
Dual Representation of Monotone Convex Functions on L0

Michael Kupper∗ Gregor Svindland†

April 2010

Abstract

We study monotone convex functions ψ :  L0(Ω,F ,P) → (−∞,∞], and derive a dual
representation as well as conditions that ensure the existence of a σ-additive subgradient. The
results are motivated by applications in economic agents’ choice theory.1

1 Introduction

One of the main concerns in economic theory is the question of economic agents’ choice in a set
of future random payoffs. This choice behavior is determined by the preferences of each economic
agent which may largely differ if one agent is compared to another. However, since e.g. equilibrium
and pricing theory is based on such a comparison of agents’ preferences, the mathematical analysis
of these structures requires not only a description of the agents’ preferences in terms of functions
but also that these functions be defined on a space of random variables large enough to cover
all possible desires the different agents may have. Here the random variables over a probability
space (Ω,F ,P) resemble all possible future random payoffs, and hence a natural underlying space
for studying agents’ choice behavior is L0 := L0(Ω,F ,P), the space of all random variables over
(Ω,F ,P) modulo P-almost sure equality. Unfortunately, this space provides some mathematical
difficulties as it is not locally convex. Thus, for tractability reasons, the model space is usually
restricted to subspaces of L0 such as Lp(Ω,F ,P), p ∈ [1,∞), or even further to the space of
bounded random variables L∞(Ω,F ,P). But the Lp-spaces, p ∈ [1,∞), highly depend on the
reference probability measure P. However, when different agents in the market base their respective
evaluations on applying different references probability measures respectively, or when optimizing
the preferences of some agent under constraints given by some pricing rules, it is in general not
clear which reference probability one should choose, and on which (locally convex) model space
the analysis should be carried out. A very common choice of model space is L∞, since it, alike
L0, is invariant under equivalent measure transformations, so the reference probability measure
problem does not appear (as long as all candidates for such references probabilities are equivalent).
But obviously L∞ is a very limited space, keeping in mind that standard models for prices involve
e.g. log-normal distributed random variables (under some pricing probability measure) which thus
cannot be incorporated in a setting building on L∞.

∗Humboldt University Berlin, Mathematics Institute, Unter den Linden 6, D-10099 Berlin, kupper@math.hu-
berlin.de. Financial support from the MATHEON project E.11 is gratefully acknowledged.
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Fortunately, it is observed that many common preference functions posses convexity and mono-
tonicity properties which indeed allow for a mathematical inspection of these preferences on the
space L0. Since this feature is very desirable for the reasons already mentioned, we, during this
paper, determine a class of monotone convex functions on L0 which exhibit properties adequate for
allowing for a dual representation on L0, and, under some further conditions, even for a σ-additive
subgradient. This extends amongst others results by Brannath and Schachermayer [2] which were
formulated on the basis of the same motives as ours. For further ongoing research on topological
and structural properties of L0 we refer to [9, 11, 12, 14, 15].

The structure of this paper is as follows. Our main results are collected in section 2. In
section 2.1 we present a dual representation result for monotone convex functions on L0 satisfying
in addition a closedness and monotone continuity condition. Based on this result, we derive a
bipolar representation for a class of monotone convex subsets of L0 which is a generalization of
the bipolar theorem presented in [2]. Moreover, in section 2.2 we show that under some additional
conditions on the function we obtain a σ-additive subgradient for a large class of points. These
results are then illustrated by examples in section 2.3. The proof of the subgradient result, which
is given in section 4, is based on the construction of an auxiliary Banach space which is induced
by the monotone convex function studied. This space is defined and studied in section 3.

2 Dual Representation and σ-additive Subgradients

Throughout this paper, let (Ω,F ,P) be a fixed probability space. For p ∈ [0,∞], we write Lp :=
Lp(Ω,F ,P), and Lp(Q) := Lp(Ω,F ,Q) where Q is a probability measure absolutely continuous

with respect to P (Q � P). As usual, for two probability measures Q and Q̂ on (Ω,F) we write

Q ∼ Q̂ if and only if Q � Q̂ and Q̂ � Q. The expectation with respect to P is denoted by
E[·] whereas the expectation with respect to Q � P is denoted by EQ[·]. We use the convention
that −∞ +∞ := +∞−∞ := −∞ and E[Y ] := E[Y +] − E[Y −] for any Y ∈ L0. All equalities
and inequalities between random variables are understood in the P-almost sure (a.s.) sense. We
write X+ := X ∨ 0, X− := −(X ∧ 0), and L0

+ := {X+ | X ∈ L0}, and similarly for the positive
(and negative) cones of other spaces. The topology on L0 is the convergence in probability which
corresponds to the metric d(X,Y ) := E[|X−Y |∧1]. Recall that this topology is not locally convex
and there do not exist non-trivial continuous linear functions from L0 to R. So in particular, the
classical separation results cannot be applied.

2.1 A Representation Result

Theorem 2.1. Let ψ : L0 → (−∞,+∞] be a function which exhibits the following properties:

convexity: ψ(λX + (1− λ)Y ) ≤ λψ(X) + (1− λ)ψ(Y ) for all λ ∈ (0, 1),

monotonicity: X ≥ Y implies ψ(X) ≥ ψ(Y ),

lower semi-continuity (l.s.c.): The level sets Ek := {X ∈ L0 | ψ(X) ≤ k} are closed (w.r.t. conver-
gence in probability) for all k ∈ R,

monotone continuity: limn→∞ ψ(X ∨ (−n)) = ψ(X) for all X ∈ domψ which are bounded from
above where domψ := {Y ∈ L0 | ψ(Y ) <∞}.

