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Traffic Dynamics at Intersections
Subject to Random Misperception

Volker Berkhahn, Marcel Kleiber, Johannes Langner, Chris Timmermann, Stefan Weber

Abstract—Traffic accidents cause harm to the society. Future
technology in autonomous vehicles is expected to eliminate the
human factor as one important cause of failure. However,
technology will never be perfect, and a small amount of downside
risk needs to be tolerated in exchange for mobility. Unsignalized
intersections are particularly prone to accidents, as lots of
potential conflicts between traffic participants occur. Autonomous
vehicles need to anticipate these on the basis of their perception of
the environment, and react accordingly. Yet, perceptional errors
affect both human drivers as well as sensors of autonomous
vehicles, and it is important to understand their impact on traffic
safety and traffic efficiency. We develop a microscopic model of
traffic dynamics at intersections subject to random misperception
that may cause accidents. Perceptional errors can be modeled
by stochastic processes, e.g., Ornstein-Uhlenbeck processes. We
present suitable simulation techniques, and characterize the
behavior of the traffic system in case studies by means of Monte
Carlo simulations. We discuss the impact of errors and safety
margins on traffic flow, the number of accidents and the number
of collided vehicles. The model captures the real-world tradeoff
between safety and efficiency for potential future traffic systems.

Index Terms—Autonomous vehicles, perception errors, micro-
scopic traffic models, random ordinary differential equations,
accidents, traffic flow.

I. INTRODUCTION

THE self-organization of traffic is a highly complex phe-
nomenon. Traffic flow is distorted by accidents that are

often triggered by errors in perception or judgement of traffic
participants. It seems plausible that in a future world of
autonomous vehicles improved technology will substantially
reduce, but not completely eliminate the number of traffic
accidents (cf., e.g., [1], [2]). A sufficient amount of real world
statistical data on traffic systems of autonomous vehicles is
not yet available. To overcome this lack of information, we
propose a stochastic model that generates artificial data on
both traffic flow and accidents. In this setting, we study the
tradeoff between safety and efficiency as a function of the
underlying algorithms that govern the individual vehicles. In
the absence of real data, the sound design of future traffic
systems requires such a strategy. Simulations that generate ar-
tificial data are a prerequisite for the anticipation of both future

Volker Berkhahn and Chris Timmermann are with the Institute for Risk
and Reliability at Leibniz Universität Hannover, 30167 Hannover, Germany
(e-mail: berkhahn@irz.uni-hannover.de, timmermann@irz.uni-hannover.de).

Marcel Kleiber, Johannes Langner and Stefan Weber are with the
Institute of Probability and Statistics at Leibniz Universität Han-
nover, 30167 Hannover, Germany (e-mail: marcel.kleiber@leibniz-lab.uni-
hannover.de, johannes.langner@stud.uni-hannover.de, sweber@stochastik.uni-
hannover.de).

capabilities and risks associated with autonomous vehicles and
their algorithms.

Vehicles in traffic systems are constantly in conflict with
each other; they have to observe their environment, predict
its future behavior and react accordingly in order to avoid
accidents. Thereby, they control the distance to preceding
vehicles, or – when turning or overtaking – they give way
to other vehicles in order to avoid collisions. This requires the
extrapolation of trajectories of potentially conflicting vehicles,
the estimation of the size of safety gaps and decisions about
when to stop and to wait, and when to proceed. These issues
jointly appear at intersections turning them into a particularly
risky location in traffic systems; Dresner and Stone [3] state
that “vehicle collisions at intersections account for anywhere
between 25% and 45% of all collisions”.

In this paper, we focus on the traffic dynamics at in-
tersections. We propose a model and present case studies
for unsignalized intersections and discuss possible extensions
for signalized ones. Intersections are modeled as multiple
intersecting one-lane roads. On each of these roads, the basic
movement of the vehicles is described by a microscopic car-
following model. Cars need to control their distance to other
vehicles in order to avoid rear-end collisions. At an intersec-
tion, additional conflicts between turning vehicles arise. We
implement a conflict detection, fix a priority regime (right has
right-of-way) and assume that vehicles will wait for emerging
gaps if they have to give way. In reality, the three components
– car-following, conflict detection, and conflict reaction –
may be subject to errors. For example, autonomous vehicles
are equipped with sensors measuring velocities and distances;
external conditions, imprecision of devices, or malfunctions
might distort the measurements. We model these perceptional
errors by stochastic processes randomly fluctuating around the
correct values.

The stylized model gives a conceptual framework to un-
derstand the causal relationship between perceptional errors,
(parametrized) driving style, accidents, and traffic flow. In
particular, our model captures the occurrence of two possible
collision types: rear-end collisions resulting from low head-
ways and frontal crashes in the context of turning maneuvers.

We provide a methodological basis and explain how traffic
at intersections can be modeled by a system of coupled
random ordinary differential equations.

