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Abstract

Credit contagion refers to the propagation of economic distress from one firm to another.

This article proposes a reduced-form model for these contagion phenomena, assuming they

are due to the local interaction of firms in a business partner network. We study aggregate

credit losses on large portfolios of financial positions contracted with firms subject to credit

contagion. In particular, we provide an explicit Gaussian approximation of the distribution of

portfolio losses. This enables us to quantify the relation between the volatility of losses and the

determinants of credit contagion. We find that contagion processes have typically a second-

order effect on portfolio losses. They induce additional fluctuations of losses around their

averages, whose size depends on the number of business partners of the firms.
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1. Introduction

Defaults of firms are stochastically dependent. One reason is that firms’ financial
health is sensitive to macro-economic factors, such as energy prices, GDP growth, or
interest rates. These factors are common to all firms operating in an economy. The
fluctuation of factors affects firms simultaneously and induces cyclical default

dependence. Another reason for default dependence is the existence of business ties
between firms. These links often provide the channel for the propagation of
economic distress from one firm to another. This is called credit contagion. In this
paper we propose a model for such contagion phenomena and study the contagion-
induced volatility of aggregate credit losses on large portfolios of financial positions.
The measurement of aggregated risk is essential for the management and regulation
of financial institutions.
Borrowing and lending networks constitute a typical distress propagation channel.

In the banking sector, interbank lending refers to banks’ mutual claims. To the extent
that interbank loans are neither collateralized nor insured against, the distress of a
bank may trigger the subsequent distress of other banks in the lending chain. Allen
and Gale (2000) propose an equilibrium model for such phenomena where different
sectors of the banking system have overlapping claims on one another in order to
buffer liquidity preference shocks. This arrangement is however financially fragile:
depending on the degree of connectedness of the buffer system, a small liquidity
preference shock in one bank can spread through the economy and cause the distress
of other banks as well. In the manufacturing sector, trade credits link suppliers and
buyers of goods through a chain of obligations. Kiyotaki and Moore (1997) study how
a liquidity shock, which causes the distress of an individual customer in the first place,
can propagate through the borrowing–lending network and result in a chain reaction.
While insightful, these micro-economic models cannot quantify aggregated loss

risk due to contagion. In order to derive explicitly the distribution of aggregated
losses due to contagion, we propose a reduced-form contagion model. Our approach
adopts the micro-economic reasoning of Allen and Gale (2000) and Kiyotaki and
Moore (1997), but models local firm interaction statistically.
We consider a homogeneous economy that hosts a large number of firms that

share the same individual characteristics. The business partner network is
represented by a d-dimensional lattice. The nodes are identified with firms. The
edges represent business partner relationships.
The financial health of a firm is characterized by the amount of available liquidity.

We specify two states, ‘‘high liquidity’’ and ‘‘low liquidity,’’ the latter describing a
firm that is financially distressed. The initial state of a firm is random. Over time, a
firm migrates between states, reflecting a dynamic business environment. A state
transition is a Poisson event, whose intensity depends on the state of the firm’s
business partners. A firm’s transition intensity is proportional to the number of the
firm’s business partners that are in the opposite state. The intuition is that a
financially distressed firm is likely to default on payment obligations. The more
distressed partners a healthy firm has, the higher the likelihood that the firm suffers a
liquidity shortage and becomes distressed as well.
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The joint evolution of firms’ states over time is described by a continuous-time
Markov process. This process is also known as the voter model in the theory of
interacting particle systems (Liggett, 1985). We analyze the asymptotic behavior of
the liquidity process. The structure of the invariant (equilibrium) distribution of
liquidity states depends on the dimension d of the lattice that represents the
firm network. If the dimension is low ðd ¼ 1; 2Þ, firms have only a few business
partners. Then an individual firm is highly dependent on each of these partners.
Clusters of firms in the same state are relatively stable. Their size fluctuates
randomly; they grow and merge with other clusters. In the long run, all firms are in
the same state. This implies a high degree of systemic risk. In their micro-economic
model, Allen and Gale (2000) obtain a qualitatively similar behavior: with a
simple lending network structure, firms are financially fragile and the degree of
systemic risk is high.
If the dimension of the lattice is high ðd42Þ, then firms have many business

partners and the equilibrium distribution of liquidity states becomes non-trivial.
Random clusters of firms in the same state appear only locally and their size
fluctuates. In particular, they do not merge and grow in the same way as in the low-
dimensional case, but they are more unstable and less persistent. There are again
qualitative parallels to the micro-economic contagion models of Allen and Gale
(2000) and Kiyotaki and Moore (1997). In a borrowing/lending network in which
firms have many business partners, firms are more robust with respect to liquidity
shocks, which are buffered through the network.
We investigate the structure of the equilibrium liquidity distribution in a large

homogeneous economy, where firms are equal with respect to their marginal
liquidity risk. In the ergodic case, the equilibrium liquidity states are governed by a
so-called extremal distribution corresponding to the fixed degree of marginal
liquidity risk. In the general case, the equilibrium liquidity states are governed by a
mixture of extremal distributions. The mixing distribution corresponds to the
distribution of the average number of low-liquidity firms in the whole economy,
which is a random quantity. It can hence be thought of as describing systematic risk.
The mixing distribution, as well as the expected proportion of low-liquidity firms, is
not changed through the interaction of firms. What interaction changes is, however,
the dependence between firms’ states. For any finite number of firms, the probability
to find many firms in the same state is higher than with independent firms.
For a fixed horizon, we are interested in the distribution of aggregate losses that a

financial institution suffers from positions contracted with firms subject to credit
contagion. We assume that the loss on a position with a given firm is random and
depends on the firm’s liquidity state. Given the firms’ states, losses are independent.
We base our assessment of aggregate loss risk on the equilibrium liquidity
distribution in a network of firms with many business partners.
Average losses on infinitely large portfolios are governed by the average

proportion of low-liquidity firms and the expected conditional position losses.
While loss uncertainty stemming from the fluctuation of position losses averages out,
loss uncertainty remains from the average proportion of low-liquidity firms. The
randomness in average losses is hence governed by the mixing distribution, which
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represents systematic risk. Contagion effects play no role in infinitely large
portfolios; they are diversified away entirely.1 This is confirmed by an analysis of
the quantiles of the loss distribution. In the large portfolio limit, these are basically
governed by the quantiles of the mixing distribution.
Losses in finite portfolios are our main concern. We provide an explicit Gaussian

approximation to the distribution of losses in finite portfolios. This approximation is
based on a recent central limit theorem for the general voter model proved by Zähle
(2001), which is non-classical due to the strong dependence induced by the local
interaction. The approximation is the key to the measurement and management of
the portfolio’s aggregated risk.
We analyze the determinants of the volatility of losses in finite portfolios. As in

infinite portfolios, average losses are random and governed by the distribution of
systematic risk. However, in finite portfolios contagion induces a second-order effect
on the volatility of losses. It causes additional fluctuations of losses around their
(random) averages, so that the probability of large losses is elevated through
contagion. The amount of additional loss volatility depends on two quantities: the
characteristics of the systematic risk in the economy and the dimension d of the
lattice representing the firm network. Through numerical calculations we illustrate
that the effect of contagion on losses decreases with increasing volatility of
systematic risk and increasing d.
Our approximation results complement the existing literature on large homo-

