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Abstract

In many countries insurance premiums are subject to an insurance premium tax that
replaces the common value-added tax (VAT) used for most products and services. Insurance
companies cannot deduct VAT payed on inputs from premium tax; also corporate buyers of
insurance cannot deduct premium tax payments from VAT on their outputs. Such deductions
would be allowed, if insurance premiums were subject to VAT instead of insurance tax.

In the current paper, we investigate the impact of the premium tax on insurance companies,
insurance holders and government revenues from multiple perspectives. We explicitly compare
tax systems with premium tax and tax systems that allow deductions. We find that the
competitiveness of corporate buyers of insurance, the ruin probabilities of insurance firms and
their solvency capital are hardly affected by the tax system. In contrast, the tax system has
a significant influence on the cost of insurance, insurance demand, government revenues and
the profitability of insurance firms.

1 Introduction

In many countries insurance premiums are subject to insurance premium tax that replaces the
common value-added tax (VAT) used for most products and services. This is, for example,
mandatory according to EU-law. In contrast to VAT, premium tax does not permit any deduc-
tions: first, insurance companies cannot deduct VAT payed on inputs from premium tax; second,
corporate buyers of insurance cannot deduct their premium tax payments from VAT on their
outputs, although the insurance contracts are an input to their production. As a consequence,
insurance premium tax leads to a higher taxation than VAT if the same tax rate is applied. In
the current paper, we investigate the impact of premium tax on insurance companies, insurance
holders and government revenues from multiple perspectives.
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Subject to premium tax are insurance premiums only. In the case of insurance companies,
these are approximately equal to the total revenues of these firms. VAT – in contrast – is not
charged on revenues, but on the value added which is smaller than revenues.

Premium tax rates and VAT rates vary across countries. Tax rates may also be different for
different types of products. Information on tax rates for individual countries and products can
be found in European Commission (2017), Insurance Europe (2016), and Bundesministerium der
Justiz und für Verbraucherschutz (2017). In Germany the VAT rate and the premium tax rate
coincide for most types of products and are generally both equal to 19%.

In absolute terms, government revenues from VAT are much larger than revenues from pre-
mium tax due to a larger tax base. In 2015 VAT revenues in Germany were 159,015 million
EUR – corresponding to 23.6% of total tax revenues; premium tax revenues during the same year
were equal to 12,419 million EUR, i.e. 1.8% of total tax revenues or 7.8% of VAT revenues, see
Bundesfinanzministerium (2016).

On the individual level of both the providers and buyers of insurance, premium tax may lead
to higher total tax payments. We quantify this effect in Section 2. As already explained, on
the one hand a provider of insurance cannot deduct VAT paid on input goods from premium
tax. On the other hand commercial buyers of insurance cannot deduct the incurred premium
tax from VAT on their outputs. While Section 2 provides an analysis from the point of view of
individual tax payers, Section 3 calculates the impact on overall tax revenues. More specifically,
a tax system with insurance tax is compared to one in which insurance tax is replaced by VAT. If
the VAT rate was unchanged, total tax revenues would decrease by 16 billion EUR. An equivalent
VAT rate of 89.2% is computed that leads to the original total tax revenues.

After analyzing the basic differences between VAT and premium tax, we provide in Sec-
tions 4 – 7 a broader perspective on the topic by comparing the impact of different tax systems
on insurance demand, the competitiveness of corporate buyers of insurance, ruin probabilities of
insurance firms, and solvency capital. In Section 4 we model corporate buyers of insurance as
utility maximizers that can choose their optimal level of insurance. The total cost of insurance
depends on the tax system that is implemented. We provide case studies that illustrate potential
consequences on the demand for insurance. These show that a change in the tax system from
insurance to value-added tax increases the insurance demand. Section 5 investigates the competi-
tiveness of corporate buyers of insurance. In contrast to Section 4 it is assumed that the amount of
insurance that is bought is constant, but that its cost depends on the tax system. If an insurance
tax is replaced by a VAT with the same rate, the costs are effectively reduced. If these savings
are completely passed on to the buyer of the output products, the demand for these products
increases. This is explicitly quantified in two numerical case studies. While Section 5 assumes
that tax savings are used to reduce the price of output products, Sections 6 and 7 suppose that
savings are retained by the insurance company. In Section 6 we generalize the classical Cramér-
Lundberg model by including tax payments in order to study the impact on ruin probabilities.
Finally, Section 7 computes how solvency capital requirements change that are e.g. implemented
under the regulatory framework of Solvency II or the Swiss Solvency Test. In summary, we find
that the competitiveness of corporate buyers of insurance, the ruin probabilities of insurance firms
and their solvency capital are hardly affected by the tax system. In contrast, the tax system has
a significant influence on the cost of insurance, insurance demand, government revenues and the
profitability of insurance firms. Section 8 concludes with a discussion and suggestions for further
research.

Literature. Holzheu (1997) and Holzheu (2000) suggest an accounting methodology in order
to compute basic quantities that characterize the impact of a premium tax. Sections 2 & 3 build
on this methodology. Our sections are, however, based on current data and constitute a necessary
prerequisite for the other parts of our paper. Straubhaar (2006) provides a qualitative analysis of
the impact of an increased premium tax that is complemented by a regression analysis in order
to obtain quantitative estimates. Schrinner (1997) qualitatively discusses the impact of premium
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tax and provides related accounting figures besides a preliminary economic analysis.

2 Impact on Insurance Companies and Insurance Holders
Insurance premium tax and value-added tax lead to different tax expenses related to insurance
services. To begin with, we provide a descriptive analysis on the basis of aggregate accounting data
that quantifies the impact of different tax systems. Our computations follow the methodology
described in Holzheu (1997) & Holzheu (2000), using data from 2011 – 2015 provided in BaFin
(2011-2015).

Impact on Insurance Companies. We consider an insurance company with earnings of gross
premiums denoted by π ∈ R. Gross premiums are before the deduction of reinsurance. For the
purpose of our comparisons, we define taxed premiums as the sum of gross premiums π and the
tax that is charged from the policyholders for their insurance contracts, i.e. either premium tax
or value-added tax – depending on the (real or hypothetical) tax system that we consider.

We denote the prevailing VAT rate by τVAT ≥ 0. The input of the production of insurance
contracts is always taxed according to VAT. Taxed input1 L̄ and untaxed input L can thus be
converted into each other:

L̄ = (1 + τVAT)L.

We define the rate of input α as the ratio of untaxed input and untaxed gross premiums earned:

α = L

π
.

Tax legislation in many countries typically prohibits the deduction of VAT paid on inputs
from premium tax, but would allow a deduction if instead VAT was also paid on outputs. The
amount that would be deducted in this case equals

L̄− L = τVATαπ. (1)

We now estimate this quantity that is typically not directly reported by insurance companies.
Untaxed inputs can roughly be estimated as gross premiums earned plus capital income minus
total losses and costs including taxes. For Germany, the required data were obtained from the
annual reports of Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin).

Example 2.1. On the basis of BaFin-data for the years 2011 – 2015 (see BaFin (2011-2015)),
the mean rate of input2 equals α = 5.2%. With τVAT =19%, this implies a difference of untaxed
and taxed inputs equal to L̄− L ≈ 0.99% · π.

Equivalent Value-Added Tax Rate. The current tax system charges VAT on the production
inputs of insurance firms, but premium tax on their outputs, i.e. on insurance contracts. A
deduction of VAT on inputs from premium tax is not permitted. What is the hypothetical VAT
rate on the value added generated by the insurance contracts that leads to the same tax payments
as insurance tax? We call this counterfactual VAT the equivalent value-added tax. We stress that
the VAT rate on all other goods and services remains unchanged in this gedankenexperiment. We
simply analyze a modified basis of assessment of the tax that is charged on insurance contracts,
holding the tax revenue constant. In the case of premium tax, the basis of assessment are the
premiums; in the case of the equivalent VAT, the basis of assessment is the value added generated
by the insurance industry.

1In this paper, taxed variables are marked with a bar .̄
2Input ratios were estimated on the basis of an aggregated stylized income statement of insurance companies

provided by BaFin. Input ratios were computed for single years, then added and finally averaged over time. For
the detailed computation we refer to Appendix B.
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We denote the premium tax rate by τPT ≥ 0 and the insurance’s value added before taxes by
W̃ . The value added before taxes is estimated as the sum of acquisition costs and administrative
expenses, profits before taxes and changes in equalization provisions and similar provisions. In
order to account for the fraction of the value added that is indirectly generated by reinsurers’
share of gross premiums earned we add the difference between the gross technical result and net
technical result. From BaFin-data 2011 – 20153 we compute

W̃ ≈ 31.3% · π.

The equivalent value-added tax rate that leads to the same tax revenue can be calculated by the
change of basis of assessment equation,

τ̃VATW̃ = τPTπ ⇔ τ̃VAT = τPT ·
π

W̃
.

Example 2.2. For many types of insurance contracts the premium tax rate in Germany equals
τPT = 19%. With π/W̃ ≈ 1/31.3% = 3.19 as calculated above, we obtain an equivalent VAT rate
of

τ̃VAT ≈ 60.7%.

Remark 2.3. Value added before taxes varies among different lines of insurance. Equivalent
VAT rates are displayed in Table 1.4

Class Value added ratio Equivalent VAT rate

Accident 39% 49%
Public liability 37% 51%
Car total 21% 89%
Defense 37% 51%
Fire 35% 55%
Household 43% 45%
Residential building 32% 59%
Credit and guarantee 37% 51%
Total 31% 61%

Table 1: Equivalent VAT rates for different lines of insurance.

Impact on Insurance Holders. Next, we consider a hypothetical tax system in which VAT
can be deducted from premium tax, and premium tax from VAT. In this case, the basis of
assessment of the premium tax are the gross premiums earned, but counterfactual deductions are
admissible. We assume that all tax savings are passed to a corporate buyer of insurance contracts.
The latter are treated as an input good to the buyer’s production, allowing for a deduction of
incurred premium tax from VAT on outputs of the corporate customer. Total tax savings can
thus be decomposed into two components: a) the VAT on the input goods of insurance firms
deducted from premium tax, b) premium tax deducted from the VAT on the output goods of the
corporate buyer of insurance.

