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Abstract

We model aggregate credit losses on large portfolios of financial positions contracted with

firms subject to both cyclical default correlation and direct default contagion processes. Cycli-

cal correlation is due to the dependence of firms on common economic factors. Contagion is

associated with the local interaction of firms with their business partners. We provide an ex-

plicit normal approximation of the distribution of portfolio losses. We quantify the relation

between the variability of global economic fundamentals, strength of local firm interaction,

and the fluctuation of losses. We find that cyclical oscillations in fundamentals dominate aver-

age losses, while local interaction causes additional fluctuations of losses around their average.

The strength of the contagion-induced loss variability depends on the complexity of the busi-

ness partner network.
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1. Introduction

One of the long-lasting discussions in economics concerns the explanation of

aggregate economic activity. In this paper we contribute to this discussion by study-

ing the fluctuation of aggregate credit losses on large portfolios of financial positions.
Our explicit results provide a number of significant insights relevant to both risk

measurement and management in financial institutions and supervisory authorities.

Default rates of firms and hence credit losses vary substantially even on a high

level of aggregation (see, in particular, the regular studies of the various credit rating

agencies, for example Keenan (2000)). One potential explanation is easily conceived:

firms’ ability to generate cash flows and hence their default proneness fluctuates with

the fundamentals of the economy, such as specific factor prices, demand for manufac-

tured goods, or production costs. The dependence of firms on the general (macro-)
economic environment induces dependence between firms’ defaults. A high degree

of such positive cyclical default correlation and thus a high fluctuation of aggregate

default rates and credit losses would result from correlated variations in fundamental

variables, which is simultaneously disastrous for a large number of firms.

In this article we investigate the economy’s micro-economic structure and analyze

under which conditions the effect of variations in fundamental macro-economic vari-

ables can amplify with the appearance of direct connections between firms. These di-

rect inter-firm links are typically associated with borrowing and lending contracts or
other legally binding relationships, such as parent–subsidiary structures; they provide

a channel for the direct contagion of economic distress from one firm to other firms. A

characteristic example are interbank lending agreements, which refer to banks’ mu-

tual claims. Provided that these claims are neither collateralized nor insured against,

the financial distress of one institution, triggered by management failure or adverse

fundamentals, may spread to several other institutions in the lending chain through

default on due obligations. Such bank contagion effects are widely discussed in the

micro-economic literature, see for example Allen and Gale (2000). A similar conta-
gion mechanism is also associated with non-financial firms through the institution

of trade credits, which link suppliers and buyers of goods through a chain of obliga-

tions. For a micro-economic model see, for example, Kiyotaki and Moore (1997).

Sufficiently large adverse fluctuations of default rates can lead to the distress of

lending institutions. Besides being of critical importance for individual banks’ risk

management, the design of effective supervising policies and intervention strategies

calls for a thorough understanding of the variability of aggregate losses. In this paper

we study the fluctuation of aggregate credit losses on large portfolios of financial
positions, taking into account both cyclical default correlation and credit contagion

processes. From a methodological point of view, this provides a reconciliation of the

cyclical correlation-based class of Bernoulli mixture models (Frey and McNeil,

forthcoming) and an approach focusing exclusively on credit contagion based effects

(Giesecke and Weber, 2002).

Bernoulli mixture models have become a standard for the measurement and man-

agement of credit loss risk in financial institutions. Examples include the models

put forward by KMV (Kealhofer, 1998), J.P. Morgan (Gupton et al., 1997), Credit
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Suisse Financial Products (CSFP, 1997), and McKinsey (Wilson, 1997). For an over-

view of these models we refer to Crouhy et al. (2000). In this class of models the fluc-

tuation of credit losses is due to the variation of economic fundamentals only, so that

firms’ interdependence is related to cyclical correlation effects only. By neglecting

contagion effects, such an approach might underestimate the degree of loss fluctua-
tion to be expected. An approach focusing exclusively on the contagion effects as in

Giesecke and Weber (2002), on the other hand, does not explicitly account for cycli-

cal correlation effects. In this paper we aim at unifying these two complementary ap-

proaches. In particular we will establish an extended Bernoulli mixture model which

integrates both ‘‘global’’ cyclical and ‘‘local’’ contagion effects.

We take as our starting point the model developed in Giesecke and Weber (2002),

in which firms interact with their business partners in a lattice-type economy. A firm is

subject to liquidity shocks from its business partners; its corresponding liquidity state
is described by a binary state variable. The liquidity account can become severely

‘‘stressed’’ if business partners fail to honor due obligations. In this case the firm

may not be able to generate sufficient cash flow to invest in production opportunities

and to honor its own obligations. If the firm can buffer the adverse effects from

defaulting business partners (through sufficient reserves, for example), then its liquid-

ity state is considered ‘‘stable.’’ We suppose that a firm migrates from one liquidity

state to another with an intensity that is proportional to the number of business part-

ners in the opposite state. The idea here is that if a stable firm’s partners default on
obligations, then the probability of this firm becoming liquidity stressed as well in-

creases with the number of failing partners, since at some point the available liquidity

reserves will be exhausted. Vice versa, the probability of a liquidity-stressed firm to

overcome the shortage increases with the number of financially healthy partners

which honor due obligations timely. The continuous-time Markov process describing

the joint evolution of firms’ liquidity state converges as time approaches infinity. In

contrast to Giesecke and Weber (2002), we additionally describe the macro-economic

business environment in the steady state by a random vector with given distribution
and model the influence of both contagion and cyclical oscillations on the firms. We

quantify the joint effect of these factors and characterize their relative importance.

In our model, a financial institution holds a portfolio of positions with firms in the

interaction-based economy. The credit loss on a position depends on both the macro-

environment and the firm’s individual liquidity state resulting from the local interac-

tion with its business partners. Our main result consists of an explicit approximation

of the distribution of aggregate losses on a large portfolio of positions, whose issuers

are subject to the macro-economic environment and credit contagion processes. This
generalizes a corresponding result in Giesecke andWeber (2002), where losses are dri-

ven by contagion only. Our approximation is the key to the measurement and man-

agement of the portfolio’s aggregated credit loss risk. Analogous large portfolio

approximations have been proven extremely useful in the context of Bernoulli mix-

ture models, see for example Vasicek (1987), Frey and McNeil (2002), Lucas et al.

(2001), Schloegl (2002), or Gordy (2001), whose approximation results have been very

influential in the design of the Basel II regulatory capital requirements. To analyze the

loss distribution in comparison with that implied by a classical Bernoulli mixture
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model, we provide a Bernoulli mixture type representation of our model. This not

only enlarges the existing Bernoulli mixture model class, but also makes estimation

techniques available that are already well-known in the Bernoulli class.

Our model predicts that average losses on large portfolios of financial positions are

dominated by cyclical oscillations in the economy’s fundamentals. Local firm interac-
tion and the associated contagion processes lead to additional fluctuations of losses

around their averages. The existence of contagion phenomena corresponds to the

presence of additional loss risks on the portfolio level, which cannot be attributed to

the variability in the macro-economy, and which are not identified by the traditional

Bernoulli mixture models. In particular, we find that the contagion effect is relatively

large, if uncertainty about macro-economic fundamentals is low. Nevertheless,

macro-economic fluctuations are themain source of loss risk. The strength of the addi-

tional contagion-induced loss variability and the probability of large losses depends
on the complexity of the business partner network, i.e. the degree of connectedness be-

tween firms. Specifically, the loss variability and probability of large losses increases

with decreasing complexity of business partner relations. This is in line with the pre-

dictions of the micro-economic bank contagion model of Allen and Gale (2000).

The implications of our model are consistent with a number of empirical studies.