geneous credit portfolios, which neglects credit contagion and instead focuses on
cyclical default dependence: Vasicek (1987), Frey and McNeil (2002, 2003), Lucas et
al. (2001), Schloegl (2002) and Gordy (2003). In these models, the volatility of
aggregate losses is entirely due to the fluctuation of some exogenous macro-
economic variables. Based on the results in this paper, Giesecke and Weber (2004b)
provide an explicit approximation that integrates cyclical and contagion effects.
This allows us to quantify the relation between the volatility of losses, volatility
of macro-factors and the dimension of the lattice. Alternative approaches to
modeling cyclical and contagion effects include those of Frey and Backhaus (2003),
Giesecke (2004), Giesecke and Goldberg (2004), Jarrow and Yu (2001) and
Schönbucher and Schubert (2001). These contributions focus on the pricing of multi-
name credit derivatives. They do not derive the loss distribution analytically. A
model that focuses on contagion effects as we do is proposed by Davis and Lo
(2001). They explicitly derive an analytic expression for the exact distribution of
portfolio losses.
The paper is organized as follows. In Section 2 we propose a statistical model

for credit contagion. In Section 3, we analyze the asymptotic behavior of the
liquidity process and the structure of the equilibrium liquidity distribution. In
Section 4 we provide an explicit approximation of the distribution of aggregate
losses. Section 5 concludes by discussing the model assumptions. All proofs are in
the appendix.
1Horst (2004) considers a model where contagion effects do not diversify away in the limit.
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2. Modeling credit contagion

We provide a statistical model for the effects of credit contagion and investigate
their consequences on the level of both the whole economy and large portfolios.

2.1. A reduced-form model

We consider an economy with a collection S of small or medium-sized firms which
is at most countably infinite. A firm i 2 S can be in two liquidity states, denoted 0
and 1. State 0 is interpreted as ‘‘high liquidity,’’ while state 1 is interpreted as ‘‘low
liquidity.’’ The state of the economy is characterized by a configuration in the state
space f0; 1gS. We are interested in the evolution of firms’ liquidity states over time
and the interdependence of the states of different firms.
The liquidity state of an arbitrary firm i is influenced by the state of a collection

NðiÞ � Snfig of business partners. We assume that any firm i 2 S is a creditor of its
business partners. At a time t some business partner j 2 NðiÞ is obliged to pay a
certain amount to its creditor i. Depending on its liquidity state at the maturity date
t, firm j will or will not fulfill its obligation. We suppose that firm j pays its debt if it
is in state 0. If it is in state 1, then it defaults on its obligation. Hence the state of
obligor j influences the liquidity state of the creditor firm i. If j fulfills its obligation,
creditor i is in state 0 from time t onwards. Otherwise, i is in state 1 after time t.
In a large economy, modeling explicitly all borrowing and lending relationships

becomes extremely complex and is not tractable. To reduce the complexity of the
problem, we provide a statistical model for the interaction of the firms. In contrast to
standard micro-economic models, we thus describe the choice of the obligor j 2 NðiÞ

and the maturity date t in a probabilistic way. We assume that t is a random time
that is standard exponentially distributed. The business partner of firm i whose
payment is due at time t is chosen according to some distribution pði; jÞ where
j 2 NðiÞ.
We denote the liquidity state of a firm i 2 S by xðiÞ. Given our assumptions, the

transition between liquidity states is a Poisson event. The transition rate of the state
of firm i 2 S can formally be written as

cði; xÞ ¼
X

j:j2NðiÞ

pði; jÞjxðiÞ � xðjÞj.

In this sense our credit contagion model belongs to the class of reduced-form credit
risk models (see, e.g., Jarrow and Turnbull (1995), Duffie et al. (1996), Duffie and
Singleton (1999), Jarrow et al. (1997) and Lando (1998) for single-firm models). The
idea that a firm’s default intensity directly depends on the state of its counterparties
appears also in Jarrow and Yu (2001) and Davis and Lo (2001).

2.2. The voter model

The evolution of the liquidity state of an arbitrary firm i is influenced by the state
of a collection NðiÞ � Snfig of business partners. NðiÞ will be called the set of
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neighbors of firm i. For simplicity, we assume that firms influence each other in a
symmetric way: if firm i’s state is influenced by firm j, then firm j’s state is influenced
by firm i. Expressed in terms of the neighborhoods,

j 2 NðiÞ ) i 2 NðjÞ.

If we connect all firms i 2 S to their neighbors j 2 NðiÞ, we get an undirected graph
which characterizes the business relations of the firms. Business partners are nearest
neighbors on the graph. For tractability, we assume a simple neighborhood structure
which is specified by a d-dimensional lattice. In particular, all firms have the same
finite number of business partners. Hence, we consider an economy with a countably
infinite number of firms. Firms are identified with their location on the d-dimensional
integer lattice S ¼ Zd . According to our assumptions, at a unit exponential time the
payment of a business partner j of firm i is due. Firm j is chosen according to some
distribution pði; jÞ where jj � ij ¼ 1. Here j 
 j denotes the length of the shortest path
between two firms on the lattice. To keep the analysis simple, we choose pði; jÞ to be
the uniform distribution, i.e. pði; jÞ ¼ 1=2d. The contagion pattern we proposed
above implies that the transition rate c is given by

cði; xÞ ¼
1

2d

X
j:ji�jj¼1

jxðiÞ � xðjÞj ¼

1

2d

X
j:ji�jj¼1

xðjÞ if xðiÞ ¼ 0;

1

2d

X
j:ji�jj¼1

½1� xðjÞ� if xðiÞ ¼ 1:

8>>>><
>>>>:

The transition rate c is a function of the firm i 2 Zd and the liquidity configuration
x 2 X :¼ f0; 1gZ

d

. A regular version of the process is given by the voter model. The
voter model is well known in the theory of interacting particle systems (Liggett, 1985,
1999). The evolution of firms’ liquidity states is described by a continuous-time
Feller process ðZtÞtX0 with state space X and transition rate c. Here ZtðiÞ is the
liquidity state of firm i at time t.
The rate at which firm i switches its state is represented by cði; xÞ. That is, a firm

i 2 Zd with a high-liquidity state ðxðiÞ ¼ 0Þ migrates to a low-liquidity state ðxðiÞ ¼ 1Þ
at a rate proportional to the number of low-liquidity neighboring firms
j 2 fj: xðjÞ ¼ 1; ji � jj ¼ 1g, and vice versa. Put another way, after a unit exponential
waiting time in one state, a firm i 2 Zd migrates to the state of some neighboring firm
j 2 fj: ji � jj ¼ 1g which is chosen with probability 1=2d. A transition is hence a
Poisson event, whose intensity is proportional to the number of neighboring firms
with opposite liquidity state.2 It is easy to see that if all firms i 2 Zd are either in good
or in bad shape, then the transition rate is zero.
This formal model of the joint evolution of firms’ liquidity states probabilistically

describes the pattern of credit contagion phenomena as we introduced them above.
2We could multiply the transition rate c of the voter model by an arbitrary constant without changing

the long-run behavior of the dynamics. The modified rate translates into a deterministic linear time change

of the model. As pointed out by a referee, it would be very interesting to investigate the speed of

convergence to equilibrium.
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Pick the specific example of trade credit. If some business partners of a high-liquidity
firm in a trade credit are in the low-liquidity state, then the probability that this firm
migrates to the low-liquidity state due to a payment default in the credit chain
increases with the number of low-liquidity partners. If some business partners of a
low-liquidity firm are in the high-liquidity state, then the probability of that firm’s
migration to the high-liquidity state increases with the number of healthy partners.
3. Equilibrium behavior