We compute the size of these tax savings. For this purpose, we denote the total revenue (or
business volume) of the corporate insurance holder by U ∈ R and her untaxed cost of insurance
by V ∈ R. The insurance ratio of the company is defined as

β := V

U
∈ [0, 1]. (2)

3Value added was calculated for every year, summed up and averaged over time. For the detailed computation
we refer to Appendix B.

4For the detailed computation of the quantities we refer to Appendix B.
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Lemma 2.4. If VAT and premium tax can be deducted from each other, if taxes on outputs are
higher than on inputs and if all tax savings are passed on to a corporate buyer of insurance, then
this firm has tax savings of

E = (τVAT α+ τPT)βU. (3)

Proof. The savings are given by eq. (1) plus the input tax reduction of the company for insurance
products., i.e. E = τVAT αV + τPT V .

Example 2.5. Setting the input ratio to α =5.2% as in Example 2.1 and the insurance ratio to
β =0.5%,5 we obtain

E = 0.1% · U,

i.e. the total savings are only approximately 10 basis points of the revenues of the company. The
parameter β depends on the industry sector of the corporate insurance holder. According to Swiss
Re, sigma No 5/2012 (sigma (2012), p. 17) it varies between 0.1% and 1.4% for different US
industries.

In summary, we estimated for insurance firms in Germany that their mean rate of input
is about 5% of gross premiums, implying a difference between untaxed and taxed inputs of
about 1% of gross premiums. For a premium tax of 19%, an equivalent VAT rate depends
on the line of insurance and ranges from about 50% for accident insurance to about 90% for
car insurance. Finally, we considered a counterfactual tax system in which VAT and premium
tax can be deducted from each other and estimated for Germany that tax savings of corporate
policyholders would amount to about 10 basis points of their total revenues.

3 Impact on Tax Revenues
We will now discuss the impact on total tax revenues, if premium tax is replaced by VAT. First,
we compute the modified tax revenues. Second, we calculate an equivalent VAT which leads
to the same total tax revenues. Our findings build on the results of the previous section. The
methodology is motivated by Holzheu (2000), p. 76ff.

Comparison of Tax Revenues. Let Π be the total national untaxed gross insurance premiums
earned, W̃ the total value added before taxes of the corresponding insurance companies, and α
their input ratio. The tax revenue S related to insurance contracts in a tax system with premium
tax can be split into three parts:

(i) VAT of insurance companies on their inputs: This amount cannot be deducted from pre-
mium tax. It can be computed according to eq. (1).

(ii) Premium tax.

(iii) VAT on taxed insurance premiums: The costs of the outputs of corporate buyers of insurance
are increased by the premium tax. This is implicitly reflected in their prices and leads to
additional value-added tax revenues.

Total tax revenues are given by adding up the three parts:

S = (τVATα+ τPT) ·Π + τVAT · (1 + τPT) ·ΠG.

Here, ΠG denotes the untaxed insurance premiums of corporate insurance holders. Policies of
private customers are included in Π but not in ΠG, since they are not indirectly charged with
additional VAT.

5As a rough approximation of β we use an estimate that is provided in Swiss Re, sigma No 5/2012 (sigma
(2012), p. 16) for the US market. Since the main purpose of Example 2.5 is to provide an estimate of the order of
the impact of a modified tax system on corporate insurance costs, precise knowledge of β is not required.
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Suppose now that insurance premiums are not subject to a premium tax but to a value-added
tax. In this case, these taxes are fully deductable and double-taxation is avoided. The total
relevant tax revenue thus amounts to S̃ := τVATW̃ . In particular, if we assume that τPT ≥ τVAT

and W̃ < Π, then
S̃ = τVATW̃ < τPTΠ < S.

Changing the tax system from premium tax to VAT thus leads to lower total tax revenues, if the
corresponding tax rates are equal.

Equivalent Value-Added Tax Rate. As before, we compute an equivalent VAT rate τ̃VAT

that leads to the same tax revenues, but now also incorporates taxes on premium tax paid by
corporate policyholders. As in the previous section we assume that the VAT rate on all other
goods and services remains unchanged in this thought experiment. We only focus on those tax
revenues that are directly related to insurance contracts as explained above.

Lemma 3.1. We denote by g := ΠG
Π the ratio of untaxed corporate insurance premiums over total

untaxed insurance premiums. The equivalent value-added tax rate τ̃VAT is given by

τ̃VAT = (τVATα+ τPT + τVAT(1 + τPT)g) · Π
W̃
.

Proof. The result follows immediately from the condition τ̃VATW̃ = S.

Example 3.2. The average value added before taxes of German insurance firms during the period
2011 – 20156 amounts to

W̃ ≈ 31.3% ·Π.

If we assume that the fraction of premiums of corporates is g =35%,7 we obtain for τVAT =
τPT = 19% and α = 5.2%8 an equivalent value-added tax rate of

τ̃VAT ≈ 89.2%.

Finally, let us consider a modification of the tax system in which premium tax is replaced by
VAT. This would, in particular, imply that both VAT on insurance companies’ inputs and VAT
on premium tax paid by corporate customers are deductible. For the purpose of illustrating the
size of this effect, we suppose that the German premium tax of 19% is replaced by VAT of 19%.
This would decrease total German tax revenues by approximately

S − τVAT · W̃ = (τVATα+ τPT + τVAT(1 + τPT)g − τVAT · 31.3%) ·Π = (27.9%− 5.9%) ·Π = 22% ·Π.

Taking Π ≈ EUR 75 billion (corresponding to German gross premiums earned in 2015), tax
revenues would decrease by approximately EUR 16 billion, if the tax system was changed.

4 Impact on Insurance Demand

The current German premium tax leads to an additional tax burden for insurance contracts. In
this section we investigate the impact of the tax system on insurance demand. Insurance demand
is endogenously modeled in a classical expected utility framework. For proportional insurance,
we compute the optimal demand maximizing the expected utility of the policyholder.

6Compare Footnote 3.
7This number quantifies the fraction for Germany in 2010 according to sigma (2012), p. 10, Table 3. 35% of the

total non-life premium income was generated by corporate buyers of insurance contracts.
8See Example 2.1.
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Model 4.1 (Insurance Demand). We consider a proportional insurance contract over a fixed
time horizon. The initial wealth of the insurance holder is denoted by w > 0. Over the time
interval, the insurance holder incurs a random loss X ∈ L1(R+) where L1(R+) denotes the space
of integrable real-valued random variables on some probability space (Ω,F , P ) with values in R+.
The insurance contract is characterized by the parameter ν ∈ [0, 1] which is the fraction of the
loss that is covered by the insurance. The premium for full insurance is π ∈ R+; the premium for
partial insurance of a fraction ν of the loss X is ν · π.

The terminal endowment of the insurance holder as a function of ν is

Xν = w −X + ν(X − π) = (1− ν)(w −X) + ν(w − π).

Buyers of insurance can choose the fraction ν according to their preferences. This fraction is
computed as the solution to a utility maximization problem of the policyholder, see e.g. Chapter
2 in Föllmer & Schied (2011).

As a first example, we consider a Bernoulli utility function with constant absolute risk aversion
(CARA). This function has the form uκ1(x) = 1 − e−κx with κ > 0. Another example is a
Bernoulli utility function with hyperbolic absolute risk aversion (HARA), given by uλ2(x) = 1

λx
λ

for λ ∈ (0, 1). The limiting case λ = 0 corresponds to logarithmic utility. The Arrow-Pratt-
coefficients of absolute risk aversion are κ for uκ1 and the hyperbolic function x 7→ (1 − λ)/x for
uλ2 , explaining the terminology. In the case of HARA utility, we will always assume that X ≤ w,
for logarithmic utility X < w.

Problem 4.2 (Expected Utility Maximization). Let S ⊆ R be convex and assume that u : S → R
is a Bernoulli utility function, i.e. a function that is strictly concave, strictly increasing and
continuous on S. Suppose that the support supp Xν is contained in S and that u(Xν) is integrable
with respect to P for all ν ∈ [0, 1]. Then the optimal insurance contract is characterized by the
maximizer ν∗ ∈ [0, 1] of the expected utility

ν 7→ E [u(Xν)] .

A necessary condition for an interior solution ν ∈ (0, 1) is given by the first order condition

∂

∂ν
E [u(Xν)] = 0.

We compare different tax regimes for two examples of loss distributions, a Bernoulli and a Gamma
distribution. In the case of a Bernoulli distribution, we assume that a loss x̂ > 0 occurs with
probability p ∈ (0, 1), and no loss with probability 1 − p, i.e. X ∼ Ber(x̂, p). For HARA utility
we assume that x̂ ≤ w, for logarithmic utility x̂ < w. For a Gamma distribution with parameters
ξ, µ > 0 and density

fξ,µ(x) = µξ

Γ(ξ) x
ξ−1 e−µx 1(0,∞)(x), x ∈ R,

we use the notation Γ(ξ, µ). Note that Γ(·) denotes the ordinary gamma function. The Gamma
distribution with unbounded support will only be considered in the case of CARA utility.

Remark 4.3. The following result is a simple consequence of Föllmer & Schied (2011), Propo-
sition 2.39: Let u : dom u → R be a Bernoulli utility function. We assume that R+ ⊆ dom u,
X ≤ w and π ≤ w. Then the following assertions hold:

(a) We have ν∗(π) = 1 if π ≤ E[X], and ν∗(π) > 0 if π ≤ w − cX , where cX is the certainty
equivalent given by the equation E[u(X)] = u(cX).

(b) If u is differentiable, then
ν∗(π) = 1 ⇔ π ≤ E[X]
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and
ν∗(π) = 0 ⇔ π ≥ w − E[(w −X)u′(w −X)]

E[u′(w −X)] .

If π < w − E[(w−X)u′(w−X)]
E[u′(w−X)] , then ν∗(π) > 0.

A risk-averse buyer purchases full insurance, if and only if the premium does not exceed the
expected loss. Insurers will, however, always charge premiums that are larger in order to avoid
ruin. In this case, full insurance is never optimal.
For the special case of Bernoulli-distributed random variables Schrinner (1997) discussed

ν∗(π)
{

= 1, if π ≤ E[X],
< 1, if π > E[X],

in the context of premium tax. He argued that higher premium taxes lead to higher premiums
and therefore to a larger deviation of the premium from the expected loss, which results in less
demand for insurance.