Then, ψ has the dual representation

ψ(X) = sup
Z∈L∞+

(E[ZX]− ψ∗(Z)) , X ∈ L0, (2.1)
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for the convex conjugate

ψ∗(Z) := sup
X∈L0

(E[ZX]− ψ(X))

= sup
X∈L∞

(E[ZX]− ψ(X)) , Z ∈ L∞. (2.2)

The level sets Qk := {Z ∈ L∞+ | ψ∗(Z) ≤ k}, k ∈ R, are convex and closed in the σ(L∞, L∞)-
topology on L∞. If domψ 6= ∅, then ψ∗ > −∞.

Remark 2.2. Let ψ be as in theorem 2.1. Then, monotonicity and l.s.c. of ψ imply that

lim sup
m→∞

ψ(X ∧m) ≤ ψ(X) ≤ lim inf
m→∞

ψ(X ∧m),

so ψ(X) = limm→∞ ψ(X ∧m) for all X ∈ L0. Hence, by monotone continuity we infer for every
X ∈ domψ that

ψ(X) = lim
m→∞

ψ(X ∧m)

= lim
m→∞

lim
n→∞

ψ((−n) ∨X ∧m). (2.3)

We will frequently make use of this continuity property. Moreover, we note that a property similar
to (2.3) is used in [5] and [3] in order to extend functions from L∞ to L0. More precisely, [5] and

[3] give conditions for a class of monotone σ(L∞, L1)-l.s.c. functions ψ̂ : L∞ → R such that the
extension given by

ψ̂(X) := lim
n→∞

lim
m→∞

ψ̂((−n) ∨X ∧m) (2.4)

maps L0 to (−∞,+∞]. Notice that the limits in (2.3) and (2.4) cannot be interchanged in general.

However, in case that ψ̂ is l.s.c. on L0 it follows that (2.4) implies (2.3). ♦

Remark 2.3. We like to emphasize that given any function ψ as in theorem 2.1, in order to obtain
the dual representation (2.1) of ψ on L0, it suffices to compute the ordinary dual representation
of ψ restricted to the Banach space (L∞, ‖ · ‖∞) where ‖ · ‖∞ := ess sup | · |, because ψ∗ in (2.2) is
the convex conjugate of ψ|L∞ restricted to L∞. ♦

Remark 2.4. If we drop the monotone continuity, we may still obtain a representation of type
(2.1) for an appropriate ψ∗. However, the crucial l.s.c. property of ψ∗, which is essential when
translating a primal optimization problem into a dual one, might be lost. For illustration, consider
for instance the function

ψ : L0 3 Y 7→ δ(Y | C) :=

{
0 if Y ∈ C
+∞ else

where C = {X̂} − L0
+ for a point X̂ ∈ L0

− such that E[X̂] = −∞. Then, ψ satisfies all conditions
required in theorem 2.1 except for the monotone continuity. It is easily verified that ψ∗(Z) =
E[ZX̂] for all Z ∈ L∞+ . Hence, ψ∗(Z) = −∞ for every Z ∈ L∞+ such that Z ≥ ε for some ε > 0,
whereas e.g. ψ∗(ZX̂) > −∞ for ZX̂ := 1

1+|X̂| ∈ L
∞
+ . Therefore, ψ∗ does not satisfy (2.2), because

ψ|L∞ = ∞, and thus sup{E[ZY ] − ψ(Y ) | Y ∈ L∞} = −∞ for all Z ∈ L∞+ . In particular the
level sets of ψ∗ are not closed in any topology on L∞ weaker than the norm topology induced
by ‖ · ‖∞, because for every neighborhood of ZX̂ in the norm topology there is some n ∈ N such
that Zn := ZX̂ ∨

1
n lies in that neighborhood. But, as shown above, ψ∗(Zn) = −∞ for all n ∈ N

whereas ψ∗(ZX̂) > −∞. ♦
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Remark 2.5. Notice that any ψ : L0 → [−∞,+∞] which satisfies the conditions of theorem 2.1
and for which domψ 6= ∅ has to be proper (i.e. ψ > −∞ and domψ 6= ∅). Hence, it has a robust
representation of the form (2.1). Indeed, if we had ψ(Y ) = −∞ for some Y ∈ L0, then we could
choose Q ∼ P such that Y,X ∈ L1(Q) for some X ∈ domψ. However, since ψ|L1(Q) is a convex
l.s.c. (w.r.t. EQ[| · |]) function on L1(Q), this would contradict the well-known fact that if such a
function assumes the value −∞, it cannot take any finite value (see proposition 2.4 in [8]). ♦

Proof of theorem 2.1. If domψ = ∅, i.e. ψ ≡ ∞, then ψ∗ ≡ −∞, so the representation (2.1)
holds. In the following we assume that domψ 6= ∅ which in particular implies that ψ∗ > −∞,
because for every Z ∈ L∞+ and some Y ∈ domψ monotonicity implies that −Y − ∈ domψ,
and by monotone continuity there must be an n ∈ N such that ψ(−(Y − ∧ n)) < ∞, and thus
E[−Z(Y − ∧ n)]− ψ(−(Y − ∧ n)) > −∞. Next we show that

∀X ∈ L0 : ψ(X) ≥ sup
Z∈L∞+

(E[ZX]− ψ∗(Z)) . (2.5)

This assertion is trivial if ψ(X) = ∞ or if Z ∈ L∞+ is such that E[ZX] = −∞ or ψ∗(Z) = ∞ or
both. Hence, the only case that remains is X ∈ domψ, −∞ < E[ZX] <∞, and ψ∗(Z) <∞ (note
that X ∈ domψ and E[ZX] =∞ would imply ψ∗(Z) =∞), and in this case, by definition of ψ∗,
we have

E[ZX]− ψ∗(Z) ≤ E[ZX]− E[ZX] + ψ(X) = ψ(X),

so (2.5) is verified. Now consider any X ∈ L0, then X ∈ L1(Q) for Q ∼ P given by

dQ
dP

=
1

C(1 + |X|)
∈ L∞+ where C = E

[
1

1 + |X|

]
.