Firstly, Kaufman (1994), Upper and Worms (2002), Furfine (2003), Schoenmaker

(2000), Calomiris and Mason (1997), and Elsinger et al. (2002) confirm the existence

of contagion risk in the banking sector, while Lang and Stulz (1992) find contagion
effects in the non-financial industry. Consistent with the predictions of ourmodel, Cal-

omiris andMason (1997),Upper andWorms (2002), Schoenmaker (2000) andElsinger

et al. (2002) argue that contagion is typically only a second-order effect, dominated by

systematic (macro-economic) factors. Schoenmaker (2000) finds that contagion risk

can be almost eliminated by a regulator functioning as a lender of last resort. There

is so far no empirical evidence on the ‘‘size’’ of the contagion risk relative to systematic

risk, making it hard at this stage to validate our quantitative estimates on this relation.

The balance of this paper is organized as follows. In Section 2 we define an econ-
omy where firms interact with each other within a business partner network specified

by a multi-dimensional lattice. We postulate contagion dynamics and analyze the

long-run behavior of the firms’ interaction-induced state. In Section 3 we examine

credit losses due to macro-economic fluctuations as well as contagion effects. We spe-

cifically provide a normal approximation to the distribution of aggregate losses. A

Bernoulli mixture type representation of our model is provided in Section 4, where

we also examine the fluctuations of aggregate losses. An estimation strategy for

the parameters is discussed in Section 5. Section 6 concludes and discusses some
important implications of our results for the regulation of financial institutions

and the control of systemic risk.
2. A statistical model of contagion

Following Giesecke and Weber (2002), in this section we set up a statistical model

for contagion phenomena which is based on a stylistic model of local firm interaction
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in a homogeneous economy. In particular, we assume that firms have the same num-

ber of business partners and are of equal size. Nevertheless, different firms are al-

lowed to be in different states.

2.1. Economy and firms

Our economy consists of a collection F of firms. An arbitrary firm i 2 F interacts

with a collection NðiÞ � F n fig of business partners, or neighbors. Typical business

partners include suppliers of goods in the manufacturing process and buyers of man-
ufactured products. The firm’s creditors, such as suppliers in trade credits, banks,

shareholders, or investors in the firm’s public debt, as well as its borrowers (think

of customers which are granted a trade credit), can also be considered as business

partners. For simplicity, we assume that a firm’s interaction with its neighbors is

symmetric, in the sense that
Fig. 1

ners j
j 2 NðiÞ ) i 2 NðjÞ: ð1Þ

Put another way, if a firm j 2 F is the business partner of another firm i 2 F n fjg,

then i is also a business partner of j. If we connect all firms i 2 F with their neighbors

j 2 NðiÞ, we get an undirected graph which characterizes the business relations of the

firms. For tractability, however, we shall assume a simple neighborhood structure

and identify firms with their location on the d-dimensional integer lattice F ¼ Zd .

On this lattice the distance between two firms determines whether they are business

partners. For concreteness, we define the neighborhood NðiÞ of a firm i by
NðiÞ ¼ fj : jj� ij ¼ 1g; ð2Þ

where j � j denotes the length of the shortest path between two firms on the lattice. In

other words, two firms are business partners if the shortest distance between them is

one unit on the lattice. Fig. 1 illustrates this in the two-dimensional case d ¼ 2.

The dimension d of the lattice can be interpreted as the degree of complexity of

the business partner network. With increasing d the structure of inter-firm connec-

tions becomes more complex. The larger d, the more business partners has any indi-
vidual firm. At the same time the number of indirect inter-firm links of given length

increases.
1

i

. A sector of the lattice economy in case d ¼ 2. Every firm i 2 Z2 interacts with four business part-

2 NðiÞ.
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Having defined the structure of our interaction-based economy, let us now con-

sider the process of interaction in more detail. In the business partner network firms

are linked through a chain of obligations. If one link in this chain does not honor

obligations timely or defaults entirely on some of them, then this immediately re-

duces the amount of liquidity available to this firm’s business partners. We can here
think, for example, of a temporary liquidity shortage leading to a payment default of

a buyer in a trade credit in the first place. Supposing that the immediate liquidation

value of the underlying goods used as collateral is sufficiently low, then this default

may eventually result in the supplier becoming short of liquidity as well. Given the

lack of liquidity, the supplier may be prevented from investing in production oppor-

tunities and realizing the associated returns in the future. This reduction in the sup-

plier’s cash flow ability may lead to the supplier defaulting on obligations with other

business partners as well. We refer to this process as credit contagion.
We establish a simple probabilistic model for the dynamics of credit contagion

over time. To this end, we associate with each firm i 2 Zd a state variable

nðiÞ 2 f0; 1g, which describes the firm’s liquidity state with respect to the interaction

with its business partners NðiÞ. State nðiÞ ¼ 1 means that firm i’s liquidity reserves

are stressed and might be insufficient to honor due obligations. State nðiÞ ¼ 0 means

that firm i is financially healthy and honors its obligations to business partners

timely.

Firms are subject to liquidity shocks in positive and negative direction. It is hence
natural to assume that a transition of firm i from liquidity state nðiÞ to state 1� nðiÞ
is an unpredictable Poisson event. The stochastic structure of this event is described

by an intensity. We suppose that this transition intensity is proportional to the num-

ber jfj 2 NðiÞ : nðjÞ ¼ 1� nðiÞgj of business partners in the opposite state. 2 The pro-

portionality factor 3 is normalized to 1
2d. An equivalent way to describe these

dynamics is as follows. After a unit-exponential waiting time, a firm i adopts the

liquidity state of one of its 2d business partners which is chosen with uniform prob-

ability 1
2d. In the two-dimensional case illustrated in Fig. 1, i has four partners, and it

adopts the state of one of them chosen with probability 1
4
. Of course, the more part-

ners are in opposite liquidity state, the higher is the probability that i changes its

state. Formally, the evolution of firms’ liquidity state over time is modeled by a con-

tinuous-time Markov process ðgtÞtP 0 with state space X ¼ f0; 1gZ
d

and transition

rate c given by
2 Th

Jarrow

focus d

firm. D

remain
3 Th

system
cði; nÞ ¼
1
2d

P
j2NðiÞ nðjÞ if nðiÞ ¼ 0;

1
2d

P
j2NðiÞ½1� nðjÞ� if nðiÞ ¼ 1:

(
ð3Þ
e idea that a firm’s state depends on the state of other firms in the economy has recently appeared in

and Yu (2001) and Davis and Lo (2001). Using the concept of a default intensity, these authors

irectly on the default state in its relation to other firms, whereas we consider the liquidity state of a

avis and Lo (2001), for example, suppose that after a default in the market, the default intensities of

ing firms are increased for an exponential time, before falling back to their normal levels.

e choice of the proportionality factor does not have any influence on the time asymptotics of the

. Changing this factor is equivalent to a linear deterministic time change.



K. Giesecke, S. Weber / Journal of Banking & Finance 28 (2004) 3009–3036 3015
This is known as the basic voter model in the theory of interacting particle systems

(Liggett, 1985, 1999).

Assumption (3) captures the idea that liquidity shocks can be propagated: If a

currently liquidity-stable firm’s business partners default on obligations, then the

probability of this firm becoming liquidity stressed as well increases with the number
of failing partners, since at some point the available liquidity reserves will be ex-

hausted. Vice versa, the probability of a liquidity-stressed firm to overcome the

shortage increases with the number of financially healthy business partners which

honor due obligations timely.

Implicit in our simple probabilistic contagion model (3) are symmetry assump-

tions. The first is related to the direction in which shocks are propagated. As just

described, a healthy firm can become distressed through shock propagation. On

the other hand it is also realistic that a stressed firm can make a turnaround due
to positive liquidity shocks form partners. 4 Less realistic is that business partner

relationships are symmetric in the sense of (1). Indeed, think of a small firm supply-

ing exclusively to a big automobile manufacturer: while low liquidity of the manu-

facturer can be disastrous for the supplier, low liquidity of the supplier has a less

severe impact on the manufacturer. These effects could be modeled in the context

of interacting particle systems on directed graphs.