We consider the equilibrium distributions3 and the asymptotic behavior of the
liquidity process Z. It turns out that the structure of the equilibrium distributions
depends on the dimension d of the lattice representing the firm network. The larger
the d, the more business partners any individual firm has. At the same time the
number of indirect inter-firm links of given length increases.4
3.1. Networks of firms with few business partners

The liquidity state of an obligor i is revealed to its creditor j 2 NðiÞ at the maturity
of an obligation. Firm i will default if and only if it is in the low-liquidity state.
Conversely, immediately after maturity, the liquidity state of both firms i and j will
be equal according to the contagion process. Thus, also the subsequent state of firm j

will be known to firm i. Hence, for firms inside the network the liquidity states of
business partners are partially observable. For financial institutions outside of the
network of small or medium-sized firms, we suppose in contrast that the liquidity
state of firms i 2 Zd cannot be observed. Hence the liquidity configuration of the
firms is random and described by a probability distribution on the state space X.
At some initial time the distribution of Z is given by the distribution m on X. We

are interested in the behavior of the liquidity process in the long run. The process Z
has càdlàg paths; for convenience, we will work with the canonical version of the
process. O denotes the space of càdlàg functions on Rþ with values in X endowed
with the usual augmented filtration. For the law of the process Z with initial
distribution m, we will write Pm.
We shall assume that m is translation invariant5 and denote by

r ¼ mfx: xðiÞ ¼ 1g (1)
3An equilibrium distribution is a probability measure on the state space X that is invariant under the

Markovian dynamics of the voter model.
4More specifically, if i and j are two firms, a sequence ði0; i1; :::; inÞ of firms is a link of length n between i

and j, if ik is a neighbor of ikþ1 for k 2 f0; 1; :::; n � 1g, i0 ¼ i and in ¼ j. The number of links of length n

emanating from a given firm equals 2dð2d � 1Þn�1 and grows exponentially in n and polynomially in d.
5Translation invariance generalizes the notion of stationarity for stochastic processes to the

multidimensional case. For x 2 X and i 2 Zd we define the translation TiðxÞðjÞ ¼ xði þ jÞ. Canonically,

the translation Ti operates also on subsets of X. A measure m on X is called translation invariant, if

mðAÞ ¼ mðTiAÞ for all i 2 Zd and for all measurable A � X .



ARTICLE IN PRESS

K. Giesecke, S. Weber / Journal of Economic Dynamics & Control ] (]]]]) ]]]–]]]8
the Bernoulli parameter of the initial marginal liquidity distribution for an arbitrary
firm i. r can hence be thought of as a measure of an individual firm’s marginal
liquidity risk. In particular, the translation invariance of m implies that the firms in
the economy are homogeneous with respect to marginal risk.
For d ¼ 1; 2 and translation-invariant initial law m, as t ! 1 the distribution of Zt

converges weakly to the mixture

rd1 þ ð1� rÞd0, (2)

cf. Liggett (1999). Here dx is the Dirac measure placing mass 1 on configuration
x 2 X . In (2) the indices 0 (1) refer to the configurations with all firms being in high
(low)-liquidity state. The liquidity process Z clusters, i.e. for all i; j 2 Zd

lim
t!1

Pm½ZtðiÞaZtðjÞ� ¼ 0. (3)

If firms have only a few business partners, then in the long run only one firm type
appears: with probability r all firms are in the low-liquidity state, and with
probability 1� r all firms are in the high-liquidity state. The marginal liquidity
distribution of any individual firm is invariant under the contagion dynamics: the
degree of marginal risk is not affected by the interaction process. Nevertheless, the
economy can change drastically on the macroscopic level.
This behavior is quite intuitive in the trade credit chain interpretation. If initially the

marginal probability r of individual firms to be in the low-liquidity state is high, then it
is quite likely that high-liquidity firms in the credit chain become ‘‘infected.’’ Random
clusters of firms in the low-liquidity state emerge with high probability, while clusters
of firms in the high-liquidity state emerge only with low probability. In any case, if the
chain a firm operates in is ‘‘short,’’ then the state of the relatively few business partners
highly dominates the state of a firm in the chain. Here clusters of firms of the same type
are relatively stable. The size of the clusters fluctuates randomly, but for low
dimensions dp2 some of the clusters merge and form large growing clusters.
Asymptotically, with high probability r all firms are in the low-liquidity state, and with
low probability 1� r all firms are in the high-liquidity state. Vice versa, if r is low,
then it is unlikely that a firm gets distressed. In the limit, with high probability 1� r all

firms will have the high-liquidity state, with low probability r the low-liquidity state.
3.2. Networks of firms with many business partners

The limiting behavior of Z differs for dimensions d42. We analyze the asymptotic
behavior of the liquidity process in two steps. First we focus on the special case of
ergodic6 initial distributions. Then we derive the long-run behavior of the process for
general translation-invariant initial distributions from this special case.
6A translation-invariant distribution m on X is called ergodic if mðAÞ 2 f0; 1g for any translation-invariant
subset A � X . Here, a set A � X is called translation invariant if TiA ¼ A for all i 2 Zd . Intuitively, a

measure m is ergodic if macroscopic quantities are deterministic, i.e. have probability 0 or 1. This implies,
in particular, that strong laws of large numbers are valid. Finally, if m and n are both ergodic and not
equal, they are mutually singular—that is, they live on different sets.
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Before we characterize the asymptotic behavior of the liquidity process, we need to
describe the structure of probability measures which are invariant for the voter
model. We endow the space M1ðX Þ of probability measures on X with the weak
topology. The set of probability measures which are invariant for the voter model is
denoted by I. The collection of invariant measures I is a convex set which is closed
in the weak topology. The set of extremal points of I is denoted by Iex. Here, a
measure n 2 I is called an extremal point of I, if n is not a proper convex
combination of other elements of I. That is, if n ¼ an1 þ ð1� aÞn2 for n1; n2 2 I,
a 2 ð0; 1Þ, then n ¼ n1 ¼ n2.
It turns out that for r 2 ½0; 1� the set Iex contains exactly one element nr with

nrfx: xðiÞ ¼ 1g ¼ r. We can therefore label the extremal invariant measures by the
Bernoulli parameter of their one-dimensional marginals and obtain in a natural way
a one-parameter family

Iex ¼ fnr: r 2 ½0; 1�g.

For the following result we refer to Liggett (1999).

Theorem 3.1. For any translation-invariant ergodic initial distribution m with Bernoulli

parameter r ¼ mfx: xðiÞ ¼ 1g, as t ! 1 the distribution of Zt converges weakly to the

non-trivial extremal invariant measure nr of the voter model in dimension d with

parameter r ¼ nrfx: xðiÞ ¼ 1g.

In contrast to the case dp2, in this case the contagion process Z coexists, referring
to the lack of clustering of liquidity states in the long run. The average number of
low-liquidity firms in the whole economy is a preserved quantity of the dynamics and
equals r forever.
We study the equilibrium distribution of liquidity states for a general, i.e. not

necessarily ergodic initial distribution k. As stated in the next theorem, the liquidity
process Z converges weakly to a mixture of the extremal invariant measures nr
ðr 2 ½0; 1�Þ of the voter model. A sufficient statistic for the asymptotic distribution of
the process is given by the empirical proportion of low-liquidity firms in the whole
economy. It is a standard result that this quantity exists almost surely for
translation-invariant measures on X.