Note that either ψ|L1(Q) ≡ ∞ or ψ|L1(Q) is a proper convex function which is l.s.c. with respect to
‖ · ‖L1(Q) = EQ[| · |]. In either case, the Fenchel–Moreau theorem (see proposition 3.1 in [8]) and
monotonicity of ψ yield

ψ(X) = sup
Z∈L∞+

(
E

[
dQ
dP

ZX

]
− ψ|∗L1(Q)(Z)

)
(2.6)

where

ψ|∗L1(Q)(Z) = sup
Y ∈L1(Q)

(
E

[
dQ
dP

ZY

]
− ψ(Y )

)
, Z ∈ L∞.

Next we show that

ψ|∗L1(Q)(Z) = ψ∗
(
dQ
dP

Z

)
= sup
Y ∈L∞

(
E

[
dQ
dP

ZY

]
− ψ(Y )

)
for all Z ∈ L∞. (2.7)

Indeed, by definition it is obvious that for all Z ∈ L∞

sup
Y ∈L∞

(
E

[
dQ
dP

ZY

]
− ψ(Y )

)
≤ ψ|∗L1(Q)(Z) ≤ ψ∗

(
dQ
dP

Z

)
.

Hence, noting that dQ
dP ∈ L

∞
+ , the assertion will follow if we show that

ψ∗(Z) ≤ sup
Y ∈L∞

(E[ZY ]− ψ(Y )) for all Z ∈ L∞. (2.8)
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To this end, let Z ∈ L∞ and Y ∈ domψ such that E[ZY ] > −∞. If E[ZY ] < ∞, then for
every ε > 0, by monotone convergence and remark 2.2, there exist n,m ∈ N such that Yn,m :=
(−n) ∨ Y ∧m ∈ L∞ satisfies E[Y Z] ≤ E[ZYn,m] + ε and −ψ(Y ) ≤ −ψ(Yn,m) + ε so that

E[ZY ]− ψ(Y ) ≤ E[ZYn,m]− ψ(Yn,m) + 2ε,

and (2.8) follows. If E[ZY ] =∞, then again by monotone convergence and remark 2.2, for every
N ∈ N and ε > 0 there exist n,m ∈ N such that Yn,m := (−n)∨Y ∧m ∈ L∞ satisfies E[ZYn,m] ≥ N
and −ψ(Y ) ≤ −ψ(Yn,m) + ε which yields

N − ψ(Y )− ε ≤ E[ZYn,m]− ψ(Yn,m),

and (2.8) is verified in this case too. Consequently, (2.2) and (2.7) are proved. In conjunction with
(2.5) and (2.6) we obtain

ψ(X) = sup
Z∈L∞+

(
E

[
dQ
dP

ZX

]
− ψ|∗L1(Q)(Z)

)
= sup
Z∈L∞+

(
E

[
dQ
dP

ZX

]
− ψ∗

(
dQ
dP

Z

))
≤ sup

Z∈L∞+
(E[ZX]− ψ∗(Z)) ≤ ψ(X),

and (2.1) is proved. Finally notice that according to (2.2), the convex function ψ∗ is σ(L∞, L∞)-
l.s.c. which means that the level sets Qk are convex and closed in the σ(L∞, L∞)-topology. Thus
the theorem is proved.

From theorem 2.1 we derive the following bipolar theorem.

Theorem 2.6. Let C be a closed convex subset of L0 such that 0 ∈ C and C−L0
+ ⊂ C. Moreover,

suppose that for any X ∈ C there is n ∈ N such that X ∨ (−n) ∈ C. Then,

X ∈ C ⇐⇒ ∀Z ∈ C◦ : E[ZX] ≤ 1, (2.9)

where the polar C◦ := {Z ∈ L∞+ | ∀X ∈ C : E[ZX] ≤ 1} of C is a convex set with 0 ∈ C◦ which
is closed in the σ(L∞, L∞)-topology on L∞.

Proof. The indicator function δ(· | C) satisfies the conditions of theorem 2.1. Hence, we obtain

X ∈ C ⇐⇒ ∀Z ∈ L∞+ : E[ZX] ≤ δ∗(Z | C), (2.10)

for the convex conjugate

δ∗(Z | C) := δ(· | C)∗(Z) = sup
X∈L0

(E[ZX]− δ(X | C)) = sup
X∈C

E[ZX],

which coincides with the support function of C. Since C◦ equals the level set Q1 = {Z ∈ L∞+ |
δ∗(Z | C) ≤ 1} of δ∗(· | C), we infer from theorem 2.1 that C◦ is σ(L∞, L∞)-closed and convex,
whereas 0 ∈ C◦ is obvious. The fact that X ∈ C implies the right hand side in (2.9) follows directly
from the definition of the polar C◦. In case that X 6∈ C it follows from (2.10) that there is Z̄ ∈ L∞+
such that

∞ ≥ E[Z̄X] > δ∗(Z̄ | C) ≥ 0.

where the latter inequality is due to 0 ∈ C. We distinguish two different cases. On the one hand,
if δ∗(Z̄ | C) > 0 it follows that E[ẐX] > 1 for Ẑ := Z̄/δ∗(Z̄ | C) ∈ C◦. On the other hand, if
δ∗(Z̄ | C) = 0 it follows that δ∗(nZ̄ | C) = 0 and therefore nZ̄ ∈ C◦ for all n ∈ N. In particular,
for n large enough we deduce E[(nZ̄)X] > 1 and the proof is completed.
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Restricting the results of theorem 2.6 to L0
+ yields the bipolar theorem of Brannath and

Schachermayer [2].