This paper extends previous work [4] in multiple directions:
• Berkhahn et al. [4] primarily focuses on the Intelligent

Driver Model with random misperception in the context
of one-lane roads and heuristically discusses extensions
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to t-junctions. Rear-end collisions and collisions at t-
junctions were analyzed separately. Now, we present a
general and rigorous framework comprising both cases.

• This paper provides a comprehensive methodological
analysis of a general class of random differential equa-
tions modeling both conflict detection and potential mis-
perception. We use a state-of-the-art simulation technique
and explain necessary adjustments in the context of the
suggested model.

• In numerical case studies, we analyze the tradeoff be-
tween safety and efficiency.

The paper is organized as follows: Section II reviews
related literature, Section III introduces our traffic model for
intersections, Section IV explains the method which we apply
for the simulation of case studies. These case studies are
presented and discussed in Section V. Section VI concludes.

II. LITERATURE REVIEW

Literature on traffic modeling is vast. Our approach is based
on a stochastic extension of microscopic traffic models which
are used to describe the movement of each vehicle individually.
In particular, we adapt the Intelligent Driver Model (IDM)
which was originally proposed in [5]. It belongs to the class of
car-following models (also called follow-the-leader models).
Random misperception could also be implemented in other
car-following models, e.g., the Optimal Velocity Model (cf.
[6] and [7]).

Several papers develop stochastic extensions of car-
following models: Random fluctuations to the Optimal Veloc-
ity Model are implemented in [8]; [9] proposes and analyzes
a stochastic “desired acceleration model”; [10] and [11] im-
plement stochastic processes for the IDM. All these studies
use stochasticity to explain naturally occurring fluctuations
in traffic flow with human drivers. In contrast, this paper
focuses on stochastic processes to model perceptional errors
that might trigger accidents and thereby rigorously extends our
preliminary analysis in [4]. In the context of (deterministic)
emergency braking scenarios accidents are also analyzed in
[12]; similar ideas are discussed in [13].

The stochastic character of perception and other cognitive
processes of drivers is studied in [14]; Tversky and Kahne-
man’s prospect theory is used as a framework for decision
making in the face of risk. Closely related to the present paper
is [15] where perception errors of autonomous vehicles are
studied. Based on real data of [16], errors are calibrated using
methods from time series analysis. The calibrated error models
are incorporated into a commercial traffic simulation software,
and the effects of errors are studied in test cases. The approach
in [15] is complementary to ours. While we study the impact
of errors on the number of accidents and traffic efficiency on
an aggregate level, [15] does not capture the global impact
of errors via variables such as traffic flow or the number of
accidents, but focuses on its microscopic implications. Also,
presumably due to substantial computational costs, the authors
do not provide a statistical analysis of the consequences of
the implemented errors – only four test trajectories in a
braking scenario are presented, where an autonomous vehicle

approaches a pedestrian. While [15] constructs a model that
captures many details which are associated with the benefit of
being realistic in terms of the collision dynamics of individual
vehicles, our parsimonious model has the advantage that it is
sufficiently simple to study implications on the level of the
whole traffic system.

The preceeding articles mainly focus on unidirectional traf-
fic, modeling vehicles on one-lane roads without intersections.
Additional models have been developed for conflicting streams
of traffic, e.g., unsignalized intersections or overtaking. Early
works developed the idea of a gap-acceptance function: a
certain time is needed to perform a potentially conflicting
maneuver; this time defines a critical gap. If the gap be-
tween two successive conflicting vehicles exceeds this critical
gap, the maneuver is accepted, otherwise rejected. Utilizing
the gap-acceptance function and making assumptions on the
arrival times of vehicles at an intersection, admits studying
delay times and capacities (c.f., e.g., [17] or [18]). Typically,
heterogeneous human drivers obey different critical gaps. To
reflect this issue, probability distributions are estimated from
empirical data (e.g., [19], [20]). Various refinements have been
suggested; for example, [21] includes risk assessments when
entering an intersection; impatience is reflected by increasing
the risk tolerance, the longer a vehicle waits.

Besides these queuing theoretic approaches, some micro-
scopic traffic models for intersections include the concept
of gap-acceptance. A model based on cellular automata is
suggested in [22]: a vehicle enters the intersection, if and only
if enough cells of the conflicting stream of traffic are vacant.
In the open source project SUMO, intersections are realized by
comparing time slots in which potentially conflicting vehicles
occupy the intersection (cf. [23]). An application of the gap-
acceptance paradigm for lane-changing maneuvers has been
developed in [24]. Our model continuously detects potentially
conflicting vehicles via trajectory extrapolation; potential con-
flicts trigger adjustments of the velocity of vehicles.