Definition 3.2. For a translation-invariant probability measure m on X the empirical
proportion of low-liquidity firms is a random variable r̄ which is m-almost surely
defined as r̄:¼limn!1jLnj

�1
P

i2Ln
xðiÞ, where

Ln:¼½�n; n�d \ Zd . (4)

By Me we denote the class of ergodic probability measures on X endowed
with the weak topology. For any translation-invariant probability measure m
on X, the theorem of Choquet states that there is a probability measure g on Me

such that

m ¼

Z
Me

ngðdnÞ, (5)
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so that m can be represented as a mixture of ergodic measures n. In Theorem A.2 in
the Appendix we state a refined Choquet decomposition which can be used to
establish the complete convergence theorem for Z in case d42 for general translation
invariant initial distributions of liquidity states:

Theorem 3.3. Let d42 and denote by mkt the distribution of Zt for given initial

distribution k on X. Let k be a translation-invariant measure, and let

k ¼

Z
½0;1�

Z
Me

ngrðdnÞ
� 	

QðdrÞ (6)

be the refined ergodic decomposition of k, cf. Theorem A.2. Then we have that

mkt ¼

Z
½0;1�

Z
Me

mntgrðdnÞ
� 	

QðdrÞ, (7)

and, letting the symbol ‘‘�!
w
’’ denote weak convergence of probability measures,

mkt �!
w
Z
½0;1�

nrQðdrÞ, (8)

where nr is the extremal invariant measure of the basic voter model in dimension d42
with parameter r 2 ½0; 1�. Q is the distribution of the empirical proportion of low-

liquidity firms in the whole economy under the measure m.

Proof. See Appendix A. &

The refined ergodic decomposition (6) describes the initial distribution k of
liquidity states as a two-step random process: first the parameter r 2 ½0; 1� is chosen
according to the distribution Q, which then prescribes the translation-invariant
regime

kr:¼kr;0:¼
Z
Me

ngrðdnÞ.

The distribution Q governs the mixture of the regimes kr in the decomposition of the
initial distribution.
The evolution of the liquidity distribution is described by (7) and (8). If the initial

distribution k can be decomposed as in (6), then the liquidity distributions mkt at time
t and mk1 ¼ limt!1mkt can be decomposed analogously. Theorem 3.3 describes these
distributions of liquidity states as two-step random processes: first the parameter
r 2 ½0; 1� is chosen according to the distribution Q, which then determines the
regimes

kr;t ¼

R
Me

mntgrðdnÞ if to1;

nr if t ¼ 1:

(

Asymptotically, the distribution mk1 of liquidity states is a probability-weighted
average of extremal invariant measures nr of the voter model; this mixture is
governed by the distribution Q which is given by the initial law of the average
number r̄ of low-liquidity firms in the economy.
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Corollary 3.4. Under the assumptions of Theorem 3.3, we can characterize the

behavior of the empirical proportion of low-liquidity firms r̄ as follows:
(1)
 r̄ is kr;t-almost surely equal to r for r 2 ½0; 1� and t 2 ½0;1�.

(2)
 For t 2 ½0;1� the law of r̄ under mkt equals Q.
Proof. See Appendix A. &

The distribution of the average number of low-liquidity firms in the economy is
preserved under the contagion dynamics; it is not changed through the
interdependence of firms. What interaction between firms changes is the dependence
between the liquidity states of different firms. For any finite number of firms, the
probability to find many firms in the same liquidity state is higher than in the case of
independent firms.
4. Aggregate losses on large portfolios

We consider a financial institution that holds a portfolio of financial positions
issued by firms i 2 Ln � Zd , where Ln is defined in (4). The parameter n 2 N

determines the size of the portfolio Ln. The positions are subject to credit risk:
whether or not an issuer will be able to honor a financial obligation depends on the
issuer’s state. We wish to assess the bank’s aggregated risk of losses at some fixed
horizon. Denoting the losses on positions contracted with firm i 2 Ln by the random
variable UðiÞ, we are interested in the distribution of portfolio losses

Ln ¼
X
i2Ln

UðiÞ. (9)

We make the following assumptions. Conditional on the liquidity configuration of
the firms, losses are independent. The conditional distribution Mr of losses
with respect to a firm in liquidity state r 2 f0; 1g depends only on r. We suppose
that losses are supported in a bounded interval on Rþ. We take Mr as given and let
lr ¼

R
wMrðdwÞ denote the expected loss caused by a firm in liquidity state r.

For high-liquidity firms the probability of (large) losses is small relative to firms in
the low-liquidity state. M1 is more concentrated on large values than M0.
Specifically, we might assume that M1 stochastically dominates M0, i.e. for all
bounded increasing functions f :Rþ ! R:

R
f dM1X

R
f dM0. We however only

suppose that l14l0.
We consider the case d42 and assume that the economy is in equilibrium, in the

sense that the distribution of firms’ liquidity states is invariant.

4.1. Deterministic conditional losses

We start by assuming that credit losses UðiÞ depend deterministically on the
liquidity state of firm i. Specifically, we simply set Mr ¼ dr for r 2 f0; 1g. This implies
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that the institution suffers no loss from positions with high-liquidity firms, and a loss
of one unit of account from positions with low-liquidity firms.
Let m ¼

R 1
0 nrQðdrÞ be an equilibrium distribution of liquidity states. Here, the

measures nr ðr 2 ½0; 1�Þ are the extremal invariant measures of the voter model, andQ

is the distribution of the random empirical proportion of low-liquidity firms in the
economy which we denote by r̄. Consider now the average loss jLnj

�1Ln in portfolio
Ln. Since the measure nr ðr 2 ½0; 1�Þ is ergodic, we obtain by a conditional law of
large numbers7

lim
n!1

Ln

jLnj
¼ r̄ (10)

m-almost surely. Even with deterministic conditional loss amounts not all loss
uncertainty averages out. There is still uncertainty concerning average portfolio
losses governed by the distribution Q. This distribution captures the systematic risk
in the economy.
The average portfolio loss is thus not governed by the interaction of the firms, but

simply by the distribution Q. This is due to the ergodicity of the extremal invariant
measures of the voter model. The Eq. (10) relies only on the validity of a law of large
numbers and not on the specific structure of the ergodic measures in the
decomposition of m. Whenever the ergodic measures have the correct one-
dimensional marginal distribution, Eq. (10) holds.
Let us illustrate this in the benchmark case of conditionally independent firms. If

we replace nr by a product measure pr of Bernoulli distributions with parameter r
and consider a distribution m̂ ¼

R 1
0
prQðdrÞ of liquidity states, contagion is not

present any more. The mixture m̂ corresponds to an economy in which the liquidity
states of individual firms are not interdependent via direct business relations—they
are only coupled through systematic risk captured by the distribution Q. In this case,
Eq. (10) is still valid m̂-almost surely.
Contagion does not affect the average per capita loss in the economy, but it

increases the risk of large losses in finite portfolios. This effect can be quantified by a
non-classical limit theorem which we state below.
We start with the special case where Q ¼ dr for fixed r 2 ð0; 1Þ and investigate the

portfolio losses associated with the extremal invariant distribution nr of the liquidity
states. The case of general Q is considered later.

Theorem 4.1. Let d42 and Q ¼ dr for r 2 ð0; 1Þ. Suppose additionally that Mr ¼ dr

for r 2 f0; 1g. For large portfolios the law of the losses Ln can be approximated by a

normal distribution:

jLnj
�ðdþ2Þ=2dðLn � jLnjrÞ ¼ jLnj

�ðdþ2Þ=2d
X
i2Ln

ðxðiÞ � rÞ �!
w

Nð0;s2Þ, (11)
7In our case, the conditional law of large numbers is simply a reformulation of Corollary 3.4.
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where the limiting variance s2 ¼ s2ðdÞ is given in Appendix C and numerical values are

as follows:
d
 3
 4
 5
 6
s2=ðrð1� rÞÞ
 0.5939
 0.4517
 0.3765
 0.2187
The loss distribution can uniformly be approximated:

sup
x2Rþ

nrðLnXxÞ � F
jLnj

1=2r� jLnj
�1=2x

sjLnj
1=d

� 	����
����p�n, (12)

where �n ! 0 as n ! 1, and F is the standard normal distribution function.

