈R on Hβ and continuous linear operators ` ∈
L(Hβ ,Hβ), π ∈ L(Hβ , Hβ) such that πUt` = St for all t ∈ R+. Therefore, by virtue
of condition (32) and Proposition 3.6, existence and uniqueness of mild solutions
for the SPDE (38) follows from Tappe (2012b, Theorem 4.5). �

4. Positivity and monotonicity

Monotonicity of the bond prices P (t, T, η) with respect to the quality η is a
desirable modelling feature. As we shall see, it is implied by the positivity of the
forward rates.

We continue to work under Assumption (A1’) such that the loss process L is
given by (19). Moreover, we study the forward rates given by the SPDE in (27)
and assume that the drift condition is satisfied, i.e. (37) holds.

Definition 4.1. The term structure model (6) is called monotone, if for all 0 ≤
t ≤ T and 0 ≤ η1 ≤ η2 ≤ 1 we have

Q
(
P (t, T, η1) ≤ P (t, T, η2)

)
= 1.

Since we study the forward rate dynamics under a martingale measure Q, the
discounted bond prices are local martingales. If they are even true martingales,
then monotonicity follows directly as a consequence of our upcoming result.
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Proposition 4.2. Consider 0 ≤ η1 ≤ η2 ≤ 1 and T ≥ 0, and assume that
(DtP (t, T, ηi))0≤t≤T are martingales for i = 1, 2. Then for all t ∈ [0, T ] we have

Q
(
P (t, T, η1) ≤ P (t, T, η2)

)
= 1.

Proof. Let t ∈ [0, T ] be arbitrary. By definition the discounting process D is posi-
tive. The martingale property and representation (20) yield that

P (t, T, ηi) = EQ
[
DT

Dt
1{LT≤ηi}

∣∣∣Ft] , i = 1, 2.

Moreover, we have 1{y≤η1} ≤ 1{y≤η2} for all y ∈ R. Consequently, the monotonicity
of the conditional expectation gives the result. �

In order to define positivity of the forward rates, we introduce the closed, convex
cone of non-negative functions of Hβ as

P = {h ∈ Hβ : h(ξ, η) ≥ 0 for all (ξ, η) ∈ R+ × [0, 1]}.

Definition 4.3. The family of term structure models (27) is called positivity pre-
serving if for all h0 ∈ P we have

Q(rt ∈ P) = 1 for all t ≥ 0,

where (rt)t≥0 denotes the mild solution for the SPDE (27) with r0 = h0.

Now, we will prove that the positivity preserving property implies the mono-
tonicity of the term structure model.

Proposition 4.4. If the family of term structure models (27) is positivity preserv-
ing, then for each h0 ∈ P the term structure model (6) is monotone.

Proof. Let h0 ∈ P be arbitrary and denote by (rt)t≥0 denotes the mild solution for
the SPDE (27) with r0 = h0. By the positivity preserving property we have

Q(rt(ξ, η) ≥ 0 for all (ξ, η) ∈ R+ × [0, 1]) = 1 for all t ≥ 0.

Let (T, η) ∈ R+ × [0, 1] be arbitrary. We will show that the discounted (T, η)-
bond price process is a true martingale: First, (22) and (23) are satisfied and
Proposition 3.1 gives that the process (DtP (t, T, η))0≤t≤T is a local martingale.
Moreover, by the representation (20) we have

DtP (t, T, η) = e−
∫ t
0
ru(0,1)du1{Lt≤η}e

−
∫ T−t
0

rt(u,η)du, t ∈ [0, T ].

Therefore, we obtain

0 ≤ DtP (t, T, η) ≤ 1{Lt≤η} ≤ 1, t ∈ [0, T ],

and hence (DtP (t, ξ, η))0≤t≤T is a true martingale. Applying Proposition 4.2 fin-
ishes the proof. �

Now, we shall derive conditions for the positivity preserving property in terms
of the characteristic coefficients σ, γ and δ of the SPDE (27).