Theorem 4.4. The solutions to Problem 4.2 for specific utility functions and loss distributions
are as follows:

(i) CARA-utility: Consider the Bernoulli utility u(x) = uκ1(x), κ > 0.

• Assume that losses are Bernoulli-distributed, i.e. X ∼ Ber(x̂, p). Then the optimal
insurance contract is characterized by

ν∗(π) =


0, π ≥ px̂eκx̂

1−p+peκx̂ ,

1− 1
κx̂ ln

( 1
p
−1

x̂
π
−1

)
, px̂eκx̂

1−p+peκx̂ > π > px̂,

1, px̂ ≥ π.

• Assume that losses are Gamma-distributed, i.e. X ∼ Γ(ξ, µ), and assume that κ < µ.
Then the optimal insurance contract is given by

ν∗(π) =


0, π ≥ ξ

µ−κ ,

1 + ξ
πκ −

µ
κ ,

ξ
µ−κ > π > ξ

µ ,

1, ξ
µ ≥ π.

(ii) HARA-utility: Consider the Bernoulli utility u(x) = uλ2(x), λ ∈ (0, 1). We set ζ = 1
1−λ .

• Assume that losses are Bernoulli-distributed, i.e. X ∼ Ber(x̂, p). We suppose that
0 < x̂ ≤ w. Then the optimal insurance contract is

ν∗(π) =


0, π ≥ px̂w1−λ

pw1−λ+(1−p)(w−x̂)1−λ ,
πζ(1−p)ζ(x̂−w)+pζ(x̂−π)ζw
πζ(1−p)ζ(x̂−π)+pζ(x̂−π)ζπ ,

px̂w1−λ

pw1−λ+(1−p)(w−x̂)1−λ > π > px̂,

1, px̂ ≥ π.

(iii) Logarithmic utility: Consider the logarithmic utility u0
2(x) = log(x), i.e. the limiting case

of HARA-utility for λ = 0.

• Assume that losses are Bernoulli-distributed, i.e. X ∼ Ber(x̂, p). We suppose that
0 < x̂ < w. Then the optimal insurance contract is characterized by

ν∗(π) =


0, π ≥ px̂w

w+x̂(p−1) ,
π(w−x̂)−px̂(w−π)

π(π−x̂) , px̂w
w+x̂(p−1) > π > px̂,

1, px̂ ≥ π.
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Proof. See Section A.

In order to gauge the effect of a modified tax on insurance demand, we now compute the
modification of the effective premiums for different tax systems.

Lemma 4.5. We denote the taxed premium in a system with premium tax by π̄PT. Assume now
the counterfactual situation that VAT and premium tax can be deducted from each other and that
at the same time all tax savings are passed to a corporate buyer of insurance. In this case, the
effective premium equals

π̄VAT = γ · π̄PT, γ := 1− τVATα+ τPT

1 + τPT
,

where α denotes the input ratio.

Proof. The result follows from π̄VAT = π̄PT − E where tax savings E are computed according to
eq. (3) with π̄PT = (1 + τPT)βU .

Example 4.6. For an input ratio α = 5.2% and τVAT = τPT =19%, we obtain γ ≈ 0.832, i.e. the
effective premium reduces to 83.2% of the original premium, if deduction is permitted.

Before we can analyze the impact of alternative tax systems on demand, we need to specify how
premiums are calculated net of taxes. We focus on two examples of classical premium principles,
namely the expected value principle and the standard deviation principle, see e.g. Chapter 12
in Schmidt (2009). We also investigated the semi-standard deviation principle which leads to
similar results as the standard deviation principle; for this reason it is not included in the case
studies below. However, we provide the corresponding formulas. Untaxed premiums with safety
loading δ > 0 are given in Table 2 for the considered loss distributions. Note that Γ(·, ·) denotes
the upper incomplete gamma function. Adjusting tax payments, optimal insurance contracts can
finally be computed according to Theorem 4.4.

Premium Principle X ∼ Ber(x̂, p) X ∼ Γ(ξ, µ)
Expected Value Principle px̂(1 + δ) ξ

µ(1 + δ)

Standard Deviation Principle px̂
(
1 + δ

√
1−p
p

)
ξ
µ

(
1 + δ 1√

ξ

)
Semi-Standard Deviation Principle px̂

(
1 + δ 1−p√

p

)
ξ
µ

(
1 + δ 1

ξ

√
1

Γ(ξ)(ξξ e−ξ + ξ Γ(ξ, ξ))
)

Table 2: Computation of untaxed premiums.

The following examples analyze the impact of different tax systems on insurance demand. In
all case studies, we assume τPT = 19% and γ = 0.832 according to Example 4.6.

Example 4.7. In the first numerical example, we consider losses X ∼ Ber(x̂, p) and a policy-
holder with CARA-utility u(x) = uκ1(x), κ > 0. We choose p = 0.1 and vary x̂. Risk aversion is
set to κ = 0.3, and the safety loading equals δ = 0.4.

Figure 1 displays optimal insurance contracts ν∗ for the two different tax systems. In the case
of CARA-utility, these do not depend on the initial endowment of the policyholder. As expected, if
deduction is permitted, the demand for insurance is increased. The difference in demand initially
increases for small loss sizes x̂ and decreases towards a small level for larger loss sizes. Comparing
Figures (a) and (b), we observe similar shapes of the functions for both premium principles. Due
to higher premiums for the standard deviation principle, the optimal demand for insurance is
smaller than in the case of the expected value principle.
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Figure 1: Insurance demand in Example 4.7 for expected value and standard deviation principle.

Example 4.8. In the second numerical example, we consider losses X ∼ Γ(ξ, µ) and a policy-
holder with CARA-utility u(x) = uκ1(x), κ > 0. We choose ξ = 1 and vary 1/µ. Risk aversion is
again set to κ = 0.3, and the safety loading equals δ = 0.4.

Figure 2 displays optimal insurance contracts ν∗ for the two different tax systems. Again, if
deduction is permitted, the demand for insurance is increased. The difference in demand is zero
for small expected loss sizes 1/µ ≤ 0.92, increases for 1/µ ∈ (0.92, 1.33), and decreases for larger
losses.

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
if

fe
re

nc
e

VAT
Insurance Tax
Difference

(a)

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
if

fe
re

nc
e

VAT
Insurance Tax
Difference

(b)

Figure 2: Insurance demand in Example 4.8 for expected value and standard deviation principle.

Example 4.9. In the third numerical example, we consider losses X ∼ Ber(x̂, p) and a poli-
cyholder with HARA-utility u(x) = uλ2(x), λ ∈ (0, 1). We choose p = 0.1 and vary x̂. We set
λ = 0.2. The safety loading equals δ = 0.01. Initial wealth is w = 300.

Figure 3 displays optimal insurance contracts ν∗ for the two different tax systems. Again, we
obtain that the demand for insurance is increased, if deduction is permitted. The difference in
demand is large for small loss sizes x̂ and decreases for larger losses. It remains larger than 0.2
for all values of x̂ in the case of the expected value principle resp. for all values of x̂ ≥ 10.2 in
the case of the standard deviation principle.
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Figure 3: Insurance demand in Example 4.9 for expected value and standard deviation principle.

Example 4.10. Finally, we consider the same situation as in Example 4.9, but keep x̂ = 280
fixed and vary λ. Risk aversion decreases with increasing λ. Figure 4 displays optimal insurance
contracts ν∗ for the two different tax systems. With VAT, insurance demand stays close to 1 for
small values of λ. Premium tax leads to a higher cost of insurance, and insurance demand is
significantly lower. In the case of premium tax, insurance demand decreases to 0 as risk aversion
goes to 0, i.e. λ approaches 1. In the case of VAT, this effect occurs only if premiums are computed
according to the standard deviation principle.
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Figure 4: Insurance demand in Example 4.10 for expected value and standard deviation principle.

In summary, our case studies show that the tax system may have a substantial impact on
insurance demand of corporate buyers of insurance. The size of this effect depends on the loss
distribution and the utility of the policyholder, in particular on the size of potential losses and
the risk aversion of the policyholder.

5 Impact on Competitiveness
The current tax system in Germany with premium tax does not allow that premium tax and
VAT are deducted from each other. If such deductions were permitted, as, for example, in an
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hypothetical tax system that charges VAT on insurance contracts (instead of premium tax),
overall tax payments would be reduced.

Consider a corporate insurance holder. We compare two tax systems: a realistic tax system
with premium tax, and a counterfactual tax system that permits the full deduction of VAT and
premium tax from each other. We assume that the resulting tax savings lead to a reduction of the
sales prices of the corporate policyholder. The reduced prices increase the relative competitiveness
of a domestic firm that benefits from a modified tax system in contrast to its international
competitors.

We design a stylized model that captures this effect and allows its quantification. There are
two firms that produce different goods i = 1, 2 that they sell for prices pi, i = 1, 2. We assume
that demand for the two goods in the economy is the solution to a utility maximization of a
representative consumer.

Problem 5.1 (Utility Maximization). The utility function of the representative consumer with
budget w ∈ R+ is denoted by u : X → R, X = R+ × R+. The consumer’s demand x∗ = (x∗1, x∗2)
solves her utility maximization problem

x∗ ∈ argmaxx∈R2
+
u(x1, x2)

subject to her budget constraint
p1x1 + p2x2 = w.

The following preliminary lemma computes the price reduction when the tax system is changed.

Lemma 5.2. Let α be the rate of input of insurance companies, and let β be the insurance ratio
of company 1 as defined in eq. (2). If company 1 is a domestic company, a modification of the
domestic tax system, as described in Lemma 2.4, decreases the price of its product by θα,β · p1,
where

θα,β := (τVATα+ τPT)β,

and p1 denotes the original price with premium tax. I.e. the unit price decreases to p̃1 = (1 −
θα,β) · p1.

Proof. We have θα,β = E
U where U is the revenue or business volume of the company. Now, the

result follows from eq. (3).

In two case studies, we will now illustrate how a modification of the tax system may change
product demand. In the first example, the representative consumer has a utility function of
Cobb-Douglas type, in the second with constant elasticity of substitution.