Proof. See Appendix B. &

The re-scaling in (11) is non-classical. This is caused by the strong dependence in
the equilibrium distribution of liquidity states, which results from the contagion
dynamics. Unfortunately, we are not able to provide bounds of Berry–Esseen type
for the errors �n in (12), which would help to understand the speed of convergence.
By inequality (12) the probability of a loss larger than x 2 Rþ can uniformly be

approximated by the function

Cd;rðjLnj; xÞ ¼ F
jLnj

1=2r� jLnj
�1=2x

sðdÞjLnj
1=d

� 	
, (13)

where jLnj ¼ ð2n þ 1Þd is the size of the portfolio Ln ¼ ½�n; n�d \ Zd . Heuristically,
interpolation between sizes of the portfolios Ln allows us to define the approximate
loss probabilities larger than x 2 Rþ for portfolio size u 2 Rþ by

Cd;rðu; xÞ ¼ F
u1=2r� u�1=2x

sðdÞu1=d

� 	
. (14)

Hence, losses of a portfolio of u firms are approximately normal with mean ru

and variance s2ðdÞu1þ2=d , that is, the losses of u firms are approximately
Nðru;s2ðdÞu1þ2=dÞ. The risk of large losses is captured by the variance of the
approximating normal variable. The variance is of order u1þ2=d . The exponent
decreases to 1 as d ! 1.
The interaction of the firms leads to strong dependence of the liquidity states of

different firms. We shall compare the results for the distribution nr to the benchmark
case of independent firms. That is, we will assume that the benchmark distribution pr
of liquidity states is given by a product of Bernoulli measures with parameter r. If we
exchange nr against pr, we have to replace the normalization factor jLnj

�ðdþ2Þ=2d in
(11) simply by the usual jLnj

�1=2 and use instead of the limiting variance s2ðdÞ the
quantity rð1� rÞ. The uniform approximation (12) becomes in this case

sup
x2Rþ

prðLnXxÞ � F
jLnj

1=2r� jLnj
�1=2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð1� rÞ
p

 !�����
�����p�n, (15)
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where �n ! 0 as n ! 1. For independent firms the speed of convergence to
the normal distribution can be bounded by the Berry–Esseen theorem (see e.g.
Theorem 4.9 and Remarks in Chapter 2 of Durrett (1996)):

�np
1þ 2rðr� 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð1� rÞ
p 1

ð2nÞd=2
.

By inequality (15) the probability of a loss larger than x 2 Rþ can uniformly be
approximated by the function

ĈrðjLnj;xÞ ¼ F
jLnj

1=2r� jLnj
�1=2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð1� rÞ
p

 !
. (16)

Again interpolation between sizes of the portfolios Ln allows us to define the
approximate loss probabilities larger than x 2 Rþ for portfolio size u 2 Rþ by

Ĉrðu;xÞ ¼ F
u1=2r� u�1=2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð1� rÞ
p

 !
. (17)

Hence, losses of a portfolio of u firms are approximately normal with mean ru and
variance rð1� rÞu, that is, the losses of u firms are approximatelyNðru;rð1� rÞuÞ.
In contrast to the contagion case, the order of the variance is simply u.
The order of the variance is related to the riskiness of a portfolio. With contagion,

portfolios are more risky than without contagion. In the case of contagion, the order
of the variance is u1þ2=d . The exponent decreases as d increases. Thus, the portfolio
becomes more risky if d is small. For dp5 and reasonable portfolio sizes, say 10; 000
firms, this effect cannot be neglected.
To illustrate this, we consider a portfolio of size u ¼ 10; 000 with parameter

r ¼ 0:5, i.e. the marginal probability that a firm is in the low-liquidity state is 0.5. In
Figs. 1 and 2 we plot the approximate loss distribution for the benchmark case and
the contagion case, where for the latter we vary the dimension d of firm network.
As expected, in comparison with the independence (benchmark) case the loss

distribution exhibits a higher variance when credit contagion phenomena are
present. Put another way, firm interaction leads to the portfolio being more risky in
terms of large losses. With interaction, the probability of exceeding a given loss
amount above average losses is larger than in the independence case.
The difference in loss probabilities depends on the dimension. The higher d, the

less volatile is the loss distribution. The approximate loss density for benchmark and
interaction case (in dependence of d) is shown in Fig. 3.
While in case Q ¼ dr all loss uncertainty averages out in infinite portfolios

(cf. (10)), for finite portfolios losses fluctuate around ur ¼ 5000.
Having investigated the loss distribution in the special case where Q ¼ dr for

r 2 ð0; 1Þ, we now consider the case of general Q. In this situation the invariant
distributions m of liquidity states are mixtures of the extremal measures nr, which we
focused on in the special case (for a given rÞ. Let m ¼

R 1
0 nrQðdrÞ be an equilibrium

liquidity distribution. If Q puts positive mass on 0 or 1, all firms are in the same
liquidity state with positive probability. As before, we exclude these trivial cases by
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Fig. 1. Probability of a portfolio loss exceeding a given amount, varying d (u ¼ 10; 000 and r ¼ 0:5Þ.
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Fig. 2. Probability of a portfolio loss exceeding a given amount, varying d (u ¼ 10; 000 and r ¼ 0:5).
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assuming Qðf0gÞ ¼ Qðf1gÞ ¼ 0. In this general case, the exact probability of a loss
larger than x 2 Rþ equalsZ

nrðLnXxÞQðdrÞ.

In a large portfolio, the law of the losses Ln can be uniformly approximated by a
mixture of normal distributions:

Corollary 4.2. Let d42 and Mr ¼ dr for r 2 f0; 1g. The distribution of portfolio losses

Ln can uniformly be approximated:

sup
x2R

Z
nrðLnXxÞQðdrÞ �

Z
F

jLnj
1=2r� jLnj

�1=2x

sðrÞjLnj
1=d

� 	
QðdrÞ

����
����p�n, (18)

where the error bound �n ! 0 as n ! 1.
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Fig. 3. Approximate density of portfolio losses, varying d (u ¼ 10; 000 and r ¼ 0:5).
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Proof. See Appendix B. &

Based on this result, in close analogy to (14) interpolation between sizes of the
portfolios Ln allows us to define the approximate loss probabilities larger than x 2

Rþ for portfolio size u 2 Rþ by
R
Fððu1=2r� u�1=2xÞ=sðrÞu1=dÞQðdrÞ. Paralleling

(17), in the benchmark case with independent firms the approximate loss
probabilities can be defined by

R
Fððu1=2r� u�1=2xÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞ

p
ÞQðdrÞ, x; u 2 Rþ.