In the context of autonomous vehicles, models have been
developed to demonstrate how traffic efficiency can be in-
creased due to novel communication technologies. The ben-
efits of inter-vehicle communication or communication with
a central controller are studied in the context of autonomous
intersection management, cf. [3]. The paper discusses incident
mitigation techniques, but does not incorporate the possibility
of endogenously occurring accidents. Auction and reserva-
tion based strategies for intersection management are, e.g.,
analyzed in [25]. Sophisticated intersection management is
not considered in this paper; a comprehensive analysis of
autonomous intersection managements in the face of risk and
uncertainty would be an interesting topic for future research.

III. THE TRAFFIC MODEL

In this paper, we model traffic on intersecting lanes and
incorporate the possibility of accidents caused by perceptional
errors. We assume that all vehicles move on prespecified
paths, trying to reach a target velocity. If its velocity is too
low, a vehicle accelerates unless conflicts with other vehicles
are detected. We model two types of conflicts, namely an
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Fig. 1. Left-turning at an intersection.

insufficient distance to the directly preceding vehicle, and
vehicles crossing at intersections. In these cases, vehicles
decelerate in order to avoid collisions. The exact procedure
is described below. Our model for an uncontrolled four-way
intersection is illustrated in Fig. 1.

We first explain how we model a priority regime that
mimics existing traffic regulations. Second, we describe a
car-following model governing the movement on individual
lanes. Third, we present a methodology for conflict detection.
Fourth, we explain how vehicles adjust their speed. Our model
incorporates errors due to random misperception. Estimates
of distances and velocities are input quantities to the car-
following model; conflict detection and reactions of vehicles
depend on these variables. Our model assumes that estimates
are subject to randomly fluctuating measurement errors that
are captured by suitable stochastic processes.

We begin with formal notation. The set M = {1, 2, 3, . . . }
consists of all considered vehicles. We associate each vehicle
i ∈M with three stochastic processes with continuous paths,
denoted by (εi,1t )t≥0, (ε

i,2
t )t≥0, (ε

i,3
t )t≥0 that fluctuate around

the value 1. The processes are multipliers that distort the
true values of velocities and distances and thereby capture
random misperception. Throughout the paper, for each vehicle
i, the first process (εi,1t ) refers to the misperception of vehicle
i’s own velocity; the second process (εi,2t ) models errors in
the estimation of the velocity of other vehicles; the third
process (εi,3t ) captures estimation errors of relevant distances.
Further assumptions on the structure of these processes will
be described in Section V.

A. Priority Regime

The dynamics of uncontrolled intersections mimics German
traffic regulations; of course, the approach could be amended
to capture other countries. In Germany, “vehicles coming from
the right have the right of way” unless specified otherwise.

While often applicable, this simple rule does not always
produce a solution: If vehicles come from all directions at
the same time, traffic may be deadlocked due to this rule. In
these situations, the following additional traffic rule applies
[26, Section 11 Special traffic situations, (3)]:

Moreover, anyone who, according to traffic rules,
may proceed or otherwise has the right of way
must relinquish this priority if the traffic situation

so requires; a person not having the right of way
may proceed only if the person having the right of
way has signaled to them to do so.

In our model, we check if there is a cycle in the chain
of priority. If this is the case, all waiting vehicles i observe
independent exponentially distributed waiting times tisolve ∼
Exp(λ), λ > 0, with expectation E(tisolve) = λ−1; the vehicle
whose clock rings first will give up its priority.

Remark 1. Of course, the behavior stipulated by traffic
regulations is not efficient. For autonomous vehicles, one
could envision control algorithms that lead to both safer and
more efficient outcomes. Research on this topic runs under
the keyword autonomous intersection management (cf. also
Section II).

B. Car-Following Model

The paths of vehicles, also called trajectories, lie on one-
dimensional curves that describe the geometry of the traffic
system; this is illustrated in Fig. 1. In our model, the paths
of vehicles are prespecified and fixed; speed can be adjusted.
Vehicles with the same trajectory follow each other. Their
behavior is modeled by the Intelligent Driver Model with
Random Misperception (IDMrm) as developed by our research
group in [4]. IDMrm is a stochastic extension of the classical
IDM with a bound on maximal deceleration in which percep-
tional errors are incorporated. On each of the one-dimensional
curves that capture potential paths of vehicles, we fix an origin.
For any vehicle i that moves along this curve we denote by
xi(t) the distance of the vehicle’s position at time t to the
origin along the section of the curve, i.e., the arc length of the
corresponding segment of its trajectory; the time derivative
vi(t) of xi(t) is the velocity of vehicle i at time t.