5.1 Cobb-Douglas Utility Function

We recall that a Cobb-Douglas Utility Function has the form

ua(x1, x2) := xa1x
1−a
2 , a ∈ (0, 1).

Solving the optimization problem 5.1, one obtains the solution

x
(a)
1 = aw

p1
, x

(a)
2 = (1− a)w

p2
.

We compare the change in competitiveness of a domestic and a foreign firm, if the domestic
system is changed as described before. For this purpose, we assume that company 1 is domestic
and company 2 foreign. The price of the product of company 2 is p2 and fixed, but the price of
the product of company 1 is a function of the domestic tax system.
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Lemma 5.3. Let p1 be the original price of product 1 and x(a)
1 the corresponding demand. Suppose

that p̃1 is the price of product 1 after modifying the tax system, see Lemma 5.2, and x̃
(a)
1 the

corresponding demand. Setting ∆x(a)
1 = x̃

(a)
1 − x

(a)
1 , we obtain:

∆x(a)
1

x
(a)
1

= θα,β
1− θα,β

.

Proof. This is an application of Lemma 5.2 to the solution of the optimization problem.

The relative shift in demand does neither depend on the available budget w nor the preference
parameter a.

Example 5.4. Taking the numbers from Example 2.5, we compute θα,β ≈ 0.1%, thus

∆x(a)
1

x
(a)
1
≈ 0.1%, ∀a ∈ (0, 1).

The price of the product of the domestic company and its competitiveness is almost not affected by
a modification of the tax system. The reason is that the insurance ratio of companies is typically
small. In addition, the rate of input of insurance companies is not very large.

Example 5.5. Insurance contracts are an input to the production of goods. Their contribution
varies across different industry sectors and so does the effect of a modification of the tax system
on production costs and product prices. Suppose that the input ratio is set to α =5.2% as in
the previous example. Insurance ratios for different US industry sectors are based on a survey of
MarketStance and were obtained from sigma (2012) (p. 17). The data are displayed in Table 3.
Again, θα,β and ∆x(a)

1
x

(a)
1

are computed according to our model. In all cases, the effects are very
small.

Premium/Business Vol. Saving/Business Vol. Shift in Demand
Industrial Sector β in % θα,β in % ∆x(a)

1 /x
(a)
1 in %

Mining 0.80 0.16 0.16
Construction 1.31 0.26 0.26
Manufacturing 0.31 0.06 0.06
Transport, communication, 1.21 0.24 0.24
utilities

Retail trade 0.36 0.07 0.07
Wholesale trade 0.14 0.03 0.03
Financial 0.38 0.08 0.08
Services 0.70 0.14 0.14

Table 3: Shift in product demand related to industrial sectors.

5.2 Constant Elasticity of Substitution Utility Function

We recall the definition of a utility function with constant elasticity of substitution (CES):

ua,b(x1, x2) :=
(
axb1 + (1− a)xb2

) 1
b ,

where a ∈ (0, 1) and b 6= 0. The latter quantity is called the parameter of substitution. Again, we
denote the budget of the consumer by w. The consumer’s optimal demand is

xa,b1 = w (p1/a)−η

aηp1−η
1 + (1− a)ηp1−η

2
, xa,b2 = w (p2/(1− a))−η

aηp1−η
1 + (1− a)ηp1−η

2
,

where η := 1
1−b denotes the elasticity of substitution.
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Lemma 5.6 (Shift in Demand). Let p1 be the original price of product 1 and xa,b1 the corresponding
demand. Suppose that p̃1 is the price of product 1 after modifying the tax system, see Lemma 5.2,
and x̃a,b1 the corresponding demand. Setting ∆xa,b1 = x̃a,b1 − x

a,b
1 , we obtain:

∆xa,b1

xa,b1
= (1− θα,β)−η aη p1−η

1 + (1− a)η p1−η
2

(1− θα,β)1−η aη p1−η
1 + (1− a)η p1−η

2
− 1.

Proof. This is an application of Lemma 5.2 to the solution of the optimization problem.

In contrast to a Cobb-Douglas utility, the relative demand shift depends on the parameters
of the utility and the price level of the products in the case of CES-utility. The impact of these
inputs on demand is illustrated in Figure 5 for the parameter values given in Table 4.

Saving: θα,β = 0.1%
Share Parameter: a ∈ (0, 1)
Price of Product 1: p1 = 1
Price of Product 2: p2 ∈ [0, 2]

Table 4: Parameters for case studies with CES utility function.

In particular, we consider different parameters of substitution b and elasticity of substitution
η = 1/(1−b). For η > 1 the products are gross substitutes, for η < 1 they are gross complements.
We fix p1 = 1 and vary η, a and p2. The resulting relative demand shifts are displayed in Figure
5. In case of gross substitutes (η > 1), the increase in demand caused by the price change is, of
course, higher than in case of gross complements. The effect is, however, in all cases very small.
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Figure 5: Relative shift in demand with CES utility functions.

All case studies clearly indicate that the international competitiveness (in terms of product
pricing) of corporate policyholders is almost not affected by the difference of premium tax and
VAT.
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6 Impact on Ruin Probability

In this section we investigate the impact of the premium tax on the ruin probability of insurance
companies. For this purpose, we extend the classical Cramér-Lundberg model by including taxes
and compare ruin probabilities for different systems of taxation. A concise introduction to ruin
theory is Mikosch (2009). A comprehensive presentation can be found in Asmussen & Albrecher
(2010).

Let (Ω,F , P ) be a probability space. We consider a family of risk processes of insurance
companies (Rwt )t≥0 enumerated by the initial wealth Rw0 = w ∈ R. The ruin probability of these
companies is a function of initial wealth:

ψw(π) := P

(
inf
t≥0

Rwt < 0
)
.

For later reference, we also emphasize the dependence on the premium rate.

6.1 The Cramér-Lundberg Model

In the current section we recall the classical Cramér-Lundberg model and its basic definition. On
the basis of Mikosch (2009) and Asmussen & Albrecher (2010), we collect the results that will be
needed for an analysis of the impact of insurance tax on ruin.

Model 6.1 (Cramér-Lundberg). Denote the initial capital of the insurance company by w ∈ R
and its premium rate by π ∈ R. Insurance losses are modeled by a compound Poisson process(∑Nt

k=1Xk

)
t≥0

where individual losses (Xk)k∈N are strictly positive, integrable, identically dis-
tributed with law B, jointly independent and independent of the Poisson process (Nt)t≥0 with
intensity ϑ > 0. The risk process in the Cramér-Lundberg model is given by

Rwt = w + πt−
Nt∑
k=1

Xk.

Wald’s equation and the strong law of large numbers imply that 1
t

∑Nt
k=1Xk −−−→

t→∞
ϑE[X1] =: r

almost surely. It is well-known that ruin occurs with probability 1, unless the net profit condition
(NPC) holds, i.e. π > r. This is equivalent to premium payments being larger than the expected
value of the losses for any time horizon t, i.e.

πt = (1 + ρ)E
[
Nt∑
k=1

Xk

]

with safety loading ρ = π−r
r > 0. If the NPC holds, the asymptotic behaviour of the ruin proba-

bility ψw for w →∞ can be characterized; large w corresponds to high initial capital. We recall
the key results for light-tailed and heavy-tailed losses in the Cramér-Lundberg model.

Notation. If limw↑∞
ψw(π)
ϕw(π) = 1, we write ψw(π) ∼ ϕw(π).

The classical result of ruin theory considers the case of light-tailed distributions and involves
the Cramér-Lundberg coefficient. Assume that the moment-generating function ofX1, i.e. B̂(h) =∫
ehzdB(z) = E

[
ehX1

]
, exists for all h ∈ (−h0, h0) for some h0 > 0. The Cramér-Lundberg

coefficient l > 0, if it exists, is the unique solution of the equation

B̂(l) = 1 + πl

ϑ
.
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Theorem 6.2 (Cramér-Lundberg Approximation). Assume that the NPC holds and that the
distribution of X1 has a density and a moment-generating function in some neighborhood of 0.
In addition, we suppose that the Cramér-Lundberg coefficient l > 0 exists. Setting C = π−r

ϑB̂′(l)−π ,
the asymptotic behaviour of the ruin probability can be characterized as follows:

lim
w→∞

elwψw(π) = C,

i.e. ψw(π) ∼ Ce−lw as w →∞.

Example 6.3. For independent, exponentially distributed losses X1, X2, . . . with parameter ι > 0,
i.e. Xk ∼ Exp(ι), k ∈ N, the Cramér-Lundberg coefficient is l = ι − ϑ

π , and the ruin probability
equals the asymptotic approximation of Theorem 6.2:

ψw(π) = ϑ

ιπ
e−(ι−ϑπ )w. (4)

So far, we considered light-tailed losses. In the case of heavy-tailed losses, the occurrence of
ruin is qualitatively different from the light-tailed case. For light-tailed loss distributions, ruin
happens if a large number of sufficiently large claims accumulate. For heavy-tailed loss distribu-
tions, ruin can occur spontaneously and is typically due to a large single claim. Quantitatively,
this is related to the integrated tail distribution. The corresponding theorem of Embrechts &
Veraverbeke (1982) requires the notion of subexponential distributions.

Remark 6.4. (a) If the positive random variable X has distribution function F , then the func-
tion FX,I : R→ [0, 1] with

FX,I(x) =
( 1
E[X]

∫ x

0
(1− F (y)) dy

)
· 1(0,∞)(x)

is the integrated tail distribution function of X. The function FX,I is a distribution function
of a probability measure on the positive half line.

(b) Subexponential distributions provide a natural definition of being heavy-tailed. They formal-
ize that the tail of the sum Sn = X1 + · · ·+Xn is essentially determined by the tail of the
maximum Mn = maxk=1,...,nXk for independent copies of the distribution of X1. A formal
definition is

∀n ≥ 2 : lim
x→∞

P (Sn > x)
P (X1 > x) = n.

Theorem 6.5. Assume that the NPC holds. In addition, suppose that the losses Xk have a
density and that FX1,I , the integrated tail distribution function of X1, is subexponential. Then

lim
w→∞

ψw(π)
1− FX1,I(w) = 1

ρ
= r

π − r
,

i.e. ψw(π) ∼ 1−FX1,I(w)
ρ as w →∞.