Corollary 2.7. Let C denote a closed convex subset of L0
+ which is solid, i.e. X ∈ C and 0 ≤

Y ≤ X implies Y ∈ C. Then,

X ∈ C ⇐⇒ X ≥ 0 and ∀Z ∈ C◦ : E[ZX] ≤ 1, (2.11)

for the polar C◦ = {Z ∈ L∞+ | ∀X ∈ C : E[ZX] ≤ 1} which is a convex σ(L∞, L∞)-closed subset
of L∞ such that 0 ∈ C◦.
Proof. Define C̃ := C − L0

+ which is convex. Note that for any X ∈ C̃ we have X+ ∈ C ⊂ C̃ by

solidity. Moreover, C̃ is closed since for any sequence (Xn)n∈N ⊂ C̃ which converges in probability
to X ∈ L0 it follows that (X+

n )n∈N ⊂ C converges in probability to X+ and thus X+ ∈ C by
closedness of C. Hence, X ∈ C̃. Since

C̃◦ = {Z ∈ L∞+ | ∀X ∈ C̃ : E[ZX] ≤ 1} =
{
Z ∈ L∞+ | ∀X ∈ C : E[ZX] ≤ 1

}
,

the claim follows from Proposition 2.6.

Remark 2.8. In [2] Brannath and Schachermayer proved the assertion of corollary 2.7 for a
different polar, namely

C̃◦ = {Z ∈ L0
+ | ∀X ∈ C : E[ZX] ≤ 1} ⊂ L0

instead of C◦ ⊂ L∞+ as given in corollary 2.7. Note that our result is stronger since C◦ ⊂ C̃◦, and
thus the non-trivial implication

X ≥ 0 and ∀Z ∈ C̃◦ : E[ZX] ≤ 1 ⇒ X ∈ C

immediately follows once we know (2.11). ♦

2.2 σ-additive Subgradients

In order to obtain a maximizer in the dual representation (2.1) we will have to enlarge the space of
test measures from L∞+ to L1

+ and to impose further conditions on ψ. The following theorem 2.9
states conditions under which there is such a maximizer which can be seen as a kind of generalized
subgradient. The proof of theorem 2.9 is given in section 4.

Theorem 2.9. Let ψ : L0 → (−∞,∞] be as in theorem 2.1, and suppose that ψ in addition
satisfies

normalization: ψ(0) = 0 and R ⊂ domψ,

sensitivity: ψ(|X|) > 0 for all X ∈ L0 \ {0}, and

bounded continuity: if (Xn)n∈N ⊂ L∞ and X ∈ L∞ such that Xn ↓ X P-a.s. then ψ(Xn) ↓ ψ(X).

Then for every X ∈ L0 such that there is an ε > 0 with

ψ((1 + ε)X+) <∞ and lim
n→∞

ψ(X + εX1{X≥n}) = ψ(X)

we have
ψ(X) = max

Z∈L1
+

(E[ZX]− ψ∗(Z)) (2.12)

where
ψ∗(Z) = sup

Y ∈L∞
(E[ZY ]− ψ(Y )) , Z ∈ L1. (2.13)
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Note that the convex conjugate ψ∗ appearing in theorem 2.9 is the extension to L1 of the convex
conjugate given in theorem 2.1, hence the same denotation.

Remark 2.10. The fact that we need the property of bounded continuity in theorem 2.9 is
illustrated by considering ψ(X) := ess supX, X ∈ L0. This function satisfies all conditions required
in theorem 2.1, and the dual representation is

ψ(X) = sup
Z∈L∞+

(E[ZX]− ψ∗(Z)) = sup
Z∈L1

+

(E[ZX]− ψ∗(Z))

where ψ∗ = δ(· | Q) for Q = {Z ∈ L1
+ | E[Z] = 1}. Moreover, ψ is normalized and sensitive,

but fails to be bounded continuous. Indeed, for an X ∈ L0 such that ess supX < ∞, but P(X =
ess supX) = 0, there cannot exists an Z ∈ Q such that E[ZX] = ess supX. ♦

2.3 Examples

In this subsection we illustrate the main theorems 2.1 and 2.9.

Example 2.11. (Entropic Risk Measure) Define ψ(X) := logE[exp(X)], X ∈ L0, so that ψ(−X)
is the entropic risk measure and −ψ(−X) corresponds to the certainty equivalent of an exponen-
tial expected utility function. ψ is a convex and monotone function which maps L0 to (−∞,+∞].
Moreover, ψ is l.s.c. and monotone continuous due to Fatou’s lemma and the dominated conver-
gence theorem, respectively. According to theorem 2.1, the function ψ has the dual representation
(2.1) for a convex conjugate ψ∗, the domain of which is concentrated on the probability densities
and which is given by ψ∗(Z) = E[Z log(Z)] for Z ∈ L∞+ with E[Z] = 1. For an explicit computa-
tion of ψ∗ we refer to [10], keeping remark 2.3 in mind. The entropic risk measure belongs to the
class of optimized certainty equivalents, dual representations of which have been studied on L0 in
[4].