Vehicles are controlled by an algorithm that is based on
measurements of distances and velocities. But these mea-
surements are subject to errors. Distortions are captured by
multiplicative factors (εi,1t ), (εi,2t ), and (εi,3t ). On its one-
dimensional trajectory, each vehicle computes its acceleration
based on the perceived values of its own velocity εi,1t vi(t),
its perceived distance to the preceding vehicle ∆perx

i(t) and
its perceived approaching rate ∆perv

i(t). The identity of the
preceding vehicle may change, since vehicles can turn at the
intersection, and we denote this vehicle by ipre(t). Letting
∆xi(t) be the exact distance to the preceding vehicle along
the path, we may formally define the perceived quantities:

∆perv
i(t) := εi,1t vi(t)− εi,2t vipre(t)(t), (1)

∆perx
i(t) := εi,3t ∆xi(t). (2)

For a vehicle i on a one-dimensional line its acceleration is
computed as

aiIDMrm(t) := aimax

1−

(
εi,1t vi(t)

vid

)δ

−

(
s∗(εi,1t vi(t),∆perv

i(t))

∆perxi(t)

)2




4

where s∗(s1, s2) = s0 + s1T + s1s2
2
√
aimaxb

; we set

s∗(εi,1t vi(t),∆perv
i(t)) · (∆perx

i(t))−1 := 0 if there is no
preceding vehicle. The quantity aimax > 0 is the maximal
acceleration of the i-th vehicle, and vid > 0 denotes its desired
velocity. The other parameters originate from the classic IDM
model, and we refer to [5] for a detailed explanation.

Remark 2. In Eq. (1) & (2), misperception is modeled by
multiplicative errors. Multiplicative errors are relative errors,
and their advantage is that their size scales with the magnitude
of the true values. Alternatively, additive errors could be
chosen. The simulation method described in Section IV could
then easily be adapted.

C. Conflict Detection at Intersections

The control of individual vehicles and traffic flow de-
pends on priority regimes. For each vehicle i, we denote by
Mi

rel(t) ⊆ M the family of vehicles to which it has to give
way. These are vehicles approaching the intersection which
are coming from the right; this includes oncoming vehicles
when vehicle i is turning left.

Vehicles always stay on their prespecified paths, signaling
their turning intentions correctly. At time t, trajectories of
other vehicles are extrapolated into the future for a fixed
time horizon of length t∗ on the basis of potentially distorted
estimates of distances and velocities (see [27] for more details
on trajectory extrapolation). Using the extrapolated trajec-
tories, one computes an estimate of vehicle i’s distance to
another vehicle j at future time u which is denoted by d̂ij(u);
vehicles’ paths may be located on different one-dimensional
curves, and for this reason we measure d̂ij(u) as the usual
Euclidean distance in the two-dimensional plane into which
the trajectories are embedded. Note that d̂ij(u) implicitly
depends on t, but we suppress this dependence in the notation,
since it will always be clear from the context. As in the context
of car-following, we assume that distances to other vehicles are
misperceived. Analogously, we assume that vehicle i perceives
its own distance to vehicle j as εi,3t d̂ij(u), i.e., the estimate
d̂ij(u) is distorted by the multiplier εi,3t .

If j ∈ Mi
rel(t), vehicle i detects a conflict at time t, if

εi,3t d̂ij(u) < ds for a safety threshold ds ≥ 0 and t ≤ u ≤
t+t∗, i.e., the (distorted) extrapolated distance between the two
vehicles i and j falls below the safety threshold at a future
time horizon. In addition, if vehicle i is in the area of the
intersection and detects a conflict with another vehicle j that
has the right of way, vehicle i keeps the conflict in mind until
vehicle j leaves the area of the intersection. In order to make
this precise, we introduce fixed locations xistop, xientry and
xjexit:

• xistop is the position on i’s trajectory where vehicle i
should stop in order to let conflicting vehicles j pass;

• xientry is the position such that vehicle i, driving with
desired speed vid, is able to come to a complete stop at
xistop using its maximal deceleration;

• vehicle j has passed the intersection if it has reached
xjexit;

• we say i is in the area of the intersection at time t if
xientry < xi(t) < xiexit.

In summary, we define the set Mi
conflict(t) of conflicting

vehicles by

Mi
conflict(t)

:=
{
j ∈Mi

rel(t) | ∃ u ∈ [t, t+ t∗] : εi,3t d̂ij(u) < ds

}
∪
(⋃

u<t{j ∈Mi
conflict(u)|xientry < xi(u), xj(t) < xjexit}

)
.

D. Conflict Reaction

If the set of conflicting vehicles Mi
conflict(t) is nonempty,

vehicle i reacts to this situation. We distinguish two cases:
stopping, or decelerating when stopping is unnecessary.
• Complete stop: If vehicle i is in position xi(t) with

velocity vi(t), the constant (negative) acceleration to stop
at xistop equals

aistop(t) := − (vi(t))2

2(xistop − xi(t))
.

The duration of this maneuver is tistop(t) :=
−vi(t)/aistop(t).

• Deceleration: Stopping is not always necessary. Consider
a vehicle i and a conflicting vehicle j. We assume that
vehicle i bases its acceleration on a simplified prediction
of vehicle j by assuming that j’s velocity is fixed. The
time it would take for vehicle j to leave the intersection
with fixed speed vj(t) is tjexit(t) := (xjexit−xj(t))/vj(t).
If tistop(t) > tjexit(t), vehicle i does not intend to stop,
but only to slow down. The constant deceleration such
that vehicle i arrives at xistop at the predicted time equals

aijbreak(t) :=

(
xistop − xi(t)
tjexit(t)

− vi(t)

)
2

tjexit(t)
.