Example 6.6. Examples of parametric distributions that satisfy the conditions of this theorem
can be found in Table 3.2.19 in Mikosch (2009). These include the log-normal and the Pareto
distribution.

6.2 The Cramér-Lundberg Model with Taxes

We extend the model and add taxes.
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Model 6.7 (Cramér-Lundberg Model with Taxes). Let τ ∈ [0, 1] be a constant tax rate that is
charged on the gross premium income π ∈ R. We denote taxed premiums by π̄ = (1 + τ) · π. We
assume that the realized tax charged on the insurer’s input costs L ∈ R is given by the tax rate ετ
which we represent as a fraction ε ∈ [0, 1] of the premium tax rate τ ∈ [0, 1]. The term realized
tax refers to the tax on inputs minus deductions that are allowed. The costs L do not include
insurance payments due to losses. The after-tax risk process is

Rw,τ,εt = w +
[

π̄

1 + τ
− (1 + ετ)L

]
t−

Nt∑
k=1

Xk. (5)

The effective insurance premium (after subtracting all expenses and taxes) is

πτ,ε := π̄

1 + τ
− (1 + ετ)L. (6)

The model allows to mimic different tax systems.

(i) For τ = τPT = τVAT and ε = 1 we obtain a tax system with premium tax in which VAT is
applied to inputs but cannot be deducted from the premium tax payments. This captures
the current German tax system, if we choose τ = 19%.

(ii) For τ = τVAT and ε = 0 we obtain a counterfactual tax system in which premium tax is
replaced by VAT. In this case, VAT paid on inputs is fully deductable from VAT paid on
insurance premiums.

(iii) Suppose that we are given a tax system with premium tax and VAT as in (i), i.e. τ = τPT =
τVAT and ε = 1. As in Example 2.2, we consider a counterfactual tax system (ii) in which
premium tax is replaced by VAT. We assume that VAT paid on value added of the insurance
firm in the new tax system is equal to premium tax revenues in the original tax system.
Moreover, we hold π constant. We denote the modified quantities with a tilde. In this case,
τ̃ = τ̃VAT = τPT · π

W̃
and ε̃ = 0 where W̃ is the value that the insurance company adds to

its inputs by producing the insurance contract, see Section 2. The modified taxed premium
rate is given by π̄ = (1 + τ̃) · π > (1 + τPT) · π. We implicitly assumed that the higher
tax on the premium is payed by the policyholder. The financial situation of the insurance
company is thus improved in this case, since it can take advantage of tax deductions.

(iv) Suppose that we are in a counterfactual tax system (ii). We can extend the arguments in
(iii) to construct a corresponding tax system with premium tax. We assume that insurance
tax revenues in the new tax system are equal to VAT paid on value added of the insurance
firm in tax system (ii). Moreover, we hold π constant. In this case, the premium tax rate
needs to be adjusted, i.e. τ̃ = τ̃PT = τVAT · W̃π and ε̃ = 1. The modified taxed premium rate
is given by π̄ = (1 + τ̃) · π < (1 + τVAT) · π. This describes the opposite scenario to the
situation in (iii). The modification of the tax system leads to a higher tax burden of the
insurance company, since tax deductions are no longer possible. The benefits are in this
case transferred to the policyholders.

The risk process Rw,τ,ε defined in eq. (5) is a function of the tax parameters τ and ε. We
investigate how ruin probabilities depend on the tax system. In contrast to the examples (iii) and
(iv) above, we now keep π̄ fixed instead of π. Tax expenses and tax savings are not transferred to
the buyer of insurance, but are fully absorbed by the insurance firm. This implies, in particular,
that the design of the tax system and a modified tax rate on premiums alter the financial resources
and ruin probability of the insurance company.

The effective insurance premium is computed according to eq. (6). For both the light-tailed
and the heavy-tailed case we consider the dependence of the ratio ψw(πτ,ε)/ψw(π0,0) on the tax
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rate τ and compare the cases ε = 1 and ε = 0 that correspond to a system with premium tax
and VAT, respectively.

Example 6.8. First, we consider light-tailed loss distributions. If the conditions of Theorem
6.2 hold, then clearly ψw(πτ,ε)

ψw(π0,0) ∼
C(πτ,ε)e−l(πτ,ε)w

C(π0,0)e−l(π0,0)w with C (π) = π−r
ϑB̂′(l(π))−π and Cramér-Lundberg

coefficient l(π) for any effective insurance premium π. In the case of exponential losses, the
approximation equals the exact ruin probability. Let X1, X2, . . . be exponentially distributed with
parameter ι > 0. Then

ψw(πτ,ε)
ψw(π0,0) = π0,0

πτ,ε
eϑw

(
1

πτ,ε
− 1
π0,0

)
(7)

In the numerical example, we choose ι = 1 and ϑ = 1, thus r = 1. Since the NPC should be
satisfied, we assume π0,0 = 2. We set9 w = 1 ≈ 0.87 = 43.5% · π0,0 and choose L = απ0,0 = 2α.
Observe that π̄ = π0,0 +L. Setting the mean rate of input α = 5.2% as in Example 2.1, we obtain
L = 0.104 and deduce from formula (6):

πτ,ε := 2 + L

1 + τ
− (1 + ετ)L = 2.104

1 + τ
− 0.104 · (1 + ετ) ≈ 2.1

1 + τ
− 1 + ετ

10 .

Plugging this result into eq. (7), we compute the ratio of ruin probabilities as a function of τ .
This is displayed in Figure 6.
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Figure 6: Ratio of ruin probabilites for exponentially distributed losses.

Clearly, the higher the tax rate τ the higher the probability of ruin compared to a system without
taxes. As expected, the increase of ruin probabilities is stronger in a tax system with premium
tax. A change of the tax system from type (i) to type (ii) would thus reduce the probability of
ruin. We observe that ψw(π0.19,1)/ψw(π0,0) = 1.353, ψw(π0.19,0)/ψw(πτ,0) = 1.329, thus
ψw(π0.19,1)/ψw(π0.19,0) = 1.018. In Germany, at the prevailing rate of 19%, the ruin probability
in a tax system with premium tax is only about 2% larger than the ruin probability in a tax system
with VAT.

Example 6.9. Second, we consider the heavy-tailed loss distributions. As in the previous example,
we assume that

πτ,ε ≈ 2.1
1 + τ

− 1 + ετ

10 ,

and choose ϑ = 1. Let Z be log-normally distributed with parameters (0, 1), thus E[Z] = e1/2. We
assume that the independent losses X1, X2, . . . have the same distribution as e−1/2 · Z, i.e. Xk is

9 According to BaFin (2011-2015), Issue 2015, p. 158, Table 520 equity capital of non-life insurance firms in
Germany in 2015 was 43.5% of gross premium income.
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log-normally distributed with parameters
(
−1

2 , 1
)
. This implies E[X1] = 1, thus r = 1 as in the

example of light-tailed losses. We compute:

ψw(πτ,ε)
ψw(π0,0) ∼

π0,0 − 1
πτ,ε − 1 =

( 2.1
1 + τ

− 11 + ετ

10

)−1

This is displayed in Figure 7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

11.5
12

12.5
13

13.5
Insurance Tax System
VAT System

(a)

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Insurance Tax System
VAT System
Present Insurance Tax System
VAT System with  = 0.19
Comparison of Insurance Tax and VAT System

(b)

Figure 7: Ratio of ruin probabilites for heavy-tailed loss distributions.

In particular, we obtain ψw(π0.19,1)/ψw(π0,0) = 1.549, ψw(π0.19,0)/ψw(πτ,0) = 1.504, thus
ψw(π0.19,1)/ψw(π0.19,0) = 1.03. In Germany, at the prevailing rate of 19%, the ruin probability
in a tax system with premium tax is only about 3% larger than the ruin probability in a tax
system with VAT. Let us finally stress that the results do not depend on the loss distributions
being log-normal; only the condition E[X1] = 1 was used in the derivation.

The quantities derived in Examples 6.8 & 6.9 and displayed in Figures 6 & 7 are all ratios
of ruin probabilities over an infinite time horizon. In absolute terms, annual ruin probabilities of
real insurance companies are limited by regulatory standards. Solvency II, for example, restricts
annual ruin probabilities to at most 0.5%. Otherwise, companies face serious interventions of the
regulator. Our analysis thus indicates that absolute changes of annual ruin probabilities due to
a modified tax system would be extremely moderate – on the order of less than 10 basis points.
However, even small absolute changes in ruin probabilities might be costly in terms of solvency
capital, if regulatory constraints are tight and binding. This issue is discussed in the next section.

Remark 6.10. Our focus is on premium tax and VAT, and we deduced the implications of
tax systems on ruin probabilities from standard results in the literature on ruin theory. The
key assumption was that eq. (6) describes the tax impact on the risk process. In the context of
premium tax and VAT, eq. (6) is a reasonable hypothesis. However, the functional dependence of
risk processes on other types of taxes might be more complicated than assumed in this paper. We
briefly summarize some previous key contributions. Albrecher & Hipp (2007) analyze the effect
of tax payments under a loss-carry forward system in the Cramér-Lundberg model. They suppose
that taxes are only paid when the company is in a profitable situation, meaning that the risk
process is at its running maximum. The authors study ruin probabilities with and without taxes
in their model and find that the survival probability with tax is a power of the survival probability
without tax, i.e. 1−ψγ(w) = (1−ψ0(w))

1
1−γ , where 0 < γ < 1 is the constant tax rate. Moreover,

they compute the optimal surplus level at which taxation should start in order to maximize the
expected discounted tax payments before ruin. Albrecher, Badescu & Landriault (2008) conduct a
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similar analysis in the dual risk model. The description of the ruin probability with taxes in terms
of the ruin probability without taxes becomes more complicated. A considerable generalization of
the results is derived by Albrecher, Renaud & Zhou (2008) who embed the model by Albrecher &
Hipp (2007) into a general Lévy framework. The relation between ruin probabilities is recovered,
and also the structure of many other results is preserved in the Lévy setup. Kyprianou & Zhou
(2009) and Albrecher, Borst, Boxma & Resing (2009) introduce a surplus-dependent tax rate.