As for the subgradients, we notice that the function ψ is normalized, sensitive and bounded
continuous. Also, for X ∈ L0 with (1 + ε)X ∈ domψ or equivalently (1 + ε)X+ ∈ domψ for
some ε > 0 it follows that ψ(X + εX1{X≥n}) converges to ψ(X) for n→∞ due to the dominated
convergence theorem. Thus, we derive from theorem 2.9 the existence of a subgradient for ψ at X,
i.e. the maximizer of (2.12), which directly computes as exp(X)/E[exp(X)] ∈ L1. ♦

Example 2.12. (Economic Index of Riskiness) Let l : R→ [c,+∞) be a l.s.c. strictly increasing
convex loss function such that l(0) > 0, and which is bounded from below. We choose some
acceptability threshold c0 > l(0) and define

ψ(X) := inf

{
t > 0 | E

[
l

(
X

t

)]
≤ c0

}
, X ∈ L0 (inf ∅ :=∞).

Following [6], the economic index of riskiness is defined as ρ(X) := ψ(−X). Note that ψ(X) = 0
if X ≤ 0 since by monotonicity of l we have E[l(X/t)] ≤ l(0) < c0 for all t > 0. As ψ is a gauge
function, it is sublinear, so in particular convex. Moreover, the dominated convergence theorem
and Fatou’s lemma show that ψ satisfies the conditions of theorem 2.1. We claim that the dual
representation of ψ is given by

ψ(X) = sup
Z∈L∞+

E[ZX]

c0 + E[l∗(Z)]
= sup
Z∈L∞+

(E[ZX]− δ(Z | Q)) for all X ∈ L0,

where Q denotes the σ(L∞, L∞)-closure of the convex hull of{
Z

c0 + E[l∗(Z)]
| Z ∈ L∞+

}
,
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and l∗(z) = sup{zx − l(x) | x ∈ R}, z ∈ R, is the convex conjugate of l. Indeed, according
to remark 2.3, in order to obtain the dual representation of ψ we only need to derive the dual
representation of ψ|L∞ , and for any X ∈ L∞ it follows that

ψ(X) = inf

{
t > 0 | E

[
sup
z∈R

{
z
X

t
− l∗(z)

}]
≤ c0

}
= inf

{
t > 0 | ∀Z ∈ L∞+ : E[ZX] ≤ t (c0 + E[l∗(Z)])

}
.

As for the subgradients, we notice that the function ψ is normalized, sensitive and bounded continu-
ous. Let X ∈ L0 with (1+ε)X+ ∈ domψ for some ε > 0 and suppose that E[l((1+ε)X+/ψ(X))] <
∞. Then the dominated convergence theorem yields limn→∞ ψ(X+ εX1{X≥n}) = ψ(X) and theo-
rem 2.9 implies the existence of a subgradient at X. In case that l is differentiable, the subgradient
of ψ at X is given by

ZX
c0 + E[l∗(ZX)]

∈ L1
+ for ZX = l′

(
X

ψ(X)

)
.

♦

3 The Space Lψ and its dual Lψ∗

During this section we prepare the proof of theorem 2.9 by introducing and studying a Banach
space Lψ which is induced by the function ψ as given in the theorem 2.9. Its dual space Lψ∗ will
provide the desired subgradients. This further develops ideas presented in [17].

Definition 3.1. Let ψ : L0 → (−∞,∞] be a convex function such that ψ(0) = 0. Then, we define

‖X‖ψ := inf{λ > 0 | ψ(|X|/λ) ≤ 1}, X ∈ L0,

with the usual convention that inf ∅ =∞, and

Lψ := {X ∈ L0 | ‖X‖ψ <∞}.

Apparently, the idea behind the construction of the (Lψ, ‖ · ‖ψ) space is a generalization of the
construction of Orlicz-spaces via Luxemburg-norms.

Proposition 3.2. Let ψ : L0 → (−∞,∞] be a convex, monotone, normalized and sensitive func-
tion, then

(i) ‖ · ‖ψ : L0 → [0,∞] is a sub-linear function.

(ii) There exists K > 0 such that ‖X‖ψ ≤ K‖X‖∞ for all X ∈ L∞.

(iii) (Lψ, ‖ · ‖ψ) is a normed space such that L∞ ⊂ Lψ and Lψ∗∞ ⊂ L∞∗ where Lψ∗ and L∞∗

denote the dual spaces of Lψ and L∞ respectively, and Lψ∗∞ := {l|L∞ | l ∈ Lψ∗}.

(iv) If X ∈ Lψ, then |X| ∈ Lψ and X1A ∈ Lψ for all A ∈ F . In particular, X ∈ Lψ if and only
if X+, X− ∈ Lψ. Moreover, if Y ∈ L0 and X ∈ Lψ such that |Y | ≤ |X|, then Y ∈ Lψ and
‖Y ‖ψ ≤ ‖X‖ψ.

(v) If in addition ψ satisfies

R 3 α 7→ ψ(αX) is a l.s.c. function on R for every X ∈ L0, (3.1)

then ψ|Lψ is a proper l.s.c. convex function on (Lψ, ‖ · ‖ψ).
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(vi) If ψ is l.s.c. on L0, then (Lψ, ‖ ·‖ψ) is a Banach space, and there exists a probability measure
Q on (Ω,F) with Q ∼ P such that Lψ ⊂ L1(Q).