Theorem 4.5. Suppose σ ∈ C2(Hβ ;L0
2(Hβ)) and that the mapping

h 7→
∑
j∈N

Dσj(h)σj(h)

is Lipschitz continuous on Hβ. Furthermore, we assume that for all j ∈ N we have

σj(h)(ξ, η) = 0, for all h ∈ P and (ξ, η) ∈ R+ × [0, 1] with h(ξ, η) = 0(41)

and for F̃ -almost all x ∈ G and all y ∈ I we have

h+ γ(h, x) + δ(h, y) ∈ P, for all h ∈ P,(42)

γ(h, x)(ξ, η) = 0, for all h ∈ P and (ξ, η) ∈ R+ × [0, 1] with h(ξ, η) = 0,(43)

δ(h, y)(ξ, η) = 0, for all h ∈ P and (ξ, η) ∈ R+ × [0, 1] with h(ξ, η) = 0.(44)
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Then, the family of term structure models (27) is positivity preserving.

Proof. Since the drift term α : Ω2 × R+ ×Hβ → Hβ of the SPDE (27) is given by
(37), conditions (41), (43) and (44) yields that for all (ω2, t) ∈ Ω2 × R+ we have

α(ω2, t, h)(ξ, η) = 0, for all h ∈ P and (ξ, η) ∈ R+ × [0, 1] with h(ξ, η) = 0.

Thus, proceeding as in Filipović, Tappe, and Teichmann (2010, Section 4) gives the
positivity preserving property of the family of term structure models (27). �

5. Examples

In this section we illustrate applications of our general approach. We first discuss
the application to the modelling of collateralized debt obligations, thus generalizing
Filipović, Overbeck, and Schmidt (2011) and Schmidt and Zabczyk (2012). There-
after we consider less specific models for portfolio credit risk in a top-down setting
and related infinite-dimensional credit risk models. Finally, we give an account of
stochastic mortality modelling following Tappe and Weber (2013).

5.1. CDO term structure modelling. In this section the general modelling of
credit risk markets by (T, η)-bonds is applied to a fixed and finite portfolio of credit
risky instruments. Typical derivatives in this markets are collateralized debt obli-
gations (CDOs) and single-tranche CDOs. We show how the top-down approaches
for CDO markets can be embedded in the more general setting considered here.

Mathematically speaking, a CDO is a derivative on a portfolio of N credit risky
instruments. With each instrument there is an associated nominal and we assume
that the total nominal is one. Denote the process of accumulated losses over time
by L = (Lt)t≥0. This is a pure-jump process which jumps upward at default of
instruments in the pool by the occurring loss. As the total nominal is one, Lt ∈ [0, 1]
for all t ≥ 0. By I := [0, 1] we denote the set of attainable loss fractions, the case
where I is finite may be considered analogously.

To facilitate the mathematical analysis of CDO markets, we introduce (T, η)-
bonds. A (T, η)-bond pays 1{Lt≤η} at maturity T . Hence, in our setting {τη > t} =
{Lt ≤ η}. For η = 1 we obtain that P (t, T, 1) =: P (t, T ) which equals the risk-free
bond.

A securitization mechanism splits the CDO pool in several tranches which have
different risk profiles and serve as efficient instrument to enable trading on the CDO
pool. The single-tranche CDO (STCDO) is specified by

• a number of future trading dates T0 < T1 < · · · < Tn,
• lower and upper detachment points x1, x2 specifying the tranche (x1, x2] ⊂ I,
• a fixed swap rate κ.

Set

H(x) := (x2 − x)+ − (x1 − x)+ =

∫
(x1,x2]

1{x≤y}dy.

Then the payment scheme of the STCDO can be described as follows: an investor
in this STCDO

• receives κH(LTi) at Ti, i = 1, . . . , n,
• pays H(Lt−) − H(Lt) at any time t ∈ (T0, Tn] when ∆Lt 6= 0 (i.e. when a

default occurs).

It has been shown in Filipović, Overbeck, and Schmidt (2011, Lemma 4.1) that by
a Fubini-type argument prices of STCDOs can be expressed directly in terms of
prices of (T, η)-bonds.