Several assumptions that we made along the way can be substantially weakened at

the cost of added complexity. One is to generalize our narrow neighborhood defini-
tion (2) so as to allow for interaction of a given firm i with any other given firm j
according to the transition probability pði; jÞ of a random walk on Zd . We would

then substitute (3) with
4 In

same f

process
5 W

probab
cði; nÞ ¼
P

j pði; jÞnðjÞ if nðiÞ ¼ 0;P
j pði; jÞ½1� nðjÞ� if nðiÞ ¼ 1:

�

All the results we develop below go through at this level of generality.

2.2. Convergence to equilibrium

We are interested in the asymptotical behavior 5 of the Markov liquidity state
process gt as t ! 1 and the equilibrium distributions of firms’ liquidity state.

Throughout, we let l denote the initial distribution of g, which we may think of aris-

ing from general (macro-) economic conditions. We assume that l is translation-

invariant and denote by
q ¼ lfn : nðiÞ ¼ 1g ð4Þ
order to keep the analysis simple, we assume that the strength of the influence of its neighbors is the

or healthy and stressed firms. An example for a model with non-symmetric interaction is the contact

.

hen analyzing the time asymptotics of the process g we use the notion of weak convergence of

ility measures.
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the probability under l that an arbitrary firm i is liquidity stressed. In particular, the

translation-invariance of l implies that the firms in our economy are homogeneous

with respect to q. While q is invariant under the contagion dynamics, the economy

can change drastically on the macroscopic level. The structure of the equilibrium

distributions depends on the complexity of the business partner network.
For a simple connectivity structure with d ¼ 1; 2, the process g clusters: in the long

run t ! 1 the economy ends up in one of two possible extreme scenarios. Asymp-

totically, with probability q all firms are liquidity stressed, and with probability 1� q
all firms are stable. Let us suppose that initially q is high, so that the probability that

an individual firm is liquidity stressed is high. Then random clusters of liquidity-

stressed firms emerge with high probability, while clusters of stable firms emerge only

with low probability. The size of the clusters changes through random fluctuations,

but some of the clusters merge and form large growing clusters. In the long run the
entire economy is a single cluster of firms of the same type. Since q is large, the prob-

ability that all firms are finally liquidity stressed is high.

The limiting behavior of the Markov process g differs for higher dimensions

d > 2. Here in the long run the process g coexists, meaning that heterogeneity in

firms’ states will appear for q 2 ð0; 1Þ. Random clusters of firms of equal state appear

here only locally; they do not persist and do not grow in the same way we observed

with d ¼ 1; 2. The equilibrium distribution of gt for t ! 1 is given by the mixture
Z
½0;1�

mqQðdqÞ; ð5Þ
cf. Giesecke and Weber (2002). Here, mq is the extremal invariant measure of the

basic voter model in dimension d > 2 with parameter q 2 ½0; 1� (cf. Liggett, 1999),
and Q is the distribution of the empirical average of liquidity-stressed firms in the

whole economy:
lim
n!1

jKnj�1
X
i2Kn

nðiÞ ¼ �q; ð6Þ
where Kn ¼ ½�n; n�d . In general, �q is not deterministic, but random. The empirical
average of the number �q of firms in state 1 and its distribution Q are invariant under

the contagion dynamics. Nevertheless, interaction between firms strongly effects the

correlation between the states of different firms. For any finite number of firms, the

probability to find many firms in the same state is higher than in the case of inde-

pendent firms.
3. Portfolio losses

In this section we examine the fluctuation of aggregate losses on a portfolio of debt

contracts written by firms subject to the contagion processes described in the previous

section. We assume that inter-firm connections are complex (d > 2). Throughout,

we suppose that the economy is in a steady equilibrium state, in the sense that the
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distribution of firms’ interaction-based state is invariant. The steady state distribution

of the liquidity configuration will be denoted by
l ¼
Z
½0;1�

mqQðdqÞ: ð7Þ
We consider a financial institution holding a portfolio Kn ¼ ½�n; n�d of financial
positions contracted with the firms in the interaction-prone economy. The parameter

n 2 N determines the portfolio’s size, i.e. the number Kn ¼ ð2nþ 1Þd of firms in the

portfolio. The market value of a portfolio position is subject to the credit quality of

its issuer or counterparty. Such positions can include not only loans, bonds, or other

debt instruments, but also derivatives written by default-prone counterparties. Due

to adverse changes in a counterparty’s credit quality the market valuation of the cor-

responding positions can be severely reduced. Risk measurement aims at evaluating

the potential losses induced by credit quality deterioration of firms in portfolio Kn.
Denoting the losses on positions contracted with firm i 2 Kn by the random variable

UðiÞ, we are thus interested in the distribution of aggregated portfolio losses
Ln ¼
X
i2Kn

UðiÞ: ð8Þ
In Section 3.1 below we model the probabilistic properties of the position losses,

which then allows us in Sections 3.2 and 3.3 to study the distribution of aggregate

losses Ln in detail.

3.1. Position losses

The loss UðiÞ the financial institution incurs from positions contracted with firm

i 2 Kn will depend on the credit quality of the firm, i.e. its ability to generate the re-

quired cash flows in the future. In our model, this cash flow ability is not only deter-

mined by the firm’s liquidity state resulting from the interaction with its business

partners, but also by the state of the general macro-economy (the business environ-

ment) in which the firms operate. In this sense both ‘‘global’’ business cycle fluctua-

tions and ‘‘local’’ interaction-induced contagion processes corresponding to the
economy’s micro-firm structure affect credit losses. This is in fact an important con-

ceptual advancement over the existing Bernoulli mixture models (Frey and McNeil,

forthcoming), which have become a standard for credit risk measurement and man-

agement in financial institutions. The key assumption of Bernoulli mixture models is

that credit losses are conditionally independent given the macro-economic state.

Dependence between losses on firms’ positions arises through the dependence of

firms on the common macro-state variables. Here firms’ interdependence is related

to cyclical correlation effects only; effects stemming from direct firm interaction
are not captured. Our model, in contrast, captures both cyclical and contagion

effects.

For the specification of the probabilistic properties of the position losses UðiÞ we
note first that for the credit contagion process being in some tuned steady equilib-

rium state, we know the joint distribution (7) of firms’ interaction-induced liquidity
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state. The state of the general (macro-) economy prevailing in the steady state will

then be described by some random vector K 2 Rp with given distribution j. The vec-
tor K is common to all firms and captures the economy’s business environment. Ele-

ments of K may include indicators of the stage of the business cycle, commodity and

factor prices, inflation rates, or interest rates.
Now our key assumptions on the probabilistic structure of the UðiÞ are as follows.

Conditional on the macro-economic state K 2 Rp and the liquidity profile

n 2 f0; 1gZ
d

, losses are independent. The conditional loss distribution of a firm is de-

noted by Mk;x; it depends only on the economy-wide macro-economic state k and the

firm-specific liquidity state x. 6 Given k and x we denote the expected losses condi-

tional on these states by lxðkÞ :¼
R
uMk;xðduÞ, and assume that for every k 2 Rp the

inequality l0ðkÞ < l1ðkÞ holds.
All firms in the same liquidity state respond to systematic risk in the same way.