Note that l.s.c. on L0 implies (3.1) but not vice versa (see example 3.3).

Proof. We define Λ(X) := {λ > 0 | ψ(|X|/λ) ≤ 1}, X ∈ L0.

(i): It is easily verified that ‖tX‖ψ = |t| · ‖X‖ψ for all t ∈ R. In order to show that ‖X + Y ‖ψ ≤
‖X‖ψ +‖Y ‖ψ it suffices to consider X,Y ∈ Lψ because if either ‖X‖ψ =∞ or ‖Y ‖ψ =∞ or both,
the assertion is trivial. To this end let α ∈ Λ(X) and β ∈ Λ(Y ) for some X,Y ∈ Lψ. Then, by
monotonicity and convexity

ψ

(
|X + Y |
α+ β

)
≤ ψ

(
α

α+ β

|X|
α

+
β

α+ β

|Y |
β

)
≤ α

α+ β
ψ

(
|X|
α

)
+

β

α+ β
ψ

(
|Y |
β

)
≤ 1,

so Λ(X) + Λ(Y ) ⊂ Λ(X + Y ) which proves the triangle inequality.

(ii) and (iii): Clearly, ‖0‖ψ = 0. For all X ∈ L0 \ {0} and 0 < λ < 1:

ψ

(
|X|
λ

)
≥ 1

λ
ψ (|X|)→∞ for λ→ 0

because ψ(|X|) > 0 due to sensitivity of ψ. Hence, there exists a λ̃ > 0 such that ψ(|X|/λ) > 1

for all λ ≤ λ̃, so ‖X‖ψ ≥ λ̃ > 0. Consequently, ‖X‖ψ = 0 if and only if X = 0. Apparently, the
properties of ‖ · ‖ψ ensure that (Lψ, ‖ · ‖ψ) is a normed space.

For every 0 6= X ∈ L∞ and K ≥ 1 we obtain

ψ

(
|X|

K‖X‖∞

)
≤ ψ

(
1

K

)
≤ 1

K
ψ(1)

due to monotonicity and convexity. By normalization there is a K ≥ 1 such that ψ
(

|X|
K‖X‖∞

)
≤ 1

for all X ∈ L∞ \ {0} which means that ‖X‖ψ ≤ K‖X‖∞ and thus L∞ ⊂ Lψ and Lψ∗∞ ⊂ L∞∗.
(iv): This is obvious by monotonicity of ψ.

(v): Obviously, ψ = ψ|Lψ is a proper convex function. We only have to establish the l.s.c. of ψ
on (Lψ, ‖ · ‖ψ). To this end, let (Xn)n∈N ⊂ Lψ and X ∈ Lψ such that ‖Xn −X‖ψ → 0. In other
words, for every λ > 0 there is n(λ) ∈ N such that for all n ≥ n(λ) we have ψ(|Xn −X|/λ) ≤ 1.
Then for every α ∈ (0, 1) and all n ≥ n( 1−α

α ) monotonicity and convexity yield

ψ(αX) ≤ ψ

(
(1− α)

α|X −Xn|
(1− α)

+ αXn

)
≤ (1− α)ψ

(
α|X −Xn|

(1− α)

)
+ αψ(Xn) ≤ (1− α) + αψ(Xn).

Hence, we conclude that for all α ∈ (0, 1) we have

ψ(αX) ≤ (1− α) + α lim inf
n→∞

ψ(Xn).

By assumption R 3 α 7→ ψ(αX) is a l.s.c. function on R. Hence,

ψ(X) ≤ lim inf
α↑1

ψ(αX) ≤ lim inf
α↑1

(
(1− α) + α lim inf

n→∞
ψ(Xn)

)
= lim inf

n→∞
ψ(Xn).
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(vi) If ψ is l.s.c. on L0, so is ‖ · ‖ψ, because for every sequence (Xn)n∈N ⊂ L0 converging in
probability to X ∈ L0 and for every λ > 0, the sequence |Xn|/λ converges to |X|/λ in probability,
so ψ(|X|/λ) ≤ lim infn→∞ ψ(|Xn|/λ), and therefore the level sets E0

k := {X ∈ L0 | ‖X‖ψ ≤ k},
k ∈ R, are closed. Consider the level sets E∞k := {X ∈ L∞ | ‖X‖ψ ≤ k} of ‖ · ‖ψ viewed as a
function on L∞. Since E0

k is closed in L0, we have that the sets E∞k ∩ {X ∈ L∞ | ‖X‖∞ ≤ r} are
closed in L1 for every r > 0, and thus E∞k is σ(L∞, L1)-closed in L∞ due to the Krein–Šmulian
theorem (see [16], theorem 5). Consequently, ‖ · ‖ψ viewed as a function on L∞ is σ(L∞, L1)-l.s.c.
In particular, by the Fenchel–Moreau theorem (proposition 3.1 in [8]), we know that

‖X‖ψ = sup
Z∈Q

E[ZX], X ∈ L∞,

for a convex set Q ⊂ L1. We may assume that Z ∈ Q implies Z+ ∈ Q because for all X ∈ L∞+ we
have

E[Z+X] ≤ E[Z(X1{Z≥0} −X1{Z<0})] ≤ ‖X1{Z≥0} −X1{Z<0}‖ψ = ‖X‖ψ.
Since ‖1A‖ψ > 0 for every A ∈ F such that P(A) > 0, we infer that there must be some Z ∈ Q∩L1

+

such that E[Z1A] > 0. Therefore, if Qm denotes the set of probabilities QZ given by the densities

dQZ
dP

=
Z

E[Z]
, Z ∈ Q ∩ L1

+ \ {0},

then we have that Qm ∼ P in the sense that

∀A ∈ F : [(∀Q ∈ Qm : Q(A) = 0) ⇔ P(A) = 0] .