Conflict reaction to vehicles j ∈ Mi
conflict(t) is modeled by

bounding the acceleration from above by

aijconflict(t) :=

{
aijbreak(t), if tistop(t) > tjexit(t),

aistop(t), if tistop(t) ≤ tjexit(t).

We do, however, not assume that these quantities depend on
the correct distances or velocities, but on their perceived values
and replace the arguments of the functions accordingly, i.e.,
vi(t) by εi,1t vi(t), xistop−xi(t) by εi,3t (xistop−xi(t)), xjexit−
xj(t) by εi,3t (xjexit−xj(t), and vj(t) by εi,2t vj(t), j ∈M\{i}.

E. Intersection Dynamics Subject to Random Misperception

The motion of the vehicles can be expressed as a system of
coupled random ordinary differential equations:

d
dtx

i(t) = max{vi(t), 0},
d
dtv

i(t) = max
{
aimin,min

{
aiIDMrm(t),

minj∈Mi
conflict(t)

aijconflict(t)
}}

xi(ti0) = 0, vi(ti0) = vi0, t ≥ ti0, i ∈M.

(3)
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Velocities are bounded from below by 0. The minimal accel-
eration of vehicle i is set to aimin; this is both realistic and
necessary, if accidents are admissible. The acceleration of a
vehicle i is the minimum of aiIDMrm(t) (to control the distance
to the preceding vehicle) and minj∈Mi

conflict(t)
aijconflict(t) (to

solve all conflicts in the intersection simultaneously). Each
vehicle i enters the system on its path with an initial velocity
vi0 ≥ 0 at time ti0 and is removed from the system once it
reaches the end of its path.

Remark 3. The described conflict reaction is closely related
to microscopic gap-acceptance models. Instead of critical gaps
in time, we measure the distance to conflicting vehicles and
adjust the velocity accordingly. Gap-acceptance models reflect
heterogeneity via probability distributions. A similar approach
could be applied to the safety threshold in our model and the
adjustment of the velocities.

Remark 4. In this paper, we study uncontrolled bi-directional
two-lane intersections. Our approach can be generalized to
other priority regimes:

• Prioritized roads can be modeled by adjusting Mi
rel(t),

i.e., the set of vehicles to which one needs to give way.
• To model a signalized intersection, one could

include another time-dependent acceleration
term aisignal(t) forcing vehicle i to decelerate
on red. The resulting acceleration would be
min{aiIDMrm(t), aisignal(t),minj∈Mi

conflict(t)
aijconflict(t)}.

Also, other relevant conflicts and other types
of misperception could be integrated in a more
comprehensive model.

Remark 5. Mathematically, the model in (3) is a system of
coupled random ordinary differential equations. Random ordi-
nary differential equations (RODEs) are ordinary differential
equations whose right-hand side depends on some stochastic
process. Pathwise these are non-autonomous classical ordi-
nary differential equations and can be solved by deterministic
calculus. Local existence of a weak solution is guaranteed by
Theorem 1 (cf. Appendix A), i.e., we find trajectories xi(t)
which satisfy (3) for Lebesgue almost all times. However,
many classical numerical methods are inappropriate due to
the roughness of the paths of the stochastic processes. Suitable
schemes will be explained in the next section.

Computing aijconflict(t) is expensive. This effort can be
reduced by virtue of the following simple lemma: If vehicle
i anyway intends to stop due to some conflicting vehicle j, it
does not need to analyze other conflicting vehicles anymore.
The proof is trivial.

Lemma 1. Let i ∈ M and j ∈ Mi
conflict(t). The following

statements hold:

1) aistop(t) ≤ aijbreak(t),
2) If there exists j∗ ∈ Mi

conflict(t) such that aij
∗

conflict(t) =
aistop(t), then minj∈Mi

conflict(t)
aijconflict(t) = aistop(t).

Random misperception may trigger accidents, i.e., collisions
of vehicles. In order to capture this, we denote by Ai(t)
the area that is occupied by vehicle i ∈ M at time t; this

is modeled by an ellipse in the two-dimensional plane. A
collision occurs if Ai(t) ∩Aj(t) 6= ∅ for i, j ∈M and t ≥ 0.
In this case, we set the velocity of the vehicles i and j to 0
and adjust the dynamics of the traffic system (3) accordingly.
Moreover, we trigger an exponentially distributed waiting time

tremoval ∼ Exp(γ), γ > 0

with expectation E(tremoval) = 1/γ. Meanwhile, other ve-
hicles may crash into the existing collision; however, after
tremoval has passed, all vehicles that are involved in this
particular accident are removed from the model. Of course,
simultaneously other accidents may occur at other places.