This homogeneity is common to most Bernoulli mixture models; for a notable excep-

tion see Pesaran et al. (2003). We could generalize to heterogeneous responses, at the

cost of added complexity. We do not pursue this here.
3.2. Distribution of portfolio losses

Individual position losses are not independent but coupled through both the

macro-economic factor and the interactive liquidity state. When analyzing portfolio

losses, it is important to respect the resulting dependence structure. The induced joint

distribution of the losses of all firms is a probability measure on RZd

þ . Due to direct

firm interaction this measure cannot be described as a mixture of product measures

as in the case of macro-economic dependence only. Instead, also the local depen-
dence of firms’ losses must be captured. Using non-standard techniques we will be

able to analyze the joint distribution of the losses which will be denoted by b. 7

The distribution b captures the probability of events specified in terms of individ-

ual losses for a collection of firms. For example, assume that i; j 2 Zd are two differ-

ent firms in our economy, and ai; aj are two positive real numbers. We define the

cylinder set A � RZd

þ by
6 For technical reasons, we assume that the mapping

Rp � f0; 1g ! M1ðRþÞ;
ðk; xÞ 7! Mk;x;

�

is measurable. Here, M1ðRþÞ denotes the space of Borel probability measures on the positive real line with

the weak topology. Moreover, we will suppose that all measures Mk;x with ðk; xÞ 2 Rp � f0; 1g are sup-

ported in a common interval ½0; c� for some c > 0.
7 Recall that j is the distribution of macro-economic factors and that l given by (7) governs firms’

equilibrium liquidity configuration. In terms of mixtures of the position loss distributions Mk;x the firms’

joint loss distribution b can be written as

bðdwÞ ¼
Z Z

ð�i2Zd Mk;nðiÞÞðdwÞlðdnÞjðdkÞ; w 2 RZd

þ :
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A ¼ fw 2 RZd

þ : wi 6 ai;wj 6 ajg:
Then the probability of a loss on a position contracted with i of less than ai occurring
together with a loss on a position contracted with j of less than aj is given by
ProbðUðiÞ6 ai;UðjÞ6 ajÞ ¼ bðAÞ:
We are interested in the distribution of aggregated losses Ln under the measure b.
For large n, we will approximate both the average loss in the portfolio Kn and the

fluctuations of the losses around their averages. Mathematically, approximate aver-

age losses can be characterized by a law of large numbers. Fluctuations around aver-

ages are approximated using a non-classical central limit theorem.
Average losses. We begin with the investigation of average losses. If we normalize

portfolio losses Ln by the number of positions jKnj in the portfolio, we obtain con-

vergence to a random variable as n ! 1. That is, by the law of large numbers we

obtain convergence to a random variable b-almost surely,
lim
n!1

Ln

jKnj
¼ �q � l1ðKÞ þ ð1� �qÞ � l0ðKÞ: ð9Þ
The limit on the right hand side of (9) is well-understood. K denotes the macro-

economic factor, �q the average number of firms in the whole economy in state 1. The

random variables K and �q are independent and distributed according to j and Q,
respectively.

Conditional on K ¼ k and �q ¼ q for some constants k 2 Rp and q 2 ½0; 1�, average
losses are a convex combination of the conditional expected losses lxðkÞ given the

macro-economic factor k and the liquidity state x 2 f0; 1g. The weights in (9) are

the proportions q and 1� q of firms in the economy in liquidity state 1 or 0. It ap-

pears that in the limit all loss fluctuations due to the randomness in the conditional

position losses Mk;x are averaged out; only their expectations lxðkÞ given the interac-

tion state x 2 f0; 1g and the macro-factor k 2 Rp enter average losses.

Fluctuation of losses. In order to get a more detailed picture about the fluctuation
of losses and their relation to the state of the economy and the interaction between

firms, we will now provide a Gaussian approximation of the distribution of aggre-

gate losses using a non-classical central limit theorem. To this end we introduce

the functions
~l : Rp ! R2
þ;

k 7! ðl0ðkÞ; l1ðkÞÞ:

�

The first component of ~l is the conditional expected loss of a single firm, if it is in

liquidity state 0 and the macro-factor equals k; the second component is the expected

loss conditional on the liquidity state 1 and macro-factor k. Hence, we will call ~l the
conditional expected loss vector.

Letting U denote the standard normal distribution function, we will show in The-

orem 3.1 below that the loss distribution can be approximated using the function
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wd;aðr; q; l0; l1Þ ¼ U
r � mðq; l0; l1Þ � a

ðl1 � l0Þrðd; qÞrðdþ2Þ=2d

� �
; a > 0; r > 0: ð10Þ
Here
mðq; l0; l1Þ ¼ q � l1 þ ð1� qÞ � l0 ð11Þ

and r2 ¼ r2ðd; qÞ is a constant given in Appendix A. The argument r > 0 denotes the

number of firms in the portfolio.

We are now ready to approximate the distribution of aggregate losses Ln for large

portfolios. This approximation is the key to the measurement and management of

the portfolio’s aggregated credit loss risk. Analogous large portfolio approximations

have been proven extremely useful in the context of Bernoulli mixture models, see for

example Vasicek (1987), Frey and McNeil (2002), Lucas et al. (2001), or Schloegl

(2002). Our approximation result covers not only the cyclical effects the Bernoulli
mixture models are concerned with, but also direct contagion effects. The proof is

given in Appendix A.

Theorem 3.1. Let d > 2, and assume that Qðf0gÞ ¼ Qðf1gÞ ¼ 0. For a portfolio of size
r > 0 and a lower bound for the losses of a > 0 we define the function
Wd;aðrÞ ¼
Z Z

wd;aðr; q; l0; l1ÞQðdqÞF ðdðl0; l1ÞÞ; ð12Þ
where F ¼ j � ~l�1 is the law of the conditional expected loss vector ~l under the macro-
factor distribution j. For a large portfolio, the distribution of losses Ln can be uniformly
approximated:
sup
a2R

jbðLn P aÞ �Wd;aðjKnjÞj6 �n;
where the error �n ! 0 as n ! 1.

By definition, bðLn P aÞ is the probability of a loss larger than a > 0 in the port-

folio containing jKnj firms. By Theorem 3.1, the function Wd;aðjKnjÞ approximates

this probability uniformly in the loss level a. Heuristically, we may interpolate be-

tween sizes of portfolios and replace jKnj by some real number r > 0. Then we will
call Wd ;aðrÞ the approximate probability for a loss larger than a > 0 on a portfolio

of size r > 0.

Let us now analyze the function a 7!Wd;aðrÞ. The approximate loss probability has

the following properties which are apparent from (10) and (12):

• The approximate loss probability is a mixture of Gaussian probabilities.

• The individual Gaussian probabilities do not have variance of order r1=2 as in the

case of r independent firms. Instead, the order of the variance is larger and equal
to rðdþ2Þ=2d . This is due to the interaction of firms.

• The exponent dþ2
2d decreases, if d increases, and converges to 1

2
when d ! 1.

• The mixture is governed by the distribution Q of the average number of firms with

low liquidity and the distribution F of the conditional expected loss vector.
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• Randomness in the conditional position losses Mk;x is averaged out; only the con-

ditional expected loss vector ~l matters.

Since the individual Gaussian probabilities have a variance of a larger order in r
than in the standard case, the risk of large losses is increased. For small d this effect
can actually be quite substantial. In the next section we will investigate how its

strength depends on the properties of the macro-fluctuations. As a mixture of Gauss-

ian distributions the approximate loss distribution may have a fat-tailed, non-Gauss-

ian shape. This will be caused by fluctuations due to the distributions Q and j.
3.3. Contagion versus cyclical correlation

The shape of the approximate loss distribution depends on the size of the conta-

gion parameter d and on the mixing distributions Q and F . Contagion induces fluc-

tuations of the losses in large portfolios around their random means. The means are

determined by the macro-economic factor K and the average number of liquidity-
stressed firms �q. In this section we will investigate how the approximate loss distri-

bution is influenced by both interaction and macro-economic fluctuations.

Macro-economic uncertainty is described by the distribution j. A priori it is not

clear how different components of this ‘‘risk’’ affect the loss distribution. In order to

identify the relevant (macro-economic) loss drivers, we re-parameterize the model.