In both cases—with and without contagion—the systematic risk described by the
distribution Q governs the approximate loss distribution. The Gaussian integrands
cause additional fluctuations around their random means. If contagion is present,
the variance of these Gaussian distributions is of larger order in the number of
positions u. The order decreases with increasing dimension of the lattice.
In Fig. 4 we illustrate the approximate density of portfolio losses in the case

Q ¼ 0:4d0:3 þ 0:6d0:7. The portfolio size is again u ¼ 10; 000.
In infinite portfolios, average losses are governed by the distribution Q and are

thus equal to r ¼ 0:3 with probability 0:4 and equal to r ¼ 0:7 with probability 0:6.
The risk associated with uncertainty about the parameter r cannot be reduced by
means of ordinary diversification.
In finite portfolios of 10,000 firms, losses fluctuate around 0:3u ¼ 3000 (with

probability 0:4Þ and 0:7u ¼ 7000 (with probability 0.6). In analogy to the no-
uncertainty case Q ¼ dr considered in Fig. 3, interaction leads to more fluctuations
when compared to the benchmark case. The degree of additional fluctuation depends
on the dimension of the lattice. Nevertheless, the uncertainty about r dominates the
risk arising from contagion.
In the spirit of the Bernoulli mixture models for dependent defaults (Frey and

McNeil, 2003), r can be interpreted as the ‘‘driving factor’’ of the model. As we
discussed earlier, the macroscopic parameter r is not uniquely determined by the
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local interactions of the firms, since the voter model allows for many invariant
measures. Because of this phase transition, a risk manager needs to estimate the
distribution Q from other data. While the systematic risk associated with r cannot be
reduced by means of diversification, r should be highly correlated with other macro-
economic quantities like GDP growth rates or the level of interest rates. It should
therefore be possible to approximately hedge and price the risk associated with r by
arbitrage arguments.
The residual risk of the portfolio can theoretically be reduced by means of

diversification. In practice, however, this is difficult: existing credit exposures cannot
simply be reduced or extended nor can new credit exposures simply be added. In this
situation credit derivatives such as collateralized debt obligations provide an efficient
means to achieve the desired diversification on the aggregate level. The
(approximate) loss distribution we derive could then be used for the design, pricing
and risk management of the credit derivative instruments.

4.2. Stochastic conditional losses

We study the distribution of aggregate portfolio losses Ln in the general case. In a
first step we consider the average losses in the portfolio Ln. Let m ¼

R 1
0 nrQðdrÞ again

be an equilibrium distribution of liquidity states where the average number of low-
liquidity firms in the whole economy is distributed according to Q. The joint
distribution of losses is given by the mixture

bðdwÞ ¼

Z
�

i2Zd

MxðiÞ

� 	
ðdwÞmðdxÞ; w 2 RZd

.

By a conditional law of large numbers we have that

lim
n!1

Ln

jLnj
¼:mðrÞ¼:m (19)
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exists b-almost surely. Writing m ¼ rðl1 � l0Þ þ l0; we obtain that r is random with
distribution Q. Due to the ergodicity of the measures nr, in infinite portfolios average
losses do not depend on the interaction of firms, but only on systematic risk. Our
next result shows that in large portfolios the quantiles qaðLnÞ of the loss distribution
are essentially governed by the quantiles of Q.

Proposition 4.3. Let qaðQÞ be the a-quantile of the distribution Q and assume that the

cumulative distribution function G of Q is strictly increasing at qaðQÞ, i.e. GðqaðQÞ þ

�Þ4a and GðqaðQÞ � �Þoa for every �40. Then

lim
n!1

qaðLnÞ

jLnj
¼ qaðQÞðl1 � l0Þ þ l0,

where lr is the expected loss on a position with a firm in liquidity state r 2 f0; 1g. Here,
qaðLnÞ denotes an a-quantile of the distribution of Ln under the measure b.

Proof. See Appendix B. &

Frey and McNeil (2003) proved a similar result for exchangeable Bernoulli
mixture models, in which credit losses are conditionally independent given some
exogenous macro-economic factors. In this context the quantiles of the given factor
distribution (the mixing distribution) essentially determine the quantiles of the loss
distribution for large homogeneous portfolios. This tail behavior is of central
significance for risk measurement and management, as it corresponds to a
probabilistic assessment of the scenarios with extremely large losses. Analogously,
in our credit contagion approach the tail properties of the systematic risk Q

essentially govern the tail behavior of aggregate losses in large portfolios, i.e. the
extent of excessive fluctuations of the losses L1 in an infinitely large portfolio.
We again focus first on the case Q ¼ dr for r 2 ð0; 1Þ, and investigate the

distribution of the losses

bðdwÞ ¼

Z
�

i2Zd

MxðiÞ

� 	
ðdwÞnrðdxÞ; w 2 RZd

.

As in the case of deterministic conditional losses, for large portfolios the law of the
losses Ln can again be approximated by a normal distribution. In this case, the
expected loss equals m as defined in (19) and can be written as

m ¼ rðl1 � l0Þ þ l0.

Theorem 4.4. Let d42 and suppose that Q ¼ dr for r 2 ð0; 1Þ. For large portfolios the

distribution of losses satisfies

jLnj
�ðdþ2Þ=2dðLn � jLnjmÞ ¼ jLnj

�ðdþ2Þ=2d
X
i2Ln

ðUðiÞ � mÞ �!
w

Nð0; ðl1 � l0Þ
2s2Þ,
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where s2 denotes the limiting variance (27), cf. Appendix C. The loss distribution can

uniformly be approximated:

sup
x2R

bðLnXxÞ � F
jLnj

1=2m � jLnj
�1=2x

ðl1 � l0ÞsjLnj
1=d

� 	����
����p�n, (20)

where �n ! 0 as n ! 1.

Proof. See Appendix B. &

Based on inequality (20), interpolation between sizes of the portfolios Ln allows us
to define the approximate loss probabilities larger than x 2 Rþ for portfolio size
u 2 Rþ by Fððu1=2m � u�1=2xÞ=ðl1 � l0Þsu1=dÞ. This result corresponds to formula
(14), which we obtained in the case with deterministic conditional losses. In case of
stochastic conditional losses the limiting variance is multiplied by the factor
ðl1 � l0Þ

2, which depends only on the expected value of the loss distributions Mr,
r 2 f0; 1g. Because of the non-classical re-scaling, the random fluctuations of the
distributions Mr are averaged out in the normal approximation.
In analogy to Corollary 4.2, we extend our analysis of the loss distribution to

general invariant distributions m of liquidity states, which are mixtures of the
extremal measures we have considered so far. The joint distribution of the losses is
given by the mixture

bðdwÞ ¼

Z
�

i2Zd

MxðiÞ

� 	
ðdwÞmðdxÞ; w 2 RZd

.

Corollary 4.5. Let d42. For a large portfolio, the distribution of losses Ln can

uniformly be approximated:

sup
x2R

bðLnXxÞ �

Z
F

jLnj
1=2m � jLnj

�1=2x

ðl1 � l0ÞsðrÞjLnj
1=d

� 	
QðdrÞ

����
����p�n, (21)

where m ¼ rðl1 � l0Þ þ l0 and �n ! 0 as n ! 1.