F. Calibration

The model includes three dimensions: car-following, con-
flict detection and reaction, and misperception. The aim of the
model is to provide an experimental lab that allows to envision
future traffic systems. This implies that the model cannot fully
be calibrated to statistical data. In fact, the purpose of the
model is to generate artificial data of novel traffic systems that
do not yet exist. However, calibration needs to be discussed
in the context of suitable benchmarks. Our model will deviate
from these benchmarks, and it can be compared to them.
• Car-following models of autonomous vehicles may de-

viate from current traffic data due to the increased ca-
pabilities of the vehicles and their flexible and partially
unknown future design. Benchmark models can be cali-
brated from either aggregate or disaggregate traffic data
(see, e.g., [5], [28], [29], [30], [31]).

• Conflict detection and reaction is captured by a stylized
model in this paper. A benchmark can be estimated on
the basis of similar methodologies previously suggested
for gap-acceptance models (see, e.g., [19], [20], [21]).

• Perception errors of human drivers could be estimated
on the basis of statistical data (see, e.g., [32], [33]).
In contrast, the size of perception errors of autonomous
vehicles will be governed by both gradual improvements
of technology and the financial resources allocated to
safety features of vehicles.

IV. SIMULATION METHOD

On a pathwise level, RODEs are non-autonomous ordinary
differential equations; classical first order methods from de-
terministic calculus can be applied to solve them. RODEs de-
pend, however, on stochastic processes which typically possess
paths of unbounded variation that are nowhere differentiable.
Typical examples are (fractional) Brownian motion and related
processes such as the Ornstein-Uhlenbeck process that we will
consider in this paper. Due to their insufficient smoothness,
many classical numerical methods are not appropriate; the
reason is that standard arguments for the error analysis of
numerical schemes are not applicable anymore, since these are
often based on Taylor expansions requiring sufficient regularity
(we refer to [34] for a more detailed discussion of this issue).

These challenges are addressed by simulation schemes that
are specifically taylored for RODEs. To approximate the
solutions, we employ the γ-RODE-Taylor scheme (cf. [35]).
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This method requires that there exists θi = (θi,1, θi,2, θi,3)> ∈
(0, 1]3 such that each component process (εi,kt )t≥0 is Hölder
continuous for all exponents ηi,k satisfying 0 < ηi,k <
θi,k, k = 1, 2, 3 (cf. Assumption 3.1 in [35]).

We consider a time discretization T = {t0, t1, ...}; for the
individual time points and for all i ∈ M we determine an

approximate solution
(
xik
vik

)
k=0,1,2,...

to our system (3).

Consider the iteration interval [tk, tk+1]. In order to compute

for a fixed i ∈M the update
(
xik+1

vik+1

)
we treat

(
xjk
vjk

)
for j 6= i

as fixed exogenous input values. We compute Mi
conflict(tk)

and ipre(tk), and fix these values for the iteration interval
[tk, tk+1]. Under these assumptions, the right-hand side of
the evolution equation for i, as given in (3), can be rewritten
in terms of a function f : R3 × R2 → R2 with arguments
(εi,1t , εi,2t , εi,3t )> ∈ R3 and (xi(t), vi(t))> ∈ R2. We replace
f by a suitable infinitely differentiable approximation that we
again denote by f .

In the case studies in the next section, we consider error
processes (εi,1t )t≥0, (ε

i,2
t )t≥0, (ε

i,3
t )t≥0 with θi = ( 1

2 ,
1
2 ,

1
2 )>

(cf. Subsection V-B). Setting γ = 1, we obtain the pathwise
γ-RODE-Taylor scheme

Φ1(z, t, h) := z + h · f(εit, z)

+
h

n

3∑
k=1

∂wkf(εit, z)

n−1∑
j=1

∆εi,kt,τj ,

where τj = t+ j
n ·h, ∆εi,kt,τj = εi,kτj −ε

i,k
t and n =

⌈
h1− 2

1−2ξ

⌉
for ξ > 0 small. Here, d·e is a Gauss-bracket, and ∂w1 , . . . , ∂w3

denote the partial derivatives with respect to the three error
components of f . The derivatives of f are approximated by
difference quotients. The stepwise order of convergence equals
γ = 1. The approximation of the solution of (3) for vehicle
i ∈M at time tk+1 is given by(

xik+1

vik+1

)
= Φ1

((
xik
vik

)
, tk,∆tk+1

)
with ∆tk := tk − tk−1.

V. CASE STUDY

A. Performance Measures
We evaluate our model in terms of risk and efficiency. We

study
• the number of accidents, the number of collided vehicles,

and the number of collided vehicles per accident as
quantitative measures of the riskiness of the system, and

• network traffic flow as a measure of system efficiency.
The length of the simulation period is denoted by Tsim.

1) Network Traffic Flow: We assign to each vehicle i ∈M
a final destination desti on its path. Network traffic flow Q is
measured by the number of vehicles i ∈M per time unit that
reach their destinations:

Q =
card{j ∈M : ∃ t ≤ Tsim : xj(t) = destj}

Tsim
,

where card denotes the cardinality. The corresponding sample
mean is denoted by Q̂.