EXISTENCE AND MONOTONICITY 23

Regarding absence of arbitrage, we assume that L satisfies

Lt =

t∫
0

∫
E

1{Ls−+`s(x)≤1}`s(x)µ(ds, dx),(45)

where ` is a non-negative, predictable process such that for all t ≥ 0 it holds that∫ t
0

1{Ls−+`s(x)≤1}`s(x)Fs(dx)ds <∞ (finite activity).
Then L is a non-decreasing, pure-jump process with values in I. Furthermore,

the indicator process (1{Lt≤η})t≥0 is càdlàg and has intensity

(46) λ(t, η) := Ft({x ∈ E : Lt− + `t(x) > η});

that is,

(47) Mt := 1{Lt≤η} +

t∫
0

1{Ls≤η}λ(s, η) ds

is a martingale. Moreover, λ(t, η) is decreasing in η with λ(t, 1) = 0. With τη :=
inf{t ≥ 0 : Lt > η} we obtain the final link to (T, η)-bonds as in (20):

P (t, T, η) = 1{Lt≤η} exp

(
−

T∫
t

f(t, u, η)du

)
.

As a corollary we obtain the generalization of the drift condition to the infinite-
dimensional setup considered in our article. The result directly follows from Propo-
sition 3.1.

Corollary 5.1. Assume that (A2)–(A5) and (45) hold. Then Q is ELMM, if and
only if

α(t, T, η) =
∑
j∈N

σj(t, T, η)Σj(t, T, η)

−
∫
E

γ(t, T, η, x)
(
e−Γ(t,T,η,x)1{Lt−+`t(x)≤η} − 1

)
Ft(dx)(48)

rt(0, η) = rt + λ(t, η),(49)

where (48) and (49) hold on {Lt ≤ η}, Q⊗ dt-a.s.

Next, we shall discuss conditions for positivity, and hence monotonicity, of the
model. If for all j ∈ N we have

σj(h)(ξ, η) = 0, for all h ∈ P and (ξ, η) ∈ R+ × [0, 1] with h(ξ, η) = 0

and for all x ∈ E we have

h+ γ(h, x) ∈ P, for all h ∈ P,

γ(h, x)(ξ, η) = 0, for all h ∈ P and (ξ, η) ∈ R+ × [0, 1] with h(ξ, η) = 0,

then the positivity preserving property is fulfilled, which follows from Theorem 4.5.

5.2. Top-down modelling of credit portfolios. As next example we specify a
class of models where we consider the ordered default times. This is often called
a top-down approach and simplifies the analysis of the model. In this regard,
consider a portfolio of N credit risky instruments. We denote their default times
by σ1, . . . , σN . Define the associated counting process by

Lt :=
1

N

N∑
i=1

1{σi≤t}.
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Letting I = {0, N−1, . . . , 1} we obtain that the associated first hitting times of L
with barrier η ∈ I,

τη := inf{t ≥ 0 : Lt ≥ η}
equal the ordered default times σ(1), . . . , σ(N) (if no joint defaults happen). Hence
the whole portfolio and the associated loss process can be modelled by looking at
term structures of (T, η)-bonds and the ordered default times {τη : η ∈ I}.

5.3. Infinite dimensional markets with credit risk. In this section we intro-
duce a general model for a large financial market bearing credit risk. We basically
construct an infinite-dimensional intensity based model. Intensity based models
have been intensively studied in the literature, see Bielecki and Rutkowski (2002)
or Filipović (2009) for details and references.