Proof. See Appendix B. &

Compared with inequality (18), if conditional losses are stochastic the
approximate variance s2ðrÞ is multiplied by a factor ðl1 � l0Þ

2 and the averages of
low-liquidity states r are replaced by m. Qualitatively, the approximate loss
distribution has similar properties in both cases (18) and (21). Interestingly, the
fluctuations of the distributions Mr around their means are averaged out in the
normal approximation; only the expectations enter inequality (21).
5. Discussion

Credit contagion refers to the propagation of economic distress from one firm to
another. A thorough understanding of contagion processes is essential for the
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management and regulation of financial institutions. In this paper we model credit
contagion phenomena and study their effects on the volatility of losses on large
portfolios of financial positions. We derive an explicit analytical approximation to
the distribution of losses on large portfolios of financial positions whose issuers are
subject to credit contagion.
Our contagion model is stylized. The economy is modeled by a multi-dimensional

lattice, whose nodes are identified with firms. The edges represent business partner
relationships. Firms are homogeneous in their individual characteristics. While they
may be in different states, they have the same number of business partner
relationships and are of equal size. Furthermore, they carry the same amount of
marginal risk. It seems difficult to relax this homogeneity assumption when explicit
approximation results are desired.
The business partner relationships are the channel for credit contagion

phenomena, i.e. the propagation of liquidity shocks through a network of
obligations. The direction in which shocks are propagated is symmetric. The
likelihood of a healthy firm to become distressed increases with the number of
distressed business partners. Vice versa, the likelihood of a distressed firm to make a
turnaround increases with the number of healthy business partners. Less realistic is
the symmetry in the business relationships: any two firms influence each other to the
same degree. Here asymmetry could be accounted for by considering a directed
graph. Explicit analytical results are hard to come by in the asymmetric case. If
numerical results suffice, then the direct simulation of the contagion processes and
the associated losses is straightforward; see Egloff et al. (2004) for such a simulation
study.
The contagion dynamics are described by the basic voter process, which is

well studied in the theory of interacting particle systems. Our explicit approxi-
mation results are based on the recent results of Zähle (2001), who proves
a non-standard central limit theorem for the voter model in equilibrium.
The contact process is an alternative choice for the contagion dynamics. It allows
for asymmetric interaction, but it is difficult to obtain an analogous approximation
result.
Two further issues related to our Gaussian approximation are left open for future

research. The first concerns the speed of convergence of the voter process to its
equilibrium. The second is the characterization of the approximation error in
dependence of the portfolio size.
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Appendix A. Ergodic decomposition

This appendix provides supplementary results, and proofs of Theorem 3.3 and
Corollary 3.4. Let X ¼ f0; 1gZ

d

. By Me we denote the space of ergodic probability
measures on X endowed with weak topology. Let G be the Borel s-algebra on Me.
We write Me;r for the subspace of Me of probability measures n with
nfx: xð0Þ ¼ 1g ¼ r 2 ½0; 1�. The theorem of Choquet states that any translation-
invariant probability measure on X can be represented as a mixture of ergodic
measures (Georgii, 1988, Theorem 14.10):

Theorem A.1. Let m be a translation-invariant probability measure on X. Then there

exists a probability measure ĝ on Me such that m ¼
R
Me

nĝðdnÞ, i.e. for all continuous

functions f 2 CðX Þ it holds that mðf Þ ¼
R
Me

nðf ÞĝðdnÞ.

The following theorem refines the statement of Choquet and follows from
Theorem A.1 and Doob’s functional representation. A detailed proof can be found
in Giesecke and Weber (2004a).

Theorem A.2. Let m be a translation-invariant probability measure on X. Then there

exists a probability measure Q on ½0; 1� and a kernel

g
ð
Þ:
G� ½0; 1� ! ½0; 1�;

ðA;rÞ 7! grðAÞ

(

with grðMe;rÞ ¼ 1 such that

m ¼

Z
½0;1�

Z
Me

ngrðdnÞ
� 	

QðdrÞ.

Let ĝ be defined as in Theorem A.1. Q has the cumulative distribution function G given

by

GðrÞ ¼ ĝfn 2 Me: nfx: xð0Þ ¼ 1gprg.

We are now in a position to prove Theorem 3.3 in the text:

Proof of Theorem 3.3. Let f 2 CðX Þ. Writing mxt instead of m
dx
t , we have

mkt ðf Þ ¼
Z

mxt ðf ÞkðdxÞ ¼
Z 1

0

Z
Me

Z
mxt ðf ÞnðdxÞ

� 	
grðdnÞ

� 	
QðdrÞ

¼

Z 1

0

Z
Me

mnt ðf ÞgrðdnÞ
� 	

QðdrÞ.

Moreover, by the bounded convergence theorem

lim
t!1

mkt ðf Þ ¼ lim
t!1

Z 1

0

Z
Me

mnt ðf ÞgrðdnÞ
� 	

QðdrÞ

¼

Z 1

0

Z
Me

lim
t!1

mnt ðf Þ
� �

grðdnÞ
� 	

QðdrÞ
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since jmnt ðf Þjpkf k1o1. Noting that limt!1mnt ðf Þ ¼ nrðf Þ on Me;r and that
grðMe;rÞ ¼ 1, we have limt!1mkt ðf Þ ¼

R 1
0 nrðf ÞQðdrÞ. &

Proof of Corollary 3.4. Part (1) can be verified as follows. For t ¼ 1 the claim holds
by a strong law of large numbers, since nr is ergodic with nrfx: xðiÞ ¼ 1g ¼ r. Let kr;t
be given for t 2 ½0;1Þ. According to Theorem A.2 there exists a kernel g0 and a
measure Q0 on ½0; 1� such that

kr;t ¼
Z
½0;1�

Z
Me

ng0r0 ðdnÞ
� 	

Q0ðdr0Þ.

Suppose that kr;tðr̄ ¼ rÞo1. Suppose also that Q0 ¼ dr. Thus,

kr;tðr̄ ¼ rÞ ¼
Z
Me

ng0rðdnÞ
� 	

ðr̄ ¼ rÞ ¼
Z
Me;r

nðr̄ ¼ rÞg0rðdnÞ ¼ 1,

a contradiction. Thus, Q0adr: Hence by Theorem 3.3,

nr ¼ lim
t!1

kr;t ¼ lim
t!1

Z
½0;1�

Z
Me

ng0r0 ðdnÞ
� 	

Q0ðdr0Þ ¼
Z
½0;1�

nr0Q0ðdr0Þ,

a contradiction. Thus, kr;tðr̄ ¼ rÞ ¼ 1.
Part (2) can be proven as follows:

mkt ðr̄pr0Þ ¼
Z
½0;1�

kr;tðr̄pr0ÞQðdrÞ ¼
Z
½0;1�

1ð�1;r0 �ðrÞQðdrÞ

¼ Qð�1; r0Þ: &

Appendix B. Normal approximation

This appendix is devoted to the proof of Theorems 4.1 and 4.4, Corollaries 4.2 and
4.5 as well as Proposition 4.3. An integral formula for the limiting variance s2 ¼
s2ðdÞ is given in Appendix C and involves the escape probability gd of a random
walk. We start by considering gd .