7 Impact on Solvency Capital Requirement
As explained in the previous sections, premium tax generates more tax revenues than VAT, if
both tax rates are equal. We now compare these two alternative tax systems from the point of
view of solvency capital requirements. For this purpose, we assume that insurance firms keep their
taxed insurance premiums constant, but retain the tax savings that accrue when premium tax is
replaced by VAT. Obviously, the solvency capital requirement is then decreased by this amount,
and insurance companies can distribute all tax savings to their shareholders. If this occurs, risk
will be back at its original level. In the current section we review the notion of solvency capital
requirements in the context of internal models10 and explain in detail why the dividend payments
to shareholders may be increased.

To this end, we review the basic definition of distribution-based monetary risk measures.
These include all risk measures that are typically used in practice. For a detailed exposition on
the subject we refer to Artzner, Delbaen, Eber & Heath (1999), Föllmer & Schied (2011), and
Föllmer & Weber (2015).

Definition 7.1. Let (Ω,F , P ) be a probability space, and X a vector space of random variables
on Ω that contains the constants. We identify random variables that are P -almost surely equal.
A mapping ρ : X → R is called a monetary risk measure on X , if ρ(X) = ρ(Y ) for X = Y
P -almost surely and if ρ satisfies the following properties:

(i) Monotonicity: If X ≥ Y P -almost surely, then ρ(X) ≤ ρ(Y ).
(Better payoff profiles are less risky.)

(ii) Cash-invariance: If m ∈ R, then ρ(X +m) = ρ(X)−m.
(Adding a fixed amount m to the risky position decreases the risk exactly by this amount.)

The risk measure ρ is called distribution-based, if ρ(X) = ρ(Y ) whenever X and Y have the
same distribution under P .

Example 7.2. Examples of distribution-based monetary risk measures are Value at Risk (V@R)
and Average Value at Risk (AV@R), also called expected shortfall, conditional value at risk, tail
value at risk, or worst conditional expectation. V@R and AV@R are the basis of the definition of
solvency capital requirements in Solvency II and in the Swiss Solvency Test, respectively.

(i) Value at Risk at level y ∈ (0, 1) is defined as a quantile:

V@Ry(X) := inf{m ∈ R |P (X +m < 0) ≤ y}.

It is equal to the smallest monetary amount m that needs to be added to the financial position
X such that the probability of a loss does not exceed the level y.

10Another approach is the standard formula of Solvency II, a modular construction for the computation of the
solvency capital requirement. While an internal model attempts to describe and evaluate the stochastic evolution
of the balance sheet of the insurance firm, the standard formula is an auxiliary construction that facilitates the
computation of a solvency capital requirement. Aggregation of risk modules is based on correlations and a square-
root formula. It is well-known and easily demonstrated that the modular construction cannot be interpreted as
an approximation of a capital requirement that limits the probability of ruin to less than 0.5% as requested by
Directive 2009/138/EC, see e.g. Pfeifer (2016). In this paper, we focus exclusively on internal models.
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(ii) Average Value at Risk at level y ∈ (0, 1) is the average of the V@Rs below y, i.e.

AV@Ry(X) := 1
y

∫ y

0
V@Rc(X) dc.

Under technical conditions, e.g. if X has a continuous distribution, it is equal to the condi-
tional expectation of a loss beyond the V@Ry(X).

We will now explain – in a stylized way – how solvency capital requirements are defined in
an internal model. The evolution of assets, liabilities and capital of an insurance firm can be
captured by solvency balance sheets at time horizons that are specified by regulators. The time
horizon of Solvency II and the Swiss Solvency Test is one year. Table 5 displays the balance sheet
of a company at time t = 0 and t = 1.

t = 0

Assets Liabilities
E0 = A0 − L0

A0
L0

t = 1

Assets Liabilities
E1 = A1 − L1

A1
L1

Table 5: Balance sheet of an insurance company for different points in time.

The assets are denoted by At, the liabilities by Lt, t = 0, 1. The quantities at time t = 0
are known, the quantities at time t = 1 are random variables. The difference between assets and
liabilities Et = At − Lt, t = 0, 1, is the net asset value (NAV) of the firm. We set X = E1 − E0
for the change of the NAV over the considered time horizon.

The solvency capital requirement (SCR) for Solvency II is defined in the Directive 2009/138/EC
of the European Parliament and of the Council on the taking-up and pursuit of the business of
Insurance and Reinsurance – Solvency II (see European Commission (2009)):

The Solvency Capital Requirement should be determined as the economic capital to be
held by insurance and reinsurance undertakings in order to ensure that ruin occurs no
more often than once in every 200 cases or, alternatively, that those undertakings will
still be in a position, with a probability of at least 99.5 %, to meet their obligations to
policy holders and beneficiaries over the following 12 months. That economic capital
should be calculated on the basis of the true risk profile of those undertakings, taking
account of the impact of possible risk-mitigation techniques, as well as diversification
effects.

This definition is specified in terms of condition on the acceptability of E1. An equivalent formu-
lation11 provides the definition of the SCR under Solvency II:

P (E1 < 0) ≤ y ⇔ V@Ry(E1) ≤ 0 ⇔ V@Ry(E1 − E0) ≤ E0 ⇔ V@Ry(X) ≤ E0.

Setting SCR := V@Ry(X), the solvency condition of the company becomes

SCR ≤ E0.

An analogous argument holds, if V@R is replaced by any other risk measure ρ.12 The accep-
tance set of ρ is the family of positions with non-positive risk, i.e.

Aρ = {X ∈ X : ρ(X) ≤ 0}.
11For simplicity, we assume in this paper that interest rates over the one-year horizon are approximately zero.

For adjustments on the definition of the SCR if interest rates are non zero see Christiansen & Niemeyer (2014).
12V@R has been criticized in the context of capital regulation, since it neglects losses beyond the V@R and – due

to its lack of coherence – it might mislead investment decisions and asset-liability management. In addition, in
corporate networks it is possible “to sweep the downside risk under the carpet”, see Weber (2017).
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If we assume again for simplicity that interest rates over a one-year horizon are zero, setting
SCR := ρ(X), we obtain the following solvency condition:

E1 ∈ Aρ ⇔ ρ(E1) ≤ 0 ⇔ SCR ≤ E0.

The Swiss Solvency Test chooses AV@R as the basis for the definition of solvency.
Let us now return to the original question regarding the impact of the tax system on solvency

capital. In eq. (1) we computed the tax savings that would accrue if a deduction of VAT paid
on inputs was permitted. We assume that these savings of L̄ − L = τVATαπ are retained by the
insurance company. While initial capital E0 remains unchanged, capital E1 at the solvency time
horizon is increased by this amount. This leads to a reduction of the SCR.

Lemma 7.3. We denote by SCR the solvency capital requirement in the original tax system with
premium tax. Assume that the tax system is modified such that a deduction of VAT paid on inputs
is permitted. In this case, the solvency capital requirement is reduced to

SCR− τVATαπ.

Proof. Adjusted quantities are labeled with a tilde. The random economic capital at time t = 1
becomes Ẽ1 = E1 + τVATαπ. We compute

S̃CR = ρ(X + τVATαπ) = ρ(X)− τVATαπ = SCR− τVATαπ.

Considering the situation in Example 2.1, the reduction of the solvency capital by τVATαπ
would amount to 0.99% of gross premium income. This is due to decreased government revenues.
The company could increase the dividend payments to its shareholders by this amount. If this
is done, the NAV at time 1 will return to its original level E1. The solvency situation of the
insurance company, i.e. E1 ∈ Aρ, will then be the same as before. Conversely, if the NAV of an
insurance firm at time 0, i.e. E0, is close to the SCR in a tax system with VAT, the firm would
need a capital injection of 0.99% of gross premium income from its shareholders to satisfy the
same solvency capital constraint in a tax system with premium tax.

8 Conclusion
We analyzed the impact of premium tax on total tax revenues, insurance demand, the com-
petitiveness of corporate buyers of insurance, the ruin probability of insurance firms and their
solvency capital requirement. We find that the competitiveness of corporate buyers of insurance,
the ruin probability of insurance firms and their solvency capital are hardly affected. In contrast,
the tax system (i.e. premium tax vs. VAT) has a significant influence on the cost of insurance,
insurance demand, government revenues and the profitability of insurance firms. The increased
cost of insurance in tax systems with premium tax in contrast to VAT might promote alternative
risk transfer mechanisms such as off-shore captive insurance, derivatives, or preventative mea-
sures that are not subject to premium tax. These instruments might provide more cost-efficient
solutions to the risk management needs of corporations. On the one hand, some tax-efficient
products might offer new business opportunities for insurance firms. On the other hand, alter-
native risk transfer mechanisms might also cannibalize their traditional business. The design of
such instruments and their implications for corporate risk management, insurance companies and
government revenues are interesting topics for further research.
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A Proof of Theorem 4.4
Proof.

(i) CARA-utility:
We first consider the case X ∼ Ber(x̂, p). We compute

E[uκ1(Xν)] = 1− e−κ(w−νπ)
(
eκ(1−ν)x̂p+ 1− p

)
.

This implies

∂

∂ν
E[uκ1(Xν)] = κeκ(πν−x̂ν+x̂−w)

(
π(p− 1)eκx̂ν−κx̂ + p(x̂− π)

)
.

At the boundary ν = 0 we obtain

∂

∂ν
E[uκ1(Xν)]|ν=0 = κeκ(x̂−w)

(
π(p− 1)e−κx̂ + p(x̂− π)

)
.

Thus, ν(π) = 0 is the optimal solution, if and only if

∂

∂ν
E[uκ1(Xν)]|ν=0 ≤ 0 ⇐⇒ π ≥ px̂eκx̂

1− p+ peκx̂
.