Consider a market with countably many companies and set I = N. Each com-
pany η ∈ I is subject to default risk and we denote its default time by τη. Each τη
is assumed to be an (Ft)-stopping time. We assume that for each η there exists a
non-negative, optional process (λ(t, η))t≥0 such that

Mη(t) := 1{τη>t} +

t∫
0

1{τη≥s}λ(s, η)ds

is a martingale. The process (λ(t, η)) is called default intensity of company η.
We associate a random measure µ∗ to the default times as follows: the mark

space F = {0, 1}∞ is spanned by the unit vectors e1, e2, . . . and

µ∗(A×B) :=
∑

η∈I:eη∈B
δτη (A), A ∈ B(R+), B ⊂ F,

where δt denotes the Dirac-measure at time t. We define

F ∗t (B) :=
∑

η∈I:eη∈B
λ(t, η)

and obtain that µ∗(dt, dx)− F ∗t (dx)dt is a compensated Poisson random measure.
Assume that E = F ×G, where G is the mark space of a homogeneous Poisson

random measure µ̃. We set µ = µ∗ ⊗ µ̃ and obtain a model which is driven by the
defaults and possible further jumps from µ̃. Note that (A1) is satisfied:

1{τη>t} = 1− 1{τη≤t} = 1− µ∗([0, t]× {eη})

= 1−
t∫

0

1{τη≥s}

∫
E

1{F×{eη}}(x)µ(ds, dx),

and choosing β(s, η, x) = −1{F×{eη}}(x) yields the desired representation (8).
The market trades bonds for each companies whose prices are denoted by P (t, T, η)

and we assume that they follow the HJM-representation in terms of forward rates
given in (6). This model is included in our setup such that all our results can be
applied. In particular, the default intensity of a single company can depend of the
number of defaults in the market in the past, such that features like self-excitement
can be included (see Giesecke, Spiliopoulos, and Sowers (2013) for an account of
finite-dimensional markets with this feature).

5.4. Stochastic mortality modelling. In this section, we shall briefly illustrate
our developed methods concerning positivity and monotonicity from Section 4 in
the context of stochastic mortality models. In the sequel, we follow the framework
of Tappe and Weber (2013), to which we refer for further details.

The death of an individual born at −η ∈ R≤0 = I is denoted by a G-measurable
random time τη : Ω → (−η,∞) for some larger σ-algebra G ⊃ F . The filtration
(Ft)t≥0, which is called the background information, contains all information about
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the likelihoods, but no information about the exact times of death events. We define
the survival process

G(t, t, η) := P(τη > t | Ft),

and for t ≤ T we define the forward survival process

G(t, T, η) := P(τη > T | Ft) = E[G(T, T, η) | Ft]

as the best prediction at date t of the fraction of individuals born at date −η
that survive until a future date T . Then the forward survival processes become
martingales which allows us to relate this approach to our setup where NAFL was
equivalent to considering equivalent local martingale measures.

In this regard, we may proceed as follows: after performing the Musiela type
change of parameters (t, T, η) 7→ (t, T − t, η + t) =: (t, x, ξ), we can model the
mortality rates µ as a SPDE

dµt =
(
(∂x − ∂ξ)µt + α(µt)

)
dt+ σ(µt)dWt +

∫
E

δ(µt−, y)(µ(dt, dy)− ν(dy)dt),

where the state space H is a separable Hilbert space consisting of surfaces h : Ξ→ R
with domain Ξ = {(x, ξ) ∈ R+ × R : −ξ ≤ x}. Forward survival process now play
the role of bond prices in the following form

G(t, T, η) = F (η) exp
(
−

T∫
0

µs∧t(s, η)ds
)
, 0 ≤ t ≤ T.

Due to the martingale property of the survival processes, we obtain a drift condition
in the form

αt(x, ξ) =
∑
k∈N

σkt (x, ξ)

x∫
0

σkt (u, ξ)du

−
∫
E

δt(x, ξ, y)

[
exp

(
−

x∫
0

δt(u, ξ, y)du

)
− 1

]
ν(dy),

similar to the HJM drift condition for default free bond markets. As in Section 4,
we can formulate appropriate conditions on α, σ and δ for the positivity preserving
property of this SPDE. Then the survival processes calculated from these mortality
rates satisfy 0 ≤ G(t, T, η) ≤ 1. Therefore, they are not only local, but even true
martingales, and hence, the mortality model is monotone by Proposition 4.2.
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