2) Number of Accidents: A first proxy for the safety of
traffic systems is given by the number of accidents per time
unit:

facc = T−1
sim · card{∅ 6= M ⊂M :

∃ t ≤ Tsim ∀ i ∈M : Ai(t) ∩AM\{i}(t) 6= ∅
and ∀ t ≤ Tsim : AM (t) ∩AM

c

(t) = ∅}

where M c := M \ M and AM (t) :=
⋃
i∈M Ai(t). The

corresponding sample mean is denoted by f̂acc. An accident is
the event that multiple cars are jointly involved in collisions.
A collision occurs, if the associated areas of two vehicles
intersect.

3) Number of Collided Vehicles: The number of vehicles
per time unit that are involved in accidents is given by

fveh = T−1
sim · card{i ∈M : ∃ t ≤ Tsim ∃ j ∈M \ {i} :

Ai(t) ∩Aj(t) 6= ∅}.

The corresponding sample mean is denoted by f̂veh.
4) Number of Collided Vehicles per Accident: A measure

for the average severity of an accident is the number of
collided vehicles divided by the number of accidents:

gveh/acc =
fveh

facc
.

Its sample mean is denoted by ĝveh/acc.

B. Misperception Model

Perception of the environment is subject to errors due to
random noise or permanent malfunctions. In our multiplicative
error model, mean-reverting processes are capable of capturing
noisy deviations; mean-reverting processes are stochastic pro-
cesses that randomly fluctuate around fixed values. In contrast,
permanent malfunctions can, for example, be modeled by
jump processes such as continuous time Markov chains. Both
aspects may also be combined in a joint model.

In this paper, we focus only on the first dimension of mis-
perception, i.e., random noise that distorts perceived quantities
around their true values. An important example of a mean-
reverting stochastic process that fluctuates around a constant
level is the Ornstein-Uhlenbeck process. This process was
also used in [4] to model perceptional errors. We refer to
[15] for potentially more realistic, but less tractable alternative

approaches.

Definition 1 (Ornstein-Uhlenbeck Process). Let β ∈ R and
α, σ > 0. A stochastic process (εt)t≥0 is called an Ornstein-
Uhlenbeck process, if ε0 = a ∈ R and (εt)t≥0 solves the
following stochastic differential equation:

dεt = α(β − εt)dt+ σdWt,

where (Wt)t≥0 denotes a one-dimensional standard Brownian
motion.

Typical simulated paths are shown in Fig. 2. For more
details regarding simulation and interpretation, we refer to [4]
and [36].
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In our case studies, we assume that (εi,1t ), (εi,2t ) and
(εi,3t ) are independent and identically distributed Ornstein-
Uhlenbeck processes with parameters a = β = α = 1 and
varying values of the parameter σ which controls the volatility
of the process.

0 5 10 15 20 25 30

0.6

0.8

1

1.2

1.4

Time [s]

V
al

ue

σ = 0.15 σ = 0.20 σ = 0.25

Fig. 2. Simulated paths of an Ornstein-Uhlenbeck process (εt) for different
values of σ with α = 1, ε0 = 1, β = 1.

C. Scenario Description

The intersection consists of two two-lane roads of length
210 m, each having a width of 10 m. For this case study, we
generate vehicles in the following way: The intersection can
be approached from four directions, i.e., vehicles are generated
at four origins. We create vehicles with an exponentially
distributed headway such that the expected rate of vehicles
per time unit at each source is 150 veh/h. Larger gaps may
randomly emerge between vehicles – allowing vehicles to turn
that wait at the intersection. If substantial traffic jams occur,
our simulation delays the generation of new vehicles such that
traffic flow cannot completely break down.

When a vehicle is generated, it chooses with probability 1/3
one of the following paths: turn right, go straight, turn left. Its
initial velocity is set to the velocity of the preceding vehicle. If
there is no preceding vehicle, it starts with its desired velocity.

We simulate the traffic system for duration of Tsim = 600 s.
To reach a representative, potentially stationary state of the
Markovian model, we implement a burn-in period of 100 s.
Data for the computation of the relevant statistics are recorded
afterwards. The model is simulated on an equidistant time grid
with ∆tk ≡ 0.1 s. We sample repeatedly and compute averages
of Q, facc and fveh from the empirical distributions.

D. Simulation Results

We independently simulate the four-way intersection
20, 000 times. The parameters underlying the simulation are
displayed in Appendix B. We assume that all vehicles are

homogeneous and study the effect of two important control
parameters:
• We vary the time headway T of the vehicles (T is a

parameter of the car-following model IDMrm), and
• the safety distance ds which controls whether an oncom-

ing vehicle is classified as conflicting or not.
Fig. 3 displays the quantitative measures of the risk of the
system: Fig. 3a shows the number of accidents, Fig. 3b the
number of collided vehicles. Of course, safety increases when
time headway and safety threshold are increased. Both graphs
are quite similar in shape, since for all parameters accidents
involve on average about 2 to 2.3 vehicles, see Fig. 3c. Due to
low velocities (10 m/s) and a moderate rate at which vehicles
are generated, vehicles are able to react to most collisions.