We introduce the variables m, D, q where
m ¼ q � l1 þ ð1� qÞ � l0; ð13Þ
D ¼ l1 � l0: ð14Þ
The variable m describes the average loss in the whole economy which is almost
surely defined by the limit
lim
n!1

Ln

jKnj
¼ m: ð15Þ
D is given by the difference between the expected losses l1ðkÞ and l0ðkÞ, and q equals

the proportion of liquidity-stressed firms in the economy. These quantities describe

different aspects of the systematic risk in relation to losses. We will investigate the

response of the distribution of aggregated losses to these components.

The distribution j of the macro-economic factor and the distribution Q of the

average liquidity state induce a joint distribution of the triple ðm;D; qÞ. For simplic-

ity, we assume that Q is a Dirac measure concentrated on 1
2
, meaning that always 50%

of all firms in the economy are liquidity stressed. We remark that the influence of the

distribution Q on the contagion effect resembles qualitatively the implications in-

duced by the distribution of m which we will discuss in detail below. We denote

the joint image distribution of ðm;DÞ by vðdm; dDÞ. From (12) we obtain the follow-

ing result.
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Corollary 3.2. Under the simplifying assumption Q ¼ d1=2, the approximate probability
of a loss larger than a 2 Rþ for a portfolio of size r > 0 is given in terms of the new
parameters by the expression
Table

Streng

Dist

Con

The qu

system

the bu
Wd;aðrÞ ¼
Z

U
r � m� a

D � rðd; qÞ �
ffiffi
r

p
� r1=d

� �
vðdm; dDÞ: ð16Þ
Qualitative implications of Corollary 3.2 are summarized in Table 1. These results

will be derived from several case studies in the remaining part of this section. The

effect of contagion on the shape of the approximate loss distribution mainly depends

on the contagion parameter d and on the uncertainty about average losses in the

whole economy m.
The quantity d measures the degree of complexity of the business partner net-

work. Specifically, with increasing complexity d the contagion effect decreases and
the probability of the large losses becomes smaller. This relation is consistent with

the micro-economic bank contagion model of Allen and Gale (2000), for example;

it was recently empirically confirmed by Upper and Worms (2002). Allen and Gale

(2000) considered an interbank market structure which can be complete (any bank is

connected to any other bank through deposits) and incomplete (a given bank is only

connected with a limited number of other banks, but not all of them). They found

that contagion was not an issue in the complete market structure. With the incom-

plete structure the likelihood of contagion can be substantial, and depends on how
‘‘well connected’’ banks are. This is consistent with our model, which is of Allen and

Gale’s (2000) incomplete structure type.

The distribution of average losses in the economy m is the relevant statistic that

captures the qualitative influence of macro-economic fluctuations on the portfolio

losses. The contagion effect becomes relatively large, if uncertainty in m is reduced.

If the fluctuations of average losses m are large due to high macro-economic uncer-

tainty, the contagion effect is less significant.

Case studies. To derive the qualitative implications of Corollary 3.2, we consider
several representative case studies. We investigate the contagion effect for different

specifications of the measure v, namely the three cases:

(a) D fixed, m random;

(b) D random, m fixed; and

(c) D, m both random.
1

th of the contagion effect

Contagion effect

Large Small

ribution of m Concentrated Spread out – large uncertainty

nectedness d Low connectedness – small d Strong connectedness – large d

antity m describes the average loss per firm in the whole economy. Its distribution captures the

atic risk related to the macro-economic factor. The quantity d measures the degree of complexity in

siness partner network.
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For each of the choices for the distribution of v we will compare the contagion effect

for degrees of connectedness of the economy equal to d ¼ 3; 4; 5. If Q ¼ d1=2, the
uncertainty about m and D is completely governed by the distribution of the macro-

economic factor. Hence, the distributions of both m and D capture the systematic

risk in the economy.
We focus first on the case (a) in which m is the only random parameter. The con-

tagion effect depends crucially on the shape of the distribution of m. By assumption

(a) the distribution v equals a product measure. Letting e.g. D ¼ 0:5, v is thus given

by
Fig. 2

v ¼ d0:
vðdm; dDÞ ¼ vðdmÞ � d0:5ðdDÞ: ð17Þ
The contagion effect depends on the uncertainty about the parameter m which is

modeled by the distribution v. We investigate three cases:

(1) No uncertainty about m: The distribution of m is close to a Dirac measure.

(2) Different regimes for m: Average losses m can only take values in a few different

small parameter regions, but the correct value is unknown. That is, the distribu-
tion of m is close to a mixture of Dirac measures.

(3) Large uncertainty about m: The distribution of m is close to a uniform distribu-

tion on an interval of considerable size.

In Figs. 2–4, we plot the approximate loss densities for the interaction cases

d ¼ 3; 4; 5 for a portfolio of size r ¼ 10000 choosing
v ¼ d0:5; v ¼ 1

5
� ðd0:3 þ d0:4 þ � � � þ d0:7Þ; v ¼ unif ½0:3; 0:7�;
respectively. These choices are caricatures of the three cases (1)–(3) above.
3500 4000 4500 5000 5500 6000 6500
Loss Amount

0
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0.004
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. Approximate loss density, varying the degree of connectedness d (r ¼ 10000, q ¼ 0:5, D ¼ 0:5, and

5).
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Fig. 3. Approximate loss density, varying the degree of connectedness d (r ¼ 10000, q ¼ 0:5, D ¼ 0:5, and

v ¼ 1
5
ðd0:3 þ d0:4 þ � � � þ d0:7Þ).
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For v ¼ d0:5 (Fig. 2) portfolio losses fluctuate around their mean r � m ¼ 5000. For
a low degree of connectedness d losses fluctuate more excessively when compared

with higher values of d. This is due to the variance being of order rðdþ2Þ=2d . The dif-

ference of the contagion effect for varying degrees of interaction d is quite significant

in the case in which the support of v is small. Observe that in terms of loss proba-

bilities the relative size of the contagion effect equals the difference of the areas below

the density curves. 8

In Fig. 3 we illustrate the contagion effect for v being a convex combination of

Dirac measures. In this case strong interaction of firms corresponding to low values
of d induces additional fluctuations around the random means r � q ¼
3000; 4000; . . . ; 7000 – leading to a smoother loss density with less prominent peaks.

At the same time probabilities of large losses slightly increase when d decreases, but

this effect is less significant than in Fig. 2. Observe that the ordinate axis in Fig. 3 is

differently scaled than in Fig. 2. Hence, probabilities of large losses change less when

varying d – the size of the contagion effect is considerably smaller.

The approximate loss densities for v ¼ unif ½0:3; 0:7� are shown in Fig. 4. For v
having large support, the increase of probabilities of large losses due to contagion
is not very strong, and the approximate loss distributions do not differ much for var-

ious degrees of interaction. We emphasize again that the ordinate axis in Fig. 4 is

differently scaled than in Figs. 2 and 3. The difference of the areas below the density

curves is smallest for v being uniform.
8 To be more precise: for a given level a > 0 the probability of a loss larger than a on a portfolio is

influenced by the contagion parameter d. Let us denote by fd the approximate loss density for given d.
Then the approximate probability of a loss larger than a is given by the area under the density curve,

namely by
R1
a fdðxÞdx. A quantitative measure for the relative size of contagion for different values of d

and a fixed level a > 0 is thus given by the difference between the areas to the right of a below the density

curves. This quantity is simply equal to the difference of the probabilities of approximate losses larger than

a for different values of d.
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Fig. 4. Approximate loss density, varying the degree of connectedness d (r ¼ 10000, q ¼ 0:5, D ¼ 0:5, and

v ¼ unif½0:3; 0:7�).
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The properties of the distribution v influence the size of the contagion effect sig-

nificantly. Let us now look at case (b) investigating the relationship between D and

the shape of the loss distribution. It is apparent from (16) that D is a factor in the

denominator of the argument of the cumulative normal distribution function. Hence,

multiplying D by a constant factor is equivalent to rescaling the difference of the
losses from the mean r � m by a constant factor. For both low and high degree of

interaction the fluctuations around r � m are multiplied by the same factor. If D is

random, loss distributions are simply superpositions of normal variables with mean

r � m. Nevertheless, contagion effects are qualitatively the same for non-random and

random D; i.e. for low degrees of connectedness fluctuations around the mean r � m
are more excessive than for high degrees of connectedness.