Theorem B.1. Let Y n be a simple random walk on Zd with dX3. The escape

probability gd can be calculated by

gd ¼
1

JðdÞ
, (22)
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where the quantity JðdÞ is defined by

JðdÞ ¼ ð2pÞ�d

Z
ð�p;pÞd

1�
1

d

Xd

m¼1

cos xm

 !�1

dx. (23)

Numerical values are given in the following table:
d
 3
 4
 5
 6
JðdÞ
 1.516386
 1.239467
 1.156308
 1.116963

gd
 0.659463
 0.806798
 0.864821
 0.895285
Proof of Theorem B.1. A detailed proof of the theorem which uses standard
arguments from the theory of random walks (see e.g. Chapter 3 of Durrett (1996))
can be found in Giesecke and Weber (2004a). In order to obtain the numerical values
in the table observe that JðdÞ ¼ d 
 Iðd; 1Þ ¼ Lðd; 1Þ þ 1 where the functions I and L

are defined and evaluated in Kondo and Hara (1987). &

Proof of Theorem 4.1. The normal approximation result can be derived from
Theorem 1 in Zähle (2001). For a detailed proof see Giesecke and Weber (2004a).
Next we derive the uniform approximation (12). Since the distribution function of

the normal distribution is continuous, it follows from Exercise 2.6. in Chapter 2 of
Durrett (1996) that

sup
z2R

nr
jLnj

�ðdþ2Þ=2dðLn � jLnjrÞ
s

Xz

� 	
� Fð�zÞ

����
����p�n,

where �n ! 0 as n ! 1. The approximation (12) follows immediately, since

fLnXxg ¼
jLnj

�ðdþ2Þ=2d ðLn � jLnjrÞ
s

X
jLnj

�ðdþ2Þ=2dðx � jLnjrÞ
s

� �
.

s is given in Appendix C. &

Proof of Corollary 4.2. The distribution of jLnj
�ðdþ2Þ=2dP

i2Ln
ðxðiÞ � rÞ under the

measure nr will be denoted by Bn
r. We define the quantity

dn
r:¼ sup

n0Xn
sup
z2R

Bn0

r ð½z;1ÞÞ � F �
z

sðrÞ

� 	����
����.

Arguing as in the previous proof, we see that Theorem 1 in Zähle (2001) and Exercise
2.6 in Chapter 2 of Durrett (1996) imply that dn

r converges to 0 for all r 2 ð0; 1Þ as
n ! 1. Observe that r 7!dn

r is measurable. For �40 we can therefore define
measurable sets

An
� ¼ fr 2 ð0; 1Þ: dn

ro�g.
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Then An
� � Anþ1

� , and QðAn
� Þ % 1 as n ! 1. Choose n0 large enough such that

QðAn0
� ÞX1� �.

Let r7!zðrÞ be a measurable mapping. Then for all nXn0 we getZ
Bn
rð½zðrÞ;1ÞÞ � F �

zðrÞ
sðrÞ

� 	� �
QðdrÞ

����
����

p2ð1� QðAn
� ÞÞ þ sup

r2An
�

sup
z02R

Bn
rð½z

0;1ÞÞ � F �
z0

sðrÞ

� 	����
����p3�.

Let x 2 R be arbitrary, and let nXn0. We can choose

zðrÞ ¼ jLnj
�ðdþ2Þ=2dðx � jLnjrÞ.

It follows that for any x 2 R and nXn0 the following inequality holds:Z
nrðLnXxÞQðdrÞ �

Z
F

jLnj
1=2r� jLnj

�1=2x

sðrÞjLnj
1=d

� 	
QðdrÞ

����
����p3�: &

Proof of Proposition 4.3. For r 2 ½0; 1� define the probability measures

brðdwÞ ¼

Z
�

i2Zd

MxðiÞ

� 	
ðdwÞnrðdxÞ; w 2 RZd

.

First observe that, due to (19),

lim
n!1

br
Ln=jLnj � l0

l1 � l0
pa

� 	
¼

1; roa;

0; r4a:

(

Let �40 and let G be the cumulative distribution function of Q. Then

lim sup
n!1

bfLn � l0jLnjpjLnjðl1 � l0ÞðqaðQÞ � �Þg

¼ lim sup
n!1

Z 1

0

brfLn � l0jLnjpjLnjðl1 � l0ÞðqaðQÞ � �ÞgdGðrÞ

p
Z 1

0

lim sup
n!1

br
Ln=jLnj � l0

l1 � l0
pqaðQÞ � �

� 	
dGðrÞ

p
Z 1

0

1ð�1;qaðQÞ���ðrÞdGðrÞ ¼ GðqaðQÞ � �Þoa,

where the last equality is strict by assumption. The first inequality follows from
Fatou’s lemma. Analogously,

lim inf
n!1

bfLn � l0jLnjpjLnjðl1 � l0ÞðqaðQÞ þ �ÞgXGðqaðQÞ þ �=2Þ4a.
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Hence, for n large enough,

jLnjðl1 � l0ÞðqaðQÞ � �ÞpqaðLn � l0jLnjÞpjLnjðl1 � l0ÞðqaðQÞ þ �Þ.

The claim follows from observing that qaðLn � l0jLnjÞ ¼ qaðLnÞ � l0jLnj. &
Proof of Theorem 4.4. This is a corollary of the normal approximation results in the
deterministic case. Define the function f : f0; 1g ! fl0; l1g by f ð0Þ ¼ l0 and f ð1Þ ¼ l1. f

is used to introduce the random variables mi ¼ f ðxðiÞÞ, i 2 Zd . It is easy to see that
(11) implies

jLnj
�ðdþ2Þ=2d

X
i2Ln

mi � mð Þ �!
w

Nð0; ðl1 � l0Þ
2s2Þ. (24)

Denote now by ðX r;iÞi2Zd independent random variables with distribution Mr,
r 2 f0; 1g. Then we can rewrite the renormalized losses as

jLnj
�ðdþ2Þ=2dðLn � jLnjmÞ ¼ jLnj

ðdþ2Þ=2d
X

i2Ln;xðiÞ¼0

ðX 0;i � miÞ

þ jLnj
�ðdþ2Þ=2d

X
i2Ln;xðiÞ¼1

ðX 1;i � miÞ

þ jLnj
�ðdþ2Þ=2d

X
i2Ln

ðmi � mÞ.

The last summand on the right-hand side converges weakly according to (24). The
other two terms converge almost surely to 0; w.l.o.g. we will prove this fact only for
the first term, i.e.

jLnj
�ðdþ2Þ=2d

X
i2Ln;xðiÞ¼0

ðX 0;i � miÞ ¼ jLnj
�ðdþ2Þ=2d

X
i2Ln;xðiÞ¼0

ðX 0;i � l0Þ. (25)

The random number of summands in (25) equals cðnÞ ¼ jfi 2 Ln: xðiÞ ¼ 0gj and is
almost surely increasing to 1 as n ! 1. Theorem 8.7. of Chapter 1 in Durrett
(1996) implies for �40 that

cðnÞ�1=2ðlog cðnÞÞ�ð1=2þ�Þ
X

i2Ln;xðiÞ¼0

ðX 0;i � l0Þ (26)

converges to 0 as n ! 1. The last result can also be viewed as a consequence of the
law of iterated logarithm.
Now observe that for �40 the sequence cðnÞ satisfies

cðnÞ1=2ðlog cðnÞÞ1=2þ�

jLnj
ðdþ2Þ=2d

p
jLnj

1=2ðlog jLnjÞ
1=2þ�

jLnj
ðdþ2Þ=2d

¼
ðlog jLnjÞ

1=2þ�

jLnj
1=d

.

The last term converges to 0 as n ! 1. This fact together with (26) implies that the
terms in (25) converge to 0 as n ! 1.
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Altogether we obtain for n ! 1 the weak convergence,

jLnj
�ðdþ2Þ=2dðLn � jLnjmÞ �!

w
Nð0; ðl1 � l0Þ

2s2Þ.

The uniform approximation (20) is obtained with the same arguments as in the
deterministic case. &

Proof of Corollary 4.5. Analogous to the proof of Corollary 4.2. &
Appendix C. Limiting variance

The limiting variance s2 ¼ s2ðdÞ is given by

s2 ¼ rð1� rÞ
gdd

2dþ3pd=2
G

d � 2

2

� 	Z
½�1;1�d

Z
½�1;1�d

1

kx � ykd�2
2

dxdy. (27)

Here, G is the Gamma-function and g ¼ gd is given by Theorem B.1.
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