The efficiency of the traffic system is shown in Fig. 4: Fig.
4a shows a surface plot, Fig. 4b a top view of the same graph.
The function is strictly concave and has a unique maximum.
This captures the tradeoff between risk and efficiency: If
ds or T are small, the number of accidents is high and
the intersection is blocked. Hence, traffic flow is low. With
increasing ds and T , the number of accidents decreases and
traffic flow increases. However, traffic becomes inefficient, if
ds or T are large, i.e., if vehicles drive too carefully; in this
case, traffic flow decreases. Accidents do still occur in the
most efficient traffic flow scenario. The findings generalize
our preliminary results in [4].

Our model admits two types of collisions: rear-end col-
lisions and collisions at the intersection. Fig. 5 depicts the
fraction of rear-end accidents among all accidents. Within the
considered parameter range, T has a stronger influence, but
also ds has an impact by reducing the number of collisions
at the intersections. The dependence of Q and facc on σ is
shown in Fig. 6: Of course, with increasing volatility more
accidents occur and traffic flow decreases. These effects are
superlinear.
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Fig. 3. Number of accidents, number of collided vehicles and number of
collided vehicles per accident for σ = 0.2 and varying ds and T with 20, 000
independent simulations for each parameter combination.
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Fig. 4. Average traffic flow for σ = 0.2 and varying ds and T with 20, 000
independent simulations for each parameter combination.
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Fig. 5. Fraction of rear-end accidents for σ = 0.2 and varying ds and T
with 20, 000 independent simulations for each parameter combination.
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Fig. 6. Average network traffic flow and number of accidents for ds =
5 m, fixed T , and varying σ with 10, 000 independent simulations for each
parameter combination. Dashed lines correspond to number of accidents, solid
lines to flows.

VI. CONCLUSION

This paper studies safety and efficiency of future traffic
systems. We develop a rigorous microscopic model for traffic
at intersections. Random misperception may trigger accidents.
The system is captured by random ordinary differential equa-
tions (RODEs) that require specific numerical schemes for
their efficient simulation. The proposed setup is general and
can be extended to more complex traffic scenarios.

Accidents are a consequence of perceptional errors. Our
case study clearly illustrates the tradeoff between risk and
efficiency. If too many accidents occur, traffic breaks down;
but if the safety margins are very large, the system becomes
inefficient.

The proposed approach can also be implemented in more
comprehensive models, yet computational costs increase.
Other road types, such as roundabouts and multi-lane roads,
could be modeled accordingly. In the context of lane-changing,
misperception will also imply the occurrence of accidents.
While our model focuses on homogeneous vehicles, reality
is characterized by heterogeneous traffic participants. In the
near future, autonomous vehicles and human drivers will
coexist. Our techniques can easily be modified to allow for
heterogeneity.

Finally, future research should, on the one hand, derive
surrogate models from the microscopic traffic system. On the
other hand, a more detailed analysis of accidents that includes
incurred losses may provide additional guidance for the design
of traffic systems with autonomous vehicles and for suitable
risk management solutions.

APPENDIX A
THEORETICAL EXISTENCE RESULT

General existence results for ordinary differential equations
can be found in the literature, e.g., the Theorem of Constantin
Carathéodory [37], see [34, Chapter 2.1].

Let Br(x0) ⊆ Rd be the open ball with radius r > 0
centered in x0 ∈ Rd.

Theorem 1 (Carathéodory’s Existence Theorem). Let
f : [0, T ]×Br(x0)→ Rd such that

1) f(t, x) is continuous in x for almost every t ∈ [t0, T ],
2) f(t, x) is Lebesgue measurable in t for all x ∈ Br(x0),
3) |f(t, x)| ≤ M(t) for all x ∈ R and almost every t ∈

[t0, T ] for some absolutely continuous function M(t).
Then there exists an absolutely continuous function
x∗ : [t0, t0 + δ] → Rd with x∗(t0) = x0 which solves
the initial value problem

dx

dt
= f(t, x), x(t0) = x0, x ∈ Rd

for Lebesgue almost all t ∈ [t0, t0 + δ].

The three conditions are also referred to as Carathéodory
conditions.

APPENDIX B
CHOICE OF PARAMETERS

The parameters for our simulations are displayed in Table
I.

TABLE I
PARAMETER CHOICE FOR THE SCENARIO

amax vd δ amin s0 T b l

2.0 10.0 4 −3.5 2.0 · 1.67 6

γ α β σ ds t∗ ∆t λ

1/300 1 1 0.2 · 10 0.1 1/3
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