If m and D are both random as in case (c), the size of the contagion effect depends

on the marginal distribution of m. If the marginal distribution of m is close to a uni-
form distribution, the contagion effect is small. Conversely, if the marginal distribu-

tion of m is dominated by peaks, contagion smoothes the loss distribution. If the

marginal distribution of m has small support, the contagion effect is strongest. While

the contagion effect is determined by the marginal distribution of m, the actual shape
of the loss distribution for given contagion parameter d is governed by the joint dis-

tribution of m and D. Observe finally that for given d approximate loss distributions

can be very similar for different specifications of the joint distribution of m and D;
nevertheless, if the marginal distributions of m differ considerably, the size of the in-
duced contagion effects might be quite different when varying d.
4. Bernoulli mixture representation

The class of existing Bernoulli mixture models has proven to be useful in practice

to model loss distributions in the context of cyclical correlations between losses on

individual portfolio positions. In this section we provide a Bernoulli mixture type
specification of our model, and thereby enlarge the existing Bernoulli mixture class
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with a model accommodating both cyclical and contagion effects. We will demon-

strate how the joint influence of cyclical fluctuations and contagion can be analyzed

in the context of Bernoulli mixture models using the methods discussed in the last

section.

Bernoulli mixture models. The key to the Bernoulli mixture type representation lies
in a particular specification of the conditional distribution Mk;x of position losses

UðiÞ for a firm i 2 Kn in interaction-based liquidity state x 2 f0; 1g when the state

of the macro-economy is k 2 Rd . We put
9 As

the sam

firms.
Mk;x ¼
1 with probability PxðkÞ;
0 with probability 1� PxðkÞ;

�
ð18Þ
so that, conditionally on ðk; nÞ, the position loss is a Bernoulli random variable with

parameter PxðkÞ, and we have for the conditional expected loss vector
~lðkÞ ¼ ðP0ðkÞ; P1ðkÞÞ. The probability PxðkÞ is supposed to depend on x and k in a

measurable way. We can interpret PxðkÞ as the probability of default for a firm in

interaction state x when the economy is in state k, which results in a loss of one unit
of account. 9

Given the generalized Bernoulli mixture representation of our model, we can take

advantage of the existing estimation models for the mixing distribution. Some of

these models are outlined in the examples below. Note that in contrast to the stan-

dard models, here the default probability does depend on the macro-factor and the

interaction-based liquidity state x.

Example 4.1. (Bernoulli regression model). Let F : R ! ½0; 1� be some strictly
increasing continuous function, and let a1, a2, a3 be regression parameters with

a2 > 0. We let K 2 R be one-dimensional with given distribution and put
PxðKÞ ¼ F ða1K þ a2xþ a3Þ:

For different choices of the regression relationship we refer to Joe (1997). The one-

factor regression model may not be flexible enough; we can generalize to higher

dimensions of the macro-factor vector K. In this case, a1 must simply be replaced
by an appropriate parameter vector. Specific models of such type are provided by

the following examples. We start with a choice corresponding to the CreditRisk+

model structure.

Example 4.2. (Gamma model). Let a ¼ ða1; . . . ; apÞ 2 Rp
þ, and c1; c2 > 0 be factor

weights. Let K 2 Rp be a p-dimensional iid-Gamma vector and put
PxðKÞ ¼ 1� exp

 
�
Xp
i¼1

aiKi � c1x� c2

!
:

discussed in Section 3.1, with respect to the position losses all firms respond to systematic risk in

e way. Hence, in the context of Bernoulli mixture models the factor loadings are the same for all

This is consistent with the majority of Bernoulli mixture models proposed in the literature.
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Example 4.3. (Probit normal model). Let a ¼ ða1; . . . ; apÞ, c1 > 0, and c2 be fac-

tor weights. Let K 2 Rp be a p-dimensional normally distributed random vector and

put
PxðKÞ ¼ U

 
�
Xp
i¼1

aiKi þ c1xþ c2

!
:

This model parallels the choices of KMV and CreditMetrics. The assumption of

normality of the factors is not essential; other distributions such as the t-distribution
or more general mean–variance mixtures are possible, see Frey and McNeil (forth-
coming). The following specification is similar in spirit to the CreditPortfolioView

model.

Example 4.4. (Logit normal model). Let a ¼ ða1; . . . ; apÞ, c1 > 0, and c2 be factor

weights. Let K 2 Rp be a p-dimensional normally distributed random vector and put
PxðKÞ ¼ 1

 
þ exp

 
�
Xp
i¼1

aiKi þ c1x� c2

!!�1

:

In the context of a specific example, we now investigate the approximate loss dis-
tribution (12) for the specification (18) of our general model under various assump-

tions on the dependence between firms. This allows us to evaluate the effects of

cyclical default correlation and credit contagion on the fluctuation of aggregate

losses in the context of the Bernoulli mixture model class. We demonstrate

that the methods introduced in the previous section can successfully be applied

to generalized Bernoulli mixture models. The calibration of the models in

practice is, of course, an empirical issue; an estimation strategy will be provided in

Section 5.

A case study. As in Section 3.3, we assume for simplicity that the average propor-

tion (6) of firms in liquidity state 1 is equal to the constant q, i.e. Q ¼ dp. In order to

demonstrate how the joint influence of cyclical correlations and interaction can be

analyzed using the results of Section 3.3, we choose as an example a one-factor ver-

sion of the Probit normal model of Example 4.3 for the default probability

PxðKÞ ¼ lxðKÞ, which parallels the models of KMV and CreditMetrics:
PxðkÞ ¼ Uð�ak þ c1x� c2Þ: ð19Þ
We set a ¼ 1, c1 ¼ 2, and c2 ¼ 3, and consider different choices for the distribution of

the macro-economic factor K.
Under our current assumptions, for a portfolio of size r > 0 the function (12) uni-

formly approximating the probability of aggregate losses being larger than a > 0 be-

comes
Wd;aðrÞ ¼
Z

U

ffiffi
r

p
mðq; l0ðkÞ; l1ðkÞÞ � a=

ffiffi
r

p

ðl1ðkÞ � l0ðkÞÞrðd; qÞr1=d

� �
jðdkÞ; ð20Þ
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where lxðkÞ, m, and r are given by (19), (11) and (A.1), respectively. For comparison,

we shall also study the case where the firms do not interact with their business

partners, meaning that contagion effects are not present. In this situation we replace

the extremal invariant distribution mp of firms’ liquidity state in (5) with a product pq

of Bernoulli measures with density q. For the loss approximation we then obtain
Fig. 5

meter
Wp
d;aðrÞ ¼

Z
U

ffiffi
r

p
mðq; l0ðkÞ; l1ðkÞÞ � a=

ffiffi
r

p

~rðk;qÞ

 !
jðdkÞ; ð21Þ
with limiting variance ~r2ðk; qÞ given by
~r2ðk; qÞ ¼ ð1� qÞ � varðMk;0Þ þ q � varðMk;1Þ þ qð1� qÞ � ðl1ðkÞ � l0ðkÞÞ2;

where, in the current context, varðMk;xÞ ¼ PxðkÞð1� PxðkÞÞ.