Hence, the Halmos-Savage theorem (see lemma 7 in [13]) implies that there is a countable subset

Q̃m = {QZ1 ,QZ2 , . . .} of Qm which satisfies Q̃m ∼ P. Let

Z :=

∞∑
n=1

1

2n(E[Zn] ∨ 1)
Zn.

Then, Z ∈ L1 and Z > 0. Moreover, for every X ∈ L∞ we have

E[ZX] =

∞∑
n=1

1

2n(E[Zn] ∨ 1)
E[ZnX] ≤

∞∑
n=1

1

2n(E[Zn] ∨ 1)
‖X‖ψ ≤ ‖X‖ψ.

Even more, for every X ∈ Lψ we obtain

E[Z|X|] = lim
n→∞

E[Z(|X| ∧ n)] ≤ lim sup
n→∞

‖|X| ∧ n‖ψ ≤ ‖X‖ψ.

Hence, we infer that Lψ ⊂ L1(Q) where the probability measure Q ∼ P is given by dQ
dP = Z

E[Z] . In

particular, we observe that if (Xn)n∈N is a Cauchy-sequence in (Lψ, ‖ · ‖ψ), then it must also be
a Cauchy sequence in (L1(Q), EQ[| · |]) which is a complete space. Let X be the limit of (Xn)n∈N
in (L1(Q), EQ[| · |]) and recall that Xn thus converges to X in probability too. Since any Cauchy-
sequence in a normed space is norm bounded, there exists a K > 0 such that ‖Xn‖ψ ≤ K for all
n ∈ N. Therefore, and by l.s.c. of ‖ · ‖ψ on L0, we obtain ‖X‖ψ ≤ lim infn→∞ ‖Xn‖ψ ≤ K which
means that X ∈ Lψ. Moreover, for every δ > 0 and n(δ) ∈ N such that ‖Xn −Xm‖ψ ≤ δ for all
n,m ≥ n(δ) we have

‖Xn −X‖ψ ≤ lim inf
m→∞

‖Xn −Xm‖ψ ≤ δ if n ≥ n(δ),

i.e. X is the (Lψ, ‖ · ‖ψ)-limit of (Xn)n∈N. Thus we have proved that (Lψ, ‖ · ‖ψ) is complete.

10



Example 3.3. Consider ψ(X) = E[X+] + δ(X+ | M) where M = Lp, p ∈ [0,∞]. If M = Lp for
some p ∈ [0, 1], then Lψ = L1 and ‖ · ‖ψ = E[| · |]. If M = Lp for some p ∈ (1,∞], then Lψ = Lp

but still ‖ · ‖ψ = E[| · |], so (Lψ, ‖ · ‖ψ) is a non-complete normed space. In all cases ψ satisfies (3.1)
and thus is a proper l.s.c. convex function on Lψ. ♦

The following proposition 3.4 is crucial in the proof of theorem 2.9 as it implies that if ψ satisfies
the conditions required in theorem 2.9, then the intersection Lψ∗ ∩ L1 is large enough as to allow
for σ-additive subgradients.

Proposition 3.4. Let ψ : L0 → (−∞,∞] be a convex, monotone, normalized and sensitive func-
tion which in addition is l.s.c. on L0 and satisfies bounded continuity, then Lψ∗∞ ⊂ L1, i.e. any
continuous linear functional µ on Lψ restricted to L∞ is of type L∞ 3 X 7→ E[ZµX] for a unique
Zµ ∈ L1. Moreover, Zµ ∈ Lψ∗.

Proof. step 1: First of all, we prove that ‖Xn −X‖ψ → 0 whenever (Xn)n∈N ⊂ L∞ is a bounded
sequence and X ∈ L∞ such that Xn → X P-a.s. To this end, let (Xn)n∈N be such a sequence and
let X ∈ L∞ be its P-a.s. limit. Then, Yn := ess supm≥n |Xm −X| is bounded and decreases to 0.
By bounded continuity, for every δ > 0 there is an n(δ) ∈ N such that

ψ(|Xn −X|/δ) ≤ ψ(Yn/δ) ≤ 1 for n ≥ n(δ).

Hence, if n ≥ n(δ), then ‖Xn −X‖ψ ≤ δ.
step 2: According to proposition 3.2 (iii), each element µ ∈ Lψ∗ if restricted to L∞ may be
identified with a finitely additive signed measure (which we also denote by) µ : F → R such that
µ(A) = 0 whenever P(A) = 0 (see [10] theorem A.50). We claim that µ must be σ-additive, or in
other words that µ(Ai)→ 0 for any sequence of sets (Ai)i∈N ⊂ F such that Ai ↓ ∅ (i.e. Ai ⊃ Ai+1,
P(Ai) > 0 for all i ∈ N and

⋂
i∈NAi = ∅). In order to verify this claim, consider µ ∈ Lψ∗ \ {0} and

a sequence (Ai)i∈N ⊂ F with Ai ↓ ∅. Recall the following property of normed spaces (see e.g. [1]
lemma 6.14)

‖X‖ψ = sup
‖ν‖ψ∗=1

|〈ν,X〉| (3.2)

where ‖ · ‖ψ∗ denotes the operator norm on Lψ∗. In conjunction with step 1 of this proof we have

|〈µ, 1Ai〉|
‖µ‖ψ∗

≤ ‖1Ai‖ψ → 0 for i→∞.