At the boundary ν = 1 we obtain ∂
∂νE[uκ1(Xν)]|ν=1 = κeκ(π−w)(px̂− π). Thus, the optimal

solution is ν(π) = 1, iff ∂
∂νE[uκ1(Xν)]|ν=1 ≥ 0, i.e. π ≤ px̂. In all other cases, we need to solve

∂
∂νE[uκ1(Xν)] = 0, leading to the stated solution. The first order conditions are sufficient
due to the strict concavity.
Second, we derive the optimal contract for X ∼ Γ(ξ, µ). In this case,

E [uκ1(Xν)] = 1− e−κ(w−νπ)
(

µ

µ− κ(1− ν)

)ξ
,

∂

∂ν
E [uκ1(Xν)] = e−κ(w−νπ)

(
µ

µ− κ(1− ν)

)ξ+1 (
−κ
µ

)
(π(µ− κ(1− ν))− ξ).

The solution can now be derived by analogous arguments as before.

(ii) HARA-utility: Using the same steps as above, the solution is computed, observing

E
[
uλ2(Xν)

]
= 1

λ
·
(
((1− ν)(w − x̂) + ν(w − π))λ · p+ ((1− ν)w + ν(w − π))λ · (1− p)

)
,

∂

∂ν
E
[
uλ2(Xν)

]
= (w − νπ + x̂(ν − 1))λ−1p(x̂− π) + (−π)(1− p)(w − νπ)λ−1.

(iii) Logarithmic utility: Again, the solution is derived by analogous arguments, noting

E
[
u0

2(Xν)
]

= log((1− ν)(w − x̂) + ν(w − π)) · p+ log((1− ν)w + ν(w − π)) · (1− p),
∂

∂ν
E
[
u0

2(Xν)
]

= 1
w − νπ + x̂ν − x̂

p(x̂− π) + (−π)(1− p) 1
w − νπ

.
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B Computations of Section 2
Rate of Input

2015 2014 2013 2012 2011
Gross premiums earned π 75,008,740 71,216,091 69,298,052 66,922,556 63,514,681
Capital income 7,431,575 7,246,143 7,207,242 7,451,052 6,988,566
Investment expenses 1,269,941 923,197 1,010,400 1,098,403 1,740,899
Total losses 56,243,800 52,078,719 55,722,781 50,255,508 48,929,622
Acquisition costs and administrative expenses 18,921,252 18,083,843 17,594,251 17,113,492 16,486,877
Taxes 1,462,200 1,479,200 963,100 1,483,700 1,147,200
Input L 4,543,122 5,897,275 1,214,762 4,422,505 2,198,649

Table 6: Computation of input costs in thousands of euros (TEUR).
These values are given in Table 540 of the corresponding annual report of BaFin (2011-2015). (Negative) Taxes are disclosed
in Table 79 of the same reports.

2015 2014 2013 2012 2011 Mean
Gross premiums earned 100.00 100.00 100.00 100.00 100.00
Capital income 9.91 10.17 10.40 11.13 11.00
Investment expenses 1.69 1.30 1.46 1.64 2.74
Total losses 75.00 73.10 80.40 75.10 77.00
Acquisition costs and administrative expenses 25.20 25.40 25.40 25.60 26.00
Taxes 1.95 2.08 1.39 2.22 1.81
Rate of Input α 6.07 8.30 1.75 6.58 3.46 5.23

Table 7: Computation of rate of input α as ratio of earned gross premium π.
Total losses as well as acquisition costs and administrative expenses can be adopted from Table 540 in the corresponding
annual report of BaFin (2011-2015). Other quantities are calculated using Table 6.

Value added

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 18,921,252 18,083,843 17,594,251 17,113,492 16,486,877
Profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Gross technical result 4,859,078 5,076,151 -165,970 3,442,647 1,812,497
Net technical result 2,931,694 2,908,918 288,506 1,573,496 377,868

Value added W̃ 23,692,336 23,523,476 19,094,875 22,313,643 19,539,506

Table 8: Computation of value added in TEUR.
Profits before taxes and (negative) changes in equilization provisions are given in Table 79 of the corresponding annual report
of BaFin (2011-2015). Gross and net technical results can be found in Table 540 of the same reports.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 25.20 25.40 25.40 25.60 26.00
Profits before taxes 3.40 3.63 3.08 3.69 3.13
Changes in equilization provisions 0.39 0.96 -0.26 1.28 -0.58
Gross technical result 6.50 7.10 -0.20 5.10 2.90
Net technical result 3.91 4.08 0.42 2.35 0.59

Value added W̃
π

31.58 33.01 27.60 33.33 30.85 31.28

Table 9: Computation of value added as ratio of earned gross premium π.
Acquisition costs and administrative expenses as well as gross technical result can be adopted from Table 540 in the corre-
sponding annual report of BaFin (2011-2015). Other quantities are calculated using Table 8 and π in Table 6.
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Value added for different lines of insurance
Accident:

2015 2014 2013 2012 2011
Total gross premium earned (direct business) π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned accident (direct business) π∗ 6,388,854 6,440,961 6,416,895 6,500,627 6,383,714
Net premium earned accident (direct business) π̂∗ 5,487,886 5,545,237 5,707,299 5,638,822 5,587,643
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result accident 24.70 16.60 17.10 17.20 17.30

Table 10: Needed data for computation of value added accident.
Total gross premium earned, gross premium earned accident, net premium earned accident and net technical result accident
are given in Table 541 of the corresponding annual report of BaFin (2011-2015). As above, total profits before taxes and
total (negative) changes in equilization provisions can be adopted from Table 79 in the same reports. Positions 1 to 5 are
specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 1,993,322 2,003,139 2,002,071 2,054,198 2,055,556
Profits before taxes 234,429 251,996 212,367 258,821 213,833
Changes in equilization provisions 27,175 66,653 -17,967 89,854 -39,684
Gross technical result 1,252,215 1,210,901 1,270,545 1,280,624 1,238,441
Net technical result 1,355,508 920,509 975,948 969,877 966,662
Value added accident 2,151,634 2,612,179 2,491,068 2,713,619 2,501,483

Table 11: Computation of value added accident in TEUR.
All quantities except net technical result are computed using Table 12 and π∗ given in Table 10. Net technical result is
calculated by multiplying the corresponding quantities in Table 10.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 31.20 31.10 31.20 31.60 32.20
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 19.60 18.80 19.80 19.70 19.40
Net technical result 21.22 14.29 15.21 14.92 15.14
Value added accident 33.68 40.56 38.82 41.74 39.19 38.80

Table 12: Computation of value added accident as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the corresponding
annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are calculated by using total
values in Table 10. Net technical results are based on the absolute values in Table 11 and π∗ given in Table 10.

25



Public Liability (publicL):

2015 2014 2013 2012 2011
Total gross premium earned (direct business) π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned publicL (direct business) π∗ 9,246,435 8,837,457 8,360,776 8,023,858 7,706,079
Net premium earned publicL (direct business) π̂∗ 6,714,540 6,536,798 6,670,263 6,437,008 5,979,624
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result publicL 7.50 9.00 7.20 9.80 9.80

Table 13: Needed data for computation of value added public liability.
Total gross premium earned, gross premium earned public liability, net premium earned public liability and net technical
result public liability are given in Table 541 of the corresponding annual report of BaFin (2011-2015). As above, total
profits before taxes and total (negative) changes in equilization provisions can be adopted from Table 79 in the same reports.
Positions 1 to 5 are specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 2,810,916 2,695,424 2,575,119 2,527,515 2,450,533
Profits before taxes 339,283 345,756 276,700 319,468 258,127
Changes in equilization provisions 39,330 91,453 -23,410 110,908 -47,904
Gross technical result 674,990 821,884 627,058 866,577 608,780
Net technical result 503,591 588,312 480,259 630,827 586,003
Value added public liability 3,360,929 3,366,205 2,975,208 3,193,641 2,683,533

Table 14: Computation of value added public liability in TEUR.
All quantities except net technical result are computed using Table 15 and π∗ given in Table 13. Net technical result is
calculated by multiplying the corresponding quantities in Table 13.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 30.40 30.50 30.80 31.50 31.80
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 7.30 9.30 7.50 10.80 7.90
Net technical result 5.45 6.66 5.74 7.86 7.60
Value added public liability 36.35 38.09 35.59 39.80 34.82 36.93

Table 15: Computation of value added public liability as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the corresponding
annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are calculated by using total
values in Table 13. Net technical results are based on the absolute values in Table 14 and π∗ given in Table 13.
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Car Total:

2015 2014 2013 2012 2011
Total gross premium earned (direct business) π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned car (direct business) π∗ 24,601,179 23,637,844 22,503,977 21,234,566 20,113,638
Net premium earned car (direct business) π̂∗ 19,146,675 18,312,796 18,352,347 17,317,716 16,402,766
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result car total 2.00 3.70 -2.80 -3.30 -8.10

Table 16: Needed data for computation of value added car total.
Total gross premium earned, gross premium earned car total, net premium earned car total and net technical result car total
are given in Table 541 of the corresponding annual report of BaFin (2011-2015). As above, total profits before taxes and
total (negative) changes in equilization provisions can be adopted from Table 79 in the same reports. Positions 1 to 5 are
specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 4,206,802 4,089,347 3,960,700 3,822,222 3,640,568
Profits before taxes 902,702 924,806 744,768 845,449 673,738
Changes in equilization provisions 104,642 244,611 -63,011 293,510 -125,035
Gross technical result 615,029 827,325 -1,012,679 -509,630 -1,528,636
Net technical result 382,934 677,573 -513,866 -571,485 -1,328,624
Value added car total 5,446,241 5,408,515 4,143,643 5,023,036 3,989,259

Table 17: Computation of value added car total in TEUR.
All quantities except net technical result are computed using Table 18 and π∗ given in Table 16. Net technical result is
calculated by multiplying the corresponding quantities in Table 16.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 17.10 17.30 17.60 18.00 18.10
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 2.50 3.50 -4.50 -2.40 -7.60
Net technical result 1.56 2.87 -2.28 -2.69 -6.61
Value added car total 22.14 22.88 18.41 23.65 19.83 21.38

Table 18: Computation of value added car total as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the corresponding
annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are calculated by using total
values in Table 16. Net technical results are based on the absolute values in Table 17 and π∗ given in Table 16.
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Defense:

2015 2014 2013 2012 2011
Total gross premium earned (direct business) π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned defense (direct business) π∗ 3,949,994 3,824,287 3,756,450 3,695,395 3,401,014
Net premium earned defense (direct business) π̂∗ 3,440,597 3,317,429 3,367,084 3,306,620 3,048,240
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result defense 0.50 -0.40 0.50 3.50 3.40

Table 19: Needed data for computation of value added defense.
Total gross premium earned, gross premium earned defense, net premium earned defense and net technical result defense are
given in Table 541 of the corresponding annual report of BaFin (2011-2015). As above, total profits before taxes and total
(negative) changes in equilization provisions can be adopted from Table 79 in the same reports. Positions 1 to 5 are specified
in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 1,319,298 1,269,663 1,228,359 1,249,044 1,091,725
Profits before taxes 144,939 149,621 124,320 147,131 113,922
Changes in equilization provisions 16,801 39,575 -10,518 51,079 -21,142
Gross technical result 31,600 -22,946 7,513 136,730 112,233
Net technical result 17,203 -13,270 16,835 115,732 103,640
Value added defense 1,495,435 1,449,183 1,332,838 1,468,251 1,193,099

Table 20: Computation of value added defense in TEUR.
All quantities except net technical result are computed using Table 21 and π∗ given in Table 19. Net technical result is
calculated by multiplying the corresponding quantities in Table 19.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 33.40 33.20 32.70 33.80 32.10
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 0.80 -0.60 0.20 3.70 3.30
Net technical result 0.44 -0.35 0.45 3.13 3.05
Value added defense 37.86 37.89 35.48 39.73 35.08 37.21

Table 21: Computation of value added defense as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the corresponding
annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are calculated by using total
values in Table 19. Net technical results are based on the absolute values in Table 20 and π∗ given in Table 19.
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Fire:

2015 2014 2013 2012 2011
Total gross premium earned (direct business) π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned fire (direct business) π∗ 2,150,739 1,888,463 1,840,158 1,736,250 1,763,792
Net premium earned fire (direct business) π̂∗ 1,131,264 1,091,608 1,050,167 1,048,086 1,064,826
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result fire -13.30 -7.50 -4.20 -10.20 -7.50

Table 22: Needed data for computation of value added fire.
Total gross premium earned, gross premium earned fire, net premium earned fire and net technical result fire are given in
Table 541 of the corresponding annual report of BaFin (2011-2015). As above, total profits before taxes and total (negative)
changes in equilization provisions can be adopted from Table 79 in the same reports. Positions 1 to 5 are specified in TEUR,
position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 615,111 523,104 506,043 503,513 502,681
Profits before taxes 78,918 73,884 60,900 69,128 59,081
Changes in equilization provisions 9,148 19,542 -5,152 23,999 -10,964
Gross technical result -204,320 -18,885 58,885 -83,340 -15,874
Net technical result -150,458 -81,871 -44,107 -106,905 -79,862
Value added fire 649,315 679,517 664,783 620,205 614,785

Table 23: Computation of value added fire in TEUR.
All quantities except net technical result are computed using Table 24 and π∗ given in Table 22. Net technical result is
calculated by multiplying the corresponding quantities in Table 22.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 28.60 27.70 27.50 29.00 28.50
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result -9.50 -1.00 3.20 -4.80 -0.90
Net technical result -7.00 -4.34 -2.40 -6.16 -4.53
Value added fire 30.19 35.98 36.13 35.72 34.86 34.58

Table 24: Computation of value added fire as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the corresponding
annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are calculated by using total
values in Table 22. Net technical results are based on the absolute values in Table 23 and π∗ given in Table 22.
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Household:

2015 2014 2013 2012 2011
Total gross premium earned (direct business) π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned househ. (direct business) π∗ 2,814,327 2,742,306 2,683,368 2,622,915 2,578,722
Net premium earned househ. (direct business) π̂∗ 2,426,927 2,370,466 2,434,656 2,375,543 2,330,813
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result household 15.30 12.30 14.40 14.70 16.30

Table 25: Needed data for computation of value added household.
Total gross premium earned, gross premium earned household, net premium earned household and net technical result
household are given in Table 541 of the corresponding annual report of BaFin (2011-2015). As above, total profits before
taxes and total (negative) changes in equilization provisions can be adopted from Table 79 in the same reports. Positions 1
to 5 are specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 982,200 959,807 936,495 925,889 902,553
Profits before taxes 103,267 107,290 88,806 104,431 86,378
Changes in equilization provisions 11,971 28,378 -7,513 36,255 -16,030
Gross technical result 484,064 394,892 402,505 445,896 477,064
Net technical result 371,320 291,567 350,590 349,205 379,923
Value added household 1,210,183 1,198,800 1,069,703 1,163265 1,070,042

Table 26: Computation of value added household in TEUR.
All quantities except net technical result are computed using Table 27 and π∗ given in Table 25. Net technical result is
calculated by multiplying the corresponding quantities in Table 25.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 34.90 35.00 34.90 35.30 35.00
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 17.20 14.40 15.00 17.00 18.50
Net technical result 13.19 10.63 13.07 13.31 14.73
Value added household 43.00 43.72 39.86 44.35 41.50 42.49

Table 27: Computation of value added household as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the corresponding
annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are calculated by using total
values in Table 25. Net technical results are based on the absolute values in Table 26 and π∗ given in Table 25.
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Residential Building (ResBui):

2015 2014 2013 2012 2011
Total gross premium earned (direct business) π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned ResBui (direct business) π∗ 6,144,732 5,782,479 5,388,303 5,033,876 4,764,973
Net premium earned ResBui (direct business) π̂∗ 4,702,787 4,425,298 4,329,537 4,064,797 3,834,273
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result residential building -9.40 -8.30 -22.20 -12.50 -14.40

Table 28: Needed data for computation of value added residential building.
Total gross premium earned, gross premium earned residential building, net premium earned residential building and net
technical result residential building are given in Table 541 of the corresponding annual report of BaFin (2011-2015). As
above, total profits before taxes and total (negative) changes in equilization provisions can be adopted from Table 79 in the
same reports. Positions 1 to 5 are specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 1,720,525 1,624,877 1,530,278 1,424,587 1,362,782
Profits before taxes 225,471 226,233 178,326 200,423 159,610
Changes in equilization provisions 26,137 59,839 -15,087 69,580 -29,621
Gross technical result -147,474 -138,779 -1,929,012 -241,626 -385,963
Net technical result -442,062 -367,300 -961,157 -508,100 -552,135
Value added residential building 2,266,721 2,139,469 725,661 1,961,063 1,658,944

Table 29: Computation of value added residential building in TEUR.
All quantities except net technical result are computed using Table 30 and π∗ given in Table 28. Net technical result is
calculated by multiplying the corresponding quantities in Table 28.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 28.00 28.10 28.40 28.30 28.60
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result -2.40 -2.40 -35.80 -4.80 -8.10
Net technical result -7.19 -6.35 -17.84 -10.09 -11.59
Value added residential building 36.89 37.00 13.47 38.96 34.82 32.23

Table 30: Computation of value added residential building as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the corresponding
annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are calculated by using total
values in Table 28. Net technical results are based on the absolute values in Table 29 and π∗ given in Table 28.
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Credit and Guarantee (CreGua):

2015 2014 2013 2012 2011
Total gross premium earned (direct business) π 69,448,394 66,146,203 64,535,515 62,102,602 59,310,517
Gross premium earned CreGua (direct business) π∗ 450,905 415,173 988,984 958,490 1,235,832
Net premium earned CreGua (direct business) π̂∗ 429,550 403,996 585,225 560,561 845,929
Total profits before taxes 2,548,300 2,587,900 2,135,800 2,472,600 1,986,700
Total changes in equilization provisions 295,400 684,500 -180,700 858,400 -368,700
Net technical result credit and guarantee 32.40 29.10 20.20 23.00 29.20

Table 31: Needed data for computation of value added credit and guarantee.
Total gross premium earned, gross premium earned credit and guarantee, net premium earned credit and guarantee and net
technical result credit and guarantee are given in Table 541 of the corresponding annual report of BaFin (2011-2015). As
above, total profits before taxes and total (negative) changes in equilization provisions can be adopted from Table 79 in the
same reports. Positions 1 to 5 are specified in TEUR, position 6 as ratio of π̂∗.

2015 2014 2013 2012 2011
Acquisition costs and administrative expenses 132,115 119,155 273,949 272,211 359,627
Profits before taxes 16,545 16,243 32,730 38,162 41,396
Changes in equilization provisions 1,918 4,296 -2,769 13,249 -7,682
Gross technical result 124,450 126,213 206,698 150,483 411,532
Net technical result 139,174 117,563 118,215 128,929 247,011
Value added credit and guarantee 135,854 148,344 392,392 345,176 557,862

Table 32: Computation of value added credit and guarantee in TEUR.
All quantities except net technical result are computed using Table 33 and π∗ given in Table 31. Net technical result is
calculated by multiplying the corresponding quantities in Table 31.

2015 2014 2013 2012 2011 Mean
Acquisition costs and administrative expenses 29.30 28.70 27.70 28.40 29.10
Profits before taxes 3.67 3.91 3.31 3.98 3.35
Changes in equilization provisions 0.43 1.03 -0.28 1.38 -0.62
Gross technical result 27.60 30.40 20.90 15.70 33.30
Net technical result 30.87 28.32 11.95 13.45 19.99
Value added credit and guarantee 30.13 35.73 39.68 36.01 45.14 37.34

Table 33: Computation of value added credit and guarantee as ratio of earned gross premium π∗.
Acquisition costs and administrative expenses as well as gross technical results are given in Table 541 of the corresponding
annual report of BaFin (2011-2015). Profits before taxes and changes in equilization provisions are calculated by using total
values in Table 31. Net technical results are based on the absolute values in Table 32 and π∗ given in Table 31.

Note: When data were available from different BaFin-reports, we have always chosen the
most current data source. Whenever possible, we used data from BaFin (2011-2015), Issue 2015,
for the years 2013-2015, BaFin (2011-2015), Issue 2014, for the year 2012 and BaFin (2011-2015),
Issue 2013, for the year 2011. This refers to Table 540 in the corresponding issues. For the year
2014 we had to rely on Table 80 instead of Table 79 in BaFin (2011-2015), Issue 2014.
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