We now consider a portfolio of size r ¼ 10000, where the probability q of an indi-

vidual firm to be liquidity stressed is equal to 50%. As summarized in Table 1, for

fixed complexity parameter d the strength of the contagion effect will be governed

by the properties of the distribution of m which depends on the macro-economic fac-

tor K. The variable m describes the average loss per firm in the whole economy which

depends on the macro-economic state of the economy according to the Bernoulli

mixture specification (18). We investigate low and large variance of the macro-factor
which is an important determinant for the relevant properties of the distribution of

m. We also compare different means of K.
In Figs. 5–7 we plot the approximate loss distribution for different specifications

of the distribution of the macro-factor K. That is, we assume K to be distributed

according to

(d) a Dirac measure placing mass one on the value 0 (Fig. 5);

(e) a Gaussian distribution with mean 0 and variance 1 (Fig. 6); and
(f) a Gaussian distribution with mean )4 and variance 0.05 (Fig. 7).
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. Approximate loss distribution in the one-factor Probit normal model (19) when the macro-para-

K is certain and set equal to zero, for d ¼ 3 and the independence case (r ¼ 10000 and q ¼ 0:5).
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Fig. 6. Approximate loss distribution in the one-factor Probit normal model (19) when the macro-para-

meter K is standard normally distributed, for d ¼ 3 and the independence case (r ¼ 10000 and q ¼ 0:5).
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Fig. 7. Approximate loss distribution in the one-factor Probit normal model (19) when the macro-para-

meter K is normally distributed with mean )4 and variance 0.05, for d ¼ 3 and the independence case

(r ¼ 10000 and q ¼ 0:5).
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The qualitative results derived below are robust with respect to small perturbations

of the parameters; specific choices are necessary for the numerical calculations,

though.

In the cases (d) and (f) the variance of K is very small. This means that there is not

a high degree of uncertainty about the state of the macro-economy. From (19), the

difference between (d) and (f) is, however, that the latter economy is in worse state

(positive values of K describe an expanding economy, while negative ones are

describing a downturn). In case (e) the economy is on average between expansion
and recession as in (d), but with a high degree of uncertainty (high fluctuation

possible).

In the figures we compare the case where firms are independent (corresponding to

(21)), and where firms do interact in an economy with degree of complexity d ¼ 3
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Fig. 8. Upper half: Expected loss difference DðkÞ and average loss in the whole economy mðkÞ as functions
of the macro-parameter k. Lower half: Densities of Gaussian variables with parameters ð�4; 0:05Þ and

ð0; 1Þ.
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(corresponding to (12) and (20)). In contrast to Figs. 2–4 we do not plot densities,

but excess probabilities; thus, the size of the contagion effect is measured by the dif-

ference between the two functions in Figs. 5–7, respectively.

In cases (d) and (f) a considerable contagion effect is present with higher proba-

bilities for large losses for contagion-prone than for independent firms (Figs. 5

and 7). In case (e) the difference between the loss probabilities has almost disap-

peared and no significant contagion effect is visible (Fig. 6).
The different size of the contagion effects can easily be understood if we recall our

discussion from Section 3.3 (see Table 1). The contagion effect is governed by the

marginal distribution of average losses m, which can be derived from Fig. 8. In

the upper half of Fig. 8 the variables m and D are shown as a function of k for

the one-factor Probit normal model (19) and the given parameter values. The lower

half displays the densities of the Gaussian distributions of factor K in the case (e) and

(f), respectively.

Due to the low variance of the Gaussian factor distribution in case (f) K takes val-
ues close to its expectation with very high probability. Close to the expected value )4
of the factor K, the slope of k 7!mðkÞ is not very large. Hence, the distribution of m is

close to a Dirac measure. Consistent with our discussion in Section 3.3 we observe in

Fig. 7 a significant contagion effect. Fig. 8 shows that for low values of k the variable
m takes values close to one corresponding to a bad macro-environment. Conversely,

in case (d) K is deterministic and equal to 0 giving rise to a low deterministic value

for m which corresponds to a good macro-economic environment. As expected, com-

parison of Figs. 7 and 5 shows considerably higher losses in case (f) than in case (d).
Let us now investigate the cases (d) and (e) in which the macro-economic factor K

has the same expectation 0 but different variance. If K is deterministic, m is determin-

istic. By our discussion from Section 3.3 we expect a visible contagion effect as con-

firmed by Fig. 5. In contrast, if the distribution of K is a centered Gaussian with large

variance, Fig. 8 shows that the distribution of m is atomless placing considerable
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mass on an interval of significant size. This property of the distribution of m corre-

sponds to a small contagion effect (Fig. 6) as we have already noticed in the case of a

uniform distribution of m in our discussion in Section 3.3 (see also Fig. 4).

From an economic point of view the bottom line is as follows. The higher the

uncertainty about the state of the economy K, the less influence has contagion on
the loss distribution. In cases (d) and (f) where the macro-state is (almost) certain,

contagion processes lead to considerable fluctuations of losses around their means.

In case (e) where the macro-state is quite uncertain and may itself be quite fluctuat-

ing, contagion has almost no effects on the loss distribution, which in this case is

dominated by the macro-uncertainty. In other words, cyclical effects are of first
order, while contagion is of second order with respect to the fluctuations of losses.

This is consistent with the empirical findings, in particular in the bank contagion lit-

erature, discussed in Section 1. Nevertheless, the second-order nature of contagion
effects does not imply that we should neglect them in the measurement of aggregated

credit risks. Contagion does have a quite important effect on the loss distribution, if

uncertainty about the macro-economic environment is low. Indeed, if the macro-

environment is bad, then contagion processes may cause a significantly higher risk

of large losses (see Fig. 7).
5. On estimating the model

In the last section we compared properties of the loss distribution for different

model specifications and degrees of connectedness of the economy. In this section

we outline the estimation of the model from historical data.

We suppose we are given a sufficiently large set of historical default and loss data.

Possible sources include the default and recovery data frequently published by the

public credit rating agencies, such as Moody’s or Standard & Poor’s, as well as data

collected internally in financial institutions on proprietary portfolio positions. In
a first step we discriminate the entities in the data in ‘‘liquidity-stressed’’ and

‘‘liquidity-stable’’ firms, which correspond to the states x 2 f0; 1g. For this we can

use, for example, the external or internal credit rating of a firm, or balance-sheet

and cash flow data if available.

The next step consists of choosing the conditional distribution Mk;x of position

losses on a firm in liquidity state x 2 f0; 1g when the state of the economy equals

k 2 Rp. Because of its practical relevance, we will consider the generalized Bernoulli

mixture specification (18), i.e. we put
Mk;x ¼
1 with probability PxðkÞ;
0 with probability 1� PxðkÞ:

�
ð22Þ
PxðkÞ can be interpreted as the probability of default for a firm in liquidity state x
when the economy is in state k. Following a parametric estimation strategy, we

will fix some parametric model for PxðkÞ together with a distribution for the
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macro-factors k. Standard industry-examples as discussed in Section 4 include the

Gamma model, the Probit model, and the Logit model, together with the appropri-

ate factor distribution j.
Note that in contrast to standard models which neglect contagion, we separated

the data into two pools depending on the liquidity state of the individual firms. In
particular, from this the empirical distribution of the default probabilities condi-

tional on the state x 2 f0; 1g of the firms can be obtained. Hence, we can estimate

the parametric models P0ðKÞ and P1ðKÞ, respectively. In contrast to standard indus-

try practice, in a contagion-based approach P0ðKÞ and P1ðKÞ must be estimated

under the restriction that in both cases the same parameters are chosen.

In a next step, we estimate the distribution Q of the average number of liquidity-

stressed firms q. For each point in time, the average number of liquidity-stressed

firms can be calculated from the data, allowing us to estimate Q.
Taking the parameter d as given, we are now in a position to calculate approxi-

mate loss distributions for large portfolios from (12). With the generalized Bernoulli

specification, we have in fact that the approximate probability of aggregate losses

exceeding a > 0 for a portfolio of size r 2 Rþ is given by
Wd;aðrÞ ¼
Z Z

U

ffiffi
r

p
ðqP1ðkÞ þ ð1� qÞP0ðkÞÞ � a=

ffiffi
r

p

ðP1ðkÞ � P0ðkÞÞrðd; qÞr1=d

� �
QðdqÞjðdkÞ; ð23Þ
where rðd; qÞ is given by (A.1). Heuristically, by interpolation between various de-

grees of interaction we may and will actually assume that d is not necessarily a

natural number, but can take on any real value larger than 2.

The parameter d stands for the degree of complexity of the business partner net-

work; as discussed in Section 3 it governs the size of the contagion effect present in

the economy. Given a homogeneous portfolio of firms, we need to determine its de-
gree of connectedness d if we wish to calculate its loss distribution. To do so, we

introduce contagion indicators and contagion rating classes C ¼ fc1; . . . ; cmg. Con-
tagion indicators can for example be the number of business partner relations or

the number of trade credit relationships an individual firm possesses on average.

We will assume that we can assign a contagion rating to a homogeneous portfolio

via the indicators.

With every contagion rating class c 2 C we will associate a contagion parameter d
using our historical data. For a contagion class c 2 C, the historical loss distribution
can be estimated. Comparison with the loss distribution generated by the model for

various degrees of connectedness d allows us to estimate the contagion parameter d
related to any rating class in C. We emphasize that in the choice of d we can allow for

real numbers larger than 2.

Finally, suppose we have estimated the model and we are interested in predicting

the loss distribution for some given actual credit portfolio. The contagion indicators

can be used to obtain the contagion rating of the portfolio, which in turn corre-

sponds to a contagion parameter d that was obtained by our calibration procedure.
By (23), we can now calculate the approximate loss distribution of the portfolio.
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6. Conclusion

A thorough understanding of aggregate credit loss risk associated with large port-

folios of financial positions is of critical importance for the management of financial

institutions and the regulatory authorities supervising financial markets. In aggregat-
ing individual risk exposures the dependence between losses on positions is a signif-

icant factor. In that respect the standard Bernoulli mixture models widely applied in

the financial industry focus exclusively on cyclical correlations between firms’ posi-

tions, which are due to the dependence of firms on the common macro-environment.

Because of its ignorance of default contagion processes such an approach might

underestimate aggregate loss risks. In response to that, in this paper we model the

local interaction of firms with their business partners and the associated contagion

processes, in addition to cyclical correlation effects. We explicitly approximate the
distribution of aggregate credit losses on large financial portfolios and investigate

the relative strength of cyclical correlations and contagion. When macro-economic

quantities are not volatile, the approximate loss distribution is Gaussian with vari-

ance of larger order in the number of positions than in the case of independent firms.

If the macro-economic factors are highly uncertain, the resulting loss distribution

will typically not be normal and may possess fat tails.

With the loss distribution at hand we are able to quantify the relation between the

variability of global (macro-) economic fundamentals, strength of local interaction
between firms, and the fluctuation of portfolio losses, i.e. the degree of aggregated

credit loss risk. If the volatility of macro-economic factors is large, portfolio loss dis-

tributions are mainly governed by the distribution of fundamentals. When the main

source of risk is reduced and macro-economic uncertainty is small, contagion can

have a significant effect on portfolio losses by increasing the probability of large

losses. 10 As recently confirmed by empirical studies, the strength of the conta-

gion-induced loss variability and hence the probability of large losses depends on

the degree of complexity of the business partner network, i.e. the degree of connect-
edness between firms in the economy. The more complex the economy and the den-

ser the business partner network, the lower is the contagion-induced additional risk

of large losses.

For regulatory authorities our results have the following implications. First, credit

contagion phenomena cause additional loss risks, which are not identified by the stan-

dard industry models. In particular, conditional on a given macro-economic scenario,

this additional risk can be significant. The potential underestimation of total credit

loss risk can lead to capital provisions which may prove to be insufficient to buffer
actual losses. We identified when such issues become important. Second, the effects

of credit contagion are less severe in an economy in which firms operate within a com-

plexly structured business partner network. Regulatory policy supporting complexity
10 Nevertheless, contagion effects are broadly modest if compared to systematic risk. The contagion

effect is only relatively large, when the main source of risk, namely the systematic uncertainty, is small. We

are grateful to an anonymous referee for pointing this out.
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and diversity in business relations among firms thus helps to mitigate adverse credit

contagion effects and reduce the degree of systemic risk in the financial market.
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Appendix A. Normal approximation

The constant r2 ¼ r2ðd; qÞ is given by
r2 ¼ qð1� qÞ � cd � d
2dþ3pd=2

� C d � 2

2

� �
�
Z
½�1;1�d

Z
½�1;1�d

1

kx� ykd�2
2

dxdy; ðA:1Þ
where C is the Gamma-function and c ¼ cd is given by
1

c
¼ ð2pÞ�d

Z
ð�p;pÞd

1

 
� 1

d

Xd
m¼1

cos xm

!�1

dx:
Numerical values of cd can be found in Kondo and Hara (1987) for various d.

Proof of Theorem 3.1. Assume first that Q ¼ dp and j ¼ dk for q 2 ð0; 1Þ and k 2 Rþ.

In this case, the approximation reduces to the case of Theorem 4.4. of Giesecke and

Weber (2002), and we get that
sup
a2R

bðLn

��� P aÞ �Wd;aðjKnj; q;~lðkÞÞ
���6 �n; ðA:2Þ
where �n ! 0 as n ! 1.

For given k and q, the distribution of
jKnj�
dþ2
2d ðLn � jKnj � mðq; kÞÞ
under the measure
Z
ð�i2ZdMk;nðiÞÞðdwÞmqðdnÞ; w 2 RZd

þ ;
will be denoted by 1nq;k. We define the quantity
dnq;k :¼ sup
n0 P n

sup
z2R

1n
0

q;kð½z;1ÞÞ
���� � U

�
� z
ðl1ðkÞ � l0ðkÞÞ � rðqÞ

�����;

where U is the Gaussian distribution function.

Inequality (A.2) implies that dnq;k converges to 0 for all q 2 ð0; 1Þ and k 2 Rp as

n ! 1. Observe that ðq; kÞ 7! dnq;k is measurable. For � > 0 we can therefore define

measurable sets
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An
� ¼ fðq; nÞ 2 ð0; 1Þ � Rp : dnq;k < �g:
Then An
� � Anþ1

� , and ðQ� jÞðAn
� Þ % 1 as n ! 1. Choose n0 large enough such that
ðQ� jÞðAn0
� ÞP 1� �:
Let ðq; kÞ 7! zðq; kÞ be a measurable mapping. Then for all nP n0 we get
Z
1nq;kð½zðq; kÞ;1ÞÞ
����� � U

zðq; kÞ
ðl1ðkÞ � l0ðkÞÞrðqÞ

� ��
QðdqÞjðdkÞ

����
6 2ð1� ðQ� jÞðAn

� ÞÞ þ sup
ðq;kÞ2An

�

sup
z02R

1nq;kð½z0;1ÞÞ
���� � U

z0

ðl1ðkÞ � l0ðkÞÞrðqÞ

� �����
6 3�:
Let a 2 R be arbitrary, and let nP n0. We can choose
zðq; kÞ ¼ jKnj�
dþ2
2d ða� jKnjmðq; kÞÞ:
It follows that for any a 2 R and nP n0 the following inequality holds:
Z Z
mqðLn

���� P aÞQðdqÞjðdkÞ

�
Z Z

U
jKnj1=2mðq; kÞ � jKnj�1=2a

rðqÞjKnj1=d

 !
QðdqÞjðdkÞ

�����6 3�:
This completes the proof. h
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