Hence, we have shown that µ must be σ-additive, and thus there is Zµ ∈ L1 such that 〈µ,X〉 =

E[ZµX] for all X ∈ L∞. Moreover, due to proposition 3.2(iv) for all X ∈ Lψ+ we have that

E[Z+
µ X] = lim

n→∞
E[Z+

µ (X ∧ n)] = lim
n→∞

〈µ, (X ∧ n)1{Zµ≥0}〉 ≤ ‖µ‖ψ∗‖X‖ψ.

Hence, Z+
µ ∈ Lψ∗. Similar arguments yield Z−µ ∈ Lψ∗ and thus Zµ ∈ Lψ∗. Uniqueness of Zµ is

clear.

4 Proof of theorem 2.9

step 1: Due to monotone convergence, remark 2.2, and ordinary duality, for all X ∈ L0 and all
Z ∈ domψ∗ ⊂ L1

+ such that E[ZX] > −∞ we have

E[ZX]− ψ∗(Z) = lim
n→∞

lim
m→∞

E[Z((−m) ∨X ∧ n)]− ψ∗(Z) ≤ ψ(X).
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Therefore, and by theorem 2.1

ψ(X) = sup
Z∈L1

+

(E[ZX]− ψ∗(Z)) , X ∈ L0.

step 2: Note that the norms ‖ · ‖C,ψ = inf{λ > 0 | ψ(|X|/λ) ≤ C}, C > 0, on Lψ are all equivalent
and ‖ · ‖1,ψ = ‖ · ‖ψ. Moreover, note that X ∈ BC,ψ(1) := {Y ∈ Lψ | ‖Y ‖C,ψ < 1} for some C > 0
is equivalent to the existence of some ε > 0 such that ψ((1+ε)|X|) ≤ C which by convexity implies
(1+ε)ψ(|X|) ≤ ψ((1+ε)|X|) ≤ C. Consequently, BC,ψ(1) ⊂ int domψ|Lψ for all C > 0. Taking the
union over all C shows that every X ∈ Lψ for which there is an ε > 0 such that ψ((1 + ε)|X|) <∞
lies in the interior of domψ|Lψ .

step 3: Let X ∈ domψ such that X+ ∈ Lψ. Define ψ−X−(Y ) := ψ(Y −X−), Y ∈ Lψ. Note that
ψ−X− is a monotone l.s.c. convex function on Lψ such that X+ ∈ domψ−X− . Thus, according to
the Fenchel–Moreau theorem (proposition 3.1 in [8]) and monotonicity we have that

ψ−X−(X+) = sup
µ∈Lψ∗+

(
〈µ,X+〉 − ψ∗−X−(µ)

)
.

For µ ∈ Lψ∗+ , let Zµ be as in proposition 3.4. Since by monotone continuity

sup
Y ∈L∞

(
E[ZµY ]− ψ(Y −X−)

)
= sup

Y ∈L∞

(
lim
n→∞

E[ZµY ]− ψ(Y − (X− ∧ n))
)

≤ lim inf
n→∞

sup
Y ∈L∞

(
E[ZµY ]− ψ(Y − (X− ∧ n))

)
≤ sup

Y ∈L∞

(
E[ZµY ]− ψ(Y −X−)

)
,

all the inequalities must be equalities. Hence, noting that µ ∈ Lψ∗+ implies Zµ ≥ 0, we may do the
following computation:

ψ∗−X−(µ) ≥ sup
Y ∈L∞

(
E[ZµY ]− ψ(Y −X−)

)
= lim inf

n→∞
sup
Y ∈L∞

(
E[ZµY ]− ψ(Y − (X− ∧ n))

)
= lim inf

n→∞
sup
Y ∈L∞

(
E[Zµ(Y + (X− ∧ n))]− ψ(Y )

)
= ψ∗(Zµ) + E[ZµX

−].

We conclude that if ψ∗−X−(µ) <∞, then ψ∗(Zµ) <∞ and E[ZµX
−] <∞.

step 4: Let X ∈ L0 such that there is an ε > 0 with

ψ((1 + ε)X+) <∞ and lim
n→∞

ψ(X + εX1{X≥n}) = ψ(X). (4.1)

Then, according to step 2, X+ ∈ int domψ|Lψ . By monotonicity we infer that int domψ|Lψ ⊂
int domψ−X− . Since ψ−X− is a convex l.s.c. function on a Banach space, it is subdifferentiable
over the interior of its domain ([8] lemma 2.5 and proposition 5.2), and thus in particular subdif-
ferentiable at X+. Let µ ∈ Lψ∗ be the subgradient of ψ−X− at X+, i.e.

ψ(X) = ψ−X−(X+) = 〈µ,X+〉 − ψ∗−X−(µ).
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Then,

ψ(X + εX+1{X≥n}) = ψ−X−(X+ + εX+1{X≥n})

≥ ε〈µ,X+1{X≥n}〉+ 〈µ,X+〉 − ψ∗−X−(µ)

≥ ε〈µ,X+1{X≥n}〉+ ψ(X).

Hence, taking limits for n→∞ and by (4.1) we obtain that

〈µ− Zµ, X+〉 = lim
n→∞

〈µ,X+1{X≥n}〉 ≤ 0.

In conjunction with steps 1 and 3 we have

ψ(X) = 〈µ,X+〉 − ψ∗−X−(µ) ≤ E[ZµX]− ψ∗(Zµ) ≤ ψ(X